
ations.
d an

te the
 opera-

ed by
 are
rovide
ests is
layered
layers.

ys-
y
rvices

s oper-
and its

ntry, for

dware
e, in
 soft-
Layered Performance Modeling and Layered
Queueing: Quick Tutorial

Murray Woodside, Carleton University
RADS Lab....http://sce.carleton.ca/rads

cmw@sce.carleton.ca
Mar 1, 2000

1.0 Basic concepts

Resources, authority, layering

Layered modeling describes a system by the sets of resources that are used by its oper
Every operation requires one or more resources, and the model defines a resource context an
architecture context for each operation. The architecture context is a software object to execu
operation, and the resource context is a set of software and hardware entities required by the
tion.

Every resource includes an aspect of an authority to proceed and use it, which is controll
a discipline and a queue (which may be explicit or implicit). In layered modeling the resources
ordered into layers (typically with user processes near the top and hardware at the bottom) to p
a structured order of requesting them. With layering a graph of all possible sequences of requ
acyclic, and deadlock among requests is impossible. For this and perhaps for other reasons,
resources are very common in practice. Layering provides an order; requests may jump over

Tasks, entries, calls, demands

LQNS (Layered Queueing Network Solver) provides a language for modeling layered s
tems. It defines a system in terms of objects calledtasks,that have resource properties. A task ma
model an object providing operations, a resource, or both together. A task offers one or more se
through methods calledentries, and these entries execute, and makecalls to other entries. The
objects in a model can be of any granularity, but usually they are large grained objects such a
ating system processes. Figure 1 shows a diagram for a software system, using UML notation,
LQN model.

The performance model describes the software by the average behaviour of the entries:

• execution demand, which is the average CPU demand for one invocation of the entry,

• demands for other resource services, stated as the average number of calls to each other e
one invocation of the entry,

• maybe a pure “wait” delay (stated as the average value for one invocation of the entry).

All operations are described by entries of “tasks”, even (for consistency) the operations of har
devices. Thus a disk operation is described by a disk operation “task” running on a disk devic
lieu of a CPU. Every task has a host device or processor, which is normally a CPU node for a
ware object, and the processor may have a speed ratio

Browser

-interact() {delay = 5 sec}

WebServer

- connect()
- display()
- reserve()
- confirm()

TicketDB

- queryTDB()
- updateTDB()

Layered system example of a web-based
ticket reservation system:

UML class diagram

UserNode

Browser

ServerNode

WebServer

TicketDB

<<LAN>>

UML deployment diagram

connect display reserve confirm

TicketDBupdateTDBqueryTDB

Browserinteract

[Z = 5 s]

WebServer UserCPU

ServerCPU

Taskentry

[Z = delay]

entry

[demand]
Processor

Call

(mean no)

Layered system example of a web-based ticket reservation
system:

Layered Queueing model

Layered queueing notation

e; this

roper-

 with
e

ource
y to

thread

that are

cess
rm this
2.0 Task or process resources, queueing, and threads

An object may exist in a single instance, such that only one request can be served at a tim
is called asingle-threaded task and is identified with atask resource, and a task queue. One task
queue is used by all requests to all the task’s entries. This is an example of a “task” with both p
ties of an object providing operations, and of a resource.

Some software objects are fully re-entrant, they can exist in any number of copies, each
its own context. These are often called multi-threaded, however because there is no limit to th
number of threads we will term theminfinite-threaded. This is an example of a “task” which models
an object providing operations, but imposes no resource constraint. Paradoxically an infinite res
is one which we do not have to consider as a resource at all, since it does not limit its authorit
proceed.

Some software objects exist as a pool of instances of a certain size. Requests are given a
as long as there is one free; beyond this, requests must queue. These will be termedmulti-threaded.
Such a task models an object providing operations, and a homogeneous set of resource units
dispatched from a single queue, like a multiserver.

Multiple instances may be provided in different ways, for instance by process forking, by
lightweight threads or kernel threads, by re-entrant procedure calls, or by carefully writing a pro
that accepts all requests, and saves the context of uncompleted requests in data tables (we te
data threading).

Multiplicity also applies to processors (single, multiple, infinite).

TicketDBupdateTDBqueryTDB

connect display reserve confirm WebServer

Queue for the
Webserver task

All requests

ServerCPU

queryTDB updateTDBTicketDB
TicketDBupdateTDBqueryTDB

A multithreaded task run-
ning on a multiple processorA task has a single queue, for messages to all

its entries

ServerCPU

ged to
object

as if

rates

How-
r
lient.

ote

r”
 calls
ing sys-
g

s asyn-

nse”
oduced
pletion
3.0 Blocking calls and other styles of interaction

Layered modeling in LQNS recognizes three kinds of interactions between entries:

• synchronous call; the sender waits (blocked) for a reply. The receiving entry must be arran
provide replies. This is the pattern of a standard remote procedure call (RPC). The sending
task resource or thread is kept busy during the wait. Software which does not wait is modeled
it has a resource that does wait, perhaps one of an infinite pool of threads.

• asynchronous call: the sender does not wait and receives no reply. The receiving entry ope
autonomously and handles the request.

• forwarding interaction: the first sender sees a synchronous interaction, and waits for a reply.
ever the receiver does not reply, but rather forwards the request to a third party, which eithe
replies, or forwards it further. This gives an asynchronous chain of operations for a waiting c

Additional styles of interaction may be constructed, including an asynchronous or delayed rem
procedure call in which the sender continues at first, and eventually waits to get a reply.

In each interaction there is a calling party, the “client” task, and a called party, the “serve
task. A deeply layered system will have middle-level tasks that act both as servers, accepting
from above, and as clients, making calls to lower-level servers. There may be tasks represent
tem users, that only originate requests. These pure client tasks act as sources of work, cyclin
between their own execution or delays, and requests into the system.

The system may also receive an arrival flow of requests from outside; these are treated a
chronous requests from the environment (there is no reply).

For modeling purposes, such a request may activate an artificial infinite threaded “respo
task, introduced into the model to capture the response delay. The response thread can be intr
so that it makes a synchronous request into the remainder of the system and waits for the com
of the activity.

display

TktDBqueryTDB

Browserinteract

[Z = 5 s]

WebSrvr

display

TktDBqueryTDB

LogSrvr log

[Z = 3 s]

WebSrvr

display

TktDBqueryTDB

Browserinteract

[Z = 5 s]

WebSvr

Browser TktDBWebSrvr WebSrvr TktDB LogSrvrBrowser WebSrvr TktDB

Think Z=5 Think Z=5
display

queryTDB

log

display

display
queryTDB

queryTDB

Nested synchronous calls:
LQN above, interaction dia-
gram below

Forwarded query, replying
directly to the client

External arrivals and an
asynchronous invocation

es its
te.

is the

not

mean

tivi-
execu-
tivities.

his
4.0 “Service time” of an entry or a task.

The service time of an entry is the time it is busy, in response to a single request. It includ
execution time and all the time it spends blocked, waiting for nested lower services to comple

Since a task may have entries with different service time, the mean service time of a task
average of the entry times (weighted by frequency).

The utilization of a single-threaded task is the fraction of time the task is busy, meaning
idle (executing or blocked).

A multi-threaded task may have several services under way at once; its utilization is the
number of busy threads.

A saturated task has all its threads busy almost all the time.

5.0 Mapping software activities into a layered model

If we begin from a view of the software as a distributed program executing a series of ac
ties, we can describe it by one of many flavours of time-flow diagrams, such as task graphs, or
tion graphs (Smith). Essentially such a graph defines the precedence relations between the ac
We shall use the notation

• activity1 -> activity2..... activity 1 precedes activity 2

• activity1 -> activity2 & activity3.....activity 1 precedes activities 2 and 3 (list of any length) (t
is an AND-fork)

• activity1 & activity2 -> activity3..... (AND-join) (also may be a list of any length)

display

TktDBqueryTDB

Browserinteract

[Z = 5 s]

WebSrvr

Browser WebSrvr

Think
display

queryTDB

(1)

(2)
queryTDB

Z=5

TktDB

Service
time of
the entry
display of
WebSrvr

The service time of an entry includes any nested service times while it is blocked,
waiting for a reply

rrent
tion in

es,
se the

that
onous
he

fin-
The
d phase.

rmed
the cli-
ther
wered

f the
•

•

An activity can in principle be a large comp[lex operation distributed across several concu
tasks, but for our purposes the description must be refined until each activity represents execu
a single operating system task, plus calls to other tasks.

It is convenient to combine the activity graph for flow of major activities with calls to servic
and this was also reccommended by Smith in her execution graphs. For this purpose we may u
graphical notation shown in Figure XXX.

A call to a service maps into a call to an entry of a task. A transition between two activities
are in different tasks also maps into an intertask interaction, which can be recognized as synchr
if the flow returns to the same entry, asynchronous if it does not return or if it is also a fork in t
flow, and forwarding if it returns by way of other tasks.

6.0 Service with a “Second Phase”

A wide variety of software services give a reply to the requester before they are entirely
ished, in order to release the requester from the synchronous call delay as soon as possible.
remaining operations are done under sole control of the server task, and they form the secon

An example is seen in a write operation to the Linux NFS file server; the write operation
returns to the requester once the file is buffered in the server, and the actual write to disk is perfo
later, under sole congtrol of the server. Doing the writes in first phase would be safer, because
ent would be told if the write failed, and this is how the NFS protocol was originally defined. O
NFS implementations allow second-phase or delayed writes only if the server has a battery-po
buffer to provide security of the data, in case of a power failure.

The workload parameters originally described for an entry are given for all the phases o
entry. Each phase has

display

TktDBqueryTDB
 [0.3, 0.5]

WebSrvr WebSrvr

display

queryTDB

(1)

TktDB

First phase,

Second phase
demand 0.5 s

demand 0.3 s

A second phase of service lets the client of the interaction proceed

es

se
amount
d server

dover
at the
nnot

ach
en
• mean total execution demand

• wait delay (also called athink time) (optional... it can be used to model any pure delay that do
not occupy the processor)

• mean requests to each other entry

Additional optional phase parameters, not discussed before, are:

• the coefficient of variation of the execution demand requests

• a binary parameter to identifystochastic phases in which the number of nested requests is ran-
dom, with a geometric distribution and the stated mean, fromdeterministic phases in which the
number is exactly the stated number (which must be an integer).

Second phases improve performance; they give less delay to the client, and they increa
capacity because there can be some parallel operation between the client and the server. The
of gain depends on circumstances (real parallelism needs separate processors, and a saturate
cannot increase its capacity).

The extreme case of all execution being in second phase is a kind of acknowledged han
of data from the client to the server. Thus it is similar to an asynchronous message, except th
sender waits for the acknowledgement. One important advantage of this is that the sender ca
over-run the receiver; the sender is throttled by the waiting for acknowledgements.

figure of results

A finite buffer space, which blocks its senders when it is full, can be modeled by a multi-
threaded buffer task with second-phase interactions going into and coming out of the buffer. E
buffer space is modeled by a “thread” which immediately replies (releasing the sender) and th
sends to the receiver (and waits until the receiver replies, to acknowledge receipt).

store

Receiver receive
 [0, work]

Sendersender

Buffer

Sender Buffer

store

receive

Receiver

Receiver
is busy

(0,1)

(2,0)

Modeling a finite buffer with blocking by a pool of B threads.
The buffer is full at the time of the second store.

B
threads

 the
), the

se 2 it

any

a work-
t are
cribed

activi-
ever a

r by
etes
7.0 Pipelines, and a third phase

In modeling software pipelines with acknowledged handovers, it is essential to separate
three operations of one task modeling a single pipeline stage... the input handshake (phase 1
pipeline operation (phase 2), and the output handshake (phase 3).

The reason for separating them is technical; if the output handshake is averaged into pha
will occur, on average, in the middle of the phase, and this will distort the pipeline delay!

This points out the need for a more general view of the structure of a “service”.

8.0 Activity sequences in an entry or task

The idea of phase can be made more powerful if we rename them as “activities” and allow
number of activities, with any kind of precedence relationship, including forking and joining of
flows. The definition has two parts, a precedence part which defines a precedence graph, and
load part. In the precedence graph, activities which trigger replies or forwarding of the reques
identified. In the workload part, each activity has the workload parameters of a phase, as des
above.

Each task has one precedence graph which covers all those entries which are defined by
ties. Most often this graph is actually just a group of separate graphs, one for each entry, how
single graph could arise from two entries, and join their two flows together.

An entry can be definedeither by phase parameters, as described in the earlier sections, o
identifiying the first activity in the entry. In the latter case the activity sequence definition compl
the definition of the entry.

	1.0 Basic concepts
	2.0 Task or process resources, queueing, and threads
	3.0 Blocking calls and other styles of interaction
	4.0 “Service time” of an entry or a task.
	5.0 Mapping software activities into a layered model
	6.0 Service with a “Second Phase”
	7.0 Pipelines, and a third phase
	8.0 Activity sequences in an entry or task

