
1

94.511 High-performance Software Design Winter 2003------ A 1
Copyright C. M. Woodside 1998 - 2003

Design of High-Performance Software
C. M. Woodside

GOALS:
How to describe, discover, and understand the performance

aspects of a system design

Software resource architecture

Solutions to performance problems through principles,
performance models, and patterns

Concentration on distributed systems (web, client-server
architectures, cluster systems)

94.511 High-performance Software Design Winter 2003------ A 2
Copyright C. M. Woodside 1998 - 2003

Topics
Part A: Introduction on describing software and performance,

– Sequential software on flat physical resources,
– Queue network models,
– Design principles to reduce demands and avoid device (physical)

bottlenecks.

Part B: Layered software and resources,
– Logical resources, threads and limited parallel operation,
– Resource architecture. Layered queue models,
– Design principles to avoid logical bottlenecks.

Part C: Performance descriptions in UML
– Performance profile, examples

Part D: Path behaviour that includes parallelism,
– and more design principles (e.g. optimism, replication/partitioning).

2

94.511 High-performance Software Design Winter 2003------ A 3
Copyright C. M. Woodside 1998 - 2003

What is performance?... Measures
• Response time:

– from start event (such as
sending a request)

– to end event (such as getting an
output)

– (web browser)
• Throughput capacity

– max allowed frequency of
responses

– may overlap in time
– (many web server clients)

• Utilization of a resource

time
start end

time

94.511 High-performance Software Design Winter 2003------ A 4
Copyright C. M. Woodside 1998 - 2003

Distributed Systems:
...Many have a Client-Server Architecture

• Generalization: a program can be a client

Thick Client Thin Client With Middleware
(UI plus Client
Application)

Application Middleware

Server Application
(Database Repository
or Web Server Middleware
or Directory
or other Repository) Repository

3

94.511 High-performance Software Design Winter 2003------ A 5
Copyright C. M. Woodside 1998 - 2003

Language and Notation
• Performance measures must be defined in a context of software

structure and behaviour

• Behaviour: what is carried out during a response
– defined as a scenario
– a sequence of operations, possibly with alternatives, loops etc.
– often specified as a use case for the software
– we will use UML and Use Case Maps

• Structure: software components and relationships; use UML
– architecture or design
– calling or service relationships
– containment, inheritance etc are less important for performance

94.511 High-performance Software Design Winter 2003------ A 6
Copyright C. M. Woodside 1998 - 2003

Web Server
• Client is the browser in your PC
• Server is Apache or similar

Components involved Simplified

browser

browser
cache

protocol stack

internet

protocol stack

web server

disk server cache

browser

protocol stack

web server

disk

4

94.511 High-performance Software Design Winter 2003------ A 7
Copyright C. M. Woodside 1998 - 2003

Paths as defined by Use Cases

Use case “Simple Page Retrieval” for a web server:
...USER generates a page request
...USER sends request to SERVER
...SERVER reads request and checks its validity
...SERVER decodes request to identify location

of data
...SERVER issues read to DISK for page
...DISK finds and returns page
...SERVER buffers page
...SERVER sends response to user.

..... now develop the use case into one or more
scenario, and attach performance parameters...
“activity graph”....

USER

DISK

actor

Simple Page
Retrieval

94.511 High-performance Software Design Winter 2003------ A 8
Copyright C. M. Woodside 1998 - 2003

Path in the Web Server... MSC and events

net-rq

internal-request

disk-read

disk-page

(optional)

internal-reply

net-rep

Browser
Protocol

Stack Web Server Disk

a

b

c d

ef

g
h

5

94.511 High-performance Software Design Winter 2003------ A 9
Copyright C. M. Woodside 1998 - 2003

Use Case Maps for scenarios over
components... Web Server

• the file system component
was ignored on the sequence
diagram... where does it fit?

– this points to the need for
flexible abstractions for
operations, so detail can be
added

cpu

disk

WebServer

request, request rate

response

Path
traces a
use case
or scenario,
showing
locations of
execution

Web Server

activity

FileSystem

b

c

de

g

h

f

Protocol Stack
a

94.511 High-performance Software Design Winter 2003------ A 10
Copyright C. M. Woodside 1998 - 2003

Where do performance limits come from?

• long processing times per operation
• fragmentation of operations

– small procedures
– small messages

• indirection (and the overhead to resolve
it)

• insufficient memory in the server
• ineffective caching
• insufficient THREADS at the server
• or too many threads (overhead)
• slow CPU or DISK
• long network delays

cpu

disk

WebServer

Web Server

FileSystem

Protocol Stack

6

94.511 High-performance Software Design Winter 2003------ A 11
Copyright C. M. Woodside 1998 - 2003

Sources and cures for performance limits
Categories of sources.... patterns for cures:
• long CPU time for an operation: shorten it

• hot-spot seek and remove (80/20 rule “code bottlenecks”)
• fast path processing for special cases
• low-level code optimizations
• parallelism
• optimism

• indirection: remove it
• early binding

• fragmentation of operations or data: improve “locality”
• aggregate components, operations, data, messages

• resource bottlenecks: replicate resources or partition operations

94.511 High-performance Software Design Winter 2003------ A 12
Copyright C. M. Woodside 1998 - 2003

Examples: Code changes that reduce CPU time
• a repository returns a record based on some key information

– faster search for the record
– storage using a hash table for each key

• a matrix calculation depends on storage mapping for data tables
– store on doubleword boundaries
– operate on data rows that load together into cache (a kind of

locality)
• in layered systems copying of data between layers is common

– engineer the layers to share data storage
• in network management, data can be accessed singly or in groups

– batch up transfers
• signal processing has short fixed-length loops: unroll them (program

all the steps, without counters or pointers) (early binding!)

7

94.511 High-performance Software Design Winter 2003------ A 13
Copyright C. M. Woodside 1998 - 2003

Ex2...Generic code optimization tricks

• overhead to resolve late binding due to indirection:
– pointers (cost of calculating pointer values)

• code “straightening” can improve cache performance

– and other compiler optimizations to unroll loops, eliminate +0,...

• flatten inheritance hierarchies (!!)

• code changes to improve fine-grained locality...

– avoid data copying, batch up storage accesses, cache data or
connections,....

94.511 High-performance Software Design Winter 2003------ A 14
Copyright C. M. Woodside 1998 - 2003

Ex3...Examples that involve locality and overhead

• open distributed processing uses run-time resolution of entities and
operations
– directory look-ups, e.g., use of CORBA to resolve a server

• cache the server reference to avoid frequent accesses
– code loaded across a network
– mobile agents to perform operations

• open distributed processing also uses interpreted languages ... these
have substantial costs... could they be compiled instead
– early binding....tradeoff flexibility vs performance

8

94.511 High-performance Software Design Winter 2003------ A 15
Copyright C. M. Woodside 1998 - 2003

Ex4...Examples requiring architecture changes
• web servers must serve many simultaneous clients. A single server is

inadequate; concurrency must be increased.
– threads for multiple active instances of a service
– requires concurrency control (e.g. locking) for shared data

• web servers, directories and database servers need to be scaled up,
beyond the concurrency from threads sharing a multiprocessor node
– replicated servers on separate nodes

• partitioned data, or fully replicated
– partitioned operations into specialized versions

• signal processors must have high throughput which may require
parallel processing

• IP telephony systems may need to mask network latency
– proxy server can support local operations

94.511 High-performance Software Design Winter 2003------ A 16
Copyright C. M. Woodside 1998 - 2003

Ex5.... Generic architectural or design-level
support for performance

• concurrency: threads, pipelining, layers, parallel tasks.
• pre-fetching and caching of data

– pre-fetching and caching of other bindings (connections, pointers,
operation code)

• agents and proxies to avoid network latencies
• optimistic operations

– quick versions based on assumptions that can only be checked on
completion

• layer bypass or cut-through

9

94.511 High-performance Software Design Winter 2003------ A 17
Copyright C. M. Woodside 1998 - 2003

Ex6...Examples of problems due to dynamics
• protocols have timeouts.

– a layer had a fixed timeout that was premature, causing many
repeated retransmissions and wasted work.

– needed to be found and fixed
• some network clients may time out and retry (e.g. web users on an

overloaded server)
– effort spent on their connections to now is wasted
– can be tackled by prioritizing the service to penalize long

responses, server short ones faster (not software design, but
operation strategy)

• telephone systems also have clients that retry if they cont get a
response
– also resolved by priorities (last-come-first-served!!!)

94.511 High-performance Software Design Winter 2003------ A 18
Copyright C. M. Woodside 1998 - 2003

Ex7.... Examples involving fairness and QoS
guarantees

Operational policies such as scheduling may be key here
– e.g. DiffServ in networks, similar ideas in end-to-end services

• identify the responses by group
• monitor performance of each group, user or response
• adjust priorities, modify the service or shed load

• Priorities are coarse but powerful in discriminating
– new disciplines are more subtle (e.g. fair-share queueing)

• Modified service is application specific (e.g. reduced fidelity in audio
or video)

• Shedding load can be done at admission of requests
– or during service... allowing the user to retry

10

94.511 High-performance Software Design Winter 2003------ A 19
Copyright C. M. Woodside 1998 - 2003

1. tune after installation
– priorities, buffers, configuration parameters
– YES... design to be tuned. But limited capability to adjust.

2. build now, fix it later
– concentrate on function first
– address performance at integration testing, or in response to field problems
– tighten code, modify design, modify architecture
– OFTEN TOO LATE

3. model the detailed design before building
– simulate the detailed operation;
– TOO HARD (except perhaps for simulations from a design tool)

4. early, high-level modeling (THIS COURSE)
– model the architecture and high-level design
– part of the analysis process

How do we deal with all these problems?

Four approaches:
4. Early

3. Detailed

2. Build/fix

4. Tune

94.511 High-performance Software Design Winter 2003------ A 20
Copyright C. M. Woodside 1998 - 2003

Goals
Motivations for considering performance during design

• value: we want to maximize value: capacity is money

• risk: performance failures are a serious risk

– minimum performance is required to function

• time: development time: performance fixes take a lot of time

– they usually require changes at deep levels of structure

• entropy: in evolving a product, creeping features degrade
performance

11

94.511 High-performance Software Design Winter 2003------ A 21
Copyright C. M. Woodside 1998 - 2003

Necessary capabilities

1. Capture software factors and performance parameters
2. Extract predictive models
3. Identify problem spots (diagnosis)
4. Apply patterns or principles for improvement

Part A ... Sequential software with flat resources
Part B ... Layered software and resources
Part C ... Systems with internal parallelism

Examined in 3 stages of increasing complexity

94.511 High-performance Software Design Winter 2003------ A 22
Copyright C. M. Woodside 1998 - 2003

NEXT: Capturing Sequential Behaviour
Use Scenarios defined for Use Cases.
• define performance measures of interest relative to the scenario:

– identify start and end events for responses, with delay
requirements or measures

– identify event type, to define the throughput or jitter
requirements/measures for a repetitive stream of events

• model the operations within the scenario:
– identify operations
– estimate their workloads (CPU seconds, calls for other operations)
– identify their components (to localize the operations in the

software)

12

94.511 High-performance Software Design Winter 2003------ A 23
Copyright C. M. Woodside 1998 - 2003

There are many notations for scenarios.....
• to define the sequence or precedence of operations or events, including

– sequence; OR-fork/joins (or CASE constructs),
– AND forks and joins (parallel sub-paths)

• for paths without components:
– our activity graphs, also “task graphs”, flow charts, Smith’s execution graphs
– Petri nets
– use cases, and Use Case Maps without components
– regular expressions (for fully nested behaviours)
– process algebras such as LOTOS, CCS, CSP give a structured and

combinational view (a process here is an object that generates a set of paths)
– data flow diagrams (deMarco, Yourdon) sort of qualify

• for paths going through components:
– Use Case Maps with components
– MSCs (message sequence charts) and UML Sequence Diagrams
– communicating state machines (many kinds, including StateCharts, ROOM,

SDL)

94.511 High-performance Software Design Winter 2003------ A 24
Copyright C. M. Woodside 1998 - 2003

UCM notation for a scenario

Time is consumed in five ways:

1.. time to do operations (this is the
payload)

2.. data access

3.. context-switching and
communications operations:
overhead

4.. resource contention delays

5.. synchronization delays (for parallel
operations)

operation

component

data
2

3

4
process
resource 5

start

end

AND-fork

stub

AND-join

13

94.511 High-performance Software Design Winter 2003------ A 25
Copyright C. M. Woodside 1998 - 2003

UCM for Web Server Scenario
Performance parameters:
• Workload type and intensity

parameters can be associated with the
start point
– open, a stream of given rate f
– closed, a population with a given

size N and delay Z between entries
• operation demand parameters can be

associated with a responsibility
– host (CPU), services

• branching and looping parameters
can be attached to branch or loop
points
– probabilities, loop counts

cpu

disk

WebServer

Web Server

FileSystem

Protocol Stack

94.511 High-performance Software Design Winter 2003------ A 26
Copyright C. M. Woodside 1998 - 2003

Analyzing a scenario

• Sequence is given by the scenario model
• Workload parameters must be estimated for the operations

– maybe the operation needs to be broken down
• a workload table is useful to capture the makeup of each operation in

terms of constituent sub-operations:
– a device-operation is a basic physical step in execution (CPU-op,

disk-op, printer op)
– a resource-operation is requested from some logical server
– a functional operation is just a subdivision, perhaps for one

procedure call.
• the columns are:

operation [repetition-count] sub-op1 sub-op2

14

94.511 High-performance Software Design Winter 2003------ A 27
Copyright C. M. Woodside 1998 - 2003

Workload Table Display
• for ease of reference, it is helpful to lay

the scenario out down the side of the
page, in order from top to bottom
– with a line for each operation
– the line is used for parameter data

(next)
• if the UCM display is used, the

components usually cannot be retained in
this display

• A complicated part can be hidden inside a
stub

Think

ProtocolProcessing

FormatToSend

GetFromCache

WebServerProcessing

ProtocolProcessing

Transmit

GetFromDisk

94.511 High-performance Software Design Winter 2003------ A 28
Copyright C. M. Woodside 1998 - 2003

RepCount CPU DISK USERS NET

1 2.5 sec

1 0.150

1 0.001

1 0.005

0.6 0.002

0.4 0.004 .010

1 0.004

1 0.001

Wtd sum .0138 0.004 2.5 0.150
(Demands in sec = Sum of RepCount times OpCount)

Workload
Table with

UCM
for the Web Server

(only device-operations
in this table)

Think

ProtocolProcessing

FormatToSend

GetFromCache

WebServerProcessing

ProtocolProcessing

Transmit

GetFromDisk

15

94.511 High-performance Software Design Winter 2003------ A 29
Copyright C. M. Woodside 1998 - 2003

NEXT: Basic model-based analysis for “linear” software
• sequential programs using one device at a time

– one, or more than one program sharing the system
• no logical resources
• analysis is based on knowing the demands on each device as a series

of “service times”
– seconds for each “service”
– each service is a single use of the device by the program

• a lot of analysis can be done from the total demand per response for
each device (simpler to record)
– bottleneck analysis for limits,
– queueing analysis for delays

• Find the total demand per response
– by reducing the scenario data (via the workload table)
– or by reducing layered call-graph data (via a module model)

94.511 High-performance Software Design Winter 2003------ A 30
Copyright C. M. Woodside 1998 - 2003

Demands made by “Linear” software, on flat
(device) resources

• a sequential program (one or more copies) running on a system with
one or more processors and storage devices

• A program executes and gives a response

• Demands for device operations are per response (AKA visits)

Program

Dev1
[s1]

Dev2
[s2]

Dev3
[s3]

Dev4
[s4]

(demand= y1 ops)
(y2) (y3) (y4)

Demand for device execution time Di = yi*si

Note: CPU
operations are
really small!
We may use
CPU-sec or
M-ops millions
of ops)

16

94.511 High-performance Software Design Winter 2003------ A 31
Copyright C. M. Woodside 1998 - 2003

Flat resource model for the Web Server system
• A response here === a request

• We suppose that the CPU time is divided into five slices of .0138/5 =
0.00276 sec on average

Web server request

CPU
[.00276 s]

Disk
[0.01 s]

Net
[0.150 s]

User
[2.5 s]

(5) (0.4) (1) (1)

server server delay delay

Execution demands = 0.0138, 0.004, 0.150, 2.5 sec, respectively
bottleneck resource is the disk (biggest demand at a single server)

94.511 High-performance Software Design Winter 2003------ A 32
Copyright C. M. Woodside 1998 - 2003

Queueing network model for the Web Server system
.... constructed from the workload demand values

• with probabilities of which resource is used
next, on routing arrows

• prob from “choose” is proportional to “y”
• probs leaving a node add to 1

– so Y = 1 + 0.4 + 1 + 5 = 7.4
= visits to “choose” per response

CPU
[0.00276 s]

Disk
[0.01 s]

Net
[.150 s]

User
[2.5 sec]

0.4/Y

1/Y5/Y
1

1

1
choose

1/Y

a closed model!

17

94.511 High-performance Software Design Winter 2003------ A 33
Copyright C. M. Woodside 1998 - 2003

Another topology closer to actual server transitions
• customer “token” in turn represents

– a user thinking,
– a message passing through the net,
– an active process
– a disk operation request

• there are one or two visits to the CPU
(say, Y visits on average)

Probs give 1 = (1 + 0.4) / Y --> Y = 1.4
Thus, cpu service time = 0.00986 s

• this is a “closed” model with a fixed
number of N users

CPU
[0.0138/Y s]

Disk
[0.01 s]

User {N users}
[2.5 s]

1/Y

0.4/Y
1

1

Net
[0.150 s]

1

94.511 High-performance Software Design Winter 2003------ A 34
Copyright C. M. Woodside 1998 - 2003

Queueing model analysis: Bottlenecks

• Bottlenecks: the bottleneck device in a plain queueing model is the
device with the largest demand Dmax.
– further, the system throughput is limited, by the bottleneck, to

fmax = 1/Dmax
– easily calculated from the workload table
– using profiling measurements also

• familiar example is I/O bound vs CPU-bound operations.

• design strategy outline: reduce the operations at the bottleneck, or
divide them among more devices

– effort to reduce work away from the bottleneck will be wasted, as
it does not change Dmax.

18

94.511 High-performance Software Design Winter 2003------ A 35
Copyright C. M. Woodside 1998 - 2003

About bottlenecks
A bottleneck resource “bn” limits throughput as follows:
1. The bottleneck resource is the one with the largest demand, say

Dmax = Dbn seconds per response
– Dbn = Vbn * Sbn, where

– Vbn = resource requests per system response
– Sbn = resource holding time (service time) per request

2. suppose f = system throughput in responses/sec
• then utilization Ubn = f * Dbn, Ubn < 1.0
• at saturation, Ubn = 1, f = fmax = 1/Dbn

3. relieve the bottleneck by reducing Dbn, meaning Vbn or Sbn

94.511 High-performance Software Design Winter 2003------ A 36
Copyright C. M. Woodside 1998 - 2003

• Arrivals at a fixed rate f to a set of devices i= 1, 2, 3...

• Node i will saturate at

f = 1 / Di

• The node with the biggest demand Di = Dmax saturates first, is the bottleneck node

• Saturation throughput is fmax = 1 / Dmax , this is the system saturation capacity

• practical capacity is much less, determined also by delay

• As f approaches fmax then the bottleneck Ui approaches unity, the queue at node i becomes
very long, and the mean network delay approaches infinity, dominated by the saturated node.

Some notes on Bounds/Bottlenecks: open
system

utilization U
1

f system throughput/sec
fmax

this line gives Ui at bottleneck node

Ui = f Di U at node i, as f increases

19

94.511 High-performance Software Design Winter 2003------ A 37
Copyright C. M. Woodside 1998 - 2003

A queueing model can also estimate resource
contention delays

• Consider a name server operating completely out of main memory for
speed. This is a single open server. Delay notation…..

cpu

event: a b g,h

(throughput) f

W
(wait)

S
(service)

R
(response)

Average Delays:

cpu
task

request, request rate

response

a

b

g

h

Name Server B (from Main Memory)

CPU Queue Model

94.511 High-performance Software Design Winter 2003------ A 38
Copyright C. M. Woodside 1998 - 2003

• Relates

– the mean number N of tokens in any subsystem or other identified state

– the mean rate f at which they enter and leave that subsystem or state

– the mean time R they stay in it, on each visit

– then:

N = f R

• or, if the subsystem is the queue alone, with Nq = the mean number waiting but
not in service, then Nq = f W

• if it is the server, the U = f S

• this is exactly true for averages over any period if the subsystem is empty at the
beginning and end. It requires no assumptions.

• if a steady state exists it is also true for theoretical mean values

The famous Little’s Law

Nq

W
N
R

f

20

94.511 High-performance Software Design Winter 2003------ A 39
Copyright C. M. Woodside 1998 - 2003

Open Web Server Model

• Dmax = CPU demand at 0.0138 sec/response
– only considers the servers CPU and Disk
– delay at Net cannot limit throughput

• a flow of arrivals at a stated rate f such as 10
per sec.
– the user think time does not enter into the

system performance
• the system may be unstable if arrivals are too

fast (here, if f > (1/0.0138)=72.46 per sec)
• analyze to find the response time from entry

to exit
– R = sum of mean delays at nodes

CPU
[0.0138/Y s]

Disk
[0.01 s]

1/Y

0.4/Y
1

1

Net
[0.150 s delay]

f = 10/sec

94.511 High-performance Software Design Winter 2003------ A 40
Copyright C. M. Woodside 1998 - 2003

Closed systems

• A finite pool of users, as in the closed Web Server

• periods between finishing one response and requesting the next
one are called “think times” or user latency

• longer delays slow down the users and reduce the throughput… so
throughput is not a given, but is determined by the system

• productivity

• data entry workers going as fast as they can

• few users or long user latencies can starve the system, which bounds
the throughput at the source

• “path length” bound

21

94.511 High-performance Software Design Winter 2003------ A 41
Copyright C. M. Woodside 1998 - 2003

A second kind of limit for closed systems…
path length bounds for input starvation

• in a closed system with just a few users there may not be enough load
to saturate any resource.

• consider N users in one class...
• the response delay with small contention is dominated by the

operations along the path, so R = Σi Di + a bit of waiting
• ignoring the waiting, we can say that R > Σi Di
• We can also identify a user cycle as Cycle = (user thinking Z) + R
• Then Little’s result says that f = N / Cycle always,

• so...... f < N / [Z + Σi Di]
• Z is defined as (user latency) or, more generally, as the sum of

any pure delays in the system
• so, small N or large Z constrains f... “starvation” by path bound

94.511 High-performance Software Design Winter 2003------ A 42
Copyright C. M. Woodside 1998 - 2003

Throughput bounds, one-class closed system
• Service center demand Di per response (exclude infinite servers)
• Total infinite-server pure delay of Z / response
• A saturation-based bound at each resource (except infinite servers) is:

– at resource i, utilization < 1.0 means: fi < 1 / Si

– This constrains f: f < 1 / (Vi Si) = 1 / Di f < 1 / Dmax

– This is the same bound as we had for open systems
• A path-length bound for the system as a whole is:

– the response cycle must have: C > Z + Σi Di

– thus by Little's result: f = N / C < N / (Z + Σi Di)
– this part is only for closed systems

• The classic throughput bound as a function of N has this shape:

1

2

f* = smallest 1 / Di

f

N
N* = (Z + Σi Di) / (biggest Di)

2 Path or Starvation bound

1 Saturation bound

22

94.511 High-performance Software Design Winter 2003------ A 43
Copyright C. M. Woodside 1998 - 2003

Closed Web Server Bounds

• Bound is a function of number of users if this number is small
(starvation)

• Z = sum of delays at delay servers = 2.5 + 0.15 = 2.65
• D = 0.0138 at CPU

= 0.004 at Disk
So Dmax = 0.0138, Saturation bound is fmax = 72.46 requests/sec

– For the mean response time R seen by the users,
Little gives N = f*(2.5 + R) --> R > (N/72.46) - 2.5

• Starvation bound is f < N/(Z + Σ D) = N/(2.6678) = 0.3748 N
– For R, N = 0.3748 N (2.5 + R) --> R > .0178 (= Σ D)

• Break at N* = 2.6678 * 72.46 = 193.3 users

94.511 High-performance Software Design Winter 2003------ A 44
Copyright C. M. Woodside 1998 - 2003

Response time bounds, closed system
• C = mean time for a cycle around the closed system

C = N/f sec (by Little)
• R = mean response time relative to a “user” state

with mean think time ZU
R = (C - ZU) sec

• Upper bound on f gives a lower bound on C:
Cmin = N / fmax

• So, saturation bound fmax = 1/Dmax gives
Cmin = N * Dmax

Rmin = N * Dmax - ZU
• And starvation bound fmax = N/(Z + Σ D) gives

Cmin = Z + Σ D
Rmin = (Z - ZU) + Σ D

R

N

2

1

1

-ZU
2

Saturation

Path

23

94.511 High-performance Software Design Winter 2003------ A 45
Copyright C. M. Woodside 1998 - 2003

Sensitivity

• Performance is mostly sensitive to demands at the bottleneck
resource

• D = V * S = visits time service time

• To improve performance, reduce V or S at the bottleneck resource
– reason about how this resource gets loaded!!!
– reduce V by doing fewer operations at this device (e.g. more

successful caching at web server... if disk were bottleneck)
– reduce S by tightening code, or calling procedures less often

• Sensitivity to other demands is small in starvation (underloaded)
– and zero in saturation

94.511 High-performance Software Design Winter 2003------ A 46
Copyright C. M. Woodside 1998 - 2003

Adding resources at the bottleneck

• Is good
• Multiple servers (M): saturation becomes fmax = Dmax/M
• Sharing load among M servers equally, same
• Faster server reduces Dmax

24

94.511 High-performance Software Design Winter 2003------ A 47
Copyright C. M. Woodside 1998 - 2003

Bottleneck Sensitivity: Another Web Server

• Web server runs a script to create dynamic pages, based on data
retrieved from tables stored on disk

• Bottleneck for large N is the disk (Dd = 12.5 ms, fmax = 80/sec at
Users)
– small N: f < N/(Z + Σ D) = N/5.0205 per sec (UNITS)

• Crossover is at N/(5.0205) = 80, or N = 402 approx

• Response Cycle (user, round trip): C > 5.025 and C > .0125 N sec

• Response time, excluding Z : R > 0.025 and R > (0.0125 N) – 5 sec

User/
Browser Server Disk

N users, (Z = 5 sec) Ds = 8 ms Vd = 2.5, Sd = 5 ms

94.511 High-performance Software Design Winter 2003------ A 48
Copyright C. M. Woodside 1998 - 2003

Sensitivity (cont’d)...

– Consider N = 500.... f = 80/sec, mean response time is
• R = (500/80) – 5.00 = 1.25 sec.

• Non-bottleneck: 10% decrease in Ds gives no change
• Bottleneck:10% decrease in Dd gives f = 88.8/sec, R = 0.68

sec.
• Throughputs at various N:

N 100 200 300 400 500

Base f 19.9 39.7 59.3 76.7 80.0 /sec
if Ds = 7.2 ms unchanged..
if Dd = 11.25 19.9 39.7 59.4 78.3 88.8 /sec

25

94.511 High-performance Software Design Winter 2003------ A 49
Copyright C. M. Woodside 1998 - 2003

Web Server: Changes to the CGI Script
1. “hot spot”... suppose there is a frequently-accessed index page which

changes only very slowly: create it and keep it ready

2. binding/fixing-point: design the dynamic page so it has a fixed
format, and just fill the fields

3. locality: ...make the tables memory resident, or
...rearrange the tables to reduce the number of disk accesses

4. total cost: compare the preformat in 2, to the memory resident
structure in 3

Changes which impact the disk (Dd) will be more effective!!

94.511 High-performance Software Design Winter 2003------ A 50
Copyright C. M. Woodside 1998 - 2003

NEXT: Workload parameters for a more
complex case: Ticket Reservations

• A web server as before, but with more complex software design at the
server
– different kinds of pages
– CGI operations, dynamic pages, database interactions

• This time we will consider an unbound UCM, a scenario with
operations defined but no software components.
– the operations have demands directly on the devices
– this approach was introduced by Smith in her 1990 book, she

called her scenarios “execution graphs”.

26

94.511 High-performance Software Design Winter 2003------ A 51
Copyright C. M. Woodside 1998 - 2003

An Unbound UCM for Ticket
Reservations:

a pure scenario
• Connect: client connects to server
• Loophead: loop overhead for repeated interactions
• Choose: decide on the type of interaction
• Display: display the shows and seats
• Reserve: choose tickets and signal to buy
• Confirm: take a confirmation and credit card data
• Verify: verify credit card with the bank to clinch

the sale, update the ticket database to show the
tickets as sold.

• Disconnect: process a connection shutdown
(explicit or timeout... here assumed to be explicit)

• UpdateDB: update data base with sales and
marketing data for later analysis

Connect

UpdateDB

Disconnect

Verify
Confirm

Reserve
Display

Loophead

Choose

94.511 High-performance Software Design Winter 2003------ A 52
Copyright C. M. Woodside 1998 - 2003

RepCount cpu-op db-op com-op CCreq-op
1 0.01 1
6 0.001

6 0.001
4.5 0.005 1 1
0.9 0.015 2 1
0.6 0.002 1
0.6 0.004 1 1

1 0.001 1

1 0.007 1
Wtd sum 0.0696 7.9 8 0.6 = Entire demands
(RepCount times OpCount

Workload
Table

with UCM
for an

e-commerce
Server

(for Ticket
Reservations)

Connect

UpdateDB

Disconnect

Verify
Confirm

Reserve
Display

Loophead

Choose

27

94.511 High-performance Software Design Winter 2003------ A 53
Copyright C. M. Woodside 1998 - 2003

cpu disk db comms CCreq User

Wtd sum 0.0696 7.9 8 0.6
(repeated)

Logical Services to be eliminated
db op 0.085 2
comms 0.012 1.5 1

External demands
in wtd sum 0.0696 0.6
for db 0.6715 15.8
for comms 0.096 12 8
sum 0. 8371 27.8 0.6 8

Operation time 0.1 0.011 3 7 sec/operation
Demands D 0.08371 0.306 1.8 56 sec/session

Workload
Table

Reduction
to Total

Demands
on Devices

(demand in
seconds per

session)

94.511 High-performance Software Design Winter 2003------ A 54
Copyright C. M. Woodside 1998 - 2003

Flat resource model for the reservation system
• A response here === an entire session, including connect and disconnect

• Database is on the same CPU as the web server

• CCReq and User are infinite servers

• CPU operation is one processor operation, at 10 million per second... One way (as
here) is to show the demand in operations, consistent with other devices.

Reservation system

CPU
[0.1 microsec]

Disk
[0.011 s]

CCReq (delay)
[3 s]

User (delay)
[7 s]

(0.8371 million)
(27.8) (0.6) (8)

Execution demands = 0.08371, 0.306, 1.8, 56 sec, respectively
bottleneck resource is the disk (biggest demand at a single server)

28

94.511 High-performance Software Design Winter 2003------ A 55
Copyright C. M. Woodside 1998 - 2003

Queueing network model for the reservation system
• with probabilities of which resource is used

next, on routing arrows
• CPU is modeled as having one visit per op’n
• probs leaving a node add to 1
• so Y = 837,100 + 8 + 27.8 + 0.6 + 1

= visits to “choose” per response

CPU
[0.1 microsec]

Disk
[0.011 s]

CCReq
[3 s]

User
[7 s]

Begin/end session

8/Y

27.8/Y

0.6/Y837,100/Y
1

1

1
choose

1/Y

94.511 High-performance Software Design Winter 2003------ A 56
Copyright C. M. Woodside 1998 - 2003

More conventional queueing network model for the
reservation system

• Y = 27.8 + 0.6 + 8 cpu visits per
session (between each other device)

• cpu service time is demand/Y
= 837,100 x 10-7/36.4 = 0.0023 sec

• after each cpu visit, go to another
device in proportion to its visits per
session

CPU
[.0023 s]

Disk
[0.011 s]

CCReq
[3 s]

User
[7 s]

Begin/end session

7/8
1/8

27.8/Y

0.6/Y
8/Y

1

1

1

begin/end
response

29

94.511 High-performance Software Design Winter 2003------ A 57
Copyright C. M. Woodside 1998 - 2003

• Throughputs and responses are referenced to the “end of session”
node...

• Dmax = 0.306

• f* = 1/0.306

= 3.27 responses/sec

• Z = 56 + 1.8 = 57.8

• ΣD = 0.08371 + 0.306

= 0.39331

(sum of finite-server demands)

• N* = (57.8 + 0.39331)/0.306

Asymptotic bounds for the Reservations
System

f*

f

N
N* = (Z + Σi Di) / (biggest Di)

2

1

N*

ΣD

R (response time)

-Z + NDmax

94.511 High-performance Software Design Winter 2003------ A 58
Copyright C. M. Woodside 1998 - 2003

Scenario definition also by Activity graphs:
Web server “Simple Page Retrieval”.....

Receive request
message

Extract fields,
test validity

Send reply

prob

prob

Handle valid request

Handle invalid request

Format reply

Workload parameter
Comments
•workstation

•comm I/F, CPU

• CPU

• Case test Overhead

• Parameters derived
from subgraph

• CPU

• CPU

• CPU, comm I/F

Graph Notation Comments

•standard activity

• “Case” structure,
showing overheads and the
activities included
• each activity has a
probability
• “Handle valid request” is
a high-level activity which
has a subgraph to define it
(see next slide)

• a Case structure can
have probabilities that add
up to less than 1.0,
meaning there is some
probabiity of doing nothing

Generate page
request

30

94.511 High-performance Software Design Winter 2003------ A 59
Copyright C. M. Woodside 1998 - 2003

Activity Graph for
Ticket Reservations

• Web browser interacting
with a ticket info CGI
program on the web server

• CGI program accesses a
ticket status database

• Confirmation of sale uses
an interaction with the
credi-card company to
validate the card
information.

• end-to-end scenario
• a notation designed for

reducing data on demands

6

Update DB

Disconnect

0.75 Display
0.15 Reserve
0.1 Confirm

Verify0.1

Connect
Comments on activities
•connect to client

•loophead: loop for repeated
interactions
•selection of type of interaction
•display shows/seats
•reserve seats
•confirm the sale of the seats
•get and verify credit card data
to clinch the sale

•client has chosen to disconnect

•update data base with sales and
marketing data for later analysis

94.511 High-performance Software Design Winter 2003------ A 60
Copyright C. M. Woodside 1998 - 2003

MeanTimes cpu db comms CCreq
1 0.01 1
6 0.001

6 0.001
4.5 0.005 1 1
0.9 0.015 2 1
0.6 0.002 1
0.6 0.004 1 1

1 0.001 1

1 0.007 1
Wtd sum 0.0696 7.9 8 0.6 “Entire

demands”

Workload
Table

with
Activity

Graph
for the same
e-commerce

Server
(for Ticket

Reservations)

6

Update DB

Disconnect

0.75 Display
0.15 Reserve
0.1 Confirm

Verify0.1

Connect

31

94.511 High-performance Software Design Winter 2003------ A 61
Copyright C. M. Woodside 1998 - 2003

NEXT: Scenarios defined by Component
Interactions

• For sequential systems in which modules call each other, a scenario
may be defined by a call
– each call has an implicit response time from call to return
– the call includes an amount of CPU demand (call it host demand)
– the scenario of the call includes nested calls

• use a call graph, with arcs (arrows) for calls
• we can describe multiple calls by putting a parameter on the

call arrow.

A [0.15]

B [0.11] C [0.02]

(2) (0.73)

A

B C

2 0.73

94.511 High-performance Software Design Winter 2003------ A 62
Copyright C. M. Woodside 1998 - 2003

component CPU Disk Printer i/o print CallB CallC
(sec) (ops) (ops) (ops) (ops) (ops) (ops)

A 0.15 2 0.73
B 0.11 3.0
C 0.02 1
i/o (suppose) 0.007 1.3
print (“) 0.01 1
Reduction:
Btotal 0.121 3.9 0
Ctotal 0.03 1
Atotal 0.4066 7.8 0.73
service times 1 0.011 0.0825
Demands (sec) 0.4066 0.0858 0.060225 (= product of 2 lines above)

Workload Table for Component Interactions

Note...It is the same as the
table for a scenario
description, with abstract
operations for the calls

32

94.511 High-performance Software Design Winter 2003------ A 63
Copyright C. M. Woodside 1998 - 2003

Performance and component structure:
Coordination diagram in UML
(scenario fragment indicated over objects)

• UML
performance
annotations
are possible
too

WebServer
initialize
handleRequest

CommHandler
receiveMsg
sendMsg

HttpHandler
verifyRequest

FileSystem
read
write

active object (task)
with heavy border

#1 receiveMessage,
#4 sendMessage #2verifyRequest

#3 read

94.511 High-performance Software Design Winter 2003------ A 64
Copyright C. M. Woodside 1998 - 2003

Layered model notation shows the calls to
services, and the performance parameters

handleRequest
[cpu=0.014] WebServer....

Comm-
Handler

receive-
Message

verify-
Request

Http-
Handler...

read FileSystemwriteXx

USER ...

send-
Message

(meancalls=1) (1)

(1)

(1)

module-identifier

service or entry-
identifier
and parameters

call and parameter

33

94.511 High-performance Software Design Winter 2003------ A 65
Copyright C. M. Woodside 1998 - 2003

Component interaction diagrams express the
software Architecture

There are several different ways to express architecture

• Architecture Description Languages (ADLs)

• many use some kind of box-connector diagrams

– UML stereotypes are developed for this, in “Applied Software
Architecture” by Hofmeister, Soni and Nord

• using a “protocol” across the connector to define the message
types exchanged

• architecture languages, including structured description of inclusion

• some, like ROOM, include behaviour definition by state machines

94.511 High-performance Software Design Winter 2003------ A 66
Copyright C. M. Woodside 1998 - 2003

Demand analysis from a layered module model:
Reservation system

.... entries are
activities from
the activity
graph
....could compute
workloads by
multiplying
along sequences
of arcs, and
adding
....devices are
host, CCReq,
disk, and User
.... same total
demands

UserOp [7 sec]

Connect [0.01] Disconnect [0.008]Interact [0.014]

Netware
[0.012]

Database
Server
[0.085]

1/8 6/8 1/8

1 1 0.1 1.15 1
1

Disk1.5 2

TicketRes

Session Pseudo-module [0] 8

User

CPU

CCReq
[3 sec]

CCReq

34

94.511 High-performance Software Design Winter 2003------ A 67
Copyright C. M. Woodside 1998 - 2003

Summary of the Modeling Framework so far

Model
Approach to parameters through scenarios
first diagnostic idea: reduce the demands at bottleneck resources

Still to consider
• choosing the parameter values
• basing the framework on design notations in UML, SDL, etc
• modeling multiple programs competing for a system
• software structure effects:

– logical resources and parallelism

94.511 High-performance Software Design Winter 2003------ A 68
Copyright C. M. Woodside 1998 - 2003

Getting the Parameter Values
Three approaches:
• measure the operations, preferably at a high level

– benchmark them
– explore the key parameters, eg dependence of “sort” on size of list
– especially suitable for re-use of components in a new system

• estimate values, based on experience
– Smith suggests a group consensus approach
– estimate best case, worst case

• budget an allowance for each operation, that will be used as a guide
by the developer
– can exploit experience
– also suitable for new software (better to budget than not to think

about it at all)

35

94.511 High-performance Software Design Winter 2003------ A 69
Copyright C. M. Woodside 1998 - 2003

Getting the Parameter Values (2)

• This is a serious difficulty for some groups... no one likes to admit
ignorance, no one likes to guess

• a budgeting approach is rational however...
– money budgets are normally estimates of unknown expenditures
– budgets can be adjusted.

• When in grave doubt, study the effect of a range of possible values
(sensitivity analysis)
– if the value doesn’t matter then forget it, use any value
– find the parameters that do matter and study them more.

94.511 High-performance Software Design Winter 2003------ A 70
Copyright C. M. Woodside 1998 - 2003

Getting the Parameter Values (3)

• As a student... pick a number and focus on studying the techniques.
These are realistic but rough values:
– 100 microsec for a process switch
– 300 microsec to send a packet
– 1 ms for a small operation,
– 2 -5 ms for a disk operation (retrieve an 8K disk block)
– 10 ms for a moderate operation, or for a small Java operation

• For the course... don’t hesitate over parameter values, it isnt the focus
of the study

• Later, for any real program, you can try both cautious and bold
approaches. Always try some measurements if you can.

36

94.511 High-performance Software Design Winter 2003------ A 71
Copyright C. M. Woodside 1998 - 2003

Getting the Parameter Values (4)

Measurement Techniques
• profiling (gprof in unix) (java profilers)

– gives time in each procedure
• end-to-end time (time command in unix, or repetitive running with

wall-clock time)
– benchmarks are of this type

• event-to-event delay from probes in the code (record time of event,
store in trace file, postprocess for delay)
– watch out for the coarse granularity of the clock e.g. in Unix)

• run the code on a simulator of the processor, and monitor the
instructions it executes.... elaborate.

94.511 High-performance Software Design Winter 2003------ A 72
Copyright C. M. Woodside 1998 - 2003

Basing Analysis on Standard Design Notations
• leverage design tools, and design documents produced in early stages

– limit the extra work to create the performance model

Software Domain Schedulability/
Performance Domain

...PUMA
project

37

94.511 High-performance Software Design Winter 2003------ A 73
Copyright C. M. Woodside 1998 - 2003

UML with Performance Profile
(details later)
• Performance profile is on the course web site
• It adds performance data as annotations to behaviour diagrams in

UML, which describe scenarios
– performance requirements and placeholders for results
– workload intensity and type
– choice probabilities
– operation demands

• Stereotypes and tagged values for time, resources, and parameters in
the Sequence, Activity, Collaboration and Deployment diagrams

• Two sub-profiles, for schedulability of deterministic systems, and for
performance of non-deterministic systems

94.511 High-performance Software Design Winter 2003------ A 74
Copyright C. M. Woodside 1998 - 2003

NEXT: Systems with Multiple sequential
applications

• separate demand analysis for each application
• queueing analysis calls each application a “class” c of work
• Class c has its own:

– throughput f(c) in responses/sec
– demand D(i,c) at resource i, in sec/response

• D(i,c) = V(i,c) S(i,c)
– where V is visits/response, found for each class (V or y equally)
– S is seconds/visit

– waiting W(i,c) at node i
– utilization U(i,c) at node i

• each class may have a separate reference node for throughputs and responses
– (a response is a cycle from the reference node, back to it again)

• Bottlenecks: sometimes more than one resource can be bottlenecked

38

94.511 High-performance Software Design Winter 2003------ A 75
Copyright C. M. Woodside 1998 - 2003

disk

class 1
requests

cpu1f1/s
cpu2

class 2
requests f2/s

Multiclass open system
example:

Different programs give different classes

System D:
Class 1: image retrieval
requests (as system C)
Class 2: patient-info
directory requests

Node 1
(cpu1)

Node 2
(cpu2)

Class 1 start

response
complete

class 2

disk

f1/s
f2/s

UI

94.511 High-performance Software Design Winter 2003------ A 76
Copyright C. M. Woodside 1998 - 2003

Visualising open two-class system saturation
• saturation at node i requires: Σ c fc Di,c < 1.0 at service center i

• For two classes a plot of the feasible (stable) throughputs (f1 , f2) can be made.
Each center i gives a boundary which is a straight line on the plot

• Consider one node (one resource) number i :f2

f1

class 2
arrival
rate

class 1 arrival rate

feasible region

Boundary for node i:
f1 Di,1 + f2 Di,2 = 1.0

2.0/sec

3.0/sec

Example values:
class 1 class 2

Di,c 0.333 0.5

39

94.511 High-performance Software Design Winter 2003------ A 77
Copyright C. M. Woodside 1998 - 2003

Visualising open two-class system
saturation: more nodes

Each service center gives one saturation condition; all boundaries must be satisfied for
the system to be stable

For two classes and many centers a plot of the feasible (stable) throughputs (f1 , f2) is
shown:

i = 1

i = 2 Certain
throughputs can
saturate this device

i = 3

i = 4
i = 5
(device no. 5)
cannot be
saturated

f2

f1

class 2
arrival
rate

class 1 arrival rate

feasible region

94.511 High-performance Software Design Winter 2003------ A 78
Copyright C. M. Woodside 1998 - 2003

Bottleneck location in open systems

i = 1

i = 2

i = 3

i = 4
i = 5
(device no. 5)
cannot be
saturated

f2

f1

class 2
arrival
rate

class 1 arrival rate

feasible region

A
B

• if the joint throughputs approach any boundary, that node is
becoming saturated, and it will have a long queue!

• near A, device 1 is becoming a bottleneck; near B, there are two
bottlenecks (devices 1 and 2). Device 4 or 5 cannot be a bottleneck

40

94.511 High-performance Software Design Winter 2003------ A 79
Copyright C. M. Woodside 1998 - 2003

Sensitivity in two-class systems

Upper:
• High sensitivity to demands at node

2, low or none at nodes 1 and 3,
• Away from bounds, all parameters

are slightly sensitive

Lower:
• At a, class 2 is sensitive to node 2,

but class 1 is not (very).
• At b, class 1 is sensitive to node 1,

class 2 to node 2

node 2

2

1

3

f1

f2

a

1

3

f1

f2

b

94.511 High-performance Software Design Winter 2003------ A 80
Copyright C. M. Woodside 1998 - 2003

More than two classes

• Visualization doesn’t work on a two-dimensional page!
• Relationships are still true...

– solve the system, find the saturated resources
– a class may visit a saturated node, yet not be bottlenecked there, if

its demands on that node are quite small
• this can be seen when the partial utilization Uic is very small

41

94.511 High-performance Software Design Winter 2003------ A 81
Copyright C. M. Woodside 1998 - 2003

Exercise on visualizing saturation with two
open classes

• A system has four devices and two classes, with demand values (D i,1 D i,2) being:
(0.1, 0.5) (0.4, 0.4) (0.2, 0.1) (0.6, 0.001) in seconds.

– sketch the feasible space of throughputs of the two classes

– which devices can be saturated?

– is a throughput of 3 reponses/sec for each class at once feasible?

• In Example D suppose the service times are:

cpu1 cpu2 disk

class 1 32 ms 55ms 17 ms

class 2 40 ms 0 0

and the probability of a class-1 response being completed on leaving cpu 1 is 0.1
(while class 2 always completes)

– what are the visit ratios of class 1? the demands?

94.511 High-performance Software Design Winter 2003------ A 82
Copyright C. M. Woodside 1998 - 2003

Full Notation for Multiclass open network models
• Jobs are tokens of different classes, numbered c = 1,2,3...

• Let node 1 be the entry node, so class c has throughput rate fc = f1c at node 1 and
rate fic at node i

• A token of class c visits resource i an average of Vi,c times, (its visit ratio). The
visit ratio for the entry node is 1.0. Note that fi,c = Vi,c fc

• The service demand at resource i per class-c response is

– Di,c = Vi,c Si,c .

• The routing probability of a token going to device (node) i after j is Θji
c . Then we

can find the V's from the Θ's by solving

– V1,c = 1 ; Vi,c = Σj Θji
c Vj,c i = 2,... .

• The utilization of service center i is the sum of the partial utilizations of the classes,

– Ui = Σ c fi c Si c = Σ c fc Di c which must be less than 1.0

42

94.511 High-performance Software Design Winter 2003------ A 83
Copyright C. M. Woodside 1998 - 2003

Full Notation for closed Multi-class systems
(similar to the open case)

• Again, the tokens belong to different classes, numbered c = 1,2,3... Class c has
arrival rate fc = f1c at the reference center node 1 and rate fic at node i

• The routing probability from station i to j is again Θi,jc which depends on the class.

• A token of class c visits center i an average of Vi,c times in each response (visit
ratio). The visit ratio for the reference center is 1.0, and Xi,c = Vi,c fc

• The service demand at resource i , per class-c response is

– Di,c = Vi,c Si,c .

• As before, we find the V's from the Θ's by solving

– V1,c = 1 ; Vi,c = Σj Θji
c Vj,c i = 1, 2, ...

94.511 High-performance Software Design Winter 2003------ A 84
Copyright C. M. Woodside 1998 - 2003

NEXT: Guidance for improvement of
“linear” software

• Demand and bottleneck analysis:
– address the bottleneck

• Queueing Model (based on the demand parameters):
– same, but delays are more realistic (not just bounds)
– gives utilization information for many classes (visualization breaks down)

• Back to the Activity model:
– choose strategic changes

• frequently executed operations are visible
• expensive operations, especially those using the bottleneck device
• chains of causality that create unexpectedly frequent operations
• use frequency times demand to choose activities to address

– try to enhance cache effectiveness
– may also push work off the sequential path, into parallel operations

43

94.511 High-performance Software Design Winter 2003------ A 85
Copyright C. M. Woodside 1998 - 2003

Software Optimization: Making activities cheaper

• the most basic optimization is to reduce the cost of an operation.
Consider:

• assembly-language coding, “code straightening” for locality
• EARLY BINDING

– macros and in-line procedures, loop unrolling, inheritance
flattening, eliminate pointers

• DATA STRUCTURE effects
– reduced structure traversals, data alignment

• ALGORITHMS
– search, hashing.....

• Ref... Programming Pearls, by Jon Bentley
• WHEN IS IT WORTHWHILE?: use the activity graph

94.511 High-performance Software Design Winter 2003------ A 86
Copyright C. M. Woodside 1998 - 2003

Load/frequency Improvements: “Do it less”

• Find operations that are done a LOT

• Reduce them by:

• batching up data on many operations into a single group and
doing the operation once

• similarly, working on larger units of data (such as, a whole
message insted of just one character)

• elimination: do the operation only when necessary (the basis of
lazy evaluation)

44

94.511 High-performance Software Design Winter 2003------ A 87
Copyright C. M. Woodside 1998 - 2003

Early binding (fixing-point)

• many many ways to do this
– avoid run-time decisions... compile them in
– fixed memory allocation, pre-allocated record and field sizes
– compiled code instead of interpreted
– unrolled loops
– flat inheritance hierarchy

94.511 High-performance Software Design Winter 2003------ A 88
Copyright C. M. Woodside 1998 - 2003

Locality

• avoid boundaries
– put data with operations
– put operations into the same thread or process, on the same node
– batch operations together
– increase the granule size for operations
– physical storage in consecutive memory
– fewer processes, less communications

45

94.511 High-performance Software Design Winter 2003------ A 89
Copyright C. M. Woodside 1998 - 2003

Hot spots

• A hot spot is a strategically important set of activities
– they hit the bottleneck
– they have tight performance requirements
– frequent operation

• hand optimize
– design the data to favour these activities
– assembly code or code straightening (improve locality for cache)
– flatten object heirarchy here
– pre-compute or pre-fetch some data
– batch operations

• try a fast path or optimistic structure

94.511 High-performance Software Design Winter 2003------ A 90
Copyright C. M. Woodside 1998 - 2003

Fast Path pattern (cheap special cases)
• suppose there is

– an expensive activity A (with demand Yhost (A) to device host)
– a condition C with fairly high probability p*, in which cheap version A* can be

used (with demand Yhost (A*))
– demand of testing C is Yhost (C)

• for A substitute: SwitchBegin...Test C {HOST Yhost (C) }
CaseBegin (If C , prob p*) do A* {HOST Yhost (A*)}
CaseBegin (Else, prob (1 - p*)) do A {HOST Yhost (A) }
Switchend

• replace cost Yhost (A) with
Yhost (C) + p* Yhost (A*) + (1-p*) Yhost (A)

• better if
Ratio = [Yhost (C) + p* Yhost (A*) + (1-p*) Yhost (A)]/ Yhost (A) < 1

or if Yhost (C) + p* Yhost (A*) < p* Yhost (A)

46

94.511 High-performance Software Design Winter 2003------ A 91
Copyright C. M. Woodside 1998 - 2003

Fast path pattern: substitute for any activity A

expensive
standard

version A

cheap
fast version

A*

Test condition C for
validity of A*

94.511 High-performance Software Design Winter 2003------ A 92
Copyright C. M. Woodside 1998 - 2003

Fast Paths

• examples:

• avoid protocol encoding for a message on a socket connection
to a process on the same computer

• in remote procedure calls, avoid data encoding when the data
representation is identical at both client and server

• fast access to usual next operation

• pre-compute frequently-used results so they are always up to
date

• compile some frequently-used operations in an interpreted
language

• special storage of frequently accessed data pages

47

94.511 High-performance Software Design Winter 2003------ A 93
Copyright C. M. Woodside 1998 - 2003

Fast Path: Protocol Header Prediction
• optimizes handling of long messages.

– Originally developed by Van Jacobson for paging transfers from a
network file system (IEEE Communications Mag about June 91)

• assume the next packet is the next in the same message, calculate the
header expected.
– use the paging memory space as a data buffer, copy the message

dirrectly to it
– check the header against prediction. If it matches, data is already

in place.
• greatly reduced processing on the fast path

– one connection was able to run near 10 Mbit/sec.
• If no match, process it for whatever connection, socket etc. it is

directed to, and copy it again as needed.

