
Trust-Guided Behavior Adaptation Using Case-Based Reasoning∗

Michael W. Floyd and Michael Drinkwater
Knexus Research Corporation

Springfield, Virginia, USA
michael.floyd@knexusresearch.com

michael.drinkwater@knexusresearch.com

David W. Aha
Navy Center for Applied Research in AI
Naval Research Laboratory (Code 5514)

Washington, DC, USA
david.aha@nrl.navy.mil

Abstract
The addition of a robot to a team can be difficult if
the human teammates do not trust the robot. This
can result in underutilization or disuse of the robot,
even if the robot has skills or abilities that are nec-
essary to achieve team goals or reduce risk. To
help a robot integrate itself with a human team, we
present an agent algorithm that allows a robot to es-
timate its trustworthiness and adapt its behavior ac-
cordingly. As behavior adaptation is performed, us-
ing case-based reasoning (CBR), information about
the adaptation process is stored and used to improve
the efficiency of future adaptations.

1 Introduction
A robot can be a beneficial addition to a human team if it im-
proves the team’s capabilities, improves productivity, or re-
duces the risk to the human teammates. This is especially
true of semi-autonomous robots that can complete tasks in-
dependently or reduce other teammates’ workload. However,
in order for the team to get the full benefit of the robot they
need to trust it and be willing to delegate tasks to it. A lack of
trust in the robot could result in teammates underutilizing the
robot (i.e., not assigning it tasks it is capable of completing),
excessively monitoring the robot’s actions, or not using the
robot at all [Oleson et al., 2011].

One possibility would be to design a robot that is guaran-
teed to operate in a trustworthy manner. However, it may
be impossible to elicit a complete set of rules for trustwor-
thy behavior if the robot is expected to handle changes in
teammates, environments, or mission contexts. The way
in which a teammate measures trust in the robot may be
user-dependent, task-dependent, or time-varying [Desai et al.,
2013]. For example, a teammate’s measurement of trust may
change in an emergency situation. Similarly, the time-critical
nature of the team’s mission may make it difficult to get ex-
plicit feedback from teammates about the robot’s trustworthi-
ness.
∗This paper was invited for submission to the Best Papers From

Sister Conferences Track, based on a paper that appeared in the 22nd
International Conference on Case-Based Reasoning (ICCBR 2014)
[Floyd et al., 2014].

We propose an approach that allows a robot to evaluate
its trustworthiness and adapt its behavior accordingly. The
trust estimate, which we refer to as an inverse trust estimate,
differs from traditional computational trust metrics in that it
measures how much trust other agents have in the robot rather
than how much trust the robot has in other agents. Since the
robot can only use observable information and not informa-
tion that is internal to the teammates’ reasoning, the inverse
trust estimate relies on evaluating the standard interactions
between the robot and its teammates (i.e., being assigned
tasks and performing those tasks). The inverse trust estimate
is not a direct measurement that is able to precisely quan-
tify trust but instead measures trends in trust (e.g., increasing,
decreasing, remaining constant) based on observable factors
that are known to influence human-robot trust. Using these
trends, the robot is able to adapt its behavior in an attempt
to find more trustworthy behaviors. Our adaptation approach
uses case-based reasoning (CBR) to allow the robot to lever-
age information from previous behavior adaption to more ef-
ficiently adapt to trustworthy behaviors.

In the remainder of this paper we describe how inverse trust
and behavior adaptation can be used to allow a robot to adopt
trustworthy behaviors regardless of teammates, environment,
or context. In Section 2, we describe the robot and how it can
modify aspects of its behavior. The inverse trust estimate and
how it can be used to classify and evaluate behaviors is dis-
cussed in Section 3, followed by how that information can be
used to adapt the robot’s behavior in Section 4. Our approach
is evaluated in a simulated robotics domain in Section 5. We
report evidence that case-based behavior adaptation can effi-
ciently adapt the robot’s behavior to align with a teammate’s
preferences. Areas of related work are discussed in Section 6
and concluding remarks are presented in Section 7.

2 Robot Behavior
We make two assumptions about the robot: it behaves semi-
autonomously and it has the ability to modify aspects of its
behavior. A human operator interacts with the robot by issu-
ing commands or delegating tasks, and the robot acts inde-
pendently to complete its assignment. The robot has direct
control over certain aspects of its behavior that we refer to as
the modifiable components. These could include changing al-
gorithms (e.g., switching the path planning algorithm it uses),
modifying parameter values, or selecting among comparable

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4261

data sources to use (e.g., using an alternate map of the envi-
ronment).

Each modifiable component i has a set of possible values Ci
from which the robot can choose. If the robot has m modifi-
able components, its current behavior B is a tuple containing
the currently selected value ci for each modifiable component
(ci ∈ Ci):

B = 〈c1, c2, . . . , cm〉
The robot can immediately influence how it behaves by
switching from its current behavior B to a new behavior
Bnew. In the context of our work, these behavior changes
primarily occur when the robot is attempting to behave in a
more trustworthy manner. Over the course of operation, the
robot can make numerous changes resulting in a sequence of
behaviors 〈B1, B2, . . . , Bn〉.

3 Inverse Trust Estimate
Traditional trust metrics measure how much trust an agent has
in other agents [Sabater and Sierra, 2005]. Previous interac-
tions with those agents, observations of the agents, or feed-
back from others are used to calculate trustworthiness [Es-
fandiari and Chandrasekharan, 2001]. These metrics are de-
signed to be used in a single direction (e.g., agentA measur-
ing its trust in agentB) and are not applicable in the inverse
(e.g., agentB measuring how trustworthy agentA thinks it
is). This occurs because the information needed to measure
trustworthiness may be internal to the agent using the metric
(e.g., how agentA judged previous interactions with agentB ,
or private feedback received about agentB).

A robot would need access to the operator’s personal ex-
periences and beliefs in order to use a traditional trust metric,
but the operator might be unwilling or unable to provide this
information. Even if the robot does not have the necessary in-
formation to calculate its own trustworthiness it might be able
to elicit explicit feedback from the operator (i.e., the results
of the operator using a trust metric). This feedback could
be provided at run-time (e.g., periodically telling the robot
how trustworthy it is [Kaniarasu et al., 2013]) or offline after
all tasks have been completed (e.g., filing out a trust survey
[Jian et al., 2000; Muir, 1987]). However, this might not be
practical if the operator does not have time to provide regu-
lar feedback or feedback is needed before all tasks have been
completed.

In situations where the robot does not have access to the
information needed to use a traditional trust metric and no
explicit operator feedback is available, the robot will need to
infer how trustworthy it is using observable evidence of trust.
This requires the robot to detect the presence of factors that
influence human-robot trust. Numerous factors have been
found to influence trust [Oleson et al., 2011] but the strongest
indicator is the robot’s performance [Hancock et al., 2011;
Carlson et al., 2014]. In addition to being the strongest indi-
cator of trust, the robot’s performance is also directly observ-
able and has a clear model for its impact on trust [Kaniarasu
et al., 2012].

The inverse trust estimate we present is based on the
robot’s performance and uses the number of times the robot

completes an assigned task, fails to complete a task, or is in-
terrupted by the operator while performing a task. The robot
assumes that the operator will view completed tasks as good
performance, failed tasks as poor performance, and will inter-
rupt if the robot is performing poorly. Interruptions could also
be a result of a change in the operator’s goals or a realization
that the assigned task was unachievable, but the robot works
under the assumption that most interruptions will be related
to performance. Task completion and interruptions provide
a reasonable basis for estimating inverse trust because they
have been found to align closely with changes in operator
trust, based on both real-time user feedback [Kaniarasu et al.,
2013] and post-run trust surveys [Kaniarasu et al., 2012].

Rather than quantifying precisely how trustworthy the
robot is, our inverse trust estimate looks for general trends
in the robot’s trustworthiness and determines if trust is in-
creasing, decreasing, or remaining constant. We estimate the
trustworthiness as follows:

TrustB′ =
n∑

i=1

wi × cmdi

where there were n commands issued to the robot while us-
ing the current behavior B′. The estimate will increase if
the ith command (1 ≤ i ≤ n) was completed success-
fully and decrease if the command was failed or interrupted
(cmdi ∈ {−1, 1}). The ith command also receives a weight
wi which denotes varying levels of success or failure when
performing a command. For example, a command that the
robot performed poorly would likely be weighted less than a
command where the robot damaged itself.

The trust estimate produces a simple step function that the
robot can compute online as new information becomes avail-
able (i.e., new commands are issued). A more complex or
cognitively plausible function could also be used that more
closely aligns with the operator’s actual trust. However, the
additional complexity of such a function might not provide
additional benefits if, like with our robot, we seek general
trends in trustworthiness rather than a precise value.

3.1 Behavior Classification
The trust estimate is updated by the robot after each success-
fully completed task, failure, or interruption. The robot con-
tinuously monitors the estimate and classifies its current be-
havior as trustworthy, untrustworthy, or unknown. To per-
form this classification, two thresholds are used: the trust-
worthy threshold (τT) and the untrustworthy threshold (τU).

If the estimate is between the two thresholds (τU <
TrustB′ < τT), the robot cannot confidently classify its be-
havior as being trustworthy or untrustworthy. In this situa-
tion, it continues to monitor the estimate and can only observe
general trends in its trustworthiness (increasing, decreasing,
or remaining constant). The robot will conclude its behav-
ior is sufficiently trustworthy if the trustworthy threshold is
reached (TrustB′ ≥ τT). When a trustworthy behavior is
found, the robot will continue to use the behavior but may
continue to measure its trustworthiness in case any changes
occur the would cause the behavior to no longer be trust-
worthy (e.g., a new operator or a goal change). However, if

4262

the untrustworthy threshold is reached (TrustB′ ≤ τU), the
robot will conclude that its current behavior is untrustworthy
and should be changed. The robot will infer that its current
behavior has been decreasing the operator’s trust and a new,
more trustworthy behavior is needed to help regain that trust.

3.2 Evaluated Behaviors
The goal of the robot is to find a behavior that it thinks is
trustworthy (i.e., the trustworthy threshold is reached) but as
it performs this search it may find certain behaviors to be
untrustworthy (i.e., the untrustworthy threshold is reached).
When a behavior B is found to be untrustworthy, it is stored
as an evaluated pair E that also contains the time t it took to
be labeled as untrustworthy:

E = 〈B, t〉
The time t is measured from when the robot starts using the
behavior to when the untrustworthy threshold is reached. The
motivation for storing the time is that it allows for a compar-
ison between untrustworthy behaviors and assigning relative
levels of untrustworthiness. A behavior B′ that reaches the
untrustworthy threshold more quickly than another behavior
B′′ (t′ < t′′) is defined to be less trustworthy than the other.
This is based on the assumption that if a behavior took longer
to reach the untrustworthy threshold then it was either com-
pleting more tasks, not failing as quickly, or appearing to be-
have trustworthy for longer periods of time.

The robot maintains a set Epast of previously evaluated be-
haviors. This set is initially empty but is extended as the robot
evaluates more behaviors. After the robot has found n behav-
iors to be untrustworthy, Epast will contain n evaluated pairs
(Epast = {E1, E2, . . . , En}). The set can be thought of as
the search path that the robot takes until it finds a behavior
Bfinal that reaches the trustworthy threshold.

4 Case-based Behavior Adaptation
Behavior adaptation is used to select a new behavior to eval-
uate after the current behavior has reached the untrustwor-
thy threshold. We employ case-based reasoning [Richter and
Weber, 2013] to perform behavior adaptation in our system.
CBR embodies the idea that similar problems tend to have
similar solutions. In our context, the problem is the set of
previously evaluated behaviors Epast and the solution is the
final trustworthy behavior Bfinal. Using the CBR method-
ology, the robot attempts to find a trustworthy behavior using
information from previous behavior searches. For example, if
the robot found a trustworthy behavior for an initial operator,
it could use that to help find a trustworthy behavior for a new
operator.

Case-based reasoning systems store problem-solution
pairs, called cases, that represent concrete problem-solving
instances. A case C in our system is defined as:

C = 〈Epast, Bfinal〉
The collection of cases that the robot uses is called a case
base. The case base CB contains all cases that have been
stored:

CB = {C1, C2, . . . }
The case base is initially empty but grows each time a new
case is created (i.e., a trustworthy behavior is found). It rep-
resents all of the problem-solving experience that the robot
has collected.

The robot selects a new behavior to perform using the se-
lectBehavior function (Algorithm 1). This algorithm per-
forms the case-based reasoning process by comparing the
problem the robot is currently attempting to solve (i.e., the
set of previously evaluated behaviors Epast) to the problems
it has previously solved (i.e., the cases in the case base CB).
This is motivated by the idea that if two problem are simi-
lar then their solutions may also be similar, so the robot can
adapt its behavior by switching to the final behavior of the
most similar case.

Algorithm 1: Selecting a new behavior

Function: selectBehavior(Epast, CB) returns Bnew;

1 bestSim← 0; Bbest ← ∅;
2 foreach Ci ∈ CB do
3 if Ci.Bfinal /∈ Epast then
4 simi ← sim(Epast, Ci.Epast);
5 if simi > bestSim then
6 bestSim← simi;
7 Bbest ← Ci.Bfinal;

8 if Bbest = ∅ then
9 Bbest ← modifyBehavior(Epast);

10 return Bbest;

The algorithm iterates through each case in the case base
(line 2) and checks to see if the case’s final behavior has al-
ready been evaluated (line 3). This check is performed to
ensure that behaviors that have already been evaluated and
found to be untrustworthy are not evaluated again (since only
untrustworthy behaviors are stored in Epast). The robot com-
pares its current set of evaluated behaviors to the set of eval-
uated behaviors in the remaining cases (line 4). This allows
the robot to find the most similar case, store that case’s final
behavior (lines 5-7), and select that behavior to be used (line
10). The robot immediately switches to this behavior.

If the case base is empty or the final behaviors of all cases
have already been evaluated, the selectBehavior algorithm
will not find any potential behaviors to use (line 8). In this
situation, the case-based reasoning system has insufficient
problem-solving experience to solve the current problem so
an alternate adaptation approach is used. The modifyBehav-
ior function performs random walk behavior adaptation. Al-
though other adaptation techniques could also be used, ran-
dom walk adaptation is used because it does not require any
prior knowledge about the operator, task, or domain.

The modifyBehavior function selects the evaluated behav-
ior Emax that took the longest to reach the untrustworthy
threshold (∀Ei ∈ Epast, Emax.t ≥ Ei.t). A behavior Bnew

is found that requires the minimum number of changes to the

4263

modifiable components of Emax.B and has not already been
evaluated by the robot (∀Ei ∈ Epast, Bnew 6= Ei.B). This is
based on the assumption that Emax is the untrustworthy be-
havior that is closest to being trustworthy. By making a slight
change, the aim is that Bnew will be closer to being trustwor-
thy. If all possible behaviors have already been evaluated, the
robot will stop adapting its behavior and use Emax.B. This
is done so that even if there are no trustworthy behaviors the
robot can use it will still attempt to behave in the least un-
trustworthy way possible.

The selectBehavior function relies on computing the sim-
ilarity between two sets of evaluated behaviors (line 4). The
ability to measure similarity is central to case-based reason-
ing since it allows a system to identify if two problems are
similar to each other (i.e., they might have similar solution).
This similarity function (Algorithm 2) needs to take into ac-
count that these sets may vary in size. This occurs because
the number of evaluated behaviors in each set is dependent
on how long the trustworthy behavior search took in that in-
stance. For example, a search that quickly found a trustwor-
thy behavior would contain fewer evaluated behaviors than a
longer search. Similarly, there is no guarantee that the same
behaviors were evaluated in each set. To account for this, the
similarity function looks at the overlap between the two sets
and ignores behaviors that have only been evaluated in one
of the sets. The algorithm goes through each evaluated be-
havior Ei in the first set (line 2) and finds the most similar
evaluated behavior Emax in the second set (line 3). The simi-
larity between behaviors is a function of the similarity of each
behavior component:

sim(B1, B2) =
1

m

m∑
i=1

sim(B1.ci, B2.ci),

The similarity function for each behavior component will de-
pend on its specific type. For example, a behavior compo-
nent that represents a binary parameter requires a different
similarity function than a component that represents which
path planning algorithm is being used. The various similarity
functions return values between 0.0 (most dissimilar) and 1.0
(most similar). For example, consider a robot with two mod-
ifiable components: speed and padding (how far it attempts
to stay away from obstacles when planning its movement). A
behavior Ba with a speed of 1 meter/second and a padding of
0.5 meters (Ba = 〈1, 0.5〉) could be compared to a behavior
Bb with a speed of 6 meters/second and a padding of 0.5 me-
ters (Bb = 〈6, 0.5〉). The similarity between the behaviors is
a function of the similarity of each modifiable component (us-
ing a similarity metric for numerical modifiable components1,
where sim(1, 6) = 0.5 and sim(0.5, 0.5) = 1.0), so they
would have a similarity of 0.75 (sim(Ba, Bb) =

1
2 (0.5+1)).

If the behaviors stored inEi andEmax are sufficiently sim-
ilar, based on a threshold λ (line 4), the similarity of their time
components are included in the similarity calculation (line 5).

1Using the similarity function sim(v1, v2) = (1 − |v1−v2|
max−min

),
where max is the maximum the values can take (10 meters/second
for speed and 2 meters for padding) and min is the minimum (0
meters/second and 0 meters).

Algorithm 2: Similarity between sets of evaluated behav-
iors

Function: sim(E1, E2) returns sim;

1 totalSim← 0; num← 0;
2 foreach Ei ∈ E1 do
3 Emax ← argmax

Ej∈E2

(sim(Ei.B,Ej .B));

4 if sim(Ei.B,Emax.B) > λ then
5 totalSim← totalSim+ sim(Ei.t, Emax.t);
6 num← num+ 1;

7 if num = 0 then
8 return 0;

9 return totalSim
num ;

This ensures that the final similarity value only includes infor-
mation from behaviors that have a highly similar counterpart
in the other set. The similarity function identifies behaviors
that have been evaluated in both sets and evaluates if they
were found to be untrustworthy in a similar amount of time.

5 Evaluation
We evaluate our behavior adaptation technique in a simulated
robotics environment [Knexus Research Corporation, 2015].
The robot is a wheeled unmanned ground vehicle. It receives
natural language commands from the operator in an urban en-
vironment composed of landmarks (e.g., roads, various types
of terrain) and other objects (e.g., houses, humans, vehicles,
road barriers).

Our evaluation compares two variations of trust-based be-
havior adaptation: case-based behavior adaptation and ran-
dom walk behavior adaptation. While we expect both to allow
the robot to adapt to trustworthy behaviors, we evaluate our
claim that the case-based approach does so more efficiently.

5.1 Experimental Conditions
Our study uses simulated operators that were selected to rep-
resent a subset of the control strategies used by human oper-
ators. Each simulated operator has preferences for how the
robot should behave and those preferences influence how the
robot’s behavior is evaluated (i.e., when the robot is allowed
to complete a task and when it is interrupted).

Each experiment involves 500 trials and in each trial the
robot interacts with a single operator. At the start of each
trial, the robot randomly selects (with uniform distribution)
initial values for each of its modifiable component. Through-
out a trial, a series of experimental runs occur. A run involves
the operator issuing a command to the robot and monitoring
the robot as it completes the assigned task. During a run, the
robot will complete the task, fail to complete the task, or be
interrupted by the operator; it will update its trust estimate ac-
cordingly and may adapt its behavior. At the end of a run, the
environment is reset and a new run begins. A trial concludes
when the robot finds a trustworthy behavior or evaluates all
possible behaviors.

4264

The case-based approach starts each experiment with an
empty case base (i.e., no previous problem-solving experi-
ence). A case is stored at the end of a trial if the robot found a
trustworthy behavior and performed at least one random walk
adaptation. This case retention strategy is used to prevent
adding redundant cases since cases are not added if the exist-
ing case base can find a solution. Once a case is added to the
case base it can be used during subsequent trials.

The robot used the following thresholds during the experi-
ments: τT = 5.0, τU = −5.0, λ = 0.95.

5.2 Evaluation Scenarios
Two evaluation scenarios were used: Movement and Patrol.
In the Movement scenario, the operator issues commands to
the robot telling it where to move in the environment (e.g.,
“move to the flag”). The robot is responsible for interpreting
the commands and navigating to the appropriate locations.
The operators evaluate the robot based on successful com-
pletion of a task, how long the robot has been attempting
to complete the task, and how safely the robot is behaving
(more details about when the operators interrupt the robot are
provided in [Floyd et al., 2014]). Three simulated operators
were used: speed-focused, safety-focused, and balanced. The
speed-focused operator prefers that the robot completes the
task quickly (within 15 seconds) regardless of whether it hits
any obstacles. The safety-focused operator prefers that the
robot avoids obstacles regardless of how long it takes to com-
plete the task. The balanced operator prefers that the task
be completed quickly (within 15 seconds) without hitting any
obstacles.

The robot has two modifiable components: speed (meters
per second) and obstacle padding (meters). The speed re-
lates to how fast the robot can move and the padding relates
to the distance the robot will attempt to maintain from obsta-
cles during movement. The set of possible values for each
modifiable component (Cspeed and Cpadding) are based on the
minimum and maximum acceptable values the robot can use:

Cspeed = {0.5, 1.0, . . . , 10.0}
Cpadding = {0.1, 0.2, 0.3, . . . , 2.0}

In the Patrol scenario, six suspicious objects are randomly
placed in the environment at the start of each run. These ob-
jects represent potential threats to the robot or its team. Be-
tween 0 and 3 (inclusive) of these objects are selected ran-
domly to be hazardous explosive devices while the remaining
objects pose no threat.

The robot receives commands from its operator telling it to
patrol between its current location and a destination location.
While navigating to the destination, the robot is responsible
for locating suspicious objects nearby. If a suspicious object
is detected, the robot pauses its patrol, moves toward the ob-
ject, scans the object with its explosive detector, labels the
object as explosive or harmless, and resumes its patrol be-
havior. The accuracy of the robot’s explosives detector is a
function of how long the robot spends scanning the objects
(longer scan times result in improved accuracy) and its prox-
imity to the object (smaller scan distances result in improved

accuracy). In addition to speed and padding, scan time (sec-
onds) and scan distance (meters) are modifiable components
of the robot’s behavior:

Cscantime = {0.5, 1.0, . . . , 5.0}
Cscandistance = {0.25, 0.5, . . . , 1.0}

The simulated operators in this scenario will also consider
the robot’s ability to identify and label suspicious objects
when evaluating the robot. The robot will be interrupted if
it does not scan one or more suspicious objects or incorrectly
labels an object. Two simulated operators are used in this
scenario: speed-focused and detection-focused. The speed-
focused operator prefers for the robot to complete the patrol
correctly and within a fixed time limit (120 seconds). The
detection-focused operator prefers that the task be performed
correctly regardless of time.

5.3 Results
Both case-based behavior adaptation and random walk be-
havior adaptation resulted in similar trustworthy behaviors for
each operator. This includes finding trustworthy behaviors in
similar ranges (e.g., that the speed-focused operator prefers
higher speeds) or similar relations between values (e.g., the
interdependence between scan time and scan distance). Fur-
thermore, the trustworthy behaviors aligned with what an out-
side observer would intuitively consider trustworthy for each
operator.

The primary difference between the two adaptation ap-
proaches is how many behaviors need to be evaluated be-
fore a trustworthy behavior is found. Table 1 shows the mean
number of evaluated behaviors (and 95% confidence interval)
when interacting with each operator over 500 trials. Addition-
ally, this table shows the results when the operator is selected
at random at the start of each trial. This represents a more
realistic situation where the robot is required to interact with
a variety of operators but does not know which operator it is
currently receiving commands from.

The case-based approach required significantly fewer be-
haviors to be evaluated in all seven conditions (using a paired
t-test with p < 0.01). This is because the case-based ap-
proach learns from previous adaptations. At the beginning of
an experiment, when the case base is small or empty, the case-
based approach relies on random walk to generate cases so
the initial results are similar to those of random walk. How-
ever, as more cases are added the number of random walk
adaptations decreases until the robot generally only performs
a single case-based adaptation before finding a trustworthy
behavior. Our results indicate that most cases are stored dur-
ing trials that occur near the start of an experiment. Even in
the random operator experiments, the case-based approach is
able to store cases related to several different operators (three
in the Movement scenario and two in Patrol), and quickly dif-
ferentiate between them.

These results indicate that the efficiency of the case-based
approach could be further improved if the system was given
an initial case base to use. Having an existing case base
that was generated during training sessions would reduce the

4265

Table 1: Mean number of behaviors evaluated before finding a trustworthy behavior.
Scenario Operator Random Walk Case-based Cases Acquired
Movement Speed-focused 20.3 (±3.4) 1.6 (±0.2) 24
Movement Safety-focused 2.8 (±0.3) 1.3 (±0.1) 18
Movement Balanced 27.0 (±3.8) 1.8 (±0.2) 33
Movement Random 14.6 (±2.9) 1.6 (±0.1) 33

Patrol Speed-focused 344.5 (±31.5) 9.9 (±3.9) 25
Patrol Detection-focused 199.9 (±23.3) 5.5 (±2.2) 22
Patrol Random 269.0 (±27.1) 9.3 (±3.2) 25

number of expensive random walk adaptations required dur-
ing time-sensitive missions. Random walk adaptation is used
because it requires no explicit knowledge about the domain,
task, or operator. However, a more intelligent search that is
able to use direct feedback from the operator or learn the root
causes of interruptions would reduce the cost of case genera-
tion.

6 Related Work
Existing approaches for measuring inverse trust differ from
our own in that they require regular operator feedback or pre-
defined rules. Robot performance, measured based on the
number of times a human takes control of the robot or warns
the robot, has been used to measure decreases in a robot’s
trustworthiness [Kaniarasu et al., 2012]. In order to also de-
tect increases in trust, direct feedback from the operator at
regular intervals is required [Kaniarasu et al., 2013]. A mea-
sure of inverse trust using a set of expert-authored rules has
also been proposed [Saleh et al., 2012]. However, without
existing knowledge of these rules the robot would be unable
to measure its trustworthiness.

Models of trust in case-based reasoning systems have fo-
cused on traditional trust rather than inverse trust (e.g., in the
context of recommender systems [Tavakolifard et al., 2009]
or collaborative search [Briggs and Smyth, 2008]). Case
provenance [Leake and Whitehead, 2007], where a case-
based reasoning system considers the reliability of a case’s
source, also takes trust into account. Our work also has sim-
ilarities to conversational case-based recommender systems
[McGinty and Smyth, 2003] that tailor recommendations to
a user’s preferences. Recommendations are iteratively im-
proved by learning a user model through an interactive dia-
log. This is similar to learning interface agents [Maes and
Kozierok, 1993; Schlimmer and Hermens, 1993] that observe
a user performing a task and assist with that task in the fu-
ture. However, both conversational recommender systems
and learning interface agents are designed to assist with only
a single task. In contrast, our robot does not know in advance
the specific task it will be performing so it cannot bias itself
toward learning preferences for that task.

In preference-based planning [Baier and McIlraith, 2008],
a user’s predefined preferences are incorporated into auto-
mated planning tasks. Instead of being defined in advance,
the user’s planning preferences can also be learned from pre-
vious plans the user has generated [Li et al., 2009]. In our
work, this would be equivalent to an operator manually con-
trolling the robot in order to provide demonstrations to the

robot. This would not be practical in time-sensitive situations
or when the operator did not have a fully constructed plan
for how the robot should perform the task (e.g., the operator
might not know or care about the exact route the robot takes).

In human-robot interaction, it is often beneficial for the
robot to attempt to interpret the environment from the per-
spective of a human teacher [Berlin et al., 2006]. This can
allow the robot to discover information it would not have
seen from its own viewpoint during a demonstration of a task
[Breazeal et al., 2009]. This is similar to our work in that it at-
tempts to interpret information from a secondary perspective
but, like with preference-based planning, requires the teacher
to provide demonstrations.

7 Conclusions
In this paper, we described our approach to inverse trust esti-
mation and how it can be used by a semi-autonomous robot
that is part of a human team. The inverse trust estimation dif-
fers from a traditional trust metric in that it allows the robot
to infer how much trust an operator has in it rather than mea-
sure how trusting it is of an operator. The robot uses this trust
estimation to determine when it should adapt its behavior in
order to be a more trustworthy member of the team.

The robot learns as it adapts its behavior by storing in-
formation about previously evaluated behaviors. Case-based
reasoning is used to leverage this information and find trust-
worthy behaviors more efficiently. We demonstrated the ef-
ficiency of case-based adaptation in a simulated robotics do-
main and found it significantly outperformed an adaptation
approach that does not learn.

The primary benefit of this approach is that it does not re-
quire any background knowledge about the operator, tasks,
environment, or context. However, this also limits the ap-
proach by restricting it to relying on an expensive random
walk adaptation when acquiring cases. Future work will look
at how supplemental information, like occasional operator
feedback, can be used to improve the efficiency of adaptation.
We also plan to allow the robot to reason about its goals and
the goals of the team. This would allow the robot to verify
it is trying to achieve team goals and identify if any sudden
goal changes occur.

Acknowledgments
Thanks to the Naval Research Laboratory and the Office of
Naval Research for supporting this research.

4266

References
[Baier and McIlraith, 2008] Jorge A. Baier and Sheila A.

McIlraith. Planning with preferences. AI Magazine,
29(4):25–36, 2008.

[Berlin et al., 2006] Matt Berlin, Jesse Gray, Andrea Lock-
erd Thomaz, and Cynthia Breazeal. Perspective taking:
An organizing principle for learning in human-robot inter-
action. In 21st National Conference on Artificial Intelli-
gence, pages 1444–1450, 2006.

[Breazeal et al., 2009] Cynthia Breazeal, Jesse Gray, and
Matt Berlin. An embodied cognition approach to min-
dreading skills for socially intelligent robots. International
Journal of Robotic Research, 28(5), 2009.

[Briggs and Smyth, 2008] Peter Briggs and Barry Smyth.
Provenance, trust, and sharing in peer-to-peer case-based
web search. In 9th European Conference on Case-Based
Reasoning, pages 89–103, 2008.

[Carlson et al., 2014] Michelle S. Carlson, Munjal Desai,
Jill L. Drury, Hyangshim Kwak, and Holly A. Yanco.
Identifying factors that influence trust in automated cars
and medical diagnosis systems. In AAAI Symposium on
The Intersection of Robust Intelligence and Trust in Au-
tonomous Systems, pages 20–27, Palo Alto, USA, 2014.

[Desai et al., 2013] Munjal Desai, Poornima Kaniarasu,
Mikhail Medvedev, Aaron Steinfeld, and Holly Yanco. Im-
pact of robot failures and feedback on real-time trust. In
8th International Conference on Human-robot Interaction,
pages 251–258, 2013.

[Esfandiari and Chandrasekharan, 2001] Babak Esfandiari
and Sanjay Chandrasekharan. On how agents make
friends: Mechanisms for trust acquisition. In Proceedings
of the 4th Workshop on Deception, Fraud and Trust in
Agent Societies, pages 27–34, Montreal, Canada, 2001.

[Floyd et al., 2014] Michael W. Floyd, Michael Drinkwater,
and David W. Aha. How much do you trust me? Learning
a case-based model of inverse trust. In Proceedings of the
22nd International Conference on Case-Based Reasoning,
pages 125–139, Cork, Ireland, 2014. Springer.

[Hancock et al., 2011] Peter A. Hancock, Deborah R.
Billings, Kristin E. Schaefer, Jessie Y.C. Chen, Ewart J. De
Visser, and Raja Parasuraman. A meta-analysis of factors
affecting trust in human-robot interaction. Human Fac-
tors: The Journal of the Human Factors and Ergonomics
Society, 53(5):517–527, 2011.

[Jian et al., 2000] Jiun-Yin Jian, Ann M. Bisantz, and
Colin G. Drury. Foundations for an empirically deter-
mined scale of trust in automated systems. International
Journal of Cognitive Ergonomics, 4(1):53–71, 2000.

[Kaniarasu et al., 2012] Poornima Kaniarasu, Aaron Stein-
feld, Munjal Desai, and Holly A. Yanco. Potential mea-
sures for detecting trust changes. In 7th International
Conference on Human-Robot Interaction, pages 241–242,
Boston, USA, 2012.

[Kaniarasu et al., 2013] Poornima Kaniarasu, Aaron Stein-
feld, Munjal Desai, and Holly A. Yanco. Robot confi-
dence and trust alignment. In Proceedings of the 8th Inter-
national Conference on Human-Robot Interaction, pages
155–156, Tokyo, Japan, 2013.

[Knexus Research Corporation, 2015] Knexus Research
Corporation. eBotworks. http://www.knexusresearch.
com/products/ebotworks.php, 2015. [Online; accessed
February 27, 2015].

[Leake and Whitehead, 2007] David Leake and Matthew
Whitehead. Case provenance: The value of remembering
case sources. In 7th International Conference on Case-
Based Reasoning, pages 194–208, 2007.

[Li et al., 2009] Nan Li, Subbarao Kambhampati, and
Sung Wook Yoon. Learning probabilistic hierarchical task
networks to capture user preferences. In 21st International
Joint Conference on Artificial Intelligence, pages 1754–
1759, 2009.

[Maes and Kozierok, 1993] Pattie Maes and Robyn
Kozierok. Learning interface agents. In 11th National
Conference on Artificial Intelligence, pages 459–465,
1993.

[McGinty and Smyth, 2003] Lorraine McGinty and Barry
Smyth. On the role of diversity in conversational recom-
mender systems. In 5th International Conference on Case-
Based Reasoning, pages 276–290, 2003.

[Muir, 1987] Bonnie M. Muir. Trust between humans and
machines, and the design of decision aids. International
Journal of Man-Machine Studies, 27(56):527–539, 1987.

[Oleson et al., 2011] Kristin E. Oleson, Deborah R. Billings,
Vivien Kocsis, Jessie Y.C. Chen, and Peter A. Hancock.
Antecedents of trust in human-robot collaborations. In
Proceedings of the 1st International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness
and Decision Support, pages 175–178, 2011.

[Richter and Weber, 2013] Michael M. Richter and
Rosina O. Weber. Case-Based Reasoning - A Text-
book. Springer, 2013.

[Sabater and Sierra, 2005] Jordi Sabater and Carles Sierra.
Review on computational trust and reputation models. Ar-
tificial Intelligence Review, 24(1):33–60, 2005.

[Saleh et al., 2012] Jamil Abou Saleh, Fakhreddine Karray,
and Michael Morckos. Modelling of robot attention de-
mand in human-robot interaction using finite fuzzy state
automata. In International Conference on Fuzzy Systems,
pages 1–8, 2012.

[Schlimmer and Hermens, 1993] Jeffrey C. Schlimmer and
Leonard A. Hermens. Software agents: Completing pat-
terns and constructing user interfaces. Journal of Artificial
Intelligence Research, 1:61–89, 1993.

[Tavakolifard et al., 2009] Mozhgan Tavakolifard, Peter
Herrmann, and Pinar Öztürk. Analogical trust reasoning.
In 3rd International Conference on Trust Management,
pages 149–163, 2009.

4267

