
A Hybrid Approach to Operating System Discovery
Based on Diagnosis Theory

François Gagnon
School of Computer Science

Carleton University
Ottawa, Canada

fgagnon@sce.carleton.ca

Babak Esfandiari
Department of Systems and Computer Engineering

Carleton University
Ottawa, Canada

babak@sce.carleton.ca

Abstract—Motivated by the increasing importance of knowing
which operating systems are running in a given network, we
evaluated operating system discovery (OSD) tools. The results
indicated a serious lack of accuracy in current OSD tools.

This thesis proposes a new approach to OS discovery which
addresses the limitations of existing tools and leads to a more
flexible, less intrusive, and much more accurate tool. Moreover,
unlike existing OSD tools which are completely ad hoc, our
approach is formal and follows the principles of diagnosis
problem solving. This formalism allows us to:

• characterize the complexity of OSD;
• use well-tested algorithms and
• benefit from numerous possible extensions.
To fully address the needs of OSD, we generalize the theory

of diagnosis with a query-based extension. This extension leads
to a spectrum of test selection algorithms to solve each query.

I. I NTRODUCTION

It has been recognized, by the research community [6], [9],
[11], [16] as well as the industry [15], that contextual informa-
tion surrounding a network attack, or more precisely an alarm
from an intrusion detection system (IDS), is highly relevant
for determining whether this attack is likely to succeed or not.
Classifying IDS alarms is an important task for distinguishing
the events that have to be handled immediately by the security
team from those that can be postponed for a while.

One of the key piece of information needed to determine
whether an attack will succeed or fail is the targeted host
configuration, including the version of the operating system
(OS) it is running and the version of the available services.In
this thesis, we focussed on the impact of knowing which OS
is running on a targeted host for the task of determining the
likelihood of success of an attack directed towards that host.

This paper presents a brief summary of this thesis1 and
follows the chronological steps of the research process. We
started with a theoretical analysis to determine the usefulness
of OS information for classifying IDS alarms. From the results,
showing that this information could allow us to filter out
around 40% of the false positives alarms, we concluded that
this was a promising direction. The second step was to evaluate

1full version available at: www.sce.carleton.ca/∼fgagnon/PhDThesis.pdf

current operating discovery (OSD) tools for this specific task.
The results were less convincing here: the best tool was barely
able to identify 13% of the false positives (approximately
1/3 of the potential for the approach). After an investigation
to discover why current tools were not up for the task, we
developed a new approach to OSD and implemented this
approach. We then compared our tool with other OSD tools
to measure the benefits of our new approach. The result were
very impressive: our tool was able to identify 35% of the
false alarms, nearly reaching the full potential of this piece of
contextual information. Moreover, unlike existing OSD tools
which are completely ad hoc, our approach follows a formal
path through the use of the theory of diagnosis. The problem
of OS discovery was so closely related to the general diagnosis
framework that we’ve been able to use our application to
propose a general extension to the diagnosis theory; namely,
a query-based approach.

II. M OTIVATION

Information about which operating system is running on
a given computer is interesting in several situations. We’ve
identified three differentquestions2 regarding OS information
that are useful in different contexts:

• Exact OS Query: ”Which OS is running on the com-
puter?” This is the classical problem and is useful for
network inventory and similar tasks.

• Group OS Query: ”Is the computer running an OS
belonging to a given set of OSesO?” This is useful when
trying to classify an IDS alarm, the setO is then the set
of OSes that are vulnerable to the underlying attack.

• Single OS Query: ”Is the computer running the specific
OS o?” This query is interesting for the task of finding
out which computers need to be updated with a recently
released patch.

Of course, from a knowledge point of view, those queries
are redundant since the exact OS query allows us to answer the
other queries as well. However, they prove to be quite inter-
esting as they correspond to different computational problems,

2We call them queries to emphasize the fact that our approach relies on a
knowledge base.978-1-4673-0269-2/12/$31.00c© 2012 IEEE

see Section III-B. Hence, if one is only interested in answering
the single OS query, using the full exact OS query could mean
longer computation or a more expensive solution.

A. OSD for IDS Alarm Classification

One of the main applications of OS discovery nowadays
is the group OS query, used to determine if an IDS alarm is
a false positive or not. To measure how good this approach
actually is, we conducted an experiment to measure how many
false positives we can identify assuming we know the exact
OS version of the target. To conduct such a experiment, we
used a publicly available dataset of attack scenarios produced
at the Communication Research Center in Canada in 2006.
The CRC dataset [10], [12] contains 6,656 traces. Each trace
corresponds to one attack scenario, i.e., launching one of 92
attacks (covering several different vulnerabilities) against one
of 95 targets (covering several different OS families). Each
trace comes with the following information:

• the Security Focus Bugtraq ID [14] of the attack used;
• the outcome of the attack (success or failure);
• the configuration of the target;

From there, we can simulate a decision process in which we
classify an alarm as a false positive if the target OS (taken from
the target configuration) is not part of the systems vulnerable
to this attack (based on the Security Focus vulnerability
database). This corresponds to the best case scenario where
we know the exact target OS, and it will give us an estimation
about the relevance of using OS discovery to filter out false
alarms from IDSes.

The results are quite interesting: 40.7% of the false alarms
were identified as such (recall measure) simply by considering
the target OS and only 0.7% of the real alarms were mis-
classified as false alarms (precision measure). After further
investigation, it turned out that all the precision mistakes
were caused by incomplete information in the Security Focus
database (i.e., some vulnerable systems were not listed as
such). Full description and results of this experiments canbe
found in [4], [5].

Those results indicate that using OS information is a
promising way to classify IDS alarms. However, relying on
the exact target configuration is unrealistic. Networks aretoo
large and systems are too dynamic to manually maintain an
up-to-date database of all the target configuration in a network.
Instead, we need to rely on OS discovery tools to gather this
information when needed. So the next step was to evaluate
how effective current OSD tools are at this specific task.

B. Existing OSD Tools

Current OSD tools are all designed to answer the exact OS
query.We can use that information to answer the group OS
query needed for IDS alarm classification. For this experiment,
we used nine OSD tools:Xprobe, Ettercap, Nmap, Siphon,
SinFP andP0f in four different modes3 (SynAck, RstAck, Syn,

3Since these modes are completely independent, we consider them as
different tools.

StrayAck). These tools get a recall percentage of 12.7, 8.5,
5.1, 2.4, 1.6, 8.7, 3.4, 2.2, and 0.6 respectively. The best tool,
Xprobe, achieves 12.7% which is merely 1/3 of the potential
(40.7%) of this approach. The precision is quite good for these
tools. See [4], [5] for fully detailed results.

The question is: why are current OSD tools doing so poorly
at that task? The answer is manifold. First, it is important to
see that current OSD tools fall in two categories: passive and
active.

Passive OSD tools rely on information that is naturally avail-
able on the network without any intervention on their part4.
These tools must often deal with a very limited set of events.
Moreover, existing passive tools are stateless; that is, they do
not remember previous information when analyzing the current
event (they can think a system might be running Linux even
if a previous event should have discarded that possibility).
Finally, existing passive tools are single packet-based; that is,
they do not correlate information from multiple packets (which
is interesting in many stimulus-response situations). Allthese
features greatly limit their accuracy.

Active tools, on the other hand, send probes to initiate
a response from the target. Thus they have access to the
event they want, but not all events can be forced that way5.
Moreover, a drawback of active tools is the generation of
(sometime irregular6) network trafficto fingerprint the target.
The tradeoff between obtaining good information and not
injecting too much traffic on the network limits the number of
available tests, thus the accuracy of active tools.

Every tool focuses on a specific set of events. For instance,
Nmap andXprobe, two active tools, do not consider the same
types of probes at all. Obviously, the more events you consider,
the more accurate you can be.

By addressing those limitations, we believed it was possible
to improve on the current state of the art.

III. H YBRID OS DISCOVERY

Our idea to improve state of the art OS discovery is to rely
on a hybrid approach, much like diagnosis engines. As soon as
the process is started, it gathers freely available information
(passively) and starts making deductions about the possible
explanations for the observed behavior (in our case the OS
responsible for the observed traffic). When the user needs to
know the final diagnosis, the engine can switch to active mode
to fetch the possibly missing information. The active module
relies extensively on the information gathered passively (only
performing tests that will provide new information).

Since the diagnosis literature is mainly focused on finding
the actual diagnosis, we’ve extended the classical diagnosis
engine to include a query-based approach, see [3]. In this

4For instance, whenever a computer performs an ARP request, it has to
fill the destination MAC field of the ARP packet without knowing the actual
value. Some OSes will fill this field with 00:00:00:00:00:00,while other will
fill it with FF:FF:FF:FF:FF:FF, and yet some others will use aseemingly
random value

5Information gleaned from the DHCP protocol is an example.
6Nmap will send a TCP packet with no flags to see how the target reacts

in that situation

System

User

Query-Based Diagnosis Tool

Knowledge
Base

(CONS)

Knowledge
Update
Module
(SD)

Knowledge
Gathering
Module
(TEST)

Query
Answering

Module

[B]
lookup/
update

[F] update

[D]
task

[G]
answer

[A]
observations

[E]
stimuli

[C]
query

Fig. 1. Query-Based Diagnosis Tool

extension, the active module is guided by both the passively
gathered information and the user query (defining the goal to
reach). The query-based extension is interesting, as one query
might be more expensive7 to solve than another one in the
same context.

A. Passive Module

The resulting diagnosis engine, see Figure 1, is built around
a knowledge base in which we store possible explanations
based on the information acquired so far. This will act as
a memory to reuse previous deductions. Moreover, our im-
plementation of the passive module gathers several network
packets before analyzing them. This allows us to consider
multi-packet phenomena (e.g., Syn-SynAck). Once a sufficient
number8 of packets have been gathered, they are analyzed and
discarded; only the resulting deductions are kept9. The passive
module algorithm is based on Reiter’s Candidate Generation
algorithm [13] (using conflict sets and hitting sets) and runs
in polynomial time for single fault10 diagnosis.

B. Active Module

We have implemented three queries in the active mod-
ule (single candidate, group candidate, and exact candidate
queries), each corresponding to one of the OSD queries
mentioned earlier, see Section II. We’ve shown that these
queries are meaningful in other diagnosis domains (medicalor
engineering diagnosis). We have also shown that these queries
are useful: for instance, solving the single candidate query
is never harder than solving the exact candidate query, but
solving the exact candidate query can sometimes be much
harder than solving the single candidate query, see [3].

7Either from a computational standpoint; to build a plan, or from a cost-
based point of view; to execute the plan.

8The current threshold is set to 100; a tradeoff between execution time for
larger sets of packets and the risk of separating a stimulus from its response
for smaller sets.

9Keeping every packet would quickly slow down the engine.
10Assuming each IP address is associated with a single OS.

The active module relies on test selection strategies to
propose which tests to execute in order to answer a given
query. A direct implication is that we can encode as much
tests as we want into our tool; in fact, the more tests we have,
the better. This is an improvement over existing OSD tools
which limit the number of available tests, since they always
execute all of them.

For the single candidate query, we established that a greedy
test selection, although computationally fast, provides atheo-
retically unbounded suboptimal solution (w.r.t., the number of
tests executed). It is possible to obtain an optimal solution,
but the single candidate query problem is NP-Hard (by a
reduction to the Set Cover problem). However, an experiment
we conducted, see [1], shows that in practice the greedy
algorithm provide a very good approximation for the single
candidate query in the OSD domain.

For the group candidate query and the exact candidate
query, the task is more difficult. It is not easy to define a
universal comparison metrics between two solutions. Hence,
the definition of optimal solution is ambiguous. We believe this
is a argument in favor of the usefulness of our query-based
approach: the fact that the single candidate query is easily
characterizable while the other two queries are not is a good
indication that the underlying problems are quite different.

IV. RESULTS

Using an implementation of our hybrid approach to OS
discovery, we ran some experiments to compare with existing
OSD tools. The comparison was made under two different
angles. First, we ran the experiment described earlier to
compare the tools in the context IDS alarm classification; that
is, how good are they with the group OS query. We also
compared the tools under the exact OS query. The second
angle is interesting because it corresponds to the primary
objective of all existing OSD tools. Hence they won’t have a
design disadvantage. Moreover, it will allow us to quantifythe
cost difference between directly answering the “easier” group
OS query vs answering the full exact OS query in terms of the
number of tests required, i.e., the number of packets injected.

When presenting the results, we consider three new OSD
tools: posd, aosd, andhosd. posd is the passive only module
of our hybrid approach discussed earlier,aosd is the active
only module, whilehosd is the full hybrid tool. Studying
posd allows us to determine whether using a stateful approach
to passive OSD has benefits.aosd helps us understand the
advantage of using a test selection strategy for active OSD
(instead of just running all tests). Finally,hosd will measure
the impact of combining the passive and active strategies.

A. Group OS Query

To evaluate the group OS query for our tools, we used the
same experiment as in section II-A. Let us recall that the
potential of OS information was to filter out 40% of false
alarms while the best current OSD tools achieved only 13%.
Figure 2 shows the recall results.

0

10

20

30

40

50

p0f
 (S

tra
yA

ck
)

Sin
FP

p0f
 (S

yn
)

Sip
hon

p0f
 (R

st
Ack

)

Nm
ap

et
te

rc
ap

p0f
 (S

yn
Ack

)

Xpro
be

pos
d

ao
sd

hosd

R
ec

al
l

%

Fig. 2. OSD Tools Recall

We can see that our passive tool (posd) outperforms all other
passive tools. This confirms our intuition that a knowledge-
based approach is a key component here (allowing a stateful
approach with multi-packet analysis). Our active tool is also
more effective than all other active tools. This is mainly due
to the fact that most active tools have a very limited set of
tests (to avoid injecting too much traffic, since they always
perform all their tests).aosd, on the other hand, relies on a
test selection strategy to perform a minimal subset of tests.

But the most interesting conclusion is definitely the fact that
combining the passive and active approach yields a significant
improvement. The information gathered by the passive and
active module is complementary.

B. Exact OS Query

The objective of the exact OS query is to identify the actual
operating system of a computer. This is not a yes/no question,
thus it is harder to evaluate. OSD tools will rarely identify
a single possible OS; they provide a set of possible OSes
(because different OSes sometimes behave in a similar way).
We used the CRC dataset again, but this time looking for the
OSD tools to identify the actual OS.

First, we established acorrectnessmeasure. For each test
case (i.e., traffic trace) a tool either provides acorrect answer
(if the actual OS is among the set of possible OSes identified
by the tool), anincorrect answer (if the actual OS is not
among the set of possible OSes), or aninconclusiveone (if
the tool is unable to extract any information from the traffic).
The intuition is that it is preferable to obtain an inconclusive
answer than an incorrect one.

A limitation of the correctness measure is that it is easy
for a tool to perform arbitrarily well by generating very large
set of possible OSes. To circumvent this, we use a second
measure,imprecision. Imprecision is the size of the possible
OSes set given by a tool whenever it provides a correct answer.
The lower the imprecision, the better. Below we compare the
results of existing OSD tools with our own tool for the exact
OS query based on the correctness and imprecision measures.

0

20

40

60

80

100

p0f
 (S

tra
yA

ck
)

p0f
 (S

yn
)

Sip
hon

Sin
FP

p0f
 (S

yn
Ack

)

p0f
 (R

st
Ack

)

Nm
ap

et
te

rc
ap

Xpro
be

posd
ao

sd
hos

d

Incorrect

Inconclusive

Correct

Fig. 3. Correctness for the Exact OS Query

1) Correctness:Figure 3 presents the correctness for each
tool. Below is our interpretation of these results:

• posd is again better than every other passive tool. This
is another argument in favor of our knowledge-based
approach to OSD.

• The combination of our passive and active modules
provides excellent results and again we see how wellposd
andaosd complement each other.

• posd andhosd rarely provide the wrong answer. This is an
effect of a safe strategy intrinsic to our hybrid approach:
we do not need to guess aggressively; in case of doubt,
we simply fetch additional information.

2) Imprecision:Figure??provides the average imprecision
for each tool. The lower the imprecision, the better. Here are
some interesting conclusions extracted from these results:

• hosd andaosd perform very well. The tools having better
imprecision all have a highly inadequate correctness.hosd
is arguably the best tradeoff between imprecision and
correctness.

• posd does not have a very good imprecision by itself.
Again, this confirms the importance of combining the
passive and active approaches together.

C. Traffic Generated

Another interesting measure of evaluation for active OSD
tools is the amount of traffic they inject on the network. Table
I shows the number of packets injected by each active tool for
the two experiments. We observe the following:

• Nmap injects a high volume of packets. This is mainly
due to the port scan performed before starting the OS
discovery module11. It is possible to disable this port scan,
in which caseNmap still injects 30 packets on average,
but the drawback is an important decrease in accuracy. It
is fair to mention thatNmap was not designed specifically
to be an OS discovery tool; however, it is worth noting
that Nmap is currently one of the most, if not the most,
popular tool for OS discovery.

11Note that using a hybrid approach, the information gleaned by a port scan
can be constructed by the passive module

TABLE I
PACKET INJECTIONSUMMARY FOR GROUPOS QUERY

Nb packets sent
Group OS Query Exact OS Query

Tool Min Mean Max Min Mean Max
Nmap 882 1686 2186 882 1686 2186
Xprobe 7 7 7 7 7 7
aosd 1 7.9 16 3 13.3 21
hosd 0 2.1 8.4 0 3.9 13

• There is no difference forNmap and Xprobe between
the group OS query and the exact OS query. This was
expected, since classical active OSD tools are not query-
dependant. That is, they will send all their tests regardless
of what the user wants to know.

• On the other hand, there is a difference for our tools,aosd
andhosd, between the two queries. The exact OS query
requires consistently more tests to be executed, both on
average and in the worst case, than the group OS query.
This confirms our intuition that a query-based approach
is valuable for lowering the overall cost of active testing.

• There is a noticeable improvement betweenaosd and
hosd. It is due to the combination of the passive and active
modules (hosd needs to send fewer packets as it already
possesses a lot of information from passive monitoring).
In the best case, when the information gathered passively
is sufficient to answer the query,hosd does not need to
perform any test at all.

V. CONCLUSION AND FUTURE WORK

Based on our results, the following key points are worth
mentioning.

Target configuration information is extremely relevant for
the context of an attack. It can filter out a significant amount
of non-critical alarms (40% when considering only the target
OS). Current OSD tools, however, are not adequate for the
task of IDS context gathering, as they achieve only 1/3 of
their potential. This is a consequence of intrinsic limitations
of the current approaches.

We were able to lift some of those limitations. A knowledge-
oriented approach to OS discovery greatly improves the
accuracy, starting with passive OSD. Combining the active
and passive approaches into a hybrid one also increases the
accuracy (by maximizing the number of phenomena that can
be observed) while reducing the number of executed tests (by
relying on test selection and passive information).

In our work, we modeled OSD as a diagnosis problem.
This provided an intuitive framework for reasoning about the
problem and it supplied algorithms for the different modules.
We’ve shown that extending diagnosis theory with a query-
based approach generally reduces the cost of extracting infor-
mation, as some queries are “easier” to solve than others.

A. Future Work

Much interesting work remains to be done in the area of
OS discovery.

Considering probabilities in the reasoning process is def-
initely the most important one. All OSes are not equally
popular and this should be used to guide the decision process.
Moreover, the reliability of OSD tests is not constant and this
could be modeled through probabilities.

Another interesting aspect would be to switch to a multiple-
fault diagnosis system [7] in order to capture network topolo-
gies such as network address translators (NAT). Every com-
puter behind a NAT has its own behavior and a NAT may
behave as if it was running several different OSes.

Distributing the diagnosis reasoning process [8] would help
to deploy such tools in large network where we cannot gather
all the relevant information from a single point.

Finally, performing an experiment to compare different
ways (target configuration, vulnerability assessment, attack
side-effects) of filtering IDS false alarms would give us a better
idea about the big picture.

VI. PUBLICATIONS

The thesis results led to publications in different areas. Se-
curity and network management (with the improvement to OS
discovery), artificial intelligence and knowledge representation
(with the extension to the diagnosis theory), and vitualization
(with the work on theVNEC platform, see Section VII-B).
Following is a list of our publications.

A. Journals

• (2011) International Journal of Network Management.
Gagnon F. and Esfandiari B. A hybrid approach to operat-
ing system discovery based on diagnosis, 21(2):106-119.

• (2009) Artificial Intelligence Review. Gagnon F. and
Esfandiari B. A Query-Based Approach for Test Selection
in Diagnosis, 29(3):249-263.

B. Refereed conferences and Workshops

• (2010) Gagnon F., Esfandiari B., and Dej T. - Network in
a Box - Proceedings of the 2010 International Conference
on Data Communication Networking (DCNET’10).

• (2009) Gagnon F. and Esfandiari B. - Using Answer Set
Programming to Enhance Operating System Discovery
- Proceedings of the 10th International Conference on
Logic Programming and Nonmonotonic Reasoning (LP-
NMR’09).

• (2009) Gagnon F., Esfandiari B. and Massicotte F. - Us-
ing Contextual Information for IDS Alarm Classification
(Extended Abstract) - Proceedings of the 6th Conference
on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA’09), 147-156 (LNCS-5587).

• (2008) Gagnon F., Esfandiari B. and Dej T. VNEC: A Vir-
tual Network Experiment Controller - Proceedings of the
2nd International DMTF Academic Alliance Workshop
on Systems and Virtualization Management: Standards
and New Technologies (SVM’08), 119-124.

• (2008) Gagnon F. and Esfandiari B. A Query-Based
Approach for Test Selection in Diagnosis: Operating
System Discovery as a Case Study - poster session of the

19th International Workshop on Principles of Diagnosis
(DX’08).

• (2007) Gagnon F., Esfandiari B. and Bertossi L. A Hybrid
Approach to Operating System Discovery using Answer
Set Programming - Proceedings of the 10th IFIP/IEEE
Symposium on Integrated Management (IM’07), 391-
400.

• (2006) Massicotte F., Gagnon F., Couture M., Labiche Y.,
and Briand L. Automatic Evalaution of Intrusion Detec-
tion Systems - Proceedings of the 2006 Annual Computer
Security Applications Conference (ACSAC’06).

• (2006) Massicotte F. and Gagnon F. A Publicly Available
Data Set for the Evaluation of Signature-Based IDS -
poster session of the 9th International Symposium on
Recent Advances in Intrusion Detection (RAID’06).

C. Misc

• (2010) Ph.D. Thesis, Carleton University. Gagnon F. A
Hybrid Approach to Operating System Discovery Based
on Diagnosis Theory.
www.sce.carleton.ca/∼fgagnon/PhDThesis.pdf

• (2008) Book chapter in Emerging Artificial Intelligence
Applications in Computer Engineering - Frontiers in
AI and Applications Series, IOS Press. Gagnon F. and
Esfandiari B. Using Artificial Intelligence for Intrusion
Detection, pp. 295-306.

VII. T OOLS

Two open source tools were released as part of this research:
hosd andVNEC.

A. HOSD

hosd is the implementation of our Hybrid approach to OS
Discovery. It is available as an open source project through
hosd.sourceforge.net.hosd is a Java tool with a prolog12

reasoning engine.

B. VNEC

VNEC is a tool to facilitate the execution of repetitive net-
work experiments using a virtual environment.VNEC stands
for Virtual Network Experiment Controller. It emerged from
our need to gather a large database of OS fingerprints.
While collecting fingerprints on real computer is tedious
and requires several machines,VNEC allows us to perform
this task automatically using hundreds of virtual machines,
see [2]. It is available as an open source project through
vnec.sourceforge.net.

Although VNEC was developed with the objective of gath-
ering OS fingerprints, it can be used for numerous network
experiments such as the study of virus propagation patterns
and software deployment testing.

12The first version ofhosd came with an Answer Set Programming
reasoning module.

REFERENCES

[1] François Gagnon.A hybrid Approach to Operating System Discovery
Based on Diagnosis Theory. Ph.d. thesis, Carleton University, 2010.
www.sce.carleton.ca/∼fgagnon/PhDThesis.pdf.

[2] François Gagnon, Tomas Dej, and Babak Esfandiari. Network in a Box.
(Submitted to) 2010 International Conference on Data Communication
Networking (DCNET’10), 2010.

[3] François Gagnon and Babak Esfandiari. A query-based approach for
test selection in diagnosis.Artificial Intelligence Review, 29(3):249–
263, 2009.

[4] François Gagnon, Frédéric Massicotte, and Babak Esfandiari. On the
Effectiveness of Target Configuration as Contextual Information for
IDS Alarm Classification. Technical Report SCE-08-08, Department
of Systems and Computer Engineering - Carleton University,2008.
http://www.sce.carleton.ca/∼ fgagnon/Publications/context.pdf.

[5] François Gagnon, Frédéric Massicotte, and Babak Esfandiari. Using
Contextual Information for IDS Alarm Classification.Proceedings of the
6th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA’09), pages 147–156, 2009.

[6] Burak Dayioglu and Attila Ozgit. Use of Passive Network Mapping
to Enhance Signature Quality of Misuse Network Intrusion Detection
Systems.Proceedings of the 16th International Symposium on Computer
and Information Science (ISCIS’01), 2001.

[7] Johan de Kleer and Brian C. Williams. Diagnosing Multiple Faults.
Artificial Intelligence, 32(1):97–130, 1987.

[8] Eric Fabre, Albert Benveniste, and Claude Jard. Distributed Diagnosis
for Large Discrete Event Dynamic Systems.Proceedings of the 15th
IFAC World Congress on Automatic Control, 2002.

[9] Christopher Kruegel and William Robertson. Alert Verification: De-
termining the Success of Intrusion Attempts.Proceedings of the 1st
Workshop on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA’04), 2004.

[10] Frédéric Massicotte and François Gagnon. A Publicly Available Data
Set for the Evaluation of Signature-Based IDS. poster session of the 9th
International Symposium on Recent Advances in Intrusion Detection
(RAID’06), 2006.

[11] Frédéric Massicotte, Mathieu Couture, Yvan Labiche, and Lionel Briand.
Context-Based Intrusion Detection Using Snort, Nessus andBugtraq
Databases.Proceedings of the Third Annual Conference on Privacy,
Security and Trust (PST’05), October 2005.

[12] Frédéric Massicotte, Annie De Montigny-Leboeuf, and Mathieu Cou-
ture. Using a VMware Network Infrastructure to Collect Traffic Traces
for Intrusion Detection Evaluation.Proceedings of the 21st Annual
Computer Security Applications Conference (ACSAC’05), 2005.

[13] Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial
Intelligence, 32(1):57–95, 1987.

[14] SecurityFocus. SecurityFocus Homepage. http://www.securityfocus.org/.
[15] Jerry Shenk and Dave Shackleford. Sourcefire Real-TimeNetwork

Awareness. SANS Analyst Program.
[16] Robin Sommer and Vern Paxson. Enhancing Byte-Level Network

Intrusion Detection Signatures with Context.Proceedings of the 10th
ACM Conference on Computer and Communications Security (CCS’03),
pages 262–271, 2003.

