
1

94.511 High-performance Software Design Winter 2002------ B-1
Copyright C. M. Woodside 1998 - 2002

Topic B: Layered software and resources

A: Introduction: describing software and performance,
sequential software

B: Layered software and resources
– layered modules with services (entries)
– software task resources, client-server systems
– layered queueing model
– bottlenecks in layered systems
– improvement principles

C: UML with performance annotations

D: Systems with parallelism

94.511 High-performance Software Design Winter 2002------ B-2
Copyright C. M. Woodside 1998 - 2002

NEXT: Layered Sequential Software

• Modules that provide various services
• Description based on architecture

– module is the component

– service requests are the interactions

– entry represents a service

• In terms of programming, we will first consider sequential software:

– modules are files (C), modules (Modula), objects (C++ or Java) or
packages (Ada)..

– re-entrant, no limit on the number of active copies

– interactions are procedural (call-return)

– entries (that provide services) are methods in C++ and Java,
procedures in C and Modula, entries in Ada

2

94.511 High-performance Software Design Winter 2002------ B-3
Copyright C. M. Woodside 1998 - 2002

Module notation
• module, entry, service demands to other modules

• exactly one host device or processor for a real software module

• alternative notation for host demand.......

entry E1
[y-host-E1]

entry E2
[y-host-E2]

Module M

entry for a service
“serv”

icon for host
processor of M

y-serv y-host-E1

Module S

entry E1

host demand

94.511 High-performance Software Design Winter 2002------ B-4
Copyright C. M. Woodside 1998 - 2002

To get the demand parameters of a module
model

• direct tests using OS instrumentation to measure resource demands
during the test

• profiling C or C++ programs with gprof or quantify

– CPU demands per call of each procedure

– procedure demands are totalled over all calls, and also broken
down according to the calling procedure

• strace utility in some UNIX systems records all system calls

• start from a scenario for each entry

– if given a global scenario, divide into a sub-scenario for each entry

3

94.511 High-performance Software Design Winter 2002------ B-5
Copyright C. M. Woodside 1998 - 2002

Example: A Module with two services, from their activity graphs,
MeanTimes CPU file create inout

M-in ops ops ops

1 0.1 1.8

1 0.2 1

1 0.1 13

Wtd sum 0.4 1.8 1 13

1 0.15

1 0.01

0.9 0.2 3

0.1 0.6 6

1 0.1 2.5

Wtd sum 0.5 2.5 3.3

A

B

C

Graph “serv1”

D

E
F

G

0.9

0.1

Graph “serv2”

94.511 High-performance Software Design Winter 2002------ B-6
Copyright C. M. Woodside 1998 - 2002

Module with two services (cont’d): Reduce to device demands...

Suppose the logical operations have the following device demands:

Logical cpu disk

service M-in ops

File op 0.02 1.3

create 0.75

inout 0.29

Then we could convert the service demand columns to device demands:

serv1 4.956 2.34

serv2 1.507 3.25

Logical operation demands can be kept external or folded in, to give parameters of one
service entry

4

94.511 High-performance Software Design Winter 2002------ B-7
Copyright C. M. Woodside 1998 - 2002

Module with two services... result

• Consider the demands for logical services file-op create and inout,
in the original table, as demands to other modules:

– FileSys for the filesystem with entry file-op,

– Xwin for the X-window system with entries create and inout.

• host demands (CPU) are shown on entries in [square] brackets

serv1
[0.4]

serv2
[0.5]

module DISP1

create
[0.75]

inout
[0.29]

Xwin moduleFileSys

disk

1.8
2.5

1.3

1
13 3.3

file-op
[0.02]

94.511 High-performance Software Design Winter 2002------ B-8
Copyright C. M. Woodside 1998 - 2002

Granularity: Module model aggregation
• there is a lot of choice possible in what is the boundary of a module

for the model (granularity of modeling)

• a submodule can be included in the same way that modules are
reduced... to get the aggregate demands

serv1
[0.436]

serv2
[0.55]

module DISP2

create
[0.75]

disk

2.34
3.25 1

13

inout
[0.29]

3.3

II... put file-op inside DISP

Xwin

serv1
[4.956]

serv2
[1.507]

module DISP3

disk

2.34
3.25

III... put Xwin inside too

0.436 = 0.4 + 1.8*0.02; 0.55 = 0.5 + 2.5 * 0.02 4.956 = 0.436 + 0.75 + 13 * 0.29
2.34 = 1.8 * 1.3 3.25 = 2.5 * 1.3 1.507 = 0.55 + 3.3 * 0.29

5

94.511 High-performance Software Design Winter 2002------ B-9
Copyright C. M. Woodside 1998 - 2002

General module aggregation
• we may model a subsystem as a module, aggregating its internals

• first case... one internal module A provides the interface

(more complex... requests go to several modules, all form interface)

a Module Ab

Cc e Bf

y YzXx

a AGGb

Xx y Yz

AGG
(“Reduction R3”)

94.511 High-performance Software Design Winter 2002------ B-10
Copyright C. M. Woodside 1998 - 2002

Dividing an end-to-end activity graph across modules
 and entries: Reservation Server

• subdivide it into
separate subgraphs

• analyze each one

• transition from one
entry to another
becomes a service
demand

• Here, suppose a
session control module
invokes TicketRes
each time the user
input arrives.

• Allocate “Update DB”
to Disconnect

6

Update DB

Disconnect

0.75 Display
0.15 Reserve
0.1 Confirm

 Verify
0.1

Connect
Host Module Entry
Srvr TicketRes Connect

PC Session User
Srvr TicketRes Interact
Srvr TicketRes Interact
Srvr TicketRes Interact
Srvr TicketRes Interact
Srvr TicketRes Interact

PC Session User
Srvr TicketRes Disconnect

Srvr TicketRes Disconnect

User

User

User

6

94.511 High-performance Software Design Winter 2002------ B-11
Copyright C. M. Woodside 1998 - 2002

Restructure around choice of entries

• reduce the
parameters of
each entry
subgraph
separately

• “User” is just a
7-sec mean
delay, broken
out because it
takes place
elsewhere

6

0.75 Display
0.15 Reserve
0.1 Confirm

 Verify
0.1

Connect

Update DB

Disconnect

Interact

User

User

Disconnect*

94.511 High-performance Software Design Winter 2002------ B-12
Copyright C. M. Woodside 1998 - 2002

Multiple Modules... Reservation System

Session or User [8*7 sec]

Connect [0.01] Disconnect [0.008]Interact [0.014]

Netware

[0.012]

CCReq

[3 sec]

Database
Server

[0.085]

1 6 1

1 1 0.1 1.15 1
1

Disk1.5 2

TicketRes

7

94.511 High-performance Software Design Winter 2002------ B-13
Copyright C. M. Woodside 1998 - 2002

Aggregate Reservation System

ReservationSystem
(including TicketRes, User and Netware)

[Z = 56 sec, s = 0.1656 sec]

CCReq

[3 sec]

Database
Server

[0.085]

0.6
7.9

Disk
[.011] 2

12

94.511 High-performance Software Design Winter 2002------ B-14
Copyright C. M. Woodside 1998 - 2002

Aggregate ...(cont)... options

ReservationSystem (entire)
[Z = 56 sec, s = 0.08371 sec]

CCReq
[3 sec]

0.6

Disk
[.011]

27.8

All on one
 processor:

Separate Database
Processor:

ReservationSystem (entire)
[Z = 56 sec]

CCReq
[3 sec]

0.6

Disk
[.011]

27.8

P1 P2 (DB)

0.6715
sec

0.1656 sec

P1

(host)

8

94.511 High-performance Software Design Winter 2002------ B-15
Copyright C. M. Woodside 1998 - 2002

NEXT: Substantial example: Printing Service
• the model is stated from the beginning as a set of modules with

entries and demands

– as might be found by profiling some running components

Features of this example:

• fine-grained modules

• application demand parameters are kept free (values supplied later)

• aggregation of modules

• implicitly, all the modules are re-entrant (there are no resource
constraints except devices)... this will be changed later

• initially this will be analyzed as linear software (just sequential re-
entrant modules, no parallelism)

94.511 High-performance Software Design Winter 2002------ B-16
Copyright C. M. Woodside 1998 - 2002

Printing service

• all arcs show one
request unless
labelled
otherwise

• k = no. of storage
pages

• 0.9 reflects file
caching

• Host demands in
1000’s of inst.

PrintManager.PrintService
[12]

Store
[10]

Log
[2]

Default
[4]

Check
[5]

PrintControl.Print
[25]

FileSystem
[2]

Setup
[42]

Data
[17]

FileServer
[6]

Ctl
[42]

Data
[17]

Printer

DiskController
[1]

Disk

3 k

0.7

k 2.7

k

0.9

1.2

MgrInfo

Driver

Embedded Controller

9

94.511 High-performance Software Design Winter 2002------ B-17
Copyright C. M. Woodside 1998 - 2002

Printing service:
aggregation

• AGGPrintMan
runs on some
workstation

• AGGPrintCon
runs on a WS
connected to the
printer

• Embedded
Controller is in
the printer itself

• FileSystem
module is the
local part,
running on each
WS

• FileServer is the
NFS server

PrintManager.PrintService
[12]

Store
[10]

Log
[2]

Default
[4]

Check
[5]

PrintControl.Print
[25]

FileSystem
[2]

Setup
[42]

Data
[17]

FileServer
[6]

Ctl
[42]

Data
[17]

Printer

DiskController
[1]

Disk

3 k

0.7

k 2.7

k

0.9

1.2

MgrInfo

Driver

Embedded Controller

AGGPrintMan

AGGPrintCon

94.511 High-performance Software Design Winter 2002------ B-18
Copyright C. M. Woodside 1998 - 2002

Aggregation ResultsAGGPrintMan.PrintService
[12]

AGGPrintCon.Print
[25]

FileSystem
[2]

FileServer
[6]

Ctl
[42]

Data
[17]

Printer

DiskController
[1]

Disk

k+4.7

k

0.9

Embedded Controller

3.6 k

10

94.511 High-performance Software Design Winter 2002------ B-19
Copyright C. M. Woodside 1998 - 2002

Printing service: design alternatives and
questions

System changes that might occur (scaling, sensitivity)

• different file system (local vs network)

• different file system demands by users,

• different job sizes

Design alternatives for performance:

• How about multiple printers?

• Can PrintCon prefetch pages?

• Where do jobs queue?... waiting to be picked up by PrintCon

• How about priorities?

94.511 High-performance Software Design Winter 2002------ B-20
Copyright C. M. Woodside 1998 - 2002

Improving performance using module model
analysis

• this is the best understood, most familiar domain for reasoning about optimization

– no concurrency, so not too complex

– only “new” idea is to reason in advance using a model

• reduction R4 to device demands of a queueing model, for performance prediction

• direct heuristics on the module model

– bottleneck identification from the reduction R4: which device has maximum
demand?

• move work away from it

• substitute replaceable components with others of lower demands

– identify deep calling patterns with high calling overhead: coalesce modules, or
flatten inheritance heirarchies

– identify frequently used components (as in profiling): “code straightening”;
examine details (e.g. activities)

11

94.511 High-performance Software Design Winter 2002------ B-21
Copyright C. M. Woodside 1998 - 2002

Printing service: Reduction to a flat model (Apply R3 to
the entire system to get its device demands)

PrintManager.PrintService
[12]

Store
[10]

Log
[2]

Default
[4]

Check
[5]

PrintControl.Print
[25]

FileSystem
[2]

Setup
[42]

Data
[17]

FileServer
[6]

Ctl
[42]

Data
[17]

Printer

DiskController
[1]

Disk

3 k

0.7

k 2.7

k

0.9

1.2

MgrInfo

Driver

Embedded Controller

ws1

ws2

ws2

ec

ws1

ws1 or 2

ws3

Aggregate all software together

dc

94.511 High-performance Software Design Winter 2002------ B-22
Copyright C. M. Woodside 1998 - 2002

Device workloads...

Pseudo-module for the entire system

ws1 ws2 ws3 ec dc printer disk

46.4* 20.8 56.16 199.2 9.36 3 9.36

optime = 1 microsec for all processors................. 0.1 sec 0.014 sec
D = .046 .208 .056 .199 .009 0.3 .131 sec

* request counts for processors are in 1000s of operations

12

94.511 High-performance Software Design Winter 2002------ B-23
Copyright C. M. Woodside 1998 - 2002

NEXT: Distributed print
service: separate processes
and an allocation to hosts

Printer
Disk

k+4.7

k

0.9

Embedded Controller

3.6
k

AGGPrintMan.PrintService
[31.8]

AGGPrintCon.Print
[25]

LocalFileSystem
[2]

FileServer
[6]

DiskController
[1]EC.Ctl

[42]
EC.Data

[17]

Node A

Node B

ECproc

FSnode

DC proc

94.511 High-performance Software Design Winter 2002------ B-24
Copyright C. M. Woodside 1998 - 2002

Printing service: design alternatives and
questions

Performance-related questions:

• How about multiple printers?

• Can PrintCon prefetch pages?

• Where do jobs queue?... waiting to be picked up by PrintCon

• How about priorities?

• the “linear” discussion may be too limited to analyze these, so we
will now proceed....

• to a layered resource architecture with greater parallelism and
concurrency.

13

94.511 High-performance Software Design Winter 2002------ B-25
Copyright C. M. Woodside 1998 - 2002

NEXT: Layered Resources and Client-Server
Systems

• There are multiple programs (tasks) running on different hosts

– operating system processes

• We will consider each program to be a single module... it could be an
aggregate of smaller modules... it can include shared libraries.

• “Calls” are now synchronous interactions

– Client sends request and waits for reply

– Server executes

– Server sends reply and then waits for next request

– Client continues

Client

Server
Client

Server

94.511 High-performance Software Design Winter 2002------ B-26
Copyright C. M. Woodside 1998 - 2002

Single-threaded processes
A process or task is an independent autonomous sequential program, with its own

program counter and data context.

• it is an OS construct really... UNIX processes are our guide here

• it has a process control block or similar data structure that maintains its context
(things like its owner, memory pages, files open, stack pointer, time and resource
statistics that you see with the ps command, processes that it has created...)

• using OS facilities it can be created, suspended, activated, and destroyed

– complex, high cost context switch to suspend/activate (half a millisec approx)

• processes cannot access each others’ data

– some systems have hardware memory protection

• note that there are some violations in UNIX of complete separation of processes

– they can share access to a data space outside of each of them,

– one process can create another; when the parent is destroyed all its children are
also

• UNIX daemons are processes that run at set intervals

• the underlying concept of process is more general, for instance it could allow
internal parallelism.

14

94.511 High-performance Software Design Winter 2002------ B-27
Copyright C. M. Woodside 1998 - 2002

An interprocess message
(single-threaded processes, send-and-continue or async)

• Process A sends a message to process B:

– A executes:

.....

send(port-address, x-struct)

..... continues on

– B executes:

.....

receive(port-address, y-struct) %it waits for the message

..... continues on

• A must know the port-address, the structures must match

• e.g. UNIX socket communication

A

B

A

B

94.511 High-performance Software Design Winter 2002------ B-28
Copyright C. M. Woodside 1998 - 2002

A synchronous message, or send-and wait
• Process A sends a message to process B, and waits for a reply::

– A executes:

.....

sendwait(port-address, x-struct, reply-port, reply-struct)

..... waits for reply, then continues on

– B executes:

.....

receive(port-address, y-struct, reply-port) %it waits for the
message

..... executes

reply(reply-port, reply-struct)

...... continues on (phase 2)
• An RPC executes this within the stubs, as well as marshalling the

arguments into the x-struct and y-struct

• B serves A... and may continue

A

B

A

B

15

94.511 High-performance Software Design Winter 2002------ B-29
Copyright C. M. Woodside 1998 - 2002

Interaction via mailboxes and message queues

• Messages may be sent as units,
or as parts of a data stream

• if, when B executes receive,
there is a message, it goes on to
complete the receive and
continue.

– if no message, it becomes
blocked on the queue

• When a message arrives for a
process which is waiting for a
message, the process is put on
the ready queue by the OS

A

B

queue or mailbox
of messages for B

B usually takes the
messages in order of
arrival (FCFS)

Bproc
B serves A, and Bproc
serves B (layered queues)

94.511 High-performance Software Design Winter 2002------ B-30
Copyright C. M. Woodside 1998 - 2002

NEXT: Layered queuing for layered service

• A makes a request to B and waits

• A sees a response time

= (wait for B) + (latency) + (service time of B)

• Service time of B is the time from receiving the
message, to time of sending reply

= (wait for processor)

+ (execution time of processor for demand of B)

• So, the service time of B depends on lower layer
contention

• If B makes requests to other software servers their
response is also part of the service time of B; this is
nested service

A

B

Bproc

16

94.511 High-performance Software Design Winter 2002------ B-31
Copyright C. M. Woodside 1998 - 2002

• Concurrent active modules will be called “tasks”, its processor is its
host.

• Otherwise it is the same as a component-based model.

• We do not usually aggregate tasks, since they can be allocated
separately

Layered concurrent software

Client Task
entry E1

[y-host-E1]
entry E2

[y-host-E2]

entry for a service
“serv”

y-serv

Server Task

P1

P2

host attachment for processor

94.511 High-performance Software Design Winter 2002------ B-32
Copyright C. M. Woodside 1998 - 2002

 Layered queueing model
• tasks represent OS processes, users and the logic of peripheral

devices (e.g. disks)

– users are pure customers

– other tasks are both servers and customers

• Workload parameters:

– each task has a host device with a speed factor
• host device is a pure server

– the entry has a host demand “s” (for seconds of demand at
speed factor 1)

– the entry has a service time x which includes its nested delays

– the entry may also have a “think time” Z (pure delay)

– the entry has mean demands yi to other entries

• a task has a single queue for messages asking for services; however
replies to synchronous requests (rendezvous) do not go to the queue
(there could be a second mailbox for replies)

• a single-threaded task is a single server

A

Disk
logic

Processor

Disk
device

N usersAUsers

17

94.511 High-performance Software Design Winter 2002------ B-33
Copyright C. M. Woodside 1998 - 2002

Semantics of basic layered model
• execution time of each entry is broken into “slices”, between requests

to other tasks
– average of Y slices for the entry, Y = 1+ sum yi
– slice time exponentially distributed (default) , or random with

var = CV2 * (square of mean)
• execution path:

– case of random choice of next request (“stochastic calls”)
• if for an entry, Y = 1+ sum yi

– then prob of next request being to entry i = yi/Y
– prob of ending the entry = 1/Y

• this gives a random number of requests with mean yi
– case of deterministic number of requests (“deterministic” calls)

• exactly yi requests to task i (must be integer)
• synchronous messages block the sender

– asynchronous messages may also be sent, no blocking or reply

94.511 High-performance Software Design Winter 2002------ B-34
Copyright C. M. Woodside 1998 - 2002

NEXT: Layered model-building

• a layered queueing model is just a module model, aggregated to the level of the task
(= operating system process)

• a task is just a module with one or more task thread resources attached to it

– all entry calls are requests, usually inter-task messages to a mailbox or port

– requests have to queue for the resource

– a re-entrant module could be modeled by a task with infinite threads; it would
have no queueing.

• parameters for host demands and for requests to other tasks are found just as for
modules without resources

– a scenario for an entry: treat other entries as “devices” when reducing the
demands

– a scenario across entries: partition it among the entries, just as for modules

– module-based demands can be estimated directly by guess or by measurement

• but, most measurement systems have problems with establishing the
context (e.g. the entry)

18

94.511 High-performance Software Design Winter 2002------ B-35
Copyright C. M. Woodside 1998 - 2002

Layered queueing language (1)
...a task has a processor, a queue, a discipline and a multiplicity

• a reference task has no requesters; multiple tasks are independent and
often run on an “infinite” processor

• servers can be multi-threaded, running on one processor (which can
be multiple; one server has one queue to receive requests

• a pure server makes no requests; devices are pure servers. Every
device is modeled as running at least one task which defines its
service logic and classes

• a processor can be multiple (with a single queue). This fits symmetric
multiprocessors)

...a task can have multiple entries: workload is associated with entries:

• host demand (mean “s”, squared coeff of var’n “c”)

• mean requests to other entries (sync “y”, async “z”, forwarding “f”)

• demand is stated by phases; so far we only consider one phase

94.511 High-performance Software Design Winter 2002------ B-36
Copyright C. M. Woodside 1998 - 2002

Layered Queue Language (2): LQNS modeling language
G “comment” solver-options -1

P 0 # Processor definitions

p Pusers f -1 i # i after -1 means an “infinite” multiplicity processor

p AProc s -1 # -1 is a terminator for sections, lines or parts of lines

p Disk1 f -1 # code f for fcfs, s for processor shared

-1

T 0 # Task definitions

t Users Pusers UserCycle -1 m 15 # multiplicity after -1

t Atask AProc Aentry -1 # task, its processor, list of entries, -1, multiplicity

t Disklogic Disk1 Diskop -1

-1

E 0 # Entry definitions

Z UserCycle 10 -1 # Z for think time

s Aentry 1 2 -1 # s for host execution demand (phase 1, phase 2)

s Diskop 0.025 -1

y UserCycle Aentry 5.8 -1 # mean requests entry to entry

y Aentry Diskop 0.6 3.1 -1 # mean requests phase 1, phase 2

-1

Aentry
[1, 2]

Diskop
[0.025]

AProc

Disk1

15 usersA
UserCycle

[Z=10]

Atask

Disklogic

Users

(5.8)

(0.6,3.1)

19

94.511 High-performance Software Design Winter 2002------ B-37
Copyright C. M. Woodside 1998 - 2002

LQNS performance calculations

The tool computes
• a set of upper bounds on throughputs based on zero waiting

• mean throughputs of tasks, entries and processors

– may have to use Little’s result for response times

• mean wait for each entry

• mean service times of entries, (which include nested services and
waiting)

• mean utilizations of tasks, entries, and processors

– (to find bottlenecks)

• Use SPEX to do multiple runs over parameter variations

94.511 High-performance Software Design Winter 2002------ B-38
Copyright C. M. Woodside 1998 - 2002

SPEX extended modelling language
$N = 1;50;5,100 # initial section sets up values of parameters

$alpha = 1,3,5 # $name are variables, parameters and results

$x1 = 1 - $alpha # parameters can be defined by expressions

$x2 = 2*$alpha

G “comment” solver-options -1

P 0

.....

T 0

t Users Pusers UserCycle -1 m $N %f $Thruput #instrumentation definition

t Atask AProc Aentry -1 %u0 $AtaskUtn

t Disklogic Disk1 Diskop -1 %w $WaitForDisk

-1

E 0 % Entry definitions

Z UserCycle 10 -1

s Aentry 1 2 -1 %s1 $Aph1 # service time of phase 1 of Aentry

.......-1

R 0 # Results section defines what is printed, first is indept variable.

$0 $alpha $N $Thruput $AtaskUtn $WaitForDisk -1

Aentry
[1, 2]

Diskop
[0.025]

AProc

Disk1

$N usersA
UserCycle

[Z=10]

Atask

Disklogic

Users

(5.8)

(0.6,3.1)

20

94.511 High-performance Software Design Winter 2002------ B-39
Copyright C. M. Woodside 1998 - 2002

Processes in the print
system

(using blocking or RPC-like
communication)

Printer
Disk

k+4.7

k

0.9

Embedded Controller

3.6
k

AGGPrintMan.PrintService
[31.8]

AGGPrintCon.Print
[25]

LocalFileSystem
[2]

FileServer
[6]

DiskController
[1]EC.Ctl

[42]
EC.Data

[17]

Node A

Node B

ECproc

FSnode

DC proc

Potential bottlenecks:
• PrintMan
• PrintCon (if multiple

printers)

94.511 High-performance Software Design Winter 2002------ B-40
Copyright C. M. Woodside 1998 - 2002

Example: Web Server 3
• Server sends long message to the web user

• TCP/IP flow control means the server blocks after sending a “packet”,
waiting for acknowledgements, n times

– represent this as a net delay, then service from the client to
receive data and create the ack, then another net delay

Consider a Server with host
demand of 10 msec per packet,
disk demand of 10 msec spread
over many disks, and a long
network latency T
... Each time the window fills, the
server waits for a round-trip
approx.Srvr Disk

Server
[.01]

Web
user

[.005]

Srvr Proc

1

Srvr Disk
[.01]

Ack Delay
[2T]

n v

21

94.511 High-performance Software Design Winter 2002------ B-41
Copyright C. M. Woodside 1998 - 2002

Web Server Results: need for threads

• A single threaded server is tied up
for the entire network latency, as well
as the CPU time plus the disk time

• Thus the service time of one thread is
long, and most of that time the server
CPU and disk are idle

• We want to carry out other services,
during the ack delay

• The mechanism is multithreading of
the Server. Each thread babysits one
request, including its data movement

– maintains the user context Srvr Disk

Server
[.01]

Web
user

[.005]

Srvr Proc

1

Srvr Disk
[.01]

Ack Delay
[2T]

n v

94.511 High-performance Software Design Winter 2002------ B-42
Copyright C. M. Woodside 1998 - 2002

Task bottleneck in web sever

• if there is just one copy of the web server (one thread), and it has a
service time made up of

• CPU .005 sec

• disk .01 sec

• ack delays of 4sec

• total 4.01 sec

• this imposes a throughput bound of 1/4.01 requests per sec on the
server.

22

94.511 High-performance Software Design Winter 2002------ B-43
Copyright C. M. Woodside 1998 - 2002

NEXT: Threads.....User threads
• in UNIX, a library lwp (light weight processes) acted like a mini OS within a

process, allowing separate threads of control to execute, fork, join, synchronize and
communicate.

– threads can have their own local variables, created when the thread is created

– threads share a common data space and can communicate through shared
variables

– includes a thread scheduler which could put different priorities on threads.
Cheap context switch

• Multi-threaded server:

– threads may be created when needed, or a pool of threads can be created and
made to wait until they are needed

– listener thread receives a request, creates and dispatches a worker thread to
serve it.

• or dispatches a worker from a pool of static threads

• can use different threads for different service requests (“entries”), or one
thread class

• BUT: any kernel call which blocks the process, blocks all threads (e.g., disk I/O or
RPC)

94.511 High-performance Software Design Winter 2002------ B-44
Copyright C. M. Woodside 1998 - 2002

Kernel threads in user processes
• Solaris threads, for instance

– big difference is the kernel schedules the threads, and while one thread is doing
a kernel call such as I/O, others can run,

– thus the server can have many services underway at once, in cases where the
server threads spend a lot of time blocked

– also, threads can be dispatched by the OS on a multiprocessor to different
processors, so can run in parallel

• kernel threads are essential for performance, user threads only provide a form of
modularity (and maybe priorities)

– threads can do RPCs to other servers, as well as disk I/O.

– in an RPC, the thread retains the context of the service request until the remote
service completes

• context switch cost is less than HW process, more than user thread

• other thread systems may be structured differently (Mach, NT)

• Examples: Web servers need threads to avoid serving user requests to completion,
one at a time. NFS servers. Most OS kernels have non-blocking threads inside.

23

94.511 High-performance Software Design Winter 2002------ B-45
Copyright C. M. Woodside 1998 - 2002

Data threads, or virtual threads, or “asynchronous
processes”

• a special high-performance approach to writing servers

– one single threaded process: no context switches of any kind

– process handles every message separately, requests and acknowledgements,
executes a “slice”, sends a message in reply or for some nested service

– no RPCs... just asynchronous messages

• however, when a nested service is called, the context of the current service
must be retained

• use data tables to maintain the state of services begun but not completed...
hence data threads

• or else store the state in the message, like a token carrying the request
around the system (large-grain data flow computing)

– make no blocking calls to OS... instead, program a separate thread pool or
multithreaded process to handle these (this is not a terrific solution, since
context switching comes back)

• most expensive for programming, least overhead for context switching

• Examples: DMS call processing software protocol software.

94.511 High-performance Software Design Winter 2002------ B-46
Copyright C. M. Woodside 1998 - 2002

Infinite threads as a model construct

• an infinite “threaded” task has no fixed thread pool or limit on the
number of threads

– could represent a system that creates a thread per request

– could represent a re-entrant library procedure shared by all users,
each executes its own copy

– some operation with no limit on the number of concurrent copies

• can also represent a logical operation which has no execution of its
own, but encodes a pattern of requests to services

– to represent the operations in a scenario, it there is no controller
process

– to represent flow down a pipeline

24

94.511 High-performance Software Design Winter 2002------ B-47
Copyright C. M. Woodside 1998 - 2002

Results for the web server with net delay
N users 500 500 500 500 2000 2000 2000 2000

M threads 10 30 100 inf 10 30 100 inf

X server .512 .52 .52 .52 .512 .515 .55 4.99

f thruput 19.5 58.2 90.6 90.6 19.5 56.7 180 200

W user wait 20.6 3.6 0.51 0.5 97.6 29.4 6.1 5

U server 10 30 47 47 10 30 100 1000

U net 9.7 29.1 45.3 45.3 9.7 29.1 90.2 100

U CPU .097 .29 .45 .45 .097 .29 .90 1.0

UsersUsers

Server

Net delay
0.5

DB
0.01

Disk
0.015

CPU

Server with M threads
and holding time X

0.005 0.2 0.4 1

N Users with
a thinking time
of 5 sec.

94.511 High-performance Software Design Winter 2002------ B-48
Copyright C. M. Woodside 1998 - 2002

Web server bottleneck analysis
• D-userCPU = 0.005 and anyways each user has one, so this doesnt

constrain the system (it is part of Z if closed system)

• D-SrvrDisk = 0.01 v sec, D-SrvrProc = 0.01 sec

• Z = 4 n sec for the ack delay

• suppose there are 20 disks taking the load equally, and v = 10, so
each disk sees D-disk = 0.005 sec

• then Dmax is 0.01 at the SrvrProc

• One service has a path length of Z + Σ D = .11 + 4n sec

(this keeps one thread busy all this time)

• SrvrProc utilization over this period averages .01/(.11 + 4n)

(so if n = 1 this is 1/400)

(at processor saturation there will be 400 active services!

• This must be provided by multiple threads at the server.

25

94.511 High-performance Software Design Winter 2002------ B-49
Copyright C. M. Woodside 1998 - 2002

NEXT: Concurrency enhancement by
“second phases”

Performance Enhancement by Aggressive Replies

• Idea: Give a reply as early as possible

• Do postponeable work after the reply, as phase 2

• E. G.: Database server update operation:

• write to log file before returning, execute final writes later.

• Second-phase model may

– (a) place this work right after the return (approx), or

– (b) send a message to a clean-up process that does it later

phase 1 phase 2, asynchronous and parallel

client

server

94.511 High-performance Software Design Winter 2002------ B-50
Copyright C. M. Woodside 1998 - 2002

Second and later phases

Also good for:

• Task and processor overhead (next receive, scheduling)

• Database delayed operations, NFS delayed writes

• etc.

– Synchronous pipeline (an example with 3 phases):

A B C

A

B

C

ph1 ph2 ph3

ph1 ph2

(next cycle)

26

94.511 High-performance Software Design Winter 2002------ B-51
Copyright C. M. Woodside 1998 - 2002

Two-phase servers Experiment
• Server does part of its work

after the reply

– Performance 99 paper on
“early replies”

• “Walking server” queue for
Poisson arrivals has an exact
solution

• for networks we approximate
the delay for “overtaking”

Client

Server
[z, 1-z]

Client N clients

first request second request

second phase for first request

waiting due to overtaking

Client

Server

total demand
is unity

94.511 High-performance Software Design Winter 2002------ B-52
Copyright C. M. Woodside 1998 - 2002

Impact of Phase 2 on Performance
Response times

z nusers=1 4 7 10 15 20

0 0.166 1.125 3.06 4.84 9.90 14.93

0.2 0.310 0.726 2.69 4.274 9.473 14.54

0.4 0.464 0.827 1.508 3.895 9.228 14.32

0.6 0.629 0.996 1.792 3.981 9.228 14.31

0.8 0.807 1.269 2.26 4.492 9.504 14.54

1 0.999 1.642 2.92 5.22 10.03 15.01

Throughputs
0 0.193 0.652 0.867 1.015 1.006 1.003

0.2 0.188 0.698 0.909 1.078 1.03 1.02

0.4 0.183 0.686 1.075 1.124 1.05 1.03

0.6 0.177 0.667 1.03 1.113 1.05 1.03

0.8 0.172 0.637 0.962 1.053 1.03 1.02

1 0.166 0.602 0.883 0.978 0.997 0.999

All phase 2

All phase 1

All phase 2

All phase 1

27

94.511 High-performance Software Design Winter 2002------ B-53
Copyright C. M. Woodside 1998 - 2002

Multiple levels: saturation spreads upwards
• Server utilization =

– the fraction of time it is busy
and blocked (one thread)

– thruput x (thread service time)
if one or many threads

– which is also the mean number
of busy threads

• The third level server is saturated
because it blocks and waits for
other servers

• it saturates the layers above it

100

100

30

U=100

30

15

10

40

Servers labeled
with their
utilizations

94.511 High-performance Software Design Winter 2002------ B-54
Copyright C. M. Woodside 1998 - 2002

Software bottleneck: general properties
• Typically the bottom resource is a processor... a bottleneck there is of

the familiar hardware type

– a saturated processor can “push up” on higher resources and make
them saturated too, by blocking them

– this is still a hardware bottleneck

• A pure Software Bottleneck appears only at a higher resource in the
layering; lower resources are not responsible

– typically associated with a “fan-out”... the higher resource delays
are contributed by two or more lower resources,

– BS >1 and Ub ~ 1 (Neilson..., IEEE Trans on Soft Eng’g 1995)

Ub = utilization of task or resource b

• Bottleneck strength measure at task b: BSb = Ub / maxi Ui

Ub

U3U2U1

28

94.511 High-performance Software Design Winter 2002------ B-55
Copyright C. M. Woodside 1998 - 2002

Software bottlenecks
in the “Tower” Deeply Layered Pattern

• consider: N users at top layer

• Lower layers may be multi-servers
(multithreaded)

• m2, m3, m4 threads at layers 2,3,4.....

UsersLevel 1

2

3

4

5

bottleneck shows up first here because
of fanout (all layers have some fanout)

94.511 High-performance Software Design Winter 2002------ B-56
Copyright C. M. Woodside 1998 - 2002

Software bottleneck relief by multithreading

A thread is like a clone, dispatched from the same request
queue...

...a multi-threaded server behaves like a multi-server; two
threads can execute in parallel. If they are sequentialized
by their processor servers, that appears as waiting

User throughput f depends on thread levels m2, m3, m4:

(m2, m3, m4)... f , (U2, U3, U4, U5)

(1, 1, 1)..... 0.166, (1., 0.83, 0.67, 0.167)

(2, 1, 1)..... 0.200, (0.96, 1, 0.8, 0.2)

(3, 2, 1).... 0.223, (2.9, 1.64, 0.89, 0.22)

(6, 5, 4).... 0.475, (5.5, 3.9, 2.75, 0.475)

(10,10,10).. 0.65, (9.3, 7.8, 6.2, 0.65)

10 Users

m2

m3

m4

Level
1

2

3

4

5
(single servers
at the bottom)

(1 sec demand at each server, one
request to each lower task)

Bottleneck strength at a task =
Utn of task/multiplicity
Max utn of ITS servers and processor

User throughput f,
task utn Ui

29

94.511 High-performance Software Design Winter 2002------ B-57
Copyright C. M. Woodside 1998 - 2002

Layered model of a critical section or
exclusive lock

• The critical section or lock is modelled as a pseudo-task, which
executes the demads of its users (if they all do the same thing, as in a
monitor)

• if the users all do different things, it transmits the demands of its user
to a separate shadow task that represents the user execution.

• Thus, the critical section pseudo-task is busy while the CS is
occupied, and other requests wait in its queue

• a counting semaphore is represented as a CS multiserver pseudotask

• lets a given number of tasks pass, and then queues them

• implements window flow control on a set of operations

94.511 High-performance Software Design Winter 2002------ B-58
Copyright C. M. Woodside 1998 - 2002

Resource-architecture pattern for a critical
section or mutex

• when a set of concurrent tasks share a critical section it limits their
concurrency

• the critical section is a resource

• treat it as a pseudo-task resource: execution is done in the
context of the CS

• workload is moved from the client to the CS pseudo-task

• when all the tasks execute on the same processor and execute the
same code in the crticial section, it can be modelled as one task:

A

CS

CB

D E

concurrent tasks (users of the CS)

CS pseudo-task, with workload
parameters of the CS execution

services invoked during the CS executionP

Host
processor

30

94.511 High-performance Software Design Winter 2002------ B-59
Copyright C. M. Woodside 1998 - 2002

Critical section or mutex...
• we will interpret “critical section” to include mutexes and semaphores

and any situation where there is a logical resource

• if the client tasks are on different processors then the CS is modelled
in two stages:

• a pseudo-task CS for mutual exclusion, with a pseudo-host

• separate entries CS-A... to point to the actual work

• a shadow task A|CS... for each client, to represent the work
carried out and the processor attachment of the client
A CB

C|CS

PA

A|CS B|CS

CS-A CS-CCS-B

PB PC

CS pseudo-task with an
entry for each client

CS shadow task for each client,
with the workload in the mutex

94.511 High-performance Software Design Winter 2002------ B-60
Copyright C. M. Woodside 1998 - 2002

Locks

• a single exclusive lock is like a mutex or CS, however in general
locks are different

• locks are associated with data

• there may be many separate locks for separate granules of data

• read or write locks

– “write” locks are exclusive

– “read” locks are shared

• a request may be for a set of several locks at once, covering the
data required by the operation

• in distributed systems one solution is a “lock server” which grants the
required locks as the first step in a transaction

31

94.511 High-performance Software Design Winter 2002------ B-61
Copyright C. M. Woodside 1998 - 2002

NEXT: Principles for layered systems

• resource utilization balance

– try to balance the utilization of physical resources

– lower layers may require lower utilizations (because delays
propagate upwards)

• caching in distributed systems to avoid access conflict and latency

– can be seen as a replication of the data

• partitioning and replication

– replication uses and overheads

94.511 High-performance Software Design Winter 2002------ B-62
Copyright C. M. Woodside 1998 - 2002

Partitioning and Replication
• To break a bottleneck, replace one server by n servers

• partitioning:

– divide up the data and/or responsibilities of the server

– each client goes to different servers, for different functions

• cost: may need a router to find the particular service needed...

• cost: may need coordination if multiple partitions must be used and the
results combined!!

– double win if a group of clients goes mostly to just one server

• (e.g. in geographical partitioning of data)

• replication:

– duplicate everything in each of the n servers

– each client goes just to the closest replica

• biggest win where access costs are much cheaper to the replica

– cost of coordination of replicas (e.g., update propagation)

32

94.511 High-performance Software Design Winter 2002------ B-63
Copyright C. M. Woodside 1998 - 2002

Partitioning and replication...

• internet scalability is almost entirely due to partitioning and
replication

• partitioned routing, through heirarchy

• replicated name service

• alternative routes (form of partitioning)

• web mirror sites (form of replication)

94.511 High-performance Software Design Winter 2002------ B-64
Copyright C. M. Woodside 1998 - 2002

Partitioning

• partition the shaded server: divide the services it offers, or the data

• add coordination layer to select one or both

• in (a) the partitions share all lower services

• in (b) the lower services are replicated or partitioned too

– e.g., separate file server for a local data base

(a) (b)

co-ordination

33

94.511 High-performance Software Design Winter 2002------ B-65
Copyright C. M. Woodside 1998 - 2002

Partitioning by entries

• the shaded task has two entries (two services)

• pull it apart by making a task for each entry

• relatively painless for the clients because the access logic is
already in place

94.511 High-performance Software Design Winter 2002------ B-66
Copyright C. M. Woodside 1998 - 2002

Partitionable tasks

• operations have to be dividable, roughly equally in workload

• OR data must be dividable, roughly equally in access frequency

in such a way that most requests are met by one partition

• natural partitions:

– most requests to just on(or two) subsets of data)

– or to one service function

• poorly partitionable

– data is shared betwen partitions (needs coordinated updates)

– natural partitions are unbalanced in workload.

34

94.511 High-performance Software Design Winter 2002------ B-67
Copyright C. M. Woodside 1998 - 2002

Uses of an ORB to glue partitions together

• the ORB essentially knows about services

• provided it can distinguish the partitions by the specification of the
service requested, the ORB can determine which partition to use

• then partitioning could be introduced and adapted over time

94.511 High-performance Software Design Winter 2002------ B-68
Copyright C. M. Woodside 1998 - 2002

Partitioning
• departmental data bases

• segmented memories

• RAID disk arrays

– a case where a request goes to all partitions in parallel

– partitions are coordinated to provide redundancy and error control

• federated multi-databases

– basis of three-tier client server systems; middle tier act as
coordinating servers as well as business applications

• makes the server smaller and maybe simpler, but makes the client
more complex (to decide which partition to use)

35

94.511 High-performance Software Design Winter 2002------ B-69
Copyright C. M. Woodside 1998 - 2002

A Partitioning Principle

• Partition a task if

– its operations and data are partitionable

– partitions can be hosted separately

– cost of accessing the separate partitions is low enough to give
increased capacity

94.511 High-performance Software Design Winter 2002------ B-70
Copyright C. M. Woodside 1998 - 2002

Partitioning and parallel access

• If data is partitionable in terms of updates but most queries access
most of it, it can still be partitioned

• … and if the queries can be launched in parallel

• the results must be combined

– this is a big topic in distributed databases (e.g. parallel join)

36

94.511 High-performance Software Design Winter 2002------ B-71
Copyright C. M. Woodside 1998 - 2002

Replication

• identical copies of the service and/or the data are kept on multiple
sites

• a client uses any copy and sees the same service

• the replicas together manage consistency

• easy for read requests

• on updates, data must be locked and updates propagated

• locking strategies: lock the primary copy, a majority, all?

• update from the clients copy or the primary copy

• performance advantage falls off fast as writes increase, because of
coordination cost.

94.511 High-performance Software Design Winter 2002------ B-72
Copyright C. M. Woodside 1998 - 2002

Replication
• easier for clients, since each replica contains all the functionality

– existence of replicas can be hidden from users

• ORB (object resource broker) implementation may have a replica of
the service on every workstation:

– application accesses it locally to find the location of a service

– ORB either forwards the request itself or returns a handle such as
a network address

– ORBs update each other

• mirrored web sites provide additional access paths to data

• update permission and propagation; overhead costs

• fault tolerance aspect (mirrored disks, redundant databases)

37

94.511 High-performance Software Design Winter 2002------ B-73
Copyright C. M. Woodside 1998 - 2002

Replication patterns

• similar to partitioning

• capacity gain

• expect reduced communication costs by using a nearby replica

• BUT gain may be nullified by

• implied extra functionality in the replicas, for coordination

• network delays in the update phase

94.511 High-performance Software Design Winter 2002------ B-74
Copyright C. M. Woodside 1998 - 2002

A replication principle

• Replicate a task if the cost of operation, including consistency
management, is low enough to give increased capacity. Consider
additional costs at all replicas, and the shift in communications costs

• natural replicas:

• all transactions are reads, so there is no consistency
management

– updates can be done in down time?

• non-conflicting writes

