
 the
pro-
tage
er cost
n
ers

f dis-
 simi-
er to

e
rd
on. It
th no
ssis-
DRAFT DRAFT DRAFT DRAFT
Performance-Oriented Patterns in

Software Design (A multi-level service
approach)

C.M. Woodside

Dept. of Systems and Computer engineering

Carleton University, Ottawa K1S 5B6

copyright 1996, 1997 C.M. Woodside

October 18, 2001, draft produced for classroom use

Chapter 1. Software Design and Performance (D)

1.1. Performance is Important and Difficult (D.1)

Adequate performance, in the sense of delay and throughput, is essential to
useful functioning of most software products. However it is often the last aspect of a
gram to be analyzed, only after integration and during final testing. At such a late s
the necessary changes may be difficult and expensive. Projects are delayed, go ov
targets, or fail altogether because of performance problems. This problem has bee
described by Smith as the “fix-it-later” approach, and she believes many programm
are averse to even considering performance in their designs.

The situation is made worse by the rush to market, and by the greater use o
tributed systems such as client-server systems, communicating over the Internet or
lar internal networks. Distribution and concurrency make these systems much hard
understand.

If one wants to estimate performance earlier, for example when designing th
architecture of software, there is a frustrating lack of machinery to help. The standa
approaches to design have limited places for performance requirements or informati
isn’t clear what information is needed, and it is easy to get into a maze of detail, wi
guidance as to what is important. Design notations and CASE tools give relatively a
6

own
rrent

re sys-
d

om-
reat
noth-

work
ith
ive

 and
n are
ol is a
r sys-
d the
oces-
 num-
puter
ral
ware),
us is

 ele-
tities
are

 are
ferent

DE.
oints-

 a
the
ivity
ule

The
bject,
esses
ecute
two
tance. In sequential programming it is not so bad, for experience and a few well-kn
guidelines are often enough to find the good design options. In network-based concu
systems, and in parallel programming, there have been many disappointments whe
tems just do not deliver the expected performance. There are too many factors, an
designer intuition cannot pull them all together without help.

The known approach to performance is through measurement on a nearly c
plete product. The techniques are sophisticated and difficult to apply correctly, but g
detail can be obtained with adequate instrumentation. Measurement is essential and
ing written here is intended to downplay it, but earlier analysis is essential and this
attacks it via models. These models are constructed from the designs, combined w
experience, and are used to calculate estimates to guide the early design, and to g
insight into what kinds of situations are likely to arise.

This report assembles some thinking tools suitable for analyzing concurrent
distributed systems, using models. Using the tools, some recurring patterns of desig
identified and their performance issues are analyzed in a general way. The main to
“layered model” notation that can describe the most important features of compute
tems, from the viewpoint of performance. The features include both the hardware an
software design, and the software may include many concurrent processes, and pr
sors and paths executing in parallel.The notation is used to describe and analyze a
ber of “performance-oriented patterns” or POPs, which seem to occur often in com
systems. These patterns occur at different levels of detail, from high-level architectu
relationships between interacting processes (or between the processes and the hard
down to detailed sequences of actions within a single process. However the main foc
at the level of concurrency design and architecture.

1.2. Patterns (D.2)

Performance-oriented patterns (POPs) are architectural or structural design
ments which often recur in software designs. They define relationships between en
and activities. They have something in common with software design patterns, which
partial solutions to certain design problems in a form that can be reused, but POPs
more generic since they do not address function. One POP can represent many dif
design patterns.

Examples of three different kinds of POP are shown in Figures DC, DD and
These are very simple recognizable structural patterns in three different software p
of-view.

Figure DC is instantly recognizable as showing a sequence of activities with
parallel operation, with forking and joining of the flow. The boxes are activities and
arrows represent predecessor relationships. We will term this kind of model an “act
graph”, but it is also known as a “task graph” in the literature. Figure DD shows a mod
interface, just a calling interface between two procedures in a sequential program.
boxes in this figure represent procedures, or some other kind of structural module (o
Ada package). Figure DE shows a similar call but now occurring between two proc
with a client-server relationship. The parallelograms represent parallel tasks that ex
concurrent and the “call” is a remote procedure call. The different processors for the
7

ng
that
ance
tasks are also shown as ellipses. These are very small patterns that are only buildi
blocks in creating an architecture; our goal is to create a repertoire of useful patterns
wen can recognize in any design, and that can guide our understanding of its perform
problems.

Activity A

B1

B2

C D

E

Figure 1.1. An Activity Diagram with a Fork-Join Pattern
(Figure DC)

B

C

Figure 1.2. A Module Pattern, where one Module Calls Another (Figure DD)

A

yA yB
8

bili-
hs? If
t

ead to
over a

tion
arame-
ting
on

cat-
“call”
ere
over-

rpose
ure.
erns

from
In the activity-graph view expressed by Figure DC we can analyze the possi
ties and the effectiveness of parallel execution. How long is each of the three subpat
two are quite short compared to the third, parallelism offers little improvement. Wha
program parameters affect the subpath lengths? How much of subpath time is overh
set up the parallel execution on a separate processor, perhaps with communication
network?

In the view expressed in Figure DD we can examine the effect of modulariza
on performance. Crossing a module boundary introduces some overhead to pass p
ters, which may be greater than the “useful work” in a very small procedure. Aggrega
or “inlining” module B into module A may introduce savings, whose value depends
the frequency of calling B.

More significant issues become visible in concurrent software with communi
ing processes as shown in Figure DE. For one thing the overhead of an interprocess
(which may be a remote procedure call or RPC) is commonly much higher. Thus th
may be an advantage in combining many requests into one list of requests to reduce
head (batching of requests).

Quite complex patterns occur between processes, and it is the particular pu
of this report to examine this class of patterns, at the level of concurrency architect
However in doing so we will sometimes want to use activity patterns and module patt
as well.

1.3. Using Patterns to Improve a Design (D.3)

There are two ways that patterns can help in improving the performance of a
design. First, there are some standardpattern substitutions that can be used, such as

• inlining a procedure,

• parallelizing a section of code

y

AA

BB

PA

PB

Figure 1.3. A Client-Server Pattern, where one Concurrent Task Requests Service
Another (Figure DE)
9

les for
an

on of

ould
elay

e
varia-
from
tever
t it is
t,

ped
ow
tion (a
Stor-
on a

elf is
ingle
• introducing an optimistic algorithm

which may reduce the overall work, or cause a response to complete earlier.

Second, when a pattern is detected, one could take advantage of standard ru
optimizing the pattern by modifying the software within it (if such rules existed). We c
call thisoptimization within the pattern. One purpose of this report is to find some of
these rules, by examining some of the patterns from this point of view and trying to
understand how they can be improved. Given a nudge from such a generic indicati
the improvement, it is still up to the designer to find a way to achieve the indicated
change. For example to maximize the capacity of a pipeline the balance of effort sh
be shifted towards the earlier stages, if there is significant variance in the execution d
of the stages. How to achieve this is up to the designer.

Even these few examples show that to exploit patterns one has to have som
parameters (such as frequencies of calls) and some performance results (such as
tions in delays). The numbers could come from measurements, from simulations, or
an analytic model. The report uses a notational framework for the parameters, wha
their source. There may appear to be a bias towards analytic layered modelling, bu
not basic to the ideas. Analytic models have been used to study issues in the repor
because they make a self-contained story, but the ideas are general.

1.4. An Office Workflow System (D.4)

A basic but rather typical example will motivate the analysis approach develo
later. It is a small office system for storing and processing documents, with a workfl
manager that sequences and tracks the operations. Each user has a client worksta
desktop PC) running the office applications for entering and processing documents.
age and workflow processing are managed by a single Workflow server task running
server workstation and accessed over a local area networks (LAN). The storage its
on a single disk attached to the server. For simplicity we consider the server to be a s
task, and we will ignore the LAN delay in considering the system performance.

Clients

Workflow Server

PCs

CPU Disk

Figure 1.4. Office Workflow System (Figure DG)

Task
10

ill
ms

d to

uch
nd

 R-
lient.
of the

iliza-

gram
the
te

nt),

-

ow-

or-
it is

ne
leted.)

d the
is
se
of user

lim-

ser-
This vertical system architecture is a simple case of a common pattern we w
later call a “tower”, and all towers share a set of performance characteristics, proble
and cures. We will study the pattern in order to be ready for it in any form it takes, an
find its limits.

Some design issues for the software that may affect performance are, how m
of the work to do on the clients (the question of “thick” clients versus “thin” clients) a
whether the server design must be multi-threaded.

The performance measure we most want to know is the mean response time
Client for those worksteps that access the server, for different numbers of users N-C
Other measures that may help us understand the performance are the throughput
server for different numbers of the users, and the utilizations of the server CPU, the
Workflow task and the disk (that is, the fraction of time each one is busy). These ut
tions are named U-Server, U-Wflow, and U-Disk.

The software design influences the performance by the way it causes the pro
to execute operations that take time, and sequences of operations. This is termed
“workload” of the program, and in this case the workload has the following aggrega
workload parameters, with values we shall suppose we know:

• the client CPU time per user interaction (CPU-Client),

• the time the users think between entering commands in the client software (Z-Clie

• the mean number of requests to the Workflow task, per user interaction (Y-Client
Wflow),

• the CPU demand of the Workflow task, per request to it (CPU-Wflow),

• the mean number of disk operations by the Workflow task, per request to it (Y-Wfl
Disk),

• the mean disk operation time (S-Disk).

There are four resources which may bottleneck this system and limit its perf
mance: the disk, the server CPU, the server memory, and the Workflow task itself, if
single-threaded. (A single-threaded task in this work is one which can only serve o
request at a time, and cannot serve the next request until the previous one is comp
Consider the workflow task first:

Bottleneck at the Workflow Task (Single-threaded): if this is the only task run-
ning on the Server, then its time to run for one request is the sum of the CPU time an
disk time. Call this sum S-Wflow, for the service time of the Workflow task. When it
computing, the disk is idle and when it is doing I/O the CPU is idle, so neither of the
can be saturated. With enough users however the task can be saturated, so a queue
requests builds up. In this condition the throughput f-Wflow of the Workflow task is
ited to

f-Wflow = 1 / S-Wflow = 1 / (CPU-Wflow + Y-Wflow-Disk * S-Disk)

and the throughput of the clients is limited (because they have to wait for Workflow
vice) to a rate determined by the number of requests it makes to the server:
11

n

are

 be

 by
r by

ga-

flow

s addi-
dard

sk.
by
d be
ad,
 gen-

o,
se
r

ay
are
f-Client = f-Wflow / Y-Client-Wflow

We will see that the mean response time R-Client then is given by a simple equatio

R-Client = (N-Client / f-Client) - (Z-Client + CPU-Client)

which can be re-arranged into the form, for large (many client users) N-Client

R-Client = N-Client * Y-Client-Wflow * (CPU-Wflow + Y-Wflow-Disk * S-Disk)
- (Z-Client + CPU-Client)

Figure DM plots the equations for R-Client and f-Client. These curves are a
familiar feature of performance analysis. From the equations one can see the softw
design affects this response time through three of the parameters:

• CPU-Wflow, the CPU demand of one response of the Workflow task, which could
reduced by tuning the code;

• Y-Client-Wflow, the frequency of demands to the Server, which might be reduced
reorganizing the interface between the user applications and the Workflow task o
migrating more functionality to the Clients;

• Y-Wflow-Disk, the frequency of disk operations, which might be reduced by re-or
nizing the data storage on disk.

Software design also has an effect via the single threaded design of the Work
task. The task is always busy, either using the CPU or waiting for the Disk. Neither
device is saturated. However a multithreaded design is a lot more complex, and ha
tional CPU overhead costs. In turn this complexity is less serious if one uses a stan
multithreaded design pattern.

Balanced Execution:If CPU-Wflow and S-Disk were about equal, then the
throughput limit could in principle be doubled by using two threads in the Workflow ta
The response time R-Client would be reduced by at least a factor of 2, and maybe
quite a bit more, depending on the other parameters. (The first term in R-Client woul
cut in half, before subtracting the final term.) If there were a lot of inter-thread overhe
this would increase CPU-Wflow and reduce the potential gains somewhat, but as a
eral rule Tower patterns demand multi-threading for best performance.

To get the same effect by tuning the CPU time, it would have to be cut to zer
which is clearly impossible. A 10% reduction in CPU-Wflow would give a 5% increa
in the saturation throughput, and a reduction in R-Client that would depend on othe
parameters as well, but would be at least 5%.

Bottleneck at the Disk: Supposing that there are lots of threads, a bottleneck m
appear at the disk. The symptom would be that U-Disk is 1.0 and other utilizations
lower. Disk saturation occurs at the disk throughput value

f-Disk = 1/S-Disk

which corresponds to a Client throughput of

f-Client = 1/(Y-Client-Wflow * Y-Wflow-Disk * S-Disk)
12

nse

 is
t.
be a
s,

ata
ets a
ause
hrash-
hich

of a
 What

e,
How
re
 mod-
ter C

t is all

ign
 is
n

ting

s
cribe
tions.
Using the analysis derived in the next chapter we will find that this gives a client respo
time of

R-Client = (N-Client * Y-Client-Wflow * Y-Wflow-Disk * S-Disk) - (Z-Client +
CPU-Client)

The notable difference from the last situation is that the Client response time
governed entirely by the bottleneck at the disk, in the limit for large enough N-Clien
The CPU demand does not have any effect and tuning the code for CPU time would
waste of effort. What will pay off in this situation is reducing the requests to the disk
somehow.

Bottleneck at the CPU and Memory: A bottleneck at the CPU is similar to the
Disk, except that now the CPU time is the dominant factor. This is the case with the
greatest payoff for code tuning.

A memory bottleneck can arise because the program code is too large, the d
space in main memory is too large, or there are too many threads (each of which g
copy of the thread data structures). The effect in a system with virtual memory is to c
excessive loading and unloading of memory to the swap space on disk, known as t
ing. Thus this looks like a bottleneck at the disk, and instrumentation must be used w
identifies the paging operation traffic separately, to identify this.

A final possibility in a multi-threaded system is a bottleneck due to heavy use
control such as a critical section that protects a shared global data structure or file.
this does is restrict the effective number of threads.

This simple system with so many possibilities should make a convincing cas
that the only way to make viable predictions about performance is through a model.
to do this, is the subject of the chapters to come. Chapter H will explain the hardwa
contention and bottleneck calculations. Chapter S describes how to model a single
ule or task from the ground up, and introduces patterns in sequential software. Chap
goes into combinations of concurrent tasks, and patterns to enhance concurrency. I
put together for the Tower pattern in Chapter P.

1.5. How to Use this Report (D.5)

The material in this report is intended to be used in making architectural des
decisions at any point in time, during early systems analysis when the entire system
only on paper, during high-level design, for diagnosis of performance problems whe
significant improvements are being sought, and when planning additions to an exis
system.

......

1.6. Structure of the Report

The report starts from two points, the nature of simple performance problem
caused by bottlenecks (which motivates a good deal of our thinking), and how to des
a software system in terms of activities, modules and processes with resource limita
Chapter 2 describes performance problems from the simpler viewpoint of programs
13

ms of
le
eded
aths]:
ract-
 with
me-
q),

uting
esses
ads

sim-
io is

ze a
s.
tterns

 date;
er
s

ingle
-
doubt-
ccur

s is

pat-
te, as
ed or
which use one resource at a time, typically some device, and the effect and sympto
a bottleneck at one of the devices. Chapter 3 describes the execution within a sing
sequential process in two complementary and connected ways, both of which are ne
to understand performance within design (as discussed for instance in [maps and p
a path or scenario view called activity graphs and a structural or design view of inte
ing sequential modules. Patterns in these two viewpoints are also discussed, along
optimizations which are well-known folklore to many developers. The conceptual fra
work of Chapter 3 is called “Multilayered Service Systems (Sequential)” or MSS(Se
in which the layers are essentially layers of procedure calls.

Chapter 4 extends this conceptual framework to concurrent processes exec
remote procedure calls, so concurrency and multiple resources for concurrent proc
is introduced into the mix. Multi-threaded processes with homogeneous server thre
are included in this discussion. This framework is designated MSS(Res), and is rich
enough to address many distributed systems while retaining much of the flavour and
plicity of the sequential system analysis. However parallelism within a single scenar
limited to something called a “second phase of service” in Section 4.X.

Chapter 5 uses the notations of these earlier chapters to describe and analy
variety of architectural patterns that contain concurrency and multi-threaded server
These are patterns at the level of tasks and their interactions. For some of these pa
some preliminary versions of optimization rules are stated, based on experience to
this aspect of the work is somewhat preliminary, and is included to encourage furth
similar work. “Completeness” of this kind of result is in any case illusory, as problem
and their solutions will progress over time.

 Chapter 6 extends the discussion to systems with parallelism internal to a s
scenario, described by parallel paths with forking and joining (which could be imple
mented by heterogeneous threads forked within the process). These systems are un
edly important in the future of design. The main examples in present-day systems o
in parallel transaction processing and in parallel scientific computing.

Chapter 7 focuses on finer-grained patterns within a concurrent system. Thi
actually more difficult in some ways than the task-level patterns considered before,
because the pattern may contain fragments of several tasks. In particular different
terns for inter-task communications are considered here. This work is also incomple
it begins to address the host of fine-grained design patterns that have been describ
proposed in recent years.
14

ined
st be
mines
ottle-

ntirely
ts of

 bot-
 one
a
n exe-
CPU

ing.
t-
have

ource

s, and

is of
Performance-Oriented Patterns in Software
Design (A multi-level service approach)

C.M. Woodside

Dept. of Systems and Computer engineering

Carleton University, Ottawa K1S 5B6

copyright 1996, 1997 C.M. Woodside

(Draft version produced for classroom use, September 1997)

October 18, 2001

Chapter 2. Software, Hardware, and Bottlenecks (H)

The workflow example in Chapter D showed how performance of a program is determ
by the workload it generates for the parts of the computer. It is the amount of work that mu
done by each device (CPU, disk drives, CD-ROMs, printers, and network devices) that deter
the responsiveness of the program. The most heavily loaded device may act as a system b
neck, and it turns out that in many cases the program’s performance is determined almost e
by its bottleneck. The bottleneck is important because it points to improvements, in the par
the software that load up the bottleneck device.

Linear Software

This chapter lays down basic performance definitions and shows how to determine a
tleneck and its effect on performance. It is restricted to sequential programs which execute
operation at a time, which we will termlinear software. Linear software executes one activity at
time, using one resource at a time. There is no program parallelism in linear software; whe
cuting an operation on a peripheral device or a remote server, it does not execute on its own
as well. There are no locks or mutexes or other resources that must be “held” while execut
Linear software is a starting point for our study of distributed software intended to run on ne
works, which is often “non-linear” in the sense that it may use many devices at once and may
different kinds of logical resources as well as hardware resources.

A program puts a certain amount of load on each device in the system, called the res
demand for the device. These demands are the central factor in bottleneck analysis.

This chapter shows how linear software is described in terms of its resource demand
how the demand numbers can be obtained. It summarizes the analysis of bottlenecks byasymp-
totic bounds, which are valuable for a quick approximate understanding of the relationship
between software, hardware and performance, and it briefly explains more detailed analys
15

s.
ch-

pro-
hen a
is
e next
 of

ith
ssing
or if a
n there
:

he
device contention effects by queueing models, which are extensively covered in other work
Finally it returns to the software design problem and introduces the design improvement te
niques which are dealt with in later chapters.

2.1. Performance Terminology: Directory Server Example

Response to a System Request

Performance is always defined in relation to the completion of some unit of work by a
gram or a group of programs, and a single completion is called a response. The time from w
request made to perform the work (by clicking on a button, or entering a command) until it
completed is the response time, and the time from completing one request to completing th
is the response cycle time. The rate of completing responses is the throughput of that class
response.

One type of request will be called aclass of request, and often the user is associated w
the class of request he or she is making (so there might be e-mail class users, word-proce
users, and compiling users, for instance). If there is just one type of request in the program,
set of request types or even a set of programs are being lumped together in the analysis, the
is just one class of request and of user. We can define the average performance measures

• meansystem response timeR(c) sec. for classc,

• mean request-creation delay, or “think time”Z(c)sec., between the end of one request and t
beginning of the next.

• meansystem response cycle timeC(c) sec. for classc; C(c) = Z(c) + R(c).

• throughput off(c) requests/sec., on average, for classc

Figure 2.5. Performance Terminology at the User/System Interface (Name Server).
(Figure HB)

1

R(c) sec.
(mean response
time)

Directory Service
Request (Classc)

ratef(c)/sec.

Z(c) sec.
(mean think
time)

Response

Users Classc
 N(c)active
 users

Directory Server
16

ts
ter, and
at cor-
re are
twork

nters,

 by a
puter
a track
d by a

ram, a

s
, and
e
ition,
Figure HB shows an example representing a directory server which receives reques
across a network, from users. Each request gives a logical name, such as the name of a prin
the server retrieves from storage (in main memory or on disk) a physical network address th
responds to it, to which the user can send print requests directly. In the telephone system the
name servers like this that translate 1-800 numbers into customer phone numbers; in the Ne
File System (NFS) there is a yellow-pages server to provide addresses for services like pri
and in the internet there are many name servers to determine the routing of messages.

Figure HC shows the system components as abstract stations. The user is replaced
module which may represent a person making requests, or a program making them. The com
system is opened up to show the devices, and the response is traced through the system by
showing the sequence of operations in the CPU and the disk. The program code is indicate
parallelogram inside the symbol for the CPU. We can see that in one execution of the prog
number ofYDisk(c) requests are made to the Disk, and thedisk response time RDisk(c) is defined as
the time from pointb to c.

RDisk(c) = mean response time to one request to devicei, within a class-c operation.

In general for devicei we define

Yi(c) = mean number of requests to devicei, per response of classc

The start and end of a response must be exactly defined. In Figure HC a response i
defined to begin at pointa when the request reaches the name server node from the network
to end at pointd when the reply message is sent. This is a response from the viewpoint of th
designer of the name server, but a user sitting at a remote node would see a different defin

Figure 2.6. Stations in an Abstract Performance Model (Name Server). (Figure
HC)

“User”
Station

a

d

Directory Server

YCPU(c) operations

CPU Service Program
Center

c
b

Disk
Service
Center

YDisk(c) operations

N(c) users
Z(c) mean
 think time

f(c)/sec

ratefi(c)

RDisk(c)
sec mean
response
time
17

t
tes the

 the
nd the

ole.
d write
ration

ripts,
e
an
beginning when he/she originates the request and ending when the result is returned. In ye
another case, it might not be a human user but a program at the remote node which origina
request and receives the reply.

If we compare this model to the Workflow Server example in Figure DG we see that
Users correspond to the Clients, the Workflow Server corresponds to the Directory Server, a
CPU and Disk have the same roles as in the earlier examples.

One Device: Response and Demand

The view of performance at a single device is much like that for the program as a wh
For example the disk device shown in more detail in Figure HD serves requests to read an
blocks, and it has a response time of its own. We will assume that a device has only one ope

(this can easily be relaxed). The properties of a service by a device will be identified by subsc
so devicei has a throughputfi, a response timeRi, etc. In Figure HC or HD the disk response tim
is the time to traverse from pointb to pointc. Also a device has a characteristic time to execute
operation, and a utilization level.

• fi(c) = rate of requests to devicei by class-c jobs

• Oi = mean operation time for an operation by devicei, in sec., in a class-c operation

• Ui(c) = mean utilization of devicei by class-c jobs,Ui(c) = fi(c)Oi(c). This is the mean
fraction of time the device is busy.

• Ui = mean total utilization of devicei. Ui = fi Oi, a fractionUi = ΣcUi(c)

• (Ui 1.0, if devicei is a single device;Ui mi if it includesmi identical subdevices, for
example a multiprocessor withmi CPUs.)

• ni(c) = mean number of class-c jobs using and waiting for devicei.

Figure 2.7. In a Model, a Device is a Queue and a Server. (Figure
HD)

fDisk(c) requests/sec.

queue of waiting

Server with
ODisk sec
operation time

RDisk(c) sec
total
(response time)

c b

from class-c operations

requests (mean
“Disk” Service
Center)

≤ ≤
18

ed
r

one
illi-

er of
How-

tion
to-run
llions

evices

e per

tribu-
e, it
ath of

r a
ar soft-
Thedemandby workload classc on one device is the average total execution time need
to complete a class-c system response. UsingYi(c) andOi(c), the average resource demands pe
response are:

• average service demandDi(c) = Yi(c) Oi(c) sec. per response of classc.

The resource demands describe the workload of classc on the hardware, and from them a
great deal can be determined aboutR(c), C(c) andUi(c) for each device.

To illustrate the calculation of demands, consider the directory server example with
class (c=1), with aCPUof operation time 100 nanoseconds and a disk of operation time 18 m
seconds.

OCPU(1) = 10-7 sec;ODisk = 0.018 sec

Also suppose the program is such that it demands half a million operations on theCPU
and an average of 1.7 operations by the disk. Then

YCPU(1) = 500,000;YDisk = 1.7 requests/response.

DCPU(1) = 0.05 sec/response;DDisk = 0.0306 sec/response.

This is a very aggregated, abstract workload description It does not describe the ord
operations, or the probability of a single response requiring 1, 2 or even 5 disk operations.
ever (as we will see) it is enough tobound the system capacity and response time, for a system
with linear software.

The values for CPU operations are often numerically awkward, with very small opera
times and very large numbers of operations. One visit by a job to the CPU queue (the ready-
queue) leads to many operations before the job give up the CPU. Sometimes we will use mi
of instructions for a CPU workload.

For the directory server example there is just one class of response (class 1). The d

are a CPU and a DISK. The CPU has an operation time of (say) 10-7 sec., and the disk has an
operation time of 0.18 sec. Suppose there is an average of 1.7 disk operations, the CPU tim
response is 500,000 operations. Then

• YCPU(1) = 500,000,DCPU(1) = 0.05 sec.

• YDisk(1) = 1.7, DDisk(1) = 0.0306 sec.

This does not state in what order the operations are carried out, or the probability dis
tion of either the number of operations or the time per operation. However for each respons
states that on average, a certain number of seconds of work must be done while tracing the p
the response. This is just the operation time of the devices and does not include waiting fo
device to become available, so the time to actually do the operation may be greater. In line
ware this work must be done in some sequential order.

Users
19

s
mean

 a

 “chain

e,

 time,
o to
The users generating class-c responses are said to be themselves in classc, and there are
N(c) of them. Often we knowN(c) and it also is a parameter of the workload for the class. Thi
makesc a “closed” class in the analysis. For a closed class it is important that we know the
request-creation delay or “think time”Z(c), which is the delay of a “User” station in the model.
We will use the terms:

• populationN(c) of a closed classc,

• mean numberni(c) of class-c requests are using and waiting for devicei

When there are several classes there may be one total populationN which is creating
requests of several classes, in certain given proportions; then the group of classes is called
“chain” (we will not have to go into details, but this has the effect of averaging the classes
together, and considering the chain itself as a class). Thus sometimes a model may have a
c” in place of a “classc”.

Sometimes we only know thatN(c) is very large, and we prefer to ignore its actual valu
and instead assume that we know the rate of creation of requests by the users,f(c). Such a class is
called an “open” class, since we are only sure of the requests actually in the system at any
and they arrive and leave. In theory the mean number of requests being processed could g
infinity! We have, for open systems:

Closed
Class 1
N(1) users

Closed
Chain 2 with
Class2a, 2b

Open Class
 3

“outside” with
an infinite
population of
users

Request-
Creation
DelayZ(1)

Z(2)

f(3)

Computer System

R(1)

R(2b) R(2a)

R(3)

Figure 2.8. Users, Requests, and Open and Closed Classes. (Figure HE)

f(1)

f(2)
20

e mea-

ts for

e”
il-

.99”,

ce. In
ard mes-
ed to

f
m. The

any
tely

ich

rom
rating
t be
• mean populationn(c) of class-c requests in the system.

• mean numberni(c) of class-c requests are using and waiting for devicei.

Response Measures

All the above deals with average values of performance measures,R(c), Ri(c), ni(c). They
are the simplest figures to use, but it is sometimes necessary to look at the variance of som
sures as well, or the distribution. For example one may need to know the percentiles of the
response time. A telephone switch must give dial tone within half a second, in 99% of reques
connection, for instance.

Consider the response time, and let stand for the actual random “response tim
quantity that has average valueR(c). The dial tone requirement could be written as “the probab

ity that sec for a “request-for-connection” class system operation must be at least 0
or:

Prob{ (request-for-connection) < 0.5 sec} > 0.99

A percentile specification onR can be abbreviated asR95 or R99, or more generally asRα, which
is a value ofR such that

Prob{ <Rα} > α/100

Then for dial tone we haveR99 = 0.5 sec. Figure HF illustrates andR95.

For queue lengths we may also have restrictions, due for instance to finite storage spa
message-based systems, when message buffers overflow it is sometimes necessary to disc
sages, and the subsequent recovery operations cause loss of performance. So we may ne
know the probability that the queue lengths exceed a limit.

Unfortunately the analysis of distributions is much more complex than the analysis o
averages. It almost always requires a detailed simulation or measurement study of the syste
simple performance bounds analysis described below only applies to averages. However, m
response and queue distributions in computer and communications systems are approxima
exponential. Then the percentiles are roughly proportional to the mean, with the form
Rx = ln(1-x)R, which gives

Using this fact an analysis of the mean gives at least an indication of percentile values, wh
should be confirmed by more detailed analysis.

2.2. Obtaining Demand Parameters

Demand values for a program which is implemented and running may be obtained f
measurements made by the operating system, or by instrumenting the software. Many ope
systems record the CPU consumption of each process during a certain interval which migh

R̃ c()

R̃ 0.5<

R̃

R̃

R̃

R95 3R≅

R99 4.6R≅
21

 the
y wish
e cor-
divide

enta-
le

d in

predic-

, faster
esults

ut to

or mea-
several minutes. If the number of responses for a certain class of users is also known over
same interval, then the CPU demand per response is directly obtainable. The modeller ma
to group into a single class a number of users running different programs, in which case th
rect procedure is to add up the CPU consumption for the different programs and users, and
by the total responses. Care must be taken about responses at the edges of the interval.

Similarly the operating system records the number of I/Os, although special instrum
tion may be needed to record which disk they go to. Indeed these days they often go to a fi
server, which would have to be instrumented also.

A more extensive discussion of this question is found in [jain92], chapters 7 and 8, an
[menasce94], chapter 9.

Notice that demand measurement needed for bottleneck analysis and performance
tions is different from measuring performance values themselves, such asRandf. With measured
demands and a model, performance values can be extrapolated for larger numbers of users
devices or more devices and so on, while for an experimental performance evaluation the r
apply only to the measured configuration.

There are many measurement tools which are intended not to measure demands, b
measure performance values themselves. The approach taken here is intended tosupplementthese
measurements by starting early and by using models. It is not intended as a replacement f
surement.

Figure 2.9. Distributions and Percentiles of Response Times.
(Figure HF)

Density function ofR

R
(mean)

R95

R
~

Response
time

5% of the area

~

under the curve
22

re rel-

f
ance,
tion,
tems,
ling, so

 a limit

annot
ny

e

it

e. That
Some metrics are easier to measure than others. Utilizations and throughput counts a
atively easy and are measured by standard operating system tools such assar, iostatand in UNIX.

2.3. Basic Performance Bounds for Linear Software

Given the very simple information defining the resource demands and the number o
users, one can obtain useful quick information about the potential of the system for perform
from bounds. The Workflow Server example in Section 1.4 described bounds due to satura
and now this section derives their equations and gives typical diagrams for single-class sys
and for two classes. These bounds are described in every reference on performance model
only a brief summary will be given here. The bounds are based on two observations:

• no device can be more than 100% utilized: this creates a limit on throughput,

• no response time can be less than the amount of work that must be done: this creates
on response time.

Asymptotic bounds are optimistic values of the mean throughput and response times that c
be actually achieved except in asymptotically large or small systems. It is amazing how ma
questions can be answered by asymptotic bound calculations.

2.3.1. Saturation Bounds

The throughput of a response cannot be increased beyond a rate that saturates som
device, i.e. makes its utilization 100%. This means, if only one classc uses the system, and all
devices are single servers, the system throughput is bounded by

 for each devicei (all single servers)

which limits the throughput to the range

where .

A closed system with one class is self-limiting atfmaxsince any attempt to overload it only
leads to longer queues and delays at the bottleneck device (the one with largestDi). An open sys-
tem will “blow up” for a rate of arrivals larger thanfmax, and in practice such systems have to lim
their arrivals by rejecting some of them.

When there are several classes then saturation arises due to the total load at a devic
is, at devicei the throughputs are bounded by

Ui f c()Di c() 1.0≤ ≤

f c() f max c()≤ mini1 Di⁄ c() 1 Dmax⁄ c()== (1a)

Dmax c() maxi Di c()=

Ui f c()Di c() 1.0≤
c
∑= (1b)
23

 time it
com-
ngle

n (i.e.

 some

s of
2.3.2. Path Bounds

For a closed system a response also cannot be repeated faster than allowed by the
takes its user to complete a cycle of user operations (such as thinking and typing) and the
puter operations to complete the response. This means that for linear software with only si
servers,

The user think/type delayZUser(c) is not included inR(c), but is a part of the total cycle
time:

.

If the response time includes some other pure delay terms that have a constant mea
no contention) they will also be included inR(c). Let us denote their sum asZSys(c) sec., then

We note that delays such as ZSysdo not limit throughput directly, by saturation. Typically,
they do not represent device demands, but are nominal figures used to represent delays in
subsystem which is not being analyzed, such as a transport delay through a network.

2.3.3. Little’s Formula for Delays and Throughputs

There is a very powerful and simple relationship between flows and delays in all kind
systems, illustrated in Figure HJ.

If

f = mean flow rate into and out of the subsystem

n = mean number of entities

R c() D c()≥ Di c()
i

∑=

C c() D c() ZUser c()+≥

R c() D c() ZSys c()+≥

C c() D c() ZSys c() ZUser c()+ + D c() Z c()+=≥ (2)

Any State or Subsystem

n = mean number of entities in

R = mean residence time

Any flow of
entities
at rate f/sec.

Little’s Formula:n = fR

Figure 2.10. Little’s Formula for Flows and Delays. (Figure HJ)

which the entities enter and leave

 the state or subsystem
24

ne

, giv-

Eq.1

tory
unds
-
re
R = mean residence time in the subsystem

then the result, known as Little’s Formula, is

.

The “subsystem” can be chosen arbitrarily: it could be an entire computer system, o
device in it, or just one queue of waiting jobs at one device. If we knowf andRwe can deriven, or
if we known andR we can derivef, and so on.

For our closed computer system model the “subsystem” is an entire response cycle
ing:

2.3.4. Asymptotic (Optimistic) Bounds: Summary

For a closed system we can use Eq. 4 to put the bounds (Eq. 1) and (Eq.2). Taking
and substitutingN(c)/C(c) for f(c) gives

and from Eq.2, substitutingC(c) = N(c)/f(c) (by Little’s result)

Figures HK and HL summarize these bounds for a single class system for the Direc
Server example of Figure HC with the parameter values of Table #T. Notice that the two bo
in each diagram intersect at a pointN*= 201.6 representing a user population size at which con
tention delays become significant.N* divides cases with negligible contention, from those whe
contention is an important factor.

Table 1: Directory Server Example: Parameters (Table #T)

DemandDi (sec) orZi (sec)

CPU 0.05

Disk 0.0306

User Think 10

n fR= (3)

N c() f c()C c()= (4)

N c() C c()⁄ 1 Dmax c()⁄≤

C c() N c()Dmax c()≥

R c() N c()Dmax c() ZUser c()–≥ (5)

N c() f c()⁄ D c() ZSys c() ZUser c()+ +≥

f c() N c() D c() ZSys c() ZUser c()+ +[]⁄≤ (6)
25

hich
ve
se
forma-
to
rs, class

r
ich is

 by
cluded
2.3.5. Two-Class Example: Asymptotic Bounds for a Reservations System

A more complex example is described by Figure HM10. It represents a Web Server w
handles inquiries for theater and concert tickets. A user makes a series of inquiries to retrie
pages with information about show dates, ticket availability and price, and may also purcha
tickets. The server uses two sets of files on two separate disks, one with the reservation in
tion and one for marketing information. A special “reference” station is added to the model
mark the end of a session, and there are eight requests per session. A second class of use
2, uses only the CPU and Disk B. Demands are shown per User request for both classes.

New features introduced in this model are, an additional station with a pure delay fo
Credit Card authorization, a second class of users, and a reference point for throughput wh
not a User station.

If a user makes a purchase, the credit-card information is submitted for authorization
the card issuer. The credit card company’s computer system introduces a delay which is in
as a simple mean delayZCCReq, which provides a non-zero value forZSys in this example.

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

Number of Users, Nusers

T
hr

ou
gh

pu
t f

Throughput f

Saturation Bound fmax = 20

Path Bound

Figure 2.11. Asymptotic Bounds on Throughput, for the Directory Server
(Figure HK)
26

entire
 divided

t run
parate
pre-

t from
k” time

s, and
es are:
The demands for class 1 in Figure HM10 are worked out in the next chapter, for an
session with an average of 8 user requests in a session. In the Figure here, the values are
by 8 to obtain average values per request.

It is normal for a distributed system to be shared by different communities of users tha
different programs and impose quite different workloads. Figure HM10 shows these as a se
class called “Other Users”. As long as they all run linear software, their workloads are fully re
sented by their separate demands, as shown in Figure HM10. Notice how class 2 is differen
class 1; it makes heavier CPU demands, and lighter Disk demands, and has a longer “thin
ZUser.

The bound values derived in the last section give separate path bounds for each clas
one composite saturation bound for each device. The total demand and total pure delay valu

D(1) = 0.0124 + 0.132 + 0.174 = 0.318

Z(1) = 7 + 0.225 = 7.225

0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

15

Number of Users, Nusers

R
es

po
ns

e
T

im
e

R

Response Time R

Saturation Bound R = 0.05N −10

Path Bound Rmin = 0.0806

Figure 2.12. Asymptotic Bounds on Response Time, for the Directory Server
(Figure HL)
27

)

Class 1 path bounds from Eq. (1a) and (2):

C(1) 0.318 + 7.225 = 7.543 sec

R(1) 7.543 - 7 = 0.543

f(1) 50/(0.318 + 7.225) = 6.63/sec

Class 2 path bounds from Eq. (1a) and (2):

C(2) 0.21 + 22 = 22.21 sec

Reservations
System
Users
(class 1)

ZUser(1) = 7 sec.

Other Users
(class 2)

CPU

DCPU(1) = 0.0124

DCPU(2) = 0.15
Credit Card
Authorization

ZCCReq(1) = 0.225 sec.Disk A

DDiskA(1) = 0.132

DDiskA(2) = 0

Disk B

DDiskB(1) = 0.174

DDiskB(2) = 0.06

Figure 2.13. Two Classes of Workload. Demands are in sec/response. (Figure HM10

end/begin

ZUser(2) = 22 sec.

(web pages) (database)

(N(1) = 50 Users) (N(2) = 20 Users)

Delay

≥

≥

≤

≥

28

t for
put:
R(2) 0.21 sec

f(2) 20/22.21 = 0.90/sec

Device composite bounds on throughput, from Eq. (1b):

CPU: 0.0124f(1) + 0.15f(2) 1.0

DiskA: 0.132f(1) 1.0

DiskB: 0.174f(1) + 0.06f(2) 1.0

The throughput bounds are plotted in Figure HP1.

2.3.6. Other Bounds

Further bounds can be found. For example, because one cannot do worse than wai
every competing job at every station, one obtains pessimistic bounds on delay and through

≥

≤

≤

≤

≤

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10
Throughput Bounds for Reservation System Users and Other Users

Reservation System User Throughput, responses/sec.

O
th

er
 U

se
rs

 T
hr

ou
gh

pu
t,

re
sp

on
se

s/
se

c.

CPU

DiskB

DiskA

Class 2 path

Class 1 path

Figure 2.14. Asymptotic Throughput Bounds for Reservations System Users and
Other Users. (Fig. HP1)
29

 also

ole of
y solid
com-
s, how-

 been
P1 the
ill lie
tics
Harri-

 bet-
D in

 the
 not
used.

e these
have

at
act

her.
 the

-
lity,
 value
ind-

on.
With stronger mathematical assumptions about the nature of the workload there are
tighter bounds called “Balanced Job Bounds” [BJB82].

2.4. Contention and Queueing Models

The bounds discussed so far do not predict the effect of interference, and this is the r
a queueing model. Queueing models were used to predict the “actual” values represented b
lines in Figures HK and HL, and the point X in Figure HP1. Given a set of demands, one can
pute response time and throughputs by a queueing model. Most solvers make assumption
ever, and the assumptions may not be accurate.

This work is going to sidestep the subject of solving queueing models, as they have
well documented. One does need a model, rather than just bounds. For example in Figure H
bounds only delineate a feasible region, they do not suggest exactly where the throughputs w
within it. However in this work we will concentrate on deriving models, leaving the mathema
of solving them to one side. To study solution techniques consider Menasce [menasce94],
son [Harrison93], Walrand [walrand].

2.5. Software Design Options

The performance engineer has many ways of modifying software to make it perform
ter. Staying within the bounds of linear software, these all boil down to reducing the demands
some way. Either the number of operations requested by the program must be reduced, or
average time per operation (which may be affected by cache efficiency, for instance). If it is
necessary to stay with linear software, other mechanisms such as parallel execution may be

2.5.1. Reducing the Operation Counts

Some approaches for reducing the number of operations are summarized here. Som
have been summarized by Smith in a number of principles culled from good practice, but I
reorganized and renamed them.

Attack the Bottleneck.Give first and most attention to reducing the number of operations
the bottleneck device. If it is a disk, try to reduce the amount of data stored, or use a more comp
format, or store more data in memory to avoid re-reading it later.

Batchingis a well-known way to reduce operation counts by grouping operations toget
The operations themselves are not reduced but the overhead to transfer data and initialize
algorithm can often be performed just once per group.

Early binding (“fixing principle” of Smith [CUS90]). Late binding is introduced for flexi
bility and to hide complexity, in the form of pointers, symbolic addresses, inherited functiona
procedures, and many others. Late binding always has overhead to determine the run-time
of the binding, and sometimes the overhead is surprisingly large. In hiding complexity late b
ing also hides from the designer the knowledge of the run-time costs involved in an operati

C c() N c()D c() ZUser ZSys+ +≤

f c() N c() N c()D c() ZUser ZSys+ +[]⁄≥
30

or
de is
m
inci-

al
ce, the

d of
rein-

 and

al
n the
turns

 side
istic

ram-
rams
h in
f a
calls
nsfer.
ta in
on each
reloads
Well-known examples of early binding for performance improvement are

• allocating static memory for storing data, instead of allocating as needed,

• unwinding loops,

• flattening an inheritance hierarchy,

• initializing a fixed buffer pool or task pool, instead of allocating them as needed.

High Runners(“centering” principle of Smith). Concentrate effort on sections of code f
which the total demand is high; this is particularly productive when a very small section of co
heavily used. Profiling tools commonly identify these sections as those in which the progra
spends a high percentage of its time. The actual optimizations do not follow any general pr
ples, but folklore insists that one can always reduce a set of operations by spending effort.

Special Casesor Fast Path([CUS90]). This is a version of high runners, in which a speci
case can be determined by a test and then processed in an especially simple way. For instan
special case may need no processing at all, or its result may always be zero or empty.

Locality: store data in some sense “near” the operations on it, to reduce the overhea
accessing and modifying it. The trend to objects which store data and operations together
forces this advice.

Scrutinize algorithms. Algorithms are often used out of habit, and may have efficiency
trade-offs according to the size of data in the application. Look at the alternative algorithms
evaluate them for the particular program being designed.

Optimistic design. This is a variation on Special Cases, in which the test for the speci
case can only be done after trying to perform it. The special simple processing is done first, o
optimistic assumption that it applies to the case, and the test is done after. If the assumption
out not to apply, then a more elaborate version of the processing is done after undoing any
effects of the optimistic step. Hash table storage is a widely used example, in which the optim
assumption is that there will be no collision on the hashed address.

Good ideas for efficient programming are contained in the booksProgramming Pearls,
[pearls1]More Programming Pearls[pearls2], andWriting Efficient Programs, by Jon Bentley
[bentley?].

2.5.2. Reducing the Operation Times through Locality

With modern processors and operating systems the times for operations at the prog
ming level is often reduced by caching and virtual memory (memory hierarchy effects). Prog
can be modified to reduce their operation times by improving their locality of reference, whic
turn increases the efficiency of the memory hierarchy. For instance a repetitive execution o
short section of code will run completely in the cache, whereas if it includes many procedure
to different locations in the program memory the cache may have to be reloaded for every tra
Similarly a large number of operations on a small block of data may execute with all the da
cache, where a series of traversals over a large data array causes the data to be reloaded
pass. Stepping through a data array on elements stored adjacently in memory causes fewer
than jumping back and forth in memory.
31

irtual
ill
r, but
t of
n be

of 10
ng

gen-

lues
will

tion
xam-
s than

ld

r

rver
ortant

vers.
or

d uses
cution
hat the
plicitly.

ject of
Anything which applies to processor caches also applies, at a larger granularity, to v
memory, and to file caches. A program which uses a small working set of pages at a time w
make fewer demands for paging operations (which are otherwise invisible to the programme
which must be included in our performance models) and will run faster. If it uses a small se
disk pages for data they may be retained in the file system cache of file pages, and they ca
read and written much faster than if physical disk operations are needed.

The effect of the memory hierarchy on operation times can be dramatic, on the order
to 1 at both the processor cache and the virtual memory/file cache level. Rules for enhanci
locality can be described, and tools such as optimizing compilers are available to help, but in
eral the results are not predictable by simple models.

This work will assume that a certain level of effort is made in this area, with target va
for efficiency which are then incorporated in the demand values for operations. That is, there
be a translation factor between the operations the programmer sees, and the device opera
demands, which will account for a baseline level of efficiency in the memory hierarchy. For e
ple, one file system operation will be converted into a certain average number (perhaps les
one) of disk device operations, corresponding to the baseline efficiency of caching.

2.5.3. Improvements by Restructured Software

Beyond simply reducing operation counts and times, restructuring a program can yie
performance dividends.

• Structural aggregation: Remove the overhead of context changes by bringing modules
together. This can include in-lining of code that might otherwise be a procedure call, o
placing objects in the same process that might otherwise be pipelined.

• Distribution: Move load away from a bottleneck by placing some services on a remote se
accessed by a remote procedure call. This move, prompted by resource saturation (imp
in heavy load), is opposite to the previous which is prompted by reduced total demand
(important in light or moderate load).

• Specialization: Separate service requests into groups handled by efficient specialized ser
This can combine “Special Cases” for work reduction with “Distribution”. It is the basis f
multi-tier Client-Server systems.

2.5.4. Improvements which lead to Non-Linear Software

This chapter has been concerned with linear software, that executes sequentially an
just one resource at a time. At lower levels in the system hardware and software, parallel exe
and simultaneous resources are often used (pipelining, overlapped I/O, mutexes) in ways t
application designer does not see. The visible architecture and design can also use these ex

Evaluating the use of simultaneous resources, concurrency and parallelism is the sub
the remaining chapters. The opportunities for better performance include

• Parallel processing: Execute some work in parallel on separate devices. This includes
overlapped I/O, delayed writes and commits, as well as parallel subtransactions and
multicasts.
32

sks
ated

sive

 the
simple
d

by
chap-

any

ental

ning

ley,

d

Sci-

on
eries,
• Multiply Resources: Provide additional “copies” of a logical resource so that competing ta
can proceed together. This includes multithreaded or asynchronous servers and replic
servers (as in multicopy databases).

• Resource Restructuring: Re structure the sequence in which resource are obtained, to
combine some resources. For example in run-to-completion systems a table has exclu
control of all resources controlled by the scheduler, which may make a critical section
unnecessary.

2.6. Summary of Chapter H

This chapter described the basics of workload modelling at the level of execution on
system as a whole, in terms of classes of users and their demand in devices. It showed how
optimistic bounds can be obtained from a small amount of workload data. It briefly describe
alternative ways to reduce the demands made by programs.

All this is meant as an introduction to procedures for breaking down workload module
module, in the next chapter, and for describing and evaluating “non-linear” software, in the
ters after that.

2.7. Related Reading

Modelling by queueing networks is well suited for linear software and is treated in m
excellent papers and books. Recent examples are

R. Jain [jain92], which has special strength in analysis of data and results, and experim
design, but also includes a summary of modelling by queueing networks.

Menasce, Almeida and Dowdy [menasce94], which describes models for systems run
on networks, and a blend of approaches including queueing.

Allen [allenProb], which is mostly on the theoretical issues underlying the queueing
models, but has a chapter on performance modelling.

BIBLIOGRAPHY

[CUS90] C.U. Smith, “Performance Engineering of Software Systems”, Addison-Wes
1990

[menasce94] D.A. Menasce, V.A.F. Almeida and L.W. Dowdy, “Capacity Planning an
Performance Modeling”, Prentice Hall PTR, Englewood Cliffs, New Jersey 07632, 1994.

[jain92] R. Jain, “The Art of Computer Systems Performance Analysis”, John Wiley &
Sons Inc., 1991.

[allenProb] A.O. Allen, “Probability, Statistics, and Queueing Theory with Computer
ence Applications”, Academic Press, Inc., 1990.

[Harrison93] P.G. Harrison and N.M. Patel, “Performance Modelling of Communicati
Networks and Computer Architectures”, Addison-Wesley, International Computer Science S
1993.
33

m:
ib-

990.

s”,

89.

any,

od
[HOPEsem95] C. Cowan and H. Lutfiyya, “Formal Semantics for Expressing Optimis
the Meaning of HOPE”, in Proc. of the 14th Annual ACM Symposium on Principles of Distr
uted Computing”, Ottawa, Canada, pp. 164-173, August, 1995.

[bubenik] R. Bubenik and W. Zwaenepoel, “Semantics of Optimistic Computation”, in
Proc. of the 10th International Conference on Distributed Computing Systems, pp. 20-27, 1

[stromyemini] R.E. Strom and S. Yemini, “Optimistic Recovery in Distributed System
ACM Transactions on Computer Systems, pp. 204-226, v3, n3, August, 1985.

[pearls1,] J. Bentley, “Programming Pearls”, Addison-Wesley Publishing Company, 19

[pearls2] J. Bentley, “More Programming Pearls”, Addison-Wesley Publishing Comp
1990.

[bentley?] J. Bentley, “Writing Efficient Programs”, publisher, year?

[walrand] J. Walrand, “An Introduction to Queueing Networks”, Prentice Hall, Englewo
Cliffs, New Jersey 07632, 1988.
34

cuting
en by
, per
h does
).

ne
ticular
nd
are

o use
ailed
ring
es the

ntial
ell
aviour
als and
Performance-Oriented Patterns in Software

Design (A multi-level service approach)

C.M. Woodside

Dept. of Systems and Computer engineering

Carleton University, Ottawa K1S 5B6

copyright 1996, 1997 C.M. Woodside

(Draft version produced for classroom use, September 1997)

October 18, 2001

Chapter 1. Tracing Performance to Software Scenarios and
Modules (S)

1.1. Introduction

The previous chapter showed how device bottlenecks can be traced back to users exe
a certain program, which was represented there as a workload class. The connection is giv
performance parameters, mainly the demand of each program for each hardware resource
response of the program. Each program may have several users. Only linear software (whic
one thing at a time) was covered, and only physical resources (devices used one at a time

This chapter describes the links between the software design and the performance
parameters. It focuses on analyzing one particular software module, and the execution of o
particular type of response. The designer can think in the software domain and about the par
application, and determine the parameters that will give performance figures; the notation a
some simple associated data reductions provide the links. An important feature of the softw
description that is not evident in the hardware models of the previous chapter is the need t
abstraction to hide detail in the software. An activity may be made up of many other more det
activities, or a module may be broken down into submodules, and it is essential in conside
software of any complexity to be able to do this, and to reason about it at a level that address
designer’s concerns.

Faced with a set of programs, or designs for programs, how can we extract the esse
information for predicting performance? How can we understand the performance issues w
enough to improve the software? This chapter uses two descriptions, the first based on beh
described by scenarios, and the second based on modules. Scenarios will describe the intern
35

o
he last
tions or

inear

own as
pture

stem,
ios,

 of
.

to the
-level
e with
tifying

model
hich
tabase
f the

up data

ghts

d the
dow

et
the flow possibilities of modules, so we will use scenarios to give the details and modules t
summarize them. In both cases a queueing model will be derived similar to those seen in t
chapter. These models are lacking various advanced features such as models of critical sec
parallelism, which are addressed in the next chapter.

This chapter also considers scenarios with parallel paths, a first step to modelling nonl
software.

1.1.1. Scenarios, Use Cases and Activity Graphs

Scenarios describe the processing paths of the system, and are sometimes written d
part of the analysis of a new design or a new feature. An example of a popular scenario ca
technique is Jacobson’s Use Cases [OOSE], about which Jacobson says:

“Quote...”

Typically one needs several (or many) Use Cases to describe all the functions of a sy
and for exceptions. For performance analysis it is permissible to focus on just a few scenar
which are known to contribute most of the workload, and to ignore those that are seldom
performed, or only performed to handle exceptions. Which scenarios to include is a matter
judgement; some kinds of exception handling may occur often enough to demand inclusion

A Use Case describes a system response in a narrative form that can be easily related
requirements and the user’s view of the system, so it provides an interface between the high
understanding of a performance problem, and the technical model. A Use Case is a narrativ
a sequence of steps, possibly including alternatives that may occur at some steps, and iden
as Actors the participants which are outside the software to be designed.

Theatre Ticket-Reservation System

For example the theatre-ticket reservation system already described as a queueing
has a major Use Case for connecting, interacting and purchasing tickets. It involves Actors w
are outside the software to be designed (but may be in the performance model): a User, a da
server DB, and a credit-card verification system CCReq. A simple high-level narrative form o
Use Case is:

• a user issues a request to connect to the reservation system, which is processed to set
tables and connection parameters (detail suppressed here).

• The system presents the user with a menu of choices to
• Display: display program and price information, or ticket availability information,
• Reserve: define a reservation for tickets, to be paid for by a credit card,
• Confirm: confirm a reservation, a step included to allow the user to have second thou

and cancel the transaction,
• Disconnect.

• The system presents the appropriate operating window for one of the three choices an
user fills it out, possibly returning to the menu for another choice or a more detailed win
within the same category.

• If the choice is Display or Reserve, the operation will include read accesses to the tick
database to provide information,
36

edit
ticket

twork

ing
y, the

)

• If the choice is Confirm and the user does confirm a purchase and give credit card
information, a request to verify the credit card information is sent to the appropriate cr
card issuer’s system (represented here by a single actor CCReq for simplicity), and the
database (actor DB) is updated with the sale,

• when the choice is Disconnect, a disconnection dialog is issued to the user and the ne
connection is torn down,

• Update: following the disconnection, information on the session is added to the market
database (actor DB again) for the theatre reservations system, including the time of da
number and type of interactions and the size of the sale.

6

Activity Graph

Connect

Disconnect

Update DB

0.75

0.15

0.1

Display

Reserve

Confirm

Verify CC

Comments on Activities and Steps

Connect to client

Loophead: Loop for repeated client interactions

Choice of interaction

Display shows and seats

Reserve seats

Confirm sale of seats

Get and verify credit card data

Disconnect from client

Update database with interaction data

Figure 3.1. Example of an Activity Graph for a Ticket Reservations System. (Figure SA

(for later analysis of market information)
37

ed to
e the

of the

stead
bson’s
s seen
 of
Case
h to

omplete

 a
such
code.
igner,
icek

hides

e
sion

 as
iven
ain of
d

flow).
h
he

part
The ticketing and marketing databases are different but in this analysis they are both assum
be provided by the same system, identified as the actor DB. This Use Case description will b
basis of the activity graph in Figure SA below, which captures the performance parameters
activities traced in the Use Case.

Jacobson goes on to develop the software design from a set of Use Cases; we will in
go on to develop a performance model. We do not require that the design be done by Jaco
method. The value of the Use Case is to provide a bridge between the definitions and action
by users, and the internal details. In fact every performance study has to include some kind
explanation of the work being done by the different classes of users in the model, and a Use
is just a convenient framework for doing it. We will encode each Use Case in an activity grap
capture the performance data, and then reduce the parameters to represent a module or a c
program.

1.1.2. Modules

Modules are central to design, and to a performance model of a design. “Module” is
flexible term that refers to any identifiable piece of software, which might be a language unit
as an object, a procedure, a task, an Ada “package” or a Module “module”, or just a section of
For performance analysis a certain level of module granularity is chosen by the analyst or des
and performance parameters are determined for one request to the module. Booth and We
called such a module description a “performance abstract data type” [booth&weicek], since it
its other internals for modelling purposes.

If a module M represents anobject, it implies a need to model different kinds of calls to th
methodsof the object, providing different services and having different workloads. The discus
below uses the term “entry” to designate these different services.

Modules take two complementary roles, as units providing service to programs, and
domains of analysis. As a unit providing service, the module (or rather its “entries”) has a g
set of execution demands, so its internals need not be examined. When a module is a dom
analysis its entries’ internals are described either by scenarios or by module refinement, an
execution demands are obtained.

Scenarios for module entries will be represented by activity graphs which provide a
detailed description that reflects their requirements (Use Cases) or their design (execution
The activity graph description can bereducedto a module entry description. But the activity grap
can also show the frequency of use ofothermodules, so the activity graph concept is related to t
module concept in two ways:

Module M, entry G has execution described byActivity Graph g

Activity Graph g, step A invokesModule m execution

Figure SAL illustrates these relationships. Invocation of external modules is routinely
of the activity graph definition to be described next, while the ModuleM description is derived
from its activity graphs by areduction R1 which condenses the graph description into a few
demand parameters.
38

rther
r the

ters
ario to

e

vel

trate
of the
will
ize to
ework.
If we are building a system from existing modules then the modules do not stand in
isolation, but one module may call other modules. It is a convenience to be able to hide the fu
calls by aggregating the other modules into the first one, to get a total workload description fo
one interface as indicated in Figure SAM.

The following sections define Activity Graphs which capture the performance parame
of scenarios within modules, and the manipulations that allow parameters captured in a scen
be used with a module representation, and in a performance model.

 We will expect to use the scenario reduction to encapsulate the scenarios in modul
parameters. We will incorporate other modules via their own demand parameters, suitably
aggregated to the level needed by the scenarios. The analysis may be recursive, so low-le
modules will be reduced and used by higher level modules or scenarios.

The programs considered in this chapter will mostly still be linear, so we can concen
on the analysis and combination of modules. This gives the simplest version MSS(Modules)
MSS framework, for multi-layered service system by modules. Parallelism in activity graphs
be introduced, to be exploited later. In later chapters we will see how the demands general
include demands for logical resources and external services, to give the more general fram

Figure 3.2. Relationships Between Module Descriptions and
Scenarios (Activity Graph) Descriptions (Figure SAL)

Modulem
resource

Activity A
uses
modulem

Module M,

resource

(Set of modules used
by g)

Activity
Graphg
for ModuleM,

ModuleM, entryg

encapsulate
the activity analysis
and parameters

activity

entryg

demands demands

resource demands

Reduction
R1

entry g
39

t
, which
design
n or

re just
uthors
way.

ical

ules

in the
ions.
more

ate

s, and
can
cs
1.2. Activity Graphs to Capture Scenarios and Workloads

An activity graph expresses a scenario with performance parameters. In the very firs
planning of a program scenarios are the easiest way to describe the necessary processing
has been exploited by Jacobson in inventing Use cases. Many other established software
techniques also employ or generate scenarios. If scenarios are not available from the desig
requirements analysis, they may be created just for performance analysis. Activity graphs a
a notation we will use here for adding performance information to these scenarios. Other a
have called them “task graphs” or “precedence graphs”, and defined them in much the same
Smith for example defines “execution graphs” for the same purpose, and describes a pract
performance review process to generate parameters from expert expectations [CUS90].

What is new here, compared to Smith’s “execution graphs”, is including calls to mod
in describing an activity (Smith only included device operations.) Methods for gathering and
exploiting data on existing modules are emphasized. Modules being designed will be treated
same way as existing modules except that their performance data is derived from expectat
Since a higher level of module re-use will give less dependence on imprecise estimates, and
dependence on known information from the existing modules, it will also give a more accur
performance analysis.

1.2.1. Activity Graph Notation

An activity graph describes the predecessor-successor relationships of software activitie
their workload parameters. An activity may be any portion of processing by a program which
be identified and named without ambiguity. An activity graph has activities as nodes and ar
which show the flow from one activity to another; there are also nodes which provide more
complex connections between activities.

Figure 3.3. Idea of Module Aggregation (Figure SAM)

m1

module
 m1

m2 m3

m4 m5

Modulem1 uses other modules
ModuleAGG describes
the total workload created
by an invocation ofm1

Module
AGG
40

vity
tivities.
ove
own,
ter). A
fied
arallel
nce of
ds the
nt or

urce

rent
lar

ple

ile
, and
d

y

ules.
ken to
r the

lues
s may
may

a disk
 NFS.
Figure SB defines the notation used in this work for picturing activity graphs. An acti
is represented by a box, with a sequence of boxes joined by arcs, to define a sequence of ac
A conditional or optional activity is shown within a special choice box that has a triangle ab
and below, with a place to show its probability. Within one condition, a sequence may be sh
but further nesting of conditions is better represented by nested activity graphs (described la
set of alternative cases is a collection of alternatives with their probabilities. A loop is identi
by a circle at the head, with a mean loop count attached to it. Nested loops may be shown. P
operations with forks and joins use a horizontal bar to show the fork or the join. The seque
processing in each branch of the fork-join may be shown on a separate graph which expan
activity shown for each branch. The same bar for parallelism is used when a message is se
received in such a way that the flow forks or joins.

 Logical resources such as critical sections and locks are important in distributed or
concurrent software, and location within the flow of the point of acquisition or release of a reso
can be indicated.

An activity graph is drawn vertically down the left side of the page with performance
parameters beside it. The notation is defined so that different activities are located on diffe
lines, so the performance information for each activity is written beside the activity in a tabu
form.

1.2.2. Performance Parameters and Calculations in an Activity Graph

The performance parameters of an activity graph will be explained first using the exam
shown in Figure SKD. There are two activity graphs for a modulemwith two high level operations
(or entries), calledm.e1 andm.e2. The function of this module is not our concern, but it uses f
operations and two X-windows functions listed here as Xwin.create, to create a new window
Xwin.inout, to read and write text in the window. Xwin is a module with two entries, inout an
create.

Each activity is described by a “MeanTimes” parameter in the first column (how man
times it is executed, for one execution of the graph) and by its use oflogical serviceswhich include
logical processor instruction executions, file operations, and execution of other software mod
There is a column for each service, giving its mean execution counts. CPU operations are ta
be machine language instructions, and a unit of one million instructions (one M-In) is used fo
CPU demands.

When this information is first obtained it is usually easier and more useful to define va
for logical services rather than for hardware operations. Thus, a number of file read operation
be identified in the software and the expected number of these operations within one activity
be recorded. This leaves the task of identifying

• how much is read and written

• how many disk operations or network operations occur for each file operation

• how long each disk operation takes

to a later analysis, when more is known about the application, the operating system, the
configuration, and the choice of hardware devices. For instance a file to be read may be on
attached to the processor, or accessed over a local network from a network file system like
41

Figure 3.4. Activity Graph Notation. (Figure SB)

activity named A precedes activity BA

p A
(choice) conditional activity with probabilityp

p
A
B
C

conditional sequence of activities
with probabilityp of executing the whole

pA
pB
pC

A
B
C

choice between activities, with probability
of each (sum is less than or equal to 1) (equivalent
to a ‘case’ statement)

x

A

B

(Loophead)

(Looptail)

loop around a sequence, with mean loop countx

A

B

A

R Acquire

R

Fork and join, where A and B can be
represented elsewhere as subgraphs

Message send

Message receive (wait to receive)

Acquire resource R (e.g. a lock)

Release resource R

B

sequence, or 1-p of doing nothing.
42

in the
 graph,
ered

s for
gle
e

hat is
raph.

n other

ions
heir
just for
s can
ance

tion
ooking
rvice.
ation,

ach
 choice
each
y
ale.
rices
firm
-card
tabase

acks
tions

ance,
The difference arises not in the description of the software but in other decisions. We may
end build separate models for the two cases, both based on the same software and activity
but substituting different file operation sub-models. The case of file operations will be consid
again, for example to deal with the size of each operation.

At the bottom of Figure SKD a set of totals is shown, which are the total request count
service demands when the graph is executed once. The graph can be represented as a sin
aggregate activity, possibly for use within a graph written at a larger scale, and these are th
parameters of that aggregate activity.

1.2.3. Activity Graph Workload Parameters: Alternatives

The analyst can decide what will be considered to be internal to each activity and w
considered to be a service obtained by the activity from outside the software modelled by the g
Making a service external allows it to be analyzed separately, and its parameters to be used i
models, so it is an aid in re-using performance information.

If, in Figure SKD, we wanted to consider the file operations and the X-server operat
Xwin.create and Xwin.inout as internal to the activities A to G we would have to substitute in t
CPU service and disk operation request counts. Then we obtain the service request counts
CPU and disk operations as shown in Figure SKDD. In this way all the logical service request
be eliminated and the device request rate found; it is then only a small step to get a perform
model. This will be detailed below as Reduction R1.

1.2.4. A Large Activity Graph Example: Theatre Reservations System

Now the more complex activity graph given earlier in Figure SA for the theater reserva
system use case will be analyzed to develop a workload characterization for the system. L
again at Figure SA, the first activity is to set up a connection with a user that selects the se
There follows a loop representing the repeated interactions with new web pages for inform
or for making the reservation. The loop shows a mean loop count of six, and four kinds of
interactions in a “choice” box identified by a triangle above and below, with a probability for e
choice. Each user interaction displays a page, waits for the user to react and then makes a
depending on the user’s input. Thus there is one user selection of a hot-link or menu item, for
“choice”. The probabilities given here show that three-quarters of all interactions just displa
information as the user navigates the possible programmes for which there are tickets for s
Fifteen percent are interactions for making a reservation, involving selection of seats and p
and filling in details of the desired sale. Somewhat less (10%) are interactions to finally con
the sale, verify the credit-card transfer with the bank via a network transaction with a credit
server, and set up the processing of the order. Finally there is a disconnect operation and a da
operation to save certain data about the users activities, for later use by marketing.

The activity graph is much simpler than a complete program specification, in that it l
details (such as data definitions and transformations) and it may lack entire functions. Func
that are almost never performed can be left out, particularly in a preliminary analysis. For inst
this graph doesn't specify what is done if the credit-card server doesn't answer.
43

Figure 3.5. Activity Graphs for a Module with Two Entries (Figure SKD)

K

1

1

1

Weighted

CPU
(M-In)

0.1

0.2

0.1

0.4

File
Operations

1.8

1.8

Xwin.create

1

1

Xwin.inout

13

13

A

B

C

Activity graph for
entrym.e1

D

E

F

G

1

1

0.9
0.1

1

0.15

0.01

0.2

0.6

0.1

0.50

2.5

2.5

3

6

3.3Activity graph
for entrym.e2

Device demands for
Logical services:

File operation
Xwin.create
Xwin.inout

CPU

0.02
0.75
0.29

Disk-op

1.3
0
0

(M-In)

MeanTimes

sum (K x
demand)

Weighted
sum (K x
demand)

Service demands per repetition ofm.e1

operations operations

CPU
(M-In)

File
Operations

Xwin.create Xwin.inout

Service demands per repetition ofm.e2

operations operations
K

MeanTimes
44

with
nified
iour
ment
ities, if
The value of an activity graph is for understanding and communicating issues to do
performance. It is most useful in the early stages of planning, when there may be no other u
description of program behaviour, or for capturing and understanding a complicated behav
pattern with important performance effects. It may be produced and reviewed by a develop
group, and be used to gather expert opinions about expected resource demands of the activ
(as usual) some data are missing.

Figure 3.6. Activity Graphs for a Module with Two Entries, with Software Ser-
vice Demands Resolved into their Device Demands (Figure SKDD)

K

1

1

1

Weighted sum

CPU
(M-In)

0.136

0.95

3.87

4.956

Disk-ops

2.34

2.34

A

B

C

Activity graph for
entrym.e1

D

E

F

G

1

1

0.9
0.1

1

0.15

0.01

1.07

2.34

0.15

1.507

3.25

3.25Activity graph
for entrym.e2

MeanTimes

(K x demand)

Weighted sum
(K x demand)

“Entire” Device demands per repetition ofm.e1

CPU
(M-In)

Disk-ops

Device demands per repetition ofm.e2

K
MeanTimes
45

. For
ated
sts for

e file
The activity graph and its table of the performance parameters is shown in Figure SC
each line (meaning, for each activity or node) there is a “MeanTimes” figure, which is calcul
from the loop counters and the choice probabilities. Then there are mean numbers of reque
services, each time the activity is executed. A service could be:

• an operation by a device, for instance a CPU instruction or a disk operation,

• a logical service provided by a software module, such as a file operation provided by th

Figure 3.7. Ticket Reservations System: Activity Graph for a Reservation
Session, with Parameters. (Figure SC)

Graph Node MeanTimes CPU
M-Ins

Data Base
Server
(ops)

Netware
Server
(ops)

CCReq
Server
(ops)

Connect

Loophead

Choice

Display

Reserve

Confirm

Verify CC

Disconnect

Update DB

Connect

6

0.75

0.15

0.1

Display

Reserve

Confirm

Verify

Disconnect

Update DB

1

6

6
4.5 0.005 1 1

0.010

0.001

0.001

0.9 0.015 2 1

0.6 0.002 1

0.6 0.004 1 1

1 0.001 1

1 0.007 1

1

46

ch as
m a

; the
s, and
easily
ly
is

nce

es:

ich

PU
meters
e the

ach

 by

eters
sively
level

arallel
system, or a logging operation provided by a module called “EventLogger”

• a logical service provided by some remote system, for which the program must wait, su
the Credit Card Server in the Figure. These services will be treated as if they arise fro
module which executes on a remote system.

Notice that we delay estimating the CPU time or the other service times at this point
analysis is more portable if we can first estimate logical operations and services, find the total
only at the end insert the device operation times. Then the operation times may be changed
to consider other devices or models. Similarly the use of services by other modules is simp
identified at first; when the other modules are analyzed their parameters can be filled in. Th
allows one to analyze one module at a time, to “divide and conquer”. Too often a performa
analysis is abandoned because the analyst is asked for too much information in one step.

Figure SC shows the mean request counts made to the following devices and servic

• a CPU, in millions of instructions (M-Ins) executed by the activity

• a network information server module, such as a Web server, in operations each of wh
handles one request from the Web client,

• a database server module, in operations (all queries and updates counted equally).

The parameters in Figure SC show only the direct demands for service made by the
activities of the graph. That is, the CPU demand by the activity itself is shown, but not the C
demand of a module which it calls, even if the module runs on the same processor. The para
which are shown are called the “local” parameters of the activities. The local parameters ar
MeanTimesK(a) for activitya, and the request valuesYi(a) for logical service requests from
devices and modules:

K(a) = mean number of times activitya is executed, each time the entire graph is executed
Yi(a) = mean requests by activitya for logical service i, per execution of a

For example,YCPU(Display) = 5000 instructions,YDataBase(Display) = 1. For the loop logic,
YCPU(LoopHead) = 1000 instructions is the cost of executing the logic to control the loop, e
time through.

To distinguish the CPU demand for the entire activity, including all the services used
the activity, we will call it the “entire” CPU demand. It is found by the first of the two graph
reductions described below.

1.2.5. ReductionR1, from an Activity Graph to a Device Workload Model (Linear Software
Case)

This reduction systematizes the previous discussion about substituting for the param
of a service, for the particular case where all the logical services are to be substituted succes
until only requests to devices are left. These will constitute a performance model at the device
as described in the previous chapter. It is assumed that the activity graph is sequential (no p
subpaths).

We go from an activity graph to a set of device demands in three steps:

1. Add up the demands for logical services vertically in the graphg, taking into account the
MeanTimes factorK(a) of each node. This gives the total local request countsYi(g) of
47

raph

 down

nts.

 time
the graphg as a whole, both to devices and to module services.

2. Eliminate services in modules which are internal to the system described by the g
(the decision as to which modules are internal must be made by the analyst). By
successive substitutions reduce the total local request counts for module services
to entire demands for operations from device.

Y'i(g) = entire demand, or total service demand from the graph g, to servicei, where i
must be external to the software. InR1, servicei must be adeviceor an external
subsystem which is modelled as a device.

Each service by a module is assumed to have known average device request cou
Suppose that

• the graphg uses servicej an average ofYj(g) times, and

• servicej has an external request count ofYi'(j) for operations of device i,

then servicej contributesYi'(j)Yj(g) to the entire count for devicei, and

3. Associate a physical device with each device-service and determine its operation
Oi. This gives the demandDi(g) for the graph, in seconds of resource-i service, per
execution of the graphg:

.

Figure SE walks through the steps of reductionR1 for the example shown in Figure SA.

Yi g() K a()Yi a()
a
∑=

Y'i g() Yi g() Y'i j()Yj g()
j

∑+=

Di g() Y'i g()Oi=
48

Reduction R1
Step 1: From “Table 0” given in Figure SA, Multiply “MeanTimes” into “Request Counts”, to give the fol-
lowing “Table 1”, and add up the columns.

Activity
CPU
M-Ins

Disk
Data Base
Server
(ops)

Netware
Server
(ops)

CCReq
Server
(ops)

User Input

Connect 0.010 1

Loophead 0.006

Choice 0.006

Display 0.0225 4.5 4.5

Reserve 0.0135 1.8 0.9

Confirm 0.012 0.6

Verify CC 0.024 0.6 0.6

Disconnect 0.001 1

Update DB 0.007 1

Entire Demands=Sum 0.102 7.9 8.0 0.6

Step 2(a): Module Service Demands to be eliminated

Module Services CPU Disk User Input

Database Server, per op. 0.085 2

Netware Server, per op. 0.012 1.5 1

Step 2(b): Computeentire demands for Ticket Reservations, to give “Table 2”:

CPU Disk CCReq. User input

Local demands (Step 1): 0.102 0.6

7.9 x Database demands 0.6715 15.8

8.0 x Netware demands 0.096 12.0 8.0

Total for Ticket Res.
= ‘Entire’ demands
Yi’ (Ticket Res) 0.8695 27.8 0.6 8.0

Step 3: Put in Operation TimesOi

CPU Disk CCReq User input

Device operation time
(Oi)(sec) 0.1 0.011 3 7 sec.

Device demands
(Di = Yi’Oi) (sec) 0.08695 0.306 1.8 56 sec.
49

ach

quest
mns.
 time,
), and

tions

sed
gical
ich are

other
l to the
age. In
ice-
ver
ure of
e were
715 M-
er are
and so
ny.

and
 to 87
upply

 sec. In
ption

 the
tivity

pter.

)

For Step 1, the data table beside the activities in Figure SA will be called “Table 0”. In e
row, the repetition count MeanTimes (i.e.K(a) for activitya) is multiplied by every entry in the
row to give “Table 1.” The columns are summed to give the total local demands, that is the re
counts made by the activities in the graph. These include logical services in the last four colu
For instance the local CPU requests made by Display is 0.005 Millions of instructions each
or 0.0225 M-Ins on average each time a client connects to the service (4.5 repetitions x 0.005
the total over all the activities is 0.102 M-Ins, or 102,000 machine instructions. The interroga
of the user, and a delay for the user to make a selection, are included in the last column.

Step 2 is shown in two parts. Part 2(a) is an auxiliary table with a row for each module u
by the activities in “Table 1”, and the module requests are broken down into demands for lo
device-service requests. There are just two modules, the Database and Netware Servers, wh
internal to the graph workload. These will have device demands substituted for them. The
two logical demands columns (CCReq, Server and User) show services which are externa
system being analyzed by the graph reduction, so their request counts are retained at this st
step 2(b) these definitions are then substituted into the totals to give the line of “entire” dev
service requests, Y'i, for the graph which will be called “Table 2”. For instance the Database Ser
requires 85,000 CPU instructions and 2 disk-accesses per request (in the appropriate mixt
read and write request types, one assumes -- a point that will be addressed shortly). As ther
found to be 7.9 requests to the DataBase server in traversing the graph, this contributes 0.6
Ins (7.9 x 0.085) to the entire CPU demand for the graph. The 8 requests to the Netware serv
assumed to each involve one delay for a user interaction. The user is external to the system,
is treated as if he/she were a device, as is also the external server of the credit-card compa

For Step 3, operation times are defined for the devices, and the device demandsDi are
calculated. If the CPU runs at 10 MIPs we obtain a time of 0.1 sec for each M-In, and the dem
of 0.8695 M-In gives 0.08695 sec of CPU demand for each response. We could round this
msec. We have an option to give times for the external services CCReq and User. If we can s
times, we can include delays for these services in a queueing model. Here,Yi, the user input delay
is included here as 7 seconds; the total of 8 user delays per response is thus entered as 56
this table the external CCServ delay is also given a value of 3 sec. Later we will see another o
for modelling, which includes CCServ within the model as a module.

The result of this reduction is a set of loadings for the CPU and disk devices and for
Users and CCReq (as external servers) in seconds of service, for each execution of the ac
graph. This corresponds to an entire user session with the server, but we will treat it like a
“response” (a unit of operation) as described in the previous chapter. Then the loadingsDi are
exactly the demand parameters of the hardware queueing models described in the last cha

The important values for a hardware queueing model are:

• CPU demandDCPU = 0.087 sec./session,

• disk demandDDisk = 0.306 sec,

• User delayZUser = 56.0 sec., and

Figure 3.8. Steps 1, 2 and 3 in ReductionR1of the Ticket Reservation System “Reserva-
tion Session” Parameters, to Hardware Device Demands per Response. (Figure SE
50

ntext,
finite

divide

 be
nt for
gically
cuted
. It has
 the

d as a

e

zed,

d their

 will
great

ctivity

ize
ess
ally a

ess is

certain
some

out
see
• CCReq delayZCCReq = 1.8 sec.

The servers for User and CCReq are pure delays, or infinite servers in the queueing co
and in the queueing model the two values of delay per response are added to give a total “in
server” delay ofZUser + ZSys = 57.8 sec./session.

To get the demand values per user response that were analyzed in Section 2.3.5, we
the demands per session found here, by 8 responses per session.

1.2.6. Summary and directions

This section has shown how the execution scenarios or Use Cases of a system can
developed into activity graphs which capture those aspects of behaviour which are importa
performance. It is emphasized that an activity graph can be much less detailed, and less lo
complete, than a software specification, since it only has to capture attributes which are exe
during performance critical responses, and executed often enough to influence performance
also shown how the parameters of an activity graph can be reduced to give total values for
graph, and to give a simple performance model based on device contention alone.

The analysis of hardware-based performance limits is easy to do, and is recommende
first step in any study. However a deeper analysis may be essential:

• a stochastic queueing model can introduce the effects of random interference, and giv
performance in unsaturated systems,

• opportunities for parallel subpaths and concurrent operations may be found and analy

• logical resources shared by concurrent processes should be described in the graph, an
effects found.

and these further needs are the object of the MSS framework. To fully investigate them we
need to use the extended properties of activity graphs, such as forks and joins, and it will be a
convenience to capture the idea of a service provided by a module. In fact the role of the a
graphs is to help understand and define the behaviour of modules.

1.3. Patterns in Activity Graphs

Although our main interest is in patterns of concurrent tasks, it is essential to recogn
some performance-oriented patterns for sequential activity graphs. POPs are used to expr
performance problems in the software, and to solve them. In an activity graph a POP is typic
part of the graph (a subgraph), which may be modified or transformed to reduce its level of
resource demands. In sequential code expressed by an activity graph or subgraph the only
performance “problem” is too large a resource demand, such as too much CPU demand. L
always better. Demands are expressed through the entire request countsYi’ (Subgraph). A great
deal of analysis has been performed on certain algorithms to determine their demands for
operations, and to find better algorithms with smaller demands; this may provide solutions to
problems. Works such as Bentley’s “Programming Pearls” [pearls1] make suggestions for
systematically improving the efficiency of code. C. U. Smith [CUS90] has collected folklore ab
efficiency and organized it into a number of “performance principles”, some of which we will
in our patterns.
51

rithm)

s

d a

ehind

ever is
 data,

the

lier
NIX

has

m
 in

have a
 other
uld

ment

fast
In general, demands may be reduced by either

• modifying a demand parameter of an activity, or

• transforming the subgraph to another that has a smaller demand (using a different algo

For instance a CASE block with branches Branch1,.... and probabilitiesp1,... is a simple pattern,
and its entire request count for resourcei is

Yi’ (CaseBlock) = Yi’ (Branchj)

A costly branch (with largeYi’) may be relatively unimportant if its probability is low enough. A
a first step towards reducing the overallYi’ (CaseBlock), attention should be concentrated on
branches with a large productpiYi’ ; then the internals of the branch should be examined to fin
way to reduce itsYi’ value.

We shall consider two important sequential patterns,

• the “fast path” pattern,

• the “optimistic” pattern and its variations.

These patterns can take many forms. They reappear later in concurrent software, and lie b
many of the mechanisms that give Internet software its scalability.

1.3.1. The Fast Path Pattern

A fast path executes special fast processing that is applicable only to a special case of what
being done. Suppose there is an activity A which can process the most general case of the
then in figure SFG it is replaced by

• a test to determine if the special case holds,

• a CASE block which executes the special case as activity A* if possible, or otherwise
general case A.

A simple example from the earliest days of computer hardware is an arithmetic multip
that tests if one of the arguments is zero, and if it is, writes zero as the result. The well-known U
Make utility tests to see if binaries are “up-to-date” and only recompiles them if the source
changed.

In the Reservations activity graph, a fast path for retrieving a page of theatre progra
information could first examine the cache of web browser, and if a valid copy of the page is
cache, retrieve and display that page without making the request over the net. Of course to
page in cache, it is necessary to maintain a cache, which means doing some extra work in
places in the activity graph. Also a page with volatile information like a list of available seats wo
have to be reloaded every time.

Consider the quantitative advantage of using a particular fast path, ignoring for the mo
any extra work in other parts of the program that may be needed to support it. Suppose the
probability of the special case isp* as shown, then the ratio of the resource demands with the
path, to the demands without it, are

pj
j

∑

52

tion of

ay be
e,

re will
or loss

h no
educe
r from
offs

to

ds to
quare
rent
Ratio = [Yi’ (Test) +p* Yi’ (A*) + (1-p*) Yi’ (A)] / Yi’ (A)

For cases with an advantage, Ratio < 1.0. If there is extra work outside the fast path, a frac
it suitable to charge against a single execution of the pattern is added to the numerator.

Clearly there may be more than one special case with its own fast path. The tests m
done all at once, giving ann-way CASE block, or one at a time starting with the most likely cas
giving recursively nested CASE blocks.

All this discussion has been in terms of a single resourcei, while implicitly there may be
many resources used by the pattern. If all are decreased, then for a sequential program the
be a performance gain. However if some are decreased at the expense of others, the net gain
will have to evaluated by a model (a point made repeatedly by Smith). For linear software wit
simultaneous resources, a queueing model is sufficient. In general it is more important to r
the use of resources that are heavily used by the program, and performance may not suffe
additional demands for a lightly used resource. Thus a model solution may guide the trade
made when some resource demands increase and others decrease.

In C. U. Smith’s work there is a “Centering Principle” which we may translate roughly
say, “use a fast path when Ratio < 1” [CUS90].

While a fast path may reduce the mean value of the demands if Ratio < 1, it also ten
increase the demand variability expressed as the Coefficient of Variation (CV = variance/ s
of the mean). This is because an operation which is a mixture of other operations with diffe
mean demands has a higher demand CV than any of its parts.

A

(a) Original ActivityA

p* A*

1-p* A

(b) Fast Path Pattern
 A* = Fast version ofA
 p* = ProbabilityA* can be used

Figure 3.9. A Fast Path Pattern (Figure SFG)

Test for fast caseA*

Fast Case

General Case
53

 it is
timisti-
o its
erva-
ion of
f the
after
1.3.2. The “Optimistic” Pattern

What is called “optimistic design” uses the same idea as a fast path, but in situations where
impossible to do the test without first executing the special case. This case is executed “op
cally” in the hope that it will succeed. If it does not, then in many cases it is necessary to und
results in a Recovery step before proceeding to the general case, which is called the “cons
tive” case since it does not depend on the optimistic assumption. This gives the transformat
activity A as shown in Figure SFK(b). There is another optimistic pattern that can be applied i
conditions that make the test fail may have changed. One may retry the optimistic step again
executing the Recovery.This gives an entirely optimistic transformation as shown in Figure
SFK(c).
54

ically

g of
s no
at can
Examples of optimistic transformations are pervasive, and they have been systemat
studied by for example Bubenik, [bubenik] Strom and Yemini [stromyemini] and Cowan
[HOPEsem95]. A good example of an entirely optimistic design is the use of optimistic lockin
data. The processing of data is carried out without any lock, on the assumption that there i
conflict. The fact the data is being used is recorded, and the results are written in a form th

A

(a) Original Activity

1-p*
A

(b) Basic Optimistic Pattern
 (with general case as a fall-back)

Figure 3.10. Two Optimistic Patterns: (a) Original conservative activity (b) Basic opti-
mistic transformation with conservative fallback to original processing (c) Alternative

“entirely optimistic” transformation (Figure SFK)

Recovery

A*

Test the results
of A* for validity

Undo the results of
A*

Do A instead

Recovery

A*

Test

N = 1
p*

Optimistic version of activity

Loop test (for validity
of result ofA*)

(c) Entirely Optimistic Pattern (RetryA* until Test passes) (p* = Prob{Success})

 (p* = Prob{Success})
55

data
ed”); if

nflict.

tack
y a
rnel

of
ead and
heaper

t path
d of just
for

uming
easily be annulled. At the end of the operation the possibility of conflict is checked from the
usage records, and if there has been no conflict the results are made permanent (“committ
there has been a conflict the results are annulled (rolled back) in a Recovery step and the
transaction is restarted, possibly after a period of backoff to reduce the chances of another co

An other example of optimism is van Jacobson’s optimization of the TCP/IP protocol s
for network file systems using Header Prediction [TCPspeed89], where a packet received b
workstation is written directly to the space it will eventually reach if it is a message to the ke
(e.g. for a remote file request) rather than a message to an application. A large proportion
messages satisfy this, and it saves a copy operation. The recovery, if the header has been r
found to belong to a user message, is to move the packet to a user buffer area. This is also c
than the original conservative option of moving it twice. In this case, as in many others, the
conservative path is modified in the optimistic design.

The advantage of an optimistic transformation is generally not quite as great as a fas
because the fast operation, the test and perhaps the Recovery have to be carried out, instea
the test. In Figure SFK(b) the Ratio between the original and the Basic Optimistic demand
resourcei is seen to be

Ratio = [Yi’ (A*) + Yi’ (Test) + (1-p*) [Yi’ (Recovery) +Yi’ (A)]] / Yi’ (A)

Figure SFP shows the values of the Ratio for some values of p* and the demands, ass
the following relationship among the demands:

N = 1
p*

Same Activity

Test that data
were used without
conflict, and
unset flag

Obtain Lock
on Data

A

Release Lock

Set Flag “Using Data”

A*

Test

(a) Conservative Locking (b) Optimistic Locking

Figure 3.11. Optimistic Locking. (Figure SFN)

(an “entirely optimistic” pattern)

Recovery
(Roll Back)
56

tual
 extra
Yi’ (A*) = Yi’ (Test) =Yi’ (Recovery) =α Yi’ (A).

Then:

Ratio = 2α + (1- p*) (1+ α)

In Figure SFK(c) the Entirely Optimistic version has the demand ratio

Ratio =α [(3/p*) - 1]

which has the values shown in Figure SFQ for the same assumptions as in Figure SFP. Ac
implementations such as optimistic locking may have variations on the pattern such as the
operations shown for setting flags.A Parallel Section Pattern

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Demand Ratio for a Basic Optimistic Pattern

Optimistic Path Demand as a Fraction of Conservative Demand

D
em

an
d

R
at

io

Prob Success = 0.6 0.7 0.8 0.9 0.95

Figure 3.12. Basic Optimistic Pattern: Demand Ratio [Basic Optimistic/Original], for
various effort ratios (α) and success ratios (p*). (Fig. SFP)
57

with
ivity
ate

ely for
 later

hich
1.3.3. A Parallel Section Pattern

This pattern does not really belong in a chapter on sequential software, but it does fit in
activity graphs, so it will be briefly discussed. Figure SFR shows the parallelization of one act
into a set of parallel branches, which we will assume are executed truly in parallel by separ
processors. The pattern in Figure SFR(b) shows overhead activities that stand approximat
the effort of sending messages to the other processors and initiating the branches and then
gathering the results together.

Evaluating the benefit of parallelism requires finding the delay along each branch, w
absolutely requires a performance prediction.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Demand Ratio for a Completely Optimistic Pattern

Optimistic Path Demand as a Fraction of Conservative Demand

D
em

an
d

R
at

io

Prob Success = 0.6 0.7 0.8 0.9 0.95

Figure 3.13. Entirely Optimistic Pattern: Demand Ratio [Entirely Optimistic/Original],
for various effort ratios (α) and success ratios (p*). (Fig. SFQ)
58

nces
e total
ill

 Case
s and
 a
and
esign,

ith
set of
graph

ule in
tively
can
1.3.4. Conclusions about Patterns in Activity Graphs

Many design patterns are best understood and analyzed within the behaviour seque
they generate, in our activity graphs. The cases examined here are just patterns which reduc
demands within a single process. When we get into concurrent and parallel behaviour we w
return to activity graphs to describe useful POPs that traverse multiple processes.

1.4. Module Models

Activity graphs are a step towards a module model. A software designer uses a Use
or other scenario definition to help arrive at a design in terms of a set of software component
interactions. We have seen how an activity graph captures the performance parameters of
scenario; amodule model similarly captures the performance parameters of the components
interactions of a design. The modules in the model correspond with the components in the d
at some selected level of granularity, but there may be some points of difference.

The view of a software module adopted for modelling is that of an object (the module) w
methods (calledentries). Each method executes a distinct computation, so it has a separate
workload parameters. If activity graphs are used to define the module behaviour there is one
for each entry.

The modules in the performance model may deviate from the software component
structure. The analyst may group a set of software components into a single aggregate mod
the model, to avoid excessive detail and excessive labour in determining parameters. Alterna
the analyst may subdivide a single “method” into several entries, if its behaviour and workload

A
OH1 OH2 OH3

A1 A2 A3

OH4 OH5 OH6

Fork Overhead

Overhead to set up
parallel operator

Sub-activities

Overhead to terminate
parallel operations
and communicate
results

Join overhead

Figure 3.14. Parallel Activity Pattern (Figure SFR)
59

nt
fferent
try.
may

istinct

for

rom

larger
U the

d
ath.

a
n in
essary

the
the

1 is

rnal.
be very different for different values of its arguments. For example instead of having differe
named entries, a component might have an operation code as one of its arguments, with a di
case of execution for each code; the analyst might then model each path as a separate en
Similarly if two entries with different names have almost the same workload parameters they
be merged in the model. For purposes of performance modelling, entries are services with d
demand parameters.

1.4.1. Module Notation

The performance parameters of entryeof modulem, denoted as entry(m.e),have exactly
the same meaning as the parameters of an activity. That is, they are a set of mean counts
requests for a set of services, for each time the entry is invoked. In place of activitya we write the
entry namem.e, to obtain:

Yi(m.e)= the local request count for requests by entry(m.e) for servicei, (where i may be a
service by a device or by a module) each time entry(m.e) is invoked.

Y'i(m.e) = total requests from entry(m.e) for operations by service i, when entry(m.e) is
invoked.

A module model is a graph with module entries and devices as nodes, and requests f
entry to entry, or from entry to device, as arcs, labelled with the mean request count for the
requesting entry. The notation for the mean request count from entry(m.e) to entry(k.d) is
Y(k.d)(m.e), while the mean count for device operations on device service i is Y’i (m.e). The CPU
device which hosts the module is not represented in the graph to avoid a profusion of arcs in
models; the request count instead is represented as a label on the entry (we will call the CP
“host” device of the module).

Module models will be assumed to beacyclic graphs, that is there are no calling cycles, an
therefore no recursive calls. This restriction can be removed, at the cost of more difficult m

Figure SKE(a) shows the modulemanalyzed earlier in Figure SKD, making demands on
file system and on an X server, Xwin, with the CPU demands in millions of instructions show
square brackets. Host demands can also be specified in time units, so to be complete it is nec
to specify the units.

If we have the parameters in terms of requests to other modules we can aggregate
modules together to get the entire demands of all the modules. Figure SKE shows this for
modulemconsidered above; part (b) shows the file-service module aggregated into modulem, and
part (c) shows all the services aggregated into modulem.

1.4.2. ReductionR2, from an Activity Graph to a Module Entry

An entry may be analyzed by creating an activity graph for it, in which case the entry
parameters can be obtained from the total parameters of the graph. A reduction similar to R
applied:

1. Determine which logical services used by module m are internal and which are exte

2. For each entry(m.e) in modulem, there is an activity graphg.

3. Apply steps 1 and 2 of reductionR1 to graphg to find its “entire” demand parameters
60

Figure 3.15. Module ReductionR2. (Figure SKE)

e1
[0.4]

e2
[0.5] Modulem

File op create inout Xwin

(a) Modulemshowing File-operations and Xwin as external

e1 e2 Modulem

(b) Module m showing Xwin as external, File-operations as internal

e1
[0.436]

e2
[0.55] Modulem

create inout Xwin

(c) Modulem showing all operations as internal

Disk

Disk

1.8 2.5
1
13 3.3

2.34
3.25 1

13 3.3

2.34 3.25

Module [0.75] [0.29] module

Disk

[0.75] [0.29] module
61

h that

e main
s to be

nds.

nal to
e as in
Yi’(g).

4. The entire demands of graphg are the local demands of entry(m.e):

This is how the parameters in Figure SKE were found.

For another example consider the Reservation Session in Figure SA as a module, suc
all the logical services (Database, Netware, CCReq, User) are given by external modules.
Reservation Session is a kind of pseudo-module representing the behaviour of a user, and th
control program, during a session. It has just one entry. Since there are no internal module
reduced the graph reduction only requires step 1 ofR1. Its local demandsYi are found in Step 1 of
Figure SE to be:

-- to CPU, 0.102 M-In,
-- to Disk, 0
-- to Database Server, 7.9
-- to Netware Server, 8.0,
-- to credit-card server, 0.6

This is sufficient to describe the operation of a session as a module with these dema
Graphical notation is shown in Figure SJ.

On the other hand if the Database and Netware Servers were considered to be inter
the Reservation System module, their demands would be included inside the pseudo-modul
Table 2 of Figure SD, and the average module demands are:

Yi m e⋅() Y'i g()=

“Reservation Session” Pseudo-Module

CPU

Netware
Database
Server

CCReq
Server

0.102 M-In 8.0 7.9 0.6

Figure 3.16. Local demands a Ticket “Reservation Session”, derived from the activ-
ity graph in Step 1 and Step 2(a) of Figure 3.8 (SE). The pseudo-module “Reserva-

tion Session” is entered once per user session. (Figure SJ)

Disk

2
0.085 M-In

1.50.012 M-In

User
62

rver
e into
ueing

tated

udo-
sents,
vation
r
teract
-- to CPU, 0.8695 million instructions
-- to disk, 27.8 disk operations
-- to credit-card server, 0.6 requests for verification
-- to user, 8.6 requests for input.

This is displayed graphically in Figure SK.

Another way to configure the system would have two disks, DiskA for the Netware se
and DiskB for the database. Examining Figure SJ we see that the 27.8 disk operations divid
12 to DiskA and 13.8 to DiskB. In this case, using the operation times in Table SE, the que
model parameters are

DCPU = 0.087 sec/session ifOCPU = 10-7 sec,Y’CPU = 0.8695 M-In

DDISKA = 0.132 sec ifODISKA = 0.011 sec,Y’DISKA = 12

DDISKB = 0.174 sec ifODISKB = 0.011 sec,Y’DISKB = 15.8

DCCReq = 1.8 sec ifOCCReq = 3 sec,Y’CCReq = 0.6

DUSER = 56 sec ifOUSER = 7 sec,Y’USER = 9

The queueing model in Figure HM is based on these demands, but divided by 8 and s
per response instead of per session.

1.4.3. Reservation System Module TicketRes

The example just completed reduced an activity graph by mechanical steps to a pse
module “Reservation Session”. If we re-examine the activity graph we can see that it repre
not the behaviour of a software module, but the behaviour of a complete session of the reser
server interacting with the user. If we want to separate the software behaviour from the use
behaviour we can identify three kinds of user requests to the reservation system: Connect, In

“Reservation Session” Pseudo-Module

CPU CCReq
Server

0.8695 M-In 27.88.0 0.6

DiskUser

Figure 3.17. Entire demands for a User Session, derived from Step 2(b)
of Figure 3.8 (SE) (Figure SK)
63

vity
el
w

nt the
a user

ity

r be-
(described by the Choice block in the middle), and Disconnect. We can reorganize the acti
graph of Figure SA into the form of Figure SKC, showing each kind of request as a high lev
activity, with six repetitions of “Interact”. Each high level activity becomes an entry to the ne
module TicketRes. Figure SKM shows the module TicketRes (with three entries) to represe
software part of the system, and the pseudo-module “Reservation Session” now representing
session making requests into it.

To obtain the parameters for the model in Figure SKM, we must restructure the activ
graph in Figure SC with 4 parts:

• one for the user behaviour, making choices;

• one for each of the entries Connect, Interact and Disconnect.

Figure 3.18. TicketRes Module (Represents the Software System separately from the use
haviour). (Figure SKM)

Reservation Session Pseudo-Module

Connect Interact Disconnect

Netware
Server

CCReq
Service

Database
Server

Disk

1 16
TicketRes

Figure 3.19. (Figure SKC)

Connect

Interact

Disconnect

6

64

ly
part of
own
nds

re
For the user behaviour we obtain Figure SKC. Connect is a single activity, sufficient
described in Figure SC. Interact has a separate activity graph corresponding to the middle
Figure SC, but with the looping cost lumped with the “choice” cost, with the activity data sh
in Figure SKD. Disconnect consists of just the two final activities of Figure SC. The entry dema
are summarized in Table SKN.

Assembling this information we can attach parameters to Figure SKM to obtain Figu
SKP. The parameters are still in terms of operations rather than times.

Interact
MeanTimes

 CPU
(M-In)

DBServer
(ops)

Netware
Server
(ops)

CCReq
(ops)

Choice 1 0.002

Display 0.75 0.005 1 1

Reserve 0.15 0.015 2 1

Confirm 0.1 0.002 1

Verify CC 0.1 0.004 1 1

Local Demands 0.14 1.15 1 0.1

Figure 3.20. Activity Data for the ‘Interact’ part of the “Reservation Session” activity graph.
(Figure SKD)

Table 2: Table SKN -- Entry Demands for the TicketRes Module

Total Local Service Demands

Entry
CPU
(M-In)

Disk
DB
Server

Netware
Server

CCReq
Server

Connect 0.01 1

Interact 0.014 1.15 1.1 0.1

Disconnect 0.008 1 1 0

DB Server 0.085 2

Netware 0.012 1.5

KiYi∑
65

for
unts as
ry
 for

e or

red. If

te the

 user
ted.

ment)
ning.

budget
 time
1.4.4. Obtaining Module Parameters Directly

We have been considering how to obtain module parameters by recording the plan
execution of each entry as an activity graph, and reducing its parameters to the request co
given by ReductionR2 in Section 3.3. On the other hand it may be possible to obtain the ent
parameters directly, without the activity graph analysis. This section will describe the steps
direct estimation.

The entry parameters are the mean request counts to services and to the host devic
devices. Some of the possibilities for direct estimation are:

• The module may exist, as for instance the file system, and its parameters can be measu
a prototype exists, request count parameters can (perhaps) be measured from it.

• Data from a similar system or a previous version of the system can be used to estima
parameters

• A parameter may be a simple property of the operation, such as the need to check the
privileges exactly once, for the print service, even if multiple documents are to be prin
Thus it can be taken from design documentation.

• A parameter may be a property of user behaviour (such as the number of pages in a docu
which could change without warning, and which must be estimated as a basis for plan

• Some parameters may be allocated as a budget to be achieved by the developers. The
approach is often used with CPU time in developing an application, when a total CPU

Figure 3.21. TicketRes Module with Logical Device Demand
Parameters. (Figure SKP)

Reservation Session [7 sec.]

Connect Interact Disconnect

Netware
Server

CCReq
Service

Database
Server

Disk

1 16

10.1

1.15
1

2

1

[0.01] [0.014] [0.008]

[0.012] [0.085]

TicketRes

1.5

[3 sec.]
66

prof
o
, UNIX

ade
s.

ular
hen it
 for a

t the
on
odule
f a

s.
module
 the
it sends
zed
etween
ever,
 the

are,
same
inked
tinct

 for
tailed
budget is divided among various modules to be developed in parallel.

Measurement of request counts can be done by tracing and by profiling. The UNIX g
profiling utility counts all calls to a procedure from each other procedure, which is enough t
capture counts for procedural-type requests. For requests which are made by system calls
tracing will record them but only on the basis of calls from within a certain process. Requests m
by remote procedure calls or socket-based messages must be captured by software probe

Execution times can be instrumented similarly. If an entry is represented by a partic
procedure, then profiling is adequate. If an entry is associated with a branch in the program t
may be necessary to use software probes and a timing utility to get the processor demand
given entry separately.

1.5. Multi-level Service Systems by Modules

In complex systems with many components the performance model must useabstraction
to escape from excessive detail. Modules providecontrolled levels of abstractionin the model, so
that a designer can abstract away some aspects in order to focus on others.

MSS(Modules)

The module-modelling framework MSS(Modules) presented in this section rounds ou
concepts and parameters needed to model linear software by modules. The previous secti
showed how to reduce an activity graph describing flow and behaviour, to a module or a m
entry; here we will examine module models at different levels of detail, using an example o
Printing Service that has a rich modular structure.

MSS(Modules) is essentially a procedure call-graph model with workload parameter
Each entry has demand parameters for operations by devices and by other entries. When a
makes a request to a service its own execution is suspended until a return is received from
service. When an entry receives a request it begins to execute, and only terminates when
a reply or a return to its requester or caller. This represents procedure calls and also ideali
Remote Procedure Calls (RPCs), which are implemented with request and reply messages b
concurrent processes. It does not allow concurrent execution within a single response, how
and it does not represent logical resources. These will be introduced in the next chapter, in
extended framework MSS(Resources).

MSS(Modules) is based on long-establigsed (move) notions for modelling workloads
based on call rates.

No Software Resources in MSS(Modules)

Because MSS(Modules) does not represent resource limits imposed within the softw
the modules in this limited framework must not queue their requests. If two users request the
service at the same time, they both execute it. This implies that they both have the module l
to their own copy of the executable, or the module is fully re-entrant, or, if the module is a dis
process requested by RPCs, it forks a separate thread for each request.

Because the devices are the only resources, device queueing models are adequate
analyzing the system level performance. The value of the module breakdown is to see the de
source of the workload, as it contributes to the device demands.
67

n
g
r. This
 data

rinter
gine,
e

tries,
y the
nt job,
ion

hich
file to

 at a

an pass

 that
assed

system
there
his is

o be
U, a
ll be

ithin
stem
roper
odule,
 same

stem is
1.5.1. An Exploration of MSS(Modules): A Printing Service

To explore the performance semantics of the MSS(Modules) framework, consider a
example with deep layering of services, shown in detail in Figure SM. It is a network printin
service which is accessed by entry PrintService of a software component called PrintManage
entry sends print jobs to a PrinterControl module, which in turn uses a PrinterDriver to send
to the printer. The PrinterDriver has two entries, one for control interactions and one for
transferring page data, because its behaviour is quite different in these two cases. In the p
itself there is an embedded control program, for instance a postscript interpreter and print en
controlling the printer hardware. It also has two entries, one for control and one for data. Th
PrintManager is also shown to store and retrieve data through a MgrInfo module with four en
one to check that the user has printing privileges, one to store the printfile or files supplied b
user, one to search for a default printer if one was not specified, and then at the end of the pri
one to write the accounting log information to charge for the job. MgrInfo gets this informat
from the FileSystem, shown as a module offering an interface to the program as part of the
operating system. This in turn uses network protocols and a network FileServer program, w
accesses a Disk device through a Disk Controller. PrintManager passes the location of each
print to the PrinterControl, which then accesses the stored printfile itself, one storage page
time, processes it if necessary and passes it to the PrinterDriver.

The parameters on the arcs express the fact that one user request to PrintManager c
one printfile, which is passed to the PrinterControl. Each file hask storage pages, which affects the
number of accesses to the FileSystem, and the requests to pass data to the printer. Notice
PrinterControl passeskpages to PrintDriver.Data, and for each of these requests one page is p
to EmbeddedControl.Data

If a module has a single entry (or if only one of its entries is in the model) then it is
represented by a node which is both a module and an entry. The idea of a layered service
implies that higher layers make requests of lower layers, which makes the graph acyclic (i.e.,
are no loops in the graph). Recursive use of services is not represented in MSS(Modules). T
basically for simplicity, and an extension to represent recursive systems is straightforward.

Each module also uses one or more devices. Real software modules are intended t
loaded and run on one particular device, which we will call its host device. It might be a CP
smart terminal, a disk controller or a communications front end. The term “proper module” wi
used for a module which makes requests for device operations to just one device, its host. W
this limit a proper module in the model may represent a single software module, or a subsy
that is made up of many software modules that all run on the same host. Figure SM shows p
modules with their host devices as ovals. There is one host device shown attached to each m
but the same host may appear in two places; if two modules are colocated they point to the
device. The Printer and Disk are separate devices (not hosts) represented by circles. FileSy
a module that runs on WS1 and on WS2.

In Figure SM, if devices are shown then the arc weight from entry (k.d) to device i is the
mean request count for device operations of the entry:

Yi (k.d)= mean number of requests for operations by device i, during one invocation of
entry (k.d)
68

Figure 3.22. Module model of Printing service software. There arek file
pages in the average job. (Figure SM).

 PrintManager.PrintService

MI.Store MI.Check MI.Default MI.Log

1

PrinterControl.Print

1 1
0.7

1

MI (MgrInfo) Module

k 2.7 1

1

 FileSystemk

PD.Setup PD.Data

PD
(Printer
Driver)
Module

3 k

1.2 1

EC.Ctl EC.Data

1

Printer

EC
(Embedded
Printer
Control)
Module

0.9

 FileServer

1

Disk Controller

1

Disk

[12000]

[10000] [5000] [4000] [2000]

[25000] [2000]

[42000] [17000] [6000]

[2000] [64000]

[1000]

PrintManager Module

WS1

WS2

WS1

WS2

DC

WS2

Printer
Controller

PrinterControl Module
69

FileSystem*

PD

Printer

Disk

Disk

Figure 3.23. Printing service with devices shown. The file system has been aggre-
gated to give a generalized module. (Figure SN)

PrintManager.PrintService

MI.Store MI.Check MI.Default MI.Log

PrinterControl.Print

PD.Setup PD.Data

EC.Ctl EC.Data

(Printer
Driver)
Module

EC
(Embedded
Printer
Control)
Module

WS1

WS2 WS2

WS3

WS1

Controller
Device

PC

PrintManager Module

MI (MgrInfo) Module

PrinterControl Module

Printer
Controller
70

arrows
mean
tors

 in

odule.
fferent
dule”
ities in
the
a
d the

n to
up of

f
s at a
ressed
 for

system.

vels
nly be

ST.

 a
here
e that
within
igure

he set
 by:
Notice that a requests to devices and to other modules are shown in the same way, as
going to circles (for devices) or to boxes (for modules or module entries), labelled with the
number of requests. A list of services used by the entry could include both types of descrip
interchangeably.

In a detailed MSS(Modules) model like Figure SM a program is represented entirely
terms of proper modules and their relationships. The detailed model can be aggregated by
combining modules, even to the point where the entire program is represented by a single m
In this case it is probably not a proper module, because its submodules may well run on di
hosts and the whole program runs on the entire collection of hosts. The term “generalized mo
is applied to such an aggregate module that is distributed across several devices. The activ
the activity graphs in Section 3.2 have the attributes of generalized modules. In Figure SN
activities that make up the file system in the previous figure have been aggregated to give
generalized module called FileSystem*, which uses WS1, WS2, WS3, the disk controller, an
disk itself.

1.5.2. Changing the Level of Abstraction: Aggregation

Once a system like the Printing Service is fully understood and the analysis moves o
other issues, it is useful to be able to hide its complexity by aggregating its modules. Any gro
modules can be aggregated into a single artificial “supermodule” which exists only in the
performance model, where it represents the workload effects of the software in the group o
modules. In the limit, if one aggregates all the modules used by a class of users, one arrive
supermodule representing the total demands per response used in Chapter H. (This is add
later by ReductionR4). However if one aggregates into a moderate number of large modules
separate subsystems, one can study in greater detail the impact and contribution of each sub
This in turn can focus design effort where it is needed.

It is essential, in large systems, to be able to move up and down a ladder of different le
of aggregation. Some performance issues require details to be exposed, while some can o
understood at a large perspective. The following ReductionR3 gives a controlled level of
abstraction.

1.5.2.1. Aggregation of Modules (ReductionR3)

First consider aggregation as an abstract question, as illustrated in Figures SR and
There is a group E of modules A,B,C (with various entriesA.a, A.b, etc.) to be aggregated into a
single “super module” calledAGG. What entries willAGGhave, and how will their parameters be
determined?

A special simple case occurs when the interface offered by the group is only through
single “top-level” module, as in Figure SR, however we can equally well have a situation w
the group offers external access to two or more of its internal modules, as in Figure ST. Notic
an entry which is accessed externally may also be accessed internally, by calls from modules
the set (provided this does not introduce a cycle into the graph), as shown at module B in F
ST. The algorithm to be described will handle all these situations.

The goal of aggregation is to find the mean request count for services demanded by t
of modules, for each invocation of a service offered by the set. These sets can be denoted
71

E = set of entries of the modules to be aggregated, with elements (m.e)

A
A.a A.b

C.c
B.e B.f

B

Y.y Y.z

Y
X.x

AGG.a AGG.b

X.x
Y.y Y.z

Figure 3.24. Aggregation with Single Access (access into the set
via one module, ModuleA). (Figure SR)

(a) Modules to be Aggregated: Access via only one ModuleA

(b) Aggregated Version

E = set of
entries to
be
aggregated

Aggregation of setE
72

A
A.a A.b

C.c
B.e B.f

B

Y.y Y.z

Y

set to be
aggregated

X.x

AGG.a AGG.b

X.x
Y.y Y.z

Figure 3.25. Aggregation with Multiple Access (access into the set via more than one
module, ModulesA andB). (Figure ST)

AGG.f

Y

E =

(a) Modules to be Aggregated: Access via both ModulesA andB

(b) Aggregated Version, Combining Entries that are Accessed

X

X

Aggregation of SetE
73

f the

ts to
tically
 the

. The
re

ry

l
uare

ns, but
J = set of entries outside ofE offering services used by entries inE, with typical elementj,
I = set of entries inE that offer services to other modules outside ofE,

The algorithmR3 to aggregate the set of modules into an aggregate moduleAGG is as
follows:

1. Order the entries ofE in a list such that the first one makes no requests insideE, and later
ones make requests only to entries or services that are either not inE,or are earlier in the
list. This can always be done because the graph of entries is acyclic.

2. For every entrym.e in E that makes a request to an entry inJ, setYj' (m.e) = Yj (m.e).
These will become the reduced request counts.

3. Consider the entries inE in order, starting with the first in the list.

4. For each entry (k.d) in E, consider all requests from it to other entries (m.e) in E, with
local request countY(m.e)(k.d). Augment the reduced request countYj'(k.d) by the
amount:

When this is completed every entry inE has a set of reduced request counts to entries inJ.
Those entries inI, that are visible to the users of the aggregated module, become the entries o
aggregated module, and the rest are hidden. Thus if entry(m.e)in E becomes the entry(AGG.e)of
the new aggregated moduleAGG, then the new local request counts for(AGG.e) are the reduced
counts of(m.e):

 for

This aggregation has been described as if the demands to other modules are all reques
software services, but it applies equally to requests to hardware services, which are automa
included in the setJ. The reduced mean request counts to hardware services are, as before,
requests for logical services offered by the devices.

Figure SU shows an example of aggregation based on the printing service from Figure SM
parameterk for the number of disk pages in the file to be printed has been set to 3.0. In Figu
SU(a), there are two clusters of modules to be aggregated,

• AGGPrintMan containing PrintManager and MgrInfo, and

• AGGPrintCon containing PrintControl and PrinterDriver.

After aggregation, AGGPrintMan will offer entry PrintService, and AGGPrintCon will offer ent
Print.

In Figure SU the demands to the host device of each module are also shown. A specia
convention is used to avoid showing all the host devices in the diagram. A parameter in sq
brackets is given inside each entry, with the demand value, as: [Yhost(m.e)]. The units of host
demand must be stated with the diagram; here they are logical service demands in instructio

Y m e⋅() k d⋅()Y' j
m e⋅() E∈

∑ m e⋅()

Yj AGG e⋅() Y' j m e⋅()= j J∈
74

PrintManager.PrintService

MI.Store MI.Check MI.Default MI.Log

1

PrinterControl.Print

1 1
0.7

1

MI (Mgr Info) module

3 2.7 1

1

FileSystem3

PD.Setup PD.Data

PD
(Printer
Driver)
Module

3 3

1.2 1

EC.Ctl EC.Data

1

Printer

EC
(Embedded
Printer
Control)
Module

0.9

FileServer

1

DiskController

1

Disk

[12000]

[25000]

[42000] [17000]

[10000] [5000] [4000] [2000]

[2000]

[1000]

[2000] [64000]

AGGPrintMan

AGGPrintCon

Figure 3.26. (a) Print Service: Identification of Modules for Aggregation,
for k = 3. (Figure SU(a))
75

conds
, and
in other diagrams they might be given as the time demands, in some suitable unit such as se
or milliseconds. Figure SV illustrates the request count to a host device with the device shown
the equivalent diagram with the request parameter in brackets.

AGGPrintMan.PrintService

AGGPrintCon.Print

EC.Ctl EC.Data

Printer

FileSystem

File Server

DiskController

Disk

[31800]

[202000]

[2000] [64000]

[2000]

[6000]

[1000]

1

3.6 3

7.4

3

0.9

1

1

Figure 3.27. (b) Aggregate View of Printing Service, with the Param-
eter Values fork = 3. (Figure SU(b))

1

76

rithm

n

ssor

king a
Figure SU(b) shows the aggregated module model, found by applying aggregation algo
R3. To explain just two of the parameters in the reduced model,

YFileSystem(AGGPrintMan.PrintService) = (1 x 3) + (1 x 2.7) + (0.7 x 1) + (1 x 1) = 7.4 = mea
requests to the file service on all paths from the entry through the MgrInfo module.

Yhost(AGGPrintCon.Print) = 25000 + (3 x 42000) + (3 x 17000) = 202 000 = mean proce
instructions per invocation of the Print entry, including the driver code.

These values can be found by applying Reduction R3 step by step.

Note that the fact that the graph of entries is acyclic does not prevent an entry from ma
request to another entry of the same module (a well-known feature of object-oriented
programming, for instance, when a method uses another method of the same object).

Host
Device

Modulem

m.e m.f m.e m.f

[1200] [15000]

15000
1200

Modulem

Figure 3.28. The Shorthand for Host Device Request Counts (the parameter
in the brackets may also be demand D in units of time). (Figure SV)

Shorthand VersionVersion Showing the Host Device
77

he top-
ion
evices,
t entry
. Then

ts,
s for
 the
d. For
Y(a)
s, and

 have
is the
vice;
Y the
ll have

h will

ives
SYS
he
Y(b).

This
1.5.2.2. Reduction to Obtain Hardware Demands of a Module Entry, and a Complete Pro-
gram

A single module entry is easily analyzed down to its device demands by ReductionR4.

ReductionR4: Let the designated entry be entry e, and define the sets

E = all entries called directly or indirectly bee,

J = the set of devices used bye and all entries inE,

I = the entrye alone.

Apply ReductionR3 to this system. The resulting mean request countYj’(e) are the total
hardware demands of one invocation of entrye. To obtain the service demandDj, multiply Dj(e)
= Yj’(e)Oj, whereOj is the operation time of device j.

A complete program can be described as a kind of module, such that a user executes t
level module and the rest of the workload is described by module relationships. The reduct
process described for module aggregation can be extended to give only demands for the d
when the top level module is executed. Suppose the top level module has just one entry (call i
SYS), and all other modules are accessed via the top level module, as indicated in Figure SX
Reduction R4 gives the demands asYj’(SYS) requests andDj(SYS) service demand.

The print service example can be carried this one extra step to illustrate the above poin
beginning from the aggregated version in Figure SU(b). First we have to identify actual device
the host devices; suppose PrintMan runs on workstation WS1, PrintCon runs on WS2, and
FileServer runs on WS3, and all these workstations have operation times of one microsecon
hardware loadings it is clearer to show the host devices explicitly, as in Figure SY(a). Figure S
reproduces Figure SU(b) except for dropping the prefix AGG in the aggregated module name
showing the host devices.

One thing that is exposed by showing the host devices is that one module may need to
copies for different hosts, that is the copies run on different workstations. The example here
FileSystem module, which is the local interface on each workstation to the distributed file ser
it must run on both WS1 and WS2, and different request counts go to each copy. In Figure S
copies are called FS1 and FS2, and the breakdown of requests is shown. The host devices a
operation times of a microsecond, but the disk and printer have longer operation times, whic
be shown in the next step.

In Figure SY(a) the dotted box includes all the software modules; applying Reduction R4 g
a notional generalized module and entry we can call PrintJob.PrintService (corresponding to
identified in the algorithm for R4), which represents the workload of a single print request. T
algorithm gives the reduced model and device request count parameters shown in Figure S
The last step is to multiply the request counts by the device operation times, which are one
microsecond for the host devices, 100 millisec. for the printer, and 14 millisec for the disk.
gives the demandsDj shown below each device in Figure SY(b).
78

Set to be

includes all
modules

aggregated
TopLevel.SYS

A B CDevices

(a) Module Model with Devices

A B C

AGG.SYS

YC(AGG.SYS)

(b) Aggregated Module

Figure 3.29. Aggregation to Obtain Hardware Demands from a Module Mod-
el. (Figure SX)
79

PrintMan.PrintService

PrintCon.Print

Printer

FS1

File Server

DiskController

Disk

1

3.6 3

7.4

3

0.9

1

1

FS2

PC

202000

2000

6000

1000

2000

64000

All Software Modules are Aggregated

Figure 3.30. Print Service (with Valuek=3) after Reduction R4, with Host De-
vices and Service Times Shown. (Figure SY)

PrintJob.PrintService

Device demands Dj in sec:

WS1 WS2 WS3 PC DC Printer Disk

46400 20800 56160 199200 9360 3 9.36

.046 .208 .056 .199 .009 0.3 0.131

(b)

(a)

[10-6s] [100 ms] [14 ms][10-6s] [10-6s] [10-6s] [10-6s]

1

WS3

WS1

WS2

DC

31,800

2000
80

ds of

3

 the

rse-
ystem,

he

of its
parts,

 is
, while
uests.

sis

ay the
ining
U and

sts. A
rs

s who
.3.5.
From the demands, a queueing model can be constructed at once, following the metho
Chapter H. We will first consider a flow of print requests at a given ratef/sec, and no interference
from other processing (a rather artificial assumption). The capacity is limited to a rate of 3.3
requests per sec by the largest value ofDj, which is at the Printer device (D = 0.3 sec. per request).
The response delay of a print job, as a function off, is shown in Figure SZ, based on a Poisson
request flow and ./M/1 servers. Considering the high variability of the size of print jobs and
work that they cause at the heavily-loaded, dominant devices, this may be a reasonable
approximation.

1.5.3. Introducing Detail

It is also possible to begin the analysis at a coarse level of detail, and refine it later. Coa
level supermodule parameters can be obtained directly by measurements on the entire subs
as described in section 3.4.4, and used for analysis without considering internal details of t
subsystem.

To refine the details of a supermodule into finer-grained modules requires a new study
internals. It is done by making new measurements that distinguish the demands of separate
and request counts between them combined with activity graph analysis for behaviour that
planned but not yet measured. One can also refine the entries of a module or supermodule
keeping the same module level, by estimating the workload demands of different types of req

The only “easy” way to move to fine detail is to keep a memory of an initial detailed analy
which was then aggregated, and to return to it.

1.6. A Complete System Model

To use all this analysis to make performance predictions, one has to represent in some w
rest of the workload of the network and the file server. As before, a simple version of the rema
workload is an additional class or classes that execute user application processing on the CP
generate file server requests. This additional processing would compete with the print reque
second version would add the “other processing” to the workload of the printing service use
themselves.

First consider a complete model with a class of printing users, and a class of other user
do not print. This is similar to the completion of the Reservation System model in Section 2

Figure 3.31. Response Delay of Print Jobs at a Fixed Request Rate, with
No Other Workload. (Figure SZ -- blank, to be done in Matlab)
81

d
be
er user
o they

g to

elay
g

nds to
.

larly
ork

 the
The MSS(Modules) reductionR4 in the previous section and Figure SY has given the workloa
demand parameters of class 1 for printing users. The demand parameters of class 2 must
determined. As we are considering a network environment, we may suppose that each oth
has a workstation and computer independently. Only when they make a file server request, d
compete with the printing users.

The following reasoning will usually give a satisfactory model for “other users” belongin
class 2:

• their workstation time (thinking, computing, access to local workstation disk) is a pure d
Z(2) sec, between file server requests.Z(2) is the time from a reply to one request, to makin
the next. It is almost (but not quite) the same as 1/(file service request rate per user);

• the file service demand parameters are found per request. They include operation dema
the file server CPU (WS3 in our Print Server model), and to the file server disk (or disks)

Another aspect of completing the model is to include demands to other devices, particu
network devices. This is important if the network is a bottleneck. Otherwise it is sufficient to w
out network delays for message sending, and add a delay station that causes a delayZNetto the
sender of a message.

A representative set of parameters are given in Table SZA and performance results for
printing service with different class populations are given in Table SZB.

Table 3: Device Demands for Computing and Printing (Table SZA)

Device
Demands for Class

1

Demands for one
FileRequest by
User in class 2

WS1 0.46 0

WS2 .208 0

WS3 .056 0.015

PC .199 0

DC .009 0.002

Printer .300 0

Disk .131 0.030

Local WS Delay 0 1.0

Total (D) 0.949 .047

Delay (Z) 0 1.0
82

e still
ssed
uired

each
atterns
cution
types

t may
n

very

ution,

el as if
mands
thers

ed and

can
ider a
 a
he
se
Paragraph on the Results TO COME.

1.7. Patterns in Module Architectures

Our goal is to recognize POPs and to react to them, however the real opportunities ar
to come, with concurrency and software resources. At the level of purely linear software discu
so far the opportunities are limited, and are largely concerned with reducing the demands req
for an operation.

A module architecture shows which objects participate in an operation, and how often
intermodule request is made. A pattern may be any subgraph of modules and requests, and p
are distinguished mainly by their depth and breadth. Again we concentrate on sequential exe
within a single process, and on reducing total resource demands by changing patterns. Two
of pattern changes may be used:

• substitution of a pattern that results in lower demands, for a pattern existing in the
architecture. As shown in Figure SVD, the substitute must satisfy the same interface bu
use different lower level modules, which become part of the new architecture. This is a
option when designing with replaceable components.

• aggregation or inlining of a lower module into one that calls it, to eliminate the calling
overhead in both modules. This can be important for a very small module which is called
often.

The decision is governed by the module parameter estimates. To evaluate a substit
compare the entire demandsYi’ (entry) of all the entries of the original pattern to those of the
substitute. The entire demands are computed by applying the R3 reduction for each submod
one was aggregating all the modules used by the entries of the pattern. If all the resource de
are reduced the evaluation clearly indicates using the substitute; if some are reduced and o
increased the factors considered for activity patterns are used here also. A model is construct
solved to determine if the net gain is positive and large enough to warrant the change.

For inlining or aggregation, the results may be tiny or may be quite large. Large gains
be made if the modules provide tiny fine-grained functions and are called many times. Cons
procedure which makesy calls to a second procedure, such that the overhead in each one is
fractionα of the “useful work”; further suppose that the CPU demand of the useful work is t
same in both procedures (call itY). The entire CPU demands for the original and the inlined ca
are:

original:Y(α + 1 +y α) + y Y (α + 1) =Y (1 +y + α + 2y α)

inlined:Y (α + 1 +y)

Table 4: Performance Results for the Printing Service with N1 Printing Users and N2
other Users (Table SZB)
83

-
at-

concur-

ases.
lect or
 there

ce
mes a
from
Ratio = [α + 1 +y] / [1+ y + α + 2y α] ~ 1 / [1 + 2α], for largey

For a deeper calling stack, say ofn similar procedures,

original:Y(α + 1 +y α) (1 +y + ... + yn-2)+ yn-1 Y (α + 1)

inlined:Y (α + 1 +y + y2 + ... +yn-1)

which gives the same asymptotic value of Ratio = 1 / [1 + 2α] for largey. We conclude that the
gain from inlining is dominated by the relationship of calling overhead to useful work, repre
sented byα. The number of calls, controlled byy, affects the total size of the term due to this p
tern but not the fractional improvement.

Richer and more interesting effects for module patterns are seen when the modules can be
rent processes, as will be evident in Chapter P.

1.7.1. Controlling “Bloat”

CPU demand “bloat” occurs as software is maintained and evolved over several rele
New features and allowances for new types of devices or services introduce overheads to se
enable the feature or device. For example each time a new feature affects the program flow
may be a test to see if it is enabled. Deeper class hierarchies introduce additional inheritan
overhead, following pointer chains to find the code to be executed for each method. Someti
new feature is based on a new architectural abstraction that requires on-the-fly translation
existing data structures or command architectures.

MA

MB M1

MC M2

MA

MB M1’

MC M2’ M3’

M4’
(a)

(b)

Figure 3.32. Substituting one Module Pattern for Another. (Figure SVD)
84

hosen
are

ters at
n. A
ll the
f each

very
e, and

 its

t we
f
m has
signers

g by
y
sks,
edule

rts are

in a
ming

. The

oes

have

m of

the
stem.
Often, in adding features, there are many possible ways to proceed. If the redesign is c
only for quick programming it may not be the best for controlling bloat. If performance effects
predicted then an acceptable redesign can be found.

As an example, consider a generalized Printing Service that can manage several prin
once, of different types. Each printer has its own driver, possibly in a different host workstatio
decision is made to keep one PrinterControl module which interleaves the operations for a
printers, and sends messages to their drivers. Now this module must keep track of the state o
printer and handle messages from all of the drivers (indicating ready for more data, “error”
indications, “done”). A layer of software must be added to PrinterControl.Print to decide, for e
message it receives, which printer it is for. The extra decisions, access to the additional stat
the cost of messaging to the Print Driver modules, all contribute to bloat.

Additionally this extended module must also respond to calls from PrintManager, so
interfaces and control are even more complex.

1.8. Software Design Issues within the Linear MSS(Modules) Framework

MSS(Modules) is a performance analysis framework for a broad class of software tha
have calledlinear. It includes all classical sequential programs, and also complex systems o
concurrent processes communicating by RPCs. The availability of concurrency and parallelis
not led to a tide of non-linear software designs, rather the opposite. System and language de
have attempted to deal with concurrency by supporting linear software that combines many
processes, doing one thing at a time.

1.8.1. Potential for Concurrency in Linear Software

Linear software can be structured as a set of several concurrent tasks communicatin
messages, either by RPCs in which the sending task suspends until it receives a reply, or b
asynchronous “hand-over” messages. There is a cost for this partitioning into concurrent ta
which is essentially the computing cost of message handling, the additional overhead to sch
additional tasks, and message delays. These costs are often considerable.

Concurrent processes for the parts of an application have a definite role where the pa
in separate places, by necessity (perhaps due to external interfaces in different places, or
geographic distribution of information), or where there is no distributed operating system (as
network of Workstations or in some small simple real-time kernels). These systems are beco
more common as systems migrate onto networks, and local networks evolve into Intranets
next chapter studies linear versions of these systems as “ideal RPC” systems.

The performance advantages of concurrency within linear software are doubtful. It d
break a large execution into smaller parts, which may allow it to fit into a group of smaller
computers. It permits pipelining, which may have performance advantages if some stages
specialized requirements. And it promotes flexibility of configurations. Overall however the
performance advantages of concurrency lead away from linear software, towards parallelis
various kinds.

There is also a zone of interaction between software design and the capabilities of a
distributed operating system. There is no need to statically allocate the concurrent tasks if
operating system can dispatch them to any idle processor of a “symmetric” multiprocessor sy
85

or can
ot
e has

ley,

d
2.

ftware

89.

m:
ib-

990.

s”,

CP
If static allocation has an advantage it may be in reduced system bus traffic (each process
have its “own” memory) and better cache efficiency. In a symmetric multiprocessor it may n
even be helpful to divide a linear application into concurrent tasks, for if each user or respons
just one task this may provide sufficient concurrency.

1.9. Additional Reading

BIBLIOGRAPHY

[CUS90] C.U. Smith, “Performance Engineering of Software Systems”, Addison-Wes
1990

[OOSE] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard, “Object-Oriente
Software Engineering: A Use Case Driven Approach”, Addison-Wesley Publishing Co., 199

[booth&weicek] Taylor L. Booth and Cheryl A. Wiecek, “Performance Abstract Data
Types as a Tool in Software Performance Analysis and Design”, IEEE Transactions on So
Engineering, pp. 138--151, March 1980, v6, n.2.

[pearls1,] J. Bentley, “Programming Pearls”, Addison-Wesley Publishing Company, 19

HOPEsem95] C. Cowan and H. Lutfiyya, “Formal Semantics for Expressing Optimis
the Meaning of HOPE”, in Proc. of the 14th Annual ACM Symposium on Principles of Distr
uted Computing”, Ottawa, Canada, pp. 164-173, August, 1995.

[bubenik] R. Bubenik and W. Zwaenepoel, “Semantics of Optimistic Computation”, in
Proc. of the 10th International Conference on Distributed Computing Systems, pp. 20-27, 1

[stromyemini] R.E. Strom and S. Yemini, “Optimistic Recovery in Distributed System
ACM Transactions on Computer Systems, pp. 204-226, v3, n3, August, 1985.

[TCPspeed89] D.D. Clark, V. Jacobson, J. Romkey and H. Salwen, “An Analysis of T
Processing Overhead”, IEEE Communications Magazine, v27, n6, pp. 23-29, June 1989.
86

ibed
ftware
ntrol.

vers
mmed
 are
drive,
tion

in one
ted by
essage
s.

data
 design,
n a
DRAFT DRAFT DRAFT DRAFT
Performance - Oriented Patterns in Software

Design (A multi-level service approach)

C. M. Woodside

Dept. of Systems and Computer Engineering

Carleton University, Ottawa K1S 5B6

copyright 1996, 1997 C. M. Woodside

Draft of October 18, 2001

Chapter 4. Distributed Linear Software (L)

4.1. Introduction

Much of the software written for distributed systems is linear, like the software descr
in Chapters 2 and 3, or is nearly linear. It is linear because it is adapted from sequential so
written for a single system, or because it is easier to write software with a single thread of co

The most common computing environment is now a network with one or several ser
for the file system, email, web pages, printers and so on. Even a simple application progra
for a single PC will in fact use several other nodes. In these distributed environments there
nodes connected by a network; each node is a distinct computer, with I/O devices (hard disk
CD-ROM, video) and processor (possibly more than one). The “environment” that an applica
designer must consider is the set of nodes that will run the application, and these may be all
place connected by a single LAN such as an office ethernet, or may be scattered and connec
routers, gateways, and the Internet. In most of these environments every node can send a m
to every other node, although the speed and latency may not be the same on all these path

Examples of distributed applications that use linear software are in office computing,
base access, transaction processing, data warehousing, decision support, computer aided
and multimedia conferencing. Some examples match two or more of these categories, as i
decision support system accessing one or more databases.
87

ance
 is
till by

e in
tion of
l
age
wever
vily on
in the

re the
ds, the
 The

nt will
he
red in

):

le.

ntrol
ata
 levels;
ind a

odes.
uest
ctual

sing any
ry

s the
the
ages
e, and
Compared to a single computer, a distributed environment poses additional perform
challenges for linear software: networks introduce additional delays, and device congestion
harder to track and understand. Thus a large network application may be brought to a stands
one overloaded server, or a single slow network link.

The performance analysis of a given configuration of linear software is exactly the sam
a distributed environment, as for a single node. Provided the software satisfies the assump
linearity, that is there is no significant parallel execution within a single response, no logica
resources such as lock that cause significant delays, then as in Chapter H, the key to aver
performance values is in the total demand on each device, within each class of response. Ho
there is a new factor in finding the demands, because the CPU demands usually depend hea
the interprocessor communications overhead, and not just on the payload activities captured
activity graphs and module demands.

This chapter considers the design factors for linear/distributed software, in cases whe
target environment is fully defined. That is, the set of nodes, their storage devices and spee
existing (competing) workloads, and the communications infrastructure are all determined.
software is to be designed to fit into this system. A combination of a design in modules, an
allocation of modules to tasks and tasks to processors, and a defined execution environme
be called aconfiguration; we will mostly consider a design intended for a single configuration. T
more general problem of scalable designs intended for a range of configurations is conside
section L.?

We will particularly consider two architectural styles (these are control architectures

• amulti-level service style based on ideal Remote Procedure Calls (RPCs),

• apiped style based on ideal data and control handovers.

It will be apparent that the piped style is potentially more efficient, but it is often too inflexib

In defining architectures the notion of level or layer often describes more than the co
aspect considered here. There may be levels, associated with levels of abstraction, as in d
communications protocols, but nonetheless data packets may be piped through a series of
the control architecture is piped. When the originating level retains a degree of control we f
hybrid architecture we will call “forwarding”.

4.2. Multi-level Linear/Distributed Software

These systems begin from a basic module architecture, and extend it across multiple n
Calls and returns to entries that must cross from one node to another require sending a req
message and returning a result by a reply message, which we will call an “ideal RPC”. The a
message handling may be via an RPC subsystem or by a pair of asynchronous messages, u
protocol. The linearity assumption implies that the server process is fully re-entrant, so eve
request is given its own thread or copy of the server.

The value of Remote Procedure Calls (RPCs) is that they conceal the complexity of
distributed operation. An RPC service is part of a set of services called midware, which hide
complexity of remote operation, and glues a procedure call at the RPC client together with
remote procedure, which acts as a server. It transforms the arguments of the call into mess
across a network, takes care of finding the address of the server, returns the reply messag
88

C is
 are

t.
dardize

lude
d

sk is
aving a
nue
nient to

hree

ating
(with

e

ervice
n into
ingle

ean

equest

tion,

und
and
omplex

the

er to
finally returns from the local procedure call at the client. The execution sequence for an RP
shown as an activity graph in Figure LA. In an ideal RPC the activities labelled PrepareRcv
combined with the following Received activities, removing the (relatively small) amount of
parallel activity, and making the thread of execution fully sequential.

RPCs are useful for adapting sequential legacy software to a distributed environmen
Perhaps for the same reason they are the basis of a number of attempts to describe and stan
“open distributed systems” in which software from many suppliers would interact. These inc
DCE (Distributed computing Environment), RM-ODP (Reference Model for Open Distribute
Processing), and TINA (Telecommunications Information Network Architecture). In the
terminology of Open Distributed Processing or TINA, what we call a processor is a node, a ta
a capsule, a module is an object, and an entry is a method. There are some advantages in h
different term for the performance model of an entity, than for the entity itself, so we will conti
to use the names task, thread, module and entry in the MSS model. It is sometimes conve
use “node” for processor, however.

The simplest building-blocks for distributed system behaviour with RPCs are these t
elementary behaviour templates, illustrated in Figures LOA and LA:

• a client loop as in Figure LOA(a) is executed by a user interface task or other load-cre
task, once per system response. The loop may include a delay for user to think and type
a delay we will callZ), and an activityDoResponsewhich includes all the demands for servic
that make up a system response. ActivityDoResponse may be broken down into a more
detailed graph to describe the activities of the User task.

• a sequential server loop as in Figure LOA(b) waits to receive a request, executes RPC
overhead, executes an activity S, and returns a reply. S includes all the demands for s
needed to provide the designated service by the server, and may also be broken dow
more detail. This loop describes the simplest form of server, offering just one service (s
entry), and with just one thread and one phase.

• the main activity A contains requests to RPC servers. These are identified with their m
request counts in the activity parameters.

• a service request generates some resource loading for RPC client overhead, and a r
to the server.

• an RPC template as in Figure LA describes a complete blocking request-reply interac
with the service activityServe provided between the request and the reply.

Together these templates are used to build Client-Server Systems.

Client-Server Systems

Many information systems like the workflow example in Chapter 1 are organized aro
client tasks running in user workstations on desktops, to run applications, format requests
display results, and server tasks such as central database servers to supply the data. More c
systems with a multi-tiered architecture have additional layers of servers in the middle.

The client and server software have the generic loop templates in Figure LOA, in which
client activityDoResponse makes on average two requests to the server, with each request
following the ideal RPC template in Figure LA. If we use the methods of the previous chapt
create a module model from these activity graph templates we get the structure shown in
89

MarshallRequest

Send

PrepareRcv Receive

UnMarshall

S: Serve

MarshallReply

UnMarshall

PrepareRcv

Receive

Send

Figure 4.1. The RPC Behaviour Template. The real RPC includes the two
PrepareRcv activities as shown, while the Idealized RPC moves their work-

load into the following Receive activities. (Figure LA)

Call RPC

(Client
module C)

(Client
RPC-S
module)

(Server
RPC-R
module)

(Server
module S)

(continue in C)

(loop back to wait)
90

igure

d RPC-
ndicate
e shape
Figure LOD, in which workload parameter values have also been inserted. For each module F
LOD shows the aggregate workload parameters including requests to other modules. RPC
overhead modules have also been shown, RPC-S for the sender of the request (the client) an
R for the server. There are dashed boxes around the entire Client and Server modules to i
the aggregations, which are parallelogram-shaped rather than rectangular because this is th
we will use to indicate concurrent tasks.

Think

C: DoResponse

RPC-R:

S: Serve

RPC-R: Deliver Output

Loop forever

User “think” time of Z sec.

Generalized activity by module C which
includes service request counts for RPC servers

Loop forever

Generalized activity by module S which
includes all execution and requests for
other services

Accept Input

(a) “Client Loop” Behaviour Template (Activity Graph)

(b) “Sequential Server Loop” Behaviour Template (Activity Graph)

Figure 4.2. Figure LOA

Input activities by RPC-R module

Output activities by RPC-R module
91

gated

he
receive.
s are:

think”
ost

e

oo
Let us consider the effects of distribution on a simple centralized application. In the
centralized version the Client Function and Service modules run together and can be aggre
into a single workload. Using the methods of the last section, we obtain demands:

With many users the one CPU saturates the system at 1/2.7 = ... responses/sec.

The client-server version shown in Figure LOD places the user interface module in t
desktop, and adds RPC overhead functions and costs of 0.1 sec per call to both send and
Figure LOE redraws this model showing only the tasks and devices. Now the device demand

Because there is one client workstation for each user the CProc demands are equivalent to “
times. Figure LOF shows the equivalent queueing network model, in which saturation is alm
unchanged, because not enough functionality was moved to the client, and SProc is still th
bottleneck with demand of 2.5 sec.

Further improvement could be obtained by moving additional functions to the client
workstation, making it a “thick” client. The trick is to move a submodule of MServ that is not t
tightly coupled to the rest, to avoid introducing heavy communications costs.

Device (one CPU) SDisk User (think)

DemandDi(sec/resp) 2.70 0.51 10

Device CProc
(Client)

SProc
(Server)

SDisk User (think)

DemandDi(sec/resp) 0.6 2.5 0.510 10

Aggregate
 [2.7]

Application

(Host) 34

SProc SDisk
[0.015]SDisk

Interface
Module
 [0.4]

2

Service
Module
 [1.15]

17

Figure 4.3. Centralized Version of Application. (Figure LOC)
92

nts
Performance Predictions

A queueing solution of the original application and the client-server version for 5 clie
shows these results, confirming that not much has improved:

Table 5: Performance of Client-Server Version

Original Client-Server

User throughput 0.303/sec

User response time 6.5 sec.

SProc utilization

SDisk utilization

Client Function Module MC

Z = 10 sec
[0.4 sec/response]

CProc

RPC-S
[0.1s/request]

Aggregate
for Client

SProc
Service Module MServ

[1.15s/request]

SDisk

Aggregate
for Server

2

1

1

17

Figure 4.4. Client-Server Version of Application. (Figure LOD)

RPC-R
[0.1sec/request]

(Host)

(Host)

[0.01s]
93

to
Client

Z = 10 sec
D = 0.6 sec

(Host)

CProc

Client Workstation
Processors

Server

D = 1.25 sec

(Host) 17

SProc
SDisk

D = 0.015

Server
Processor

2

Figure 4.5. Layered Service Model for Client-Server Example, with Parameters Aggregated
the Task Level. (Fig LOE)

Server Disk

Clients C
Infinite Server

(User Think + Workstation Execution)

C

SProc SDisk

Figure 4.6. Queueing Model for an Idealized Simple Client Example, with an Infi-
nite-threaded Server and Sequential Execution. (Fig. LOF)
94

e
tware
quests
e sums
t from
s and

ages
es.
puters,
PC
nd a
s the
ssors
R and
st and
nnect
f 1.5

uest
e an
 the

s
nted.

 if
-shared

? Is the
itself
inter
er

to
4.3. The Layered Modelling Viewpoint (L3)

In layered modelling the software modules or tasks are viewed as servers, and thes
servers’ service time is analyzed as well as the hardware delays. In linear software the sof
servers are all infinite servers and have no queues of requests waiting to execute, although re
may be queueing for the hardware to execute them. The module and task service times are th
of the device response times that make up their execution. Nonetheless the shift of viewpoin
hardware to software is a great help to focusing on the connection between software module
performance.

Layered Model of the Print Service

The print server software introduced in Figure SM will illustrate the uses and advant
of layered modelling in greater depth. In Figure SU the system was aggregated into modul
Figure LBA describes a deployment of these same modules as tasks on four different com
plus the User nodes. The contents of these tasks are shown again in Figure LB so that R
overhead modules (RPC-R and RPC-S) and task switching modules (TS) can be added, a
hypothetical module model for the local applications run by the users is included. This give
layered model and aggregated parameters of Figure LC. In Figure LC the embedded proce
PCProc and DCProc have been added for the printer controller and disk controller. The RPC-
RPC-S modules were allocated 20 ms of host execution per invocation (including the reque
the reply), and the TS modules were allocated 5 ms per invocation. The arrows labelled (h) co
each task to its host device. The parameter “Z = 1500” in the User task indicates a think time o
sec per execution cycle of the User task.

4.3.1. Queueing Model of the Print Server (L3.1)

If we assume ideal RPC interaction as in Figure LA then the execution of one print req
is entirely sequential, as it moves from task to task and from node to node. We may imagin
execution token representing work done for the User task, migrating across the network to
remote procedure and returning after.

The demandsDi of the devices in the queue model are exactly the total demand value
calculated in Figure SY for the print service, apart from the “User” task which was not represe
The values in Figure SY assumed that all processors had an operation time of 10-6 sec., as we will
do here.

A queueing network model can be constructed based on the mean demands alone,
suitable assumptions on scheduling disciplines and service times are made (e.g. processor
nodes, exponential distributions at printer and disk), and it gives the response times and
throughputs shown in Figure LDF.

The weakness of the queueing model is revealed on closer examination:

• It assumes that PCProc and the Printer can be processing separate jobs. Is that possible
printer-controller PCProc really a separate device? Can it even operate while the printer
is printing, or does it wait for the printer and then process the next page? If it waits then Pr
and PCProc should perhaps be modelled as one server with demand 0.499, and a low
maximum throughput! If there is overlap, it is probably only after the first page begins
print.
95

r
tion in
print
ile it

odule
• If we wish to expand capacity with an additional printer, can we use one PrintManage
sending requests to two PrinterControl processes? Or do we need some kind of duplica
PrintManager also? This could depend on whether PrintManager waits for the end of the
job or not; in the queueing model it is assumed to go on at once to the next job, even wh
is in the middle of storing the file on disk in entry MI.Store.

Our first step to understanding some of these questions is to analyze the software m
responses within the queueing model.

PrintManager

File Access FA1

Printer Control

File Access FA2

Embedded Controller

Printer

Printer Node

File Server

Disk Controller

Disk

File Server Node

User
User Nodes

Node A

Node B

Figure 4.7. Tasks Involved in Print Server Operation (Figure LBA)
96

[100,000]

[Z=1500000]

PrintMan.PrintService

[31840]

N Users

User
Workstations

FA1
[2025]

Node A

FA2
[2025]

Node A

PrintCon.Print
[202, 145]

ECCtl
[2020]

EC Data
[64020] PC Proc File Server

[6020]
FSNode

Printer
Disk Controller

DC Proc

Disk

1

1

3.6 3

3

0.9

0.9

1

7.4

Figure 4.9. Print Server: Concurrent Task Model (including communica-
tions overheads) (all times inµsec). (Figure LC)

(h)

(h)

Node B

(h)

(h) (h)

(h)

(h)

(h)

1

[1000]

[100,m]

[14,m]
97

r the

.

rries
and a
4.3.2. Task Service Times in the Print Server (L.3.2)

To understand the performance aspects of individual software tasks we will conside
service timeX(e) of entrye (the time to execute the entry and all nested operations), and the
response timeR(e) of entrye. These quantities are not usually a product of queueing network
analysis, since the entry structure is aggregated out in computing total demands. Define:

• X(e) = service time of entrye (an entry of some task)

From the earlier analysis of an entry, we have defined the parameters:

• Dhost(e)= mean service demand made to its host device, per invocation of entrye, in seconds.

• Yd(e)= mean request count for service from entryd, per invocation of entrye, (this is the same
definition as in the previous chapter, applied to a task entry instead of a module entry)

When entryemakes a request to entryd, the blocking delay at entrye is Rd(e), read as “response
time ofd, called from e”:

• Rd(e) = mean total delay for one request from entrye to entryd.

In the same way the actual time it takes the host to provideDhost(e) seconds of service may be
longer than D(e) because of contention delays, so we will denote it byR(host|e):

• R(host|e) = mean total delay for the host device, including queueing, to provideDhost(e)
seconds of service to entrye. This may comprise several separate service times.

A device other than the host is treated as a “task”.

Then it is easy to see that the service time of an entry is the sum of the operations it ca
out, in two parts: a term for internal delays and operations done directly by the host device,
sum for delay due to other servers:

User Workstations

Node A

Node B

FS Node

PC Proc

Printer

Disk

1.5 + 0.1 = 1.6 sec.

0.046 s

Figure 4.10. Print Server: Queueing Model Demands in
sec/response. (Figure LD)

CD Proc

0.208

0.056

0.199

0.009

0.3

0.131
98

Figure 4.11. Print Server: Queueing Model (Results for Performance seen by Users)
(Figure LDF)

5 10

N

Ruser

Response
Time

1

ΣD = 0.949

-1.6 + 0.3N

5 10

N

No. of active users

No. of active users

Throughput

Print jobs/sec

3

2

1

f 1
Dmax

= 3.33

N
Z+ΣD

= N
2.539
99

Figure 4.8. Print Server Partitioned into Concurrent
Tasks (Case withk=3 pages per job). (Figure LB)

PrintManager.PrintService

MI.StoreMI.Check MI.Default MI.Log

1

Printer Control.Print

1 1
0.7 MI (MgrInfo) module

3 2.7 1

1

FileAccess

3

PD.Setup PD.Data

3

EC.Ctl EC.Data

File Server

1

Disk Controller

1

Disk

[120000]

[25000]

[42000] [17000]

[10000] [5000] [4000] [2000]

[2000]

[6000]

[1000]

[2000] [6000]

TS

1

1

TS

1

TS

1

FileAccess
FA2

TS

1
Printer

[1500 msec]

Local Application

RPC-R

[100,000]

Users

PrintManager

PrinterControl

PrinterDiver

FA1

RPC-S

Think / Type

RPC-S

RPC-R

RPC-S

RPC-S RPC-S

RPC-RRPC-R

RPC-S

RPC-R

0.9

1

1 0.9
100

ther the
nter or
sor) or

ch we
ures:

load
. If we

 of
tions

Mode
tions
t co-

 or
In an ideal-RPC system with no logical resource limitsR(host|e)can be found for allhost,
e from a queueing model, and thenX(e) andRd(e) can be found recursively for all the calls and
entries. The queueing model requires some assumptions about the system, notably that ei
services times at a given host must be the same for all entries (for FIFO host such as a pri
disk) or the host service discipline must be processor-sharing (often acceptable for a proces
infinite-server. ThenR(host|e) is proportional to the demand athost from entrye, per response
(which is .

The queueing network model in this case has a single chain with many classes, whi
will aggregate and treat initially as a single class. It has parameters and performance meas

 = total operation requests to devicehost, per response

Dhost = total service demand devicehost, per response

Rhost = total time a token spends at devicehost per response.

Then:

4.4. Distributing the Functions in Multi-level Systems (L.4)

In multi-level linear software, the placement of functions affects the balance of work
at nodes, the amount of communications overhead at node CPUs, and the network loading
regard the module model as a graph with module as nodes and calls as arcs, a placement
functions is a partitioning of the graph into parts with one part for each node. A communica
cost is incurred where an arc crosses a partition boundary.

It is also important to determine file placement, and we can include it within function
placement by identifying the file access module for the data separately, and placing it on the
that also has the file stored. Then the remote file access overhead becomes a communica
overhead cost between the module using the data and the node that stores it, if they are no
located.

Let m be an index that runs over the module names in the system, andn be an index that
runs over the node names, and define:

H(m1,m2) = the communications overhead cpu demand added to modulem1 if modulem2
is on a different node,

λ(m1,m2) = 1 if modulesm1 andm2 are on different nodes

 = 0 otherwise

a(m,n) = 1 if modulem is placed on noden

= 0 otherwise.

Each module occurs just once. Then the problem of maximizing the saturation throughput,
minimizing the saturation response time, boils down to choosing the placementa to minimize the
largestDn:

X e() Z e() R host e() Yd e()Rd e()
d
∑+ +=

Y'ReDhost e()

Y'host

R host e() RhostDhost e()Y'e Dhost⁄=
101

. It is

 of a
e next
min max Dn
{a} n

(Stone & Bokhari)

MULTIFIT-COM here)

4.5. Piped Linear/Distributed Software
Piped software does not conform to the module model developed in the last chapter

more primitive, and is based directly on activity graph model. The sequence of activities is
aggregated into modules, with one module for each stage in the pipeline. At the completion
module, instead of returning its result, the module sends it in an asynchronous message to th
stage.

org -- quick descrpn

-- simple example *

-- allocation Bokhari

-- expensive handover (files or filters)

-- compare sequence to hierarchical structure, master slave

-- compare to call all way down and return

-- derive forwarding.
102

Draft: October 18, 2001

n and
odels
Performance - Oriented Patterns in Software
Design (A multi-level service approach)

C. M. Woodside

Dept. of Systems and Computer Engineering

Carleton University, Ottawa K1S 5B6

copyright 1996 C. M. Woodside

(Draft version produced for classroom use, October 1996)

Chapter 1. The Goals of Performance Engineering

Chapter 2. Performance Delivered by the Hardware

Chapter 3. Tracing Performance to Software Modules and
Behaviour

Chapter 4. Concurrent and Resource-Limited Servers:
MSS(Resources) (C)

Chapter 5. P: Patterns

Using the small-scale patterns of the last chapter for internal task resources, executio
interaction, we can build and analyze performance models. The MSS(Res) framework of m
describes a wide variety of distributed service systems for business computing, industrial
automation, communications systems management, etc.
1

Draft: October 18, 2001

rrent
will be

which

seen

veral
cture
ssing.

each
ns.

aw’s
peline

iled
erver,
e basic
ts
n to

nager,

sks in

ayer

th the
When we begin to analyze model results we find that certain arrangements of concu
tasks recur and have charateristic performance attributes. These architectural level patterns
included in our repertoire of “performance-oriented patterns”. This chapter considers four
architectural patterns which are extremely common in existing and proposed designs, and
are seen in classification of software architectures such as the one by Shaw [??].

• The “Tower” pattern is a layered set of servers showing vertical separation of functions,
in descriptions of client-server and transaction processing systems. This is a simplified
version of Shaw’s “Client-Server” architecture.

• The “Lattice” pattern is a set of cross-linked Towers, representing layered service with se
servers at each layer. This is a more general version of Shaw’s “Client-Server” archite
and could represent a three-tier client-server system or a distributed transaction proce

• The “Peer-to-Peer” is a model for symmetrical servers which exchange requests with
other. It contains a transformation which produces a special case of the Lattice Patter

• The “Flow” pattern represent pipelined processing. This is very common and is one of Sh
categories. We consider also extended versions of this pattern with servers shared by pi
tasks.

Further architectural patterns which incorporate fork-join behaviour patterns will be
studied in a later chapter.

 5.1. The “Tower” Pattern

The name “tower” will be applied to a set of layered servers, which are, as it were, p
one on top of the other to make a tower of tasks. In each of the middle layers there is just one s
while at the top there may be many users, and at the bottom there may be many servers. Th
pattern is shown in Figure PA, with a set ofN1 user tasks, in the top layer, layer 1, making reques
to a single server in layer 2, which in turn makes requests to a single server in layer 3, dow
where layerL-1 makes requests toNL servers in layerL. We have already seen that a database
system may have layers like this, with user tasks running on desktops, with a Transaction Ma
a Data Manager, and a File Server, and with a set of disks at the bottom.

The Tower pattern has the usual workload parameters, which are the same for each ta
a given level. They will each be labelled with subscripts for the levell, counting down from the
user tasks at the top:

• there areNl tasks (assumed symmetrical) at levell, identified as “Tl”.

• The task at levell has ml threads, froml = 2 toL-1.

• The tasks at the bottom are single threaded.

• Each task at levell has an average host demand ofDl sec, and makes an average ofyl requests
to each server at the next lower level.

• As a result each task at levell is invoked on averagevl times per user task cycle, wherev1 =
1 andvl = y1 y2... yl-1, l = 2, 3.....

• If f is the total rate of requests from the user level, the invocation rate of each task at ll
is fl = vl f.

• TheN1 user tasks at the top are single threaded and execute in cycles. A cycle begins wi
2

Draft: October 18, 2001

each

ource-
effect

erver
bution
f a

sk
s

user “thinking” forZseconds, then making a request which the task executes. The end of
cycle of each user task begins the next cycle, with a cycle time ofX1, including the delayZ.
The user response time isX1 - Z.

• the total response rate over all user tasks,f responses per second, is given byf = N1/X1.

A software bottleneck is a serious concern for this pattern. It may occur where a res
constrained server makes blocking requests to a lower-level service, thread, or resource. The
is stronger where there are more lower-level servers in the fan-out, but just one lower-level s
plus the constrained task’s own processor is enough. As well as thread resources, the distri
of host demands and other requests over the levels determines the severity and location o
bottleneck.

Task saturation is indicated by utilization, the fraction of time the task is busy. The ta
source time, or the read sevice time ofml>1, is Xl and includes blocked time waiting for request
to lower server to complete. At the bottom levelL the tasks only have host execution, soXL = DL.
We will consider two kinds of utilization:

• host utilization per task at levell is HUl = flDl = fvlDl,

• task utilization at levell is defined per thread (if there is more than one), giving

Ul = f l Xl / ml = f vl Xl /ml, . In this case saturation is indicated byUl approachingml.

UsersLevel l=1

Level 2

Level 3

Level 4

Level 5

T2

T3

T4

T5-1 T5-2 T5-3

N1 Users
f requests/sec (total)

1 server
m2 threads

1 server
m3 threads

1 server
m4 threads

NL=3 servers
1 thread each

FIGURE 3. Tower Pattern with Five Levels (Figure PA)

l 2≥
3

Draft: October 18, 2001

s at

s

 three
r its
before
e; T2

mum

e of a

lower-

urces

re is

es up,
• task utilization of each user task isU1 = f X1 / N1, since the utilization is shared among the
N1 user tasks,

• task utilization of a task at levelL is UL = f vL XL, since they are single-threaded

Basic Case: Tower1

Let us begin with Tower1 as shown in Figure PA. It has five levels, with 10 user task
level 1, then three middle levels with single-threaded servers T2, T3, T4, each with its own
processor, and finally three identical bottom-level servers T5_1, T5_2, T5_3. Each server i
invoked once per response and has one unit of execution demand (vl = 1,Dl =1). When this system
executes, the service time of T4 is four units, one unit for itself and one unit for each of the
bottom-level servers. T3 adds one unit for itself, for a total of five, and T2 takes six units fo
task service time. Because the tasks are single-threaded, T2 must finish with one response
it starts the next. The lower level tasks never have more than one request to deal with at a tim
effectively sequentializes the entire system. The T2 service time of six units defines the maxi
throughput capability as one response every six units, orf = .166, approximately. At this maximum
throughput, each processor is used at only one-sixth of its capacity. This is an extreme cas
software bottleneck.

What this example will show is that

• when any resource is saturated, all finite higher-level resources are saturated too, while
level resources are not,

• bottleneck relief must include the saturated resource, but may have to include other reso
too, to get full potential value.

• bottleneck relief will be provided in these examples by multi-threading of tasks, and the
a rule of thumb for how many are needed,

• when there is contention at a resource, its service time increases when throughput go
making it difficult to predict the limits from light-traffic measures.
4

Draft: October 18, 2001

erent

 The
est

gher
 the
cause
here is
ervice

lly

 see

st be
to 4.

at and
on a
task,
d has

neck
.

also
, we

ugh,
More
e at
reads
also
Figure PB shows the task resource saturation at different levels in the system, for diff
throughputs up to the maximum. At the lower values, the users have a delay between the
completion of one request and starting a new one, while at the highest value there is none.
device utilizations are not shown but they are numerically equal to the throughputs. The low
curve is for a long user “think time” which gives a low total request rate; the second is for a
moderate think time giving a moderate rate. Notice how the task utilizations build up at the hi
levels, while the device utilizations are the same over the levels. Blocking delays pile up at
higher levels and cause longer task service times, which reflect in higher task utilizations. Be
T2 has a single thread, there can only be one active response in the system below it. Since t
no message queueing at levels 3 to 5, the way the delay piles up is very simple. Each task’s s
time X is the sum of its own host demandD and the service times of the tasks below it; task
utilization is proportional toX. Therefore, a server below a single threaded task cannot be fu
utilized; some of the time it must be waiting for the next request.

Even though this is a very oversimplified example, it is worth understanding. We can
that:

• the bottleneck at level 2 is due to it being single threaded; for higher throughput we mu
able to process several requests at once, which implies multi-threading at levels 2 down
On the other hand, threads in level 5 would do no good as these tasks do not block.

• if we cannot increase the threading levels then the system will continue to be sequential
below level 2. We could get equivalent or better performance by running all the tasks
single processor at and below level 2. It would be even better to merge them into a single
because it would reduce demand for intertask communications overhead! (This overhea
not been separated out here, but is certainly present.)

• the first improvement would be to introduce multiple threads to level 2; then the bottle
would move down to level 3. Second, multi-thread level 3, and it would move to level 4
Finally with multiple threads at level 4, the bottleneck should move down to level 5 and
to the devices of all levels. Because the heaviest device utilization in Figure PB(d) is 1/6
can in principle search for a sixfold increase in throughput, when we introduce multiple
threads. A sixfold increase would makef = 1.

• How many threads to introduce? If one only introduces them in level 2, two threads is eno
because one can be executing while the second one is blocked while T3 executes for it.
would just have to wait for T3 to begin serving them. A similar argument could be mad
level 3, but for level 4 (because there are three servers at the next level down), more th
are useful. But then, if one increases the number at level 4 it will pay off to increase them

TABLE 3. Performance of Tower1 Shown in Figure PA (Figures are for each task at levell) (Total
Throughput f = 0.166 requests/sec) (Figure PB)

Level l
Task Utilization

Ul

Task Service
TimesXl

Host Utilization
HUl

1 (Users) 1.0 60 0.166

2 1.0 6 0.166

3 0.833 5 0.166

4 0.666 4 0.166

5 0.166 1 0.166
5

Draft: October 18, 2001

level
 avoid
sk is
, the
.

evel
which

ng at
s
 the

nd the
ading

vel

efit,
n the
 the
y the

mple
reads,
ber of

 more
ce of
mands
at the higher levels.

Thread Rule of Thumb #1

• A simple rule of thumb when (as here) there is no phase-2 work, is that the threads at a
should be the sum of the threads in all the servers at the next level down, plus one, to
idle time on a task due to blocking. On the other hand if for any reason a higher level ta
constrained in its number of threads, lower level tasks need not have more. For level 1
N1 user tasks are treated as threads, so the most threads we expect to be useful is 10

If the rule of thumb is applied to Tower 1 it says level 5 has 3 tasks of one thread, so l
4 requires 4 threads, level 3 requires 5, and level 2 requires 6. Level 1 has 10 users each of
is constrained to be a single thread. We will focus on the levels 2 to 4, which have (m2, m3, m4) =
(6, 5, 4).

Multi-threading

Figure PC shows the results when one introduces multithreading level by level, starti
the top at level 2. The rule of thumb is used to determineml to be one more than the sum of value
for the next level down. The figure shows the mean number of busy threads in part (a), and
relative saturation of thread resources (mean busy threads over total threads) in part (b), a
mean task service time in part (c). Look first at the values at the right side of the table, as thre
is introduced gradually:

• (m2, m3, m4) = (2,1,1) and throughput 0.20/sec;

• (3, 2, 1), and throughput 0.22/sec;

• (6, 5, 4) and throughput 0.47/sec.

The big payoff really comes with threads in level 4, although providing threads only at le
4 would have no effect at all!

The rule of thumb may underestimate the number of threads that can provide a ben
basically because threads in a server may compete with each other for the next server dow
tower (which could not happen when there was only one). It is really necessary to evaluate
effect of threading. Higher numbers of threads give some additional improvement, indicated b
other curves in the Figure:

• (m2, m3, m4) = (7, 6, 5) andf = 0.55/sec,

• (8, 7, 6) and throughput 0.58/sec,

• (9, 8, 7), and throughput 0.62/sec,

• (10, 10, 10) and throughput 0.65/sec.

• () 0.65/sec.

This pattern frequently underperforms, compared to expectations. Why can this exa
not exceed 0.65 responses/sec even if the users are flooding it with input, there are infinite th
and each task separately can handle 1.0/sec.? The answer lies in (1) the relatively small num
user tasks, just 10, compared to the amount of work for each response (7 units). Even with
processors, we could never exceed 10/7=1.42 responses/sec. and (2) in random interferen
requests, due to the variability in the execution demands. For these evaluations the host de

∞ ∞ ∞,,
6

Draft: October 18, 2001

ere
e per
half of

ut for

 f =

s and
elf-
ge
were random and exponentially distributed, which is higher variability than is found in some
applications, but lower than others. It makes a curious trade-off. With deterministic times th
would be no improvement above the rule-of-thumb values (6, 5, 4), at which a full 1.0 respons
second is obtained. Random interference throttles back the capacity at (6,5,4) to less than
that, but then allows additional threads to regain part of the difference.

Only a model can predict the balance of these factors. For example,

• if the number of users is increased to 25, and variability is kept the same, the throughp
infinite threads goes up but only to 0.83/sec... (PDM)

• if the variability of execution times is reduced, so its coefficient of variation is 0.5, then
... (PDN)

Effect of Variability in Execution Times

High-variance execution and communication behaviour has been observed in network
in execution statistics and has quite serious performance effects. [refs] High variance or “S
similarity” was first observed in network traffic when it tends to nullify the advantages of lar

TABLE 4. Multi-threaded Tasks in Tower 1: Throughput, Task Saturations and Other
Measures. (Figure PC)

Threading Level Cases, defined by (m2, m3, m4)

() (10,10,10) (9,8,7) (8,7,6) (7,6,5) (6,5,4) (3,2,1) (2,1,1)

Through
put f 0.65 0.65 0.62 0.58 0.55 0.47496 0.223521 0.200347

Level l (a) Mean Busy Threads = Task Utilization (Ul)

1 10 10 10 10 10 10 10 10

2 9.34 9.35 8.8 7.95 7 5.51 2.90 .96

3 7.8 7.8 7 6.2 5.36 3.89 1.64 1

4 6.24 6.22 5.4 4.7 4 2.75 0.89 0.8

5 0.65 0.65 0.62 0.59 0.55 0.47 0.22 0.2

Level l (b) Task Utilization per Thread (Ul/ml)

1 1 1 1 1 1 1 1

2 0.94 0.98 0.993 1 0.92 0.97 0.98

3 0.78 0.88 0.89 0.89 0.78 0.82 1

4 0.62 0.77 0.78 0.8 0.69 0.89 0.8

5 0.65 0.62 0.59 0.55 0.47 0.22 0.2

Level l (c) Task Thread Service Times (Xl)

1 15.38 15.38 16.13 17.24 18.18 21.05 44.74 49.91

2 14.37 14.38 14.19 13.71 12.73 11.60 12.98 9.77

3 12 12 11.29 10.69 9.75 8.19 7.32 4.99

4 9.6 9.57 8.71 8.10 7.27 5.78 4 3.99

5 1 1 1 1 1 1 1 1

∞ ∞, ∞,
7

Draft: October 18, 2001

ntion
ck by

ds of

hread

f the

like
one,
ieving
that
ime is

ce
 which
 single
tion

n in
d has

4 are
-).

ve that
ds on
scale and multiplexing of traffic. High variance in software execution times increases conte
delays and reduces average throughput. However some of that reduction can be gained ba
exploiting multi threading.

Consider Tower 1 with rule-of-thumb thread levels of (6, 5, 4), mean service deman
1.0 units and execution-time standard deviation of 0 (deterministic), 1.0 (exponential
distribution), and 10 (hyper-exponential), and then consider the gain obtained by making the t
units infinite.

In these results we see the interesting fact that higher variability at = 10 reduces
throughput dramatically and increased thread levels restore only a fraction - about a third - o
lost throughput. User response time is even more dramatically affected.

Because of the complexity of the interactions even in a relatively trivial architecture
Tower 1, a model is essential for determining the risk posed by variability. Thread levels al
unfortunately, do not solve the problem and restore the capacity. Another mechanism for ach
improvements is through priority scheculing, essentially by reducing the priority of threads
have executed for a long time. With high-variance jobs a thread that has already had a long t
more likely to need yet more, so they reveal themselves. Unfortunately this kind of dynamic
priority scheduling is not yet common on workstations.

Critical Sections Limit Thread Effects

Unfortunately we cannot make all processing multithreaded. Often there is interferen
between threads because they share resources or data, which requires a critical section in
only one of the threads can execute at a time. It may then be simplest to restrict a task to a
thread and concentrate on making it efficient. Only a critical section which covers local execu
only, without any service requests, will have almost no performance effect.

A critical section which covers some but not all service requests is modelled as show
Figure PE. The pseudo-task CS includes that part of T3 which is within the critical section, an
a single thread. Waiting for CS models the waiting for the critical section. CS includes both
execution and some service requests to T4. The execution in T3 and requests from T3 to T
divided between the critical section, and non-critical execution of each thread, in a ratio :(1
With =1, T3 is effectively single-threaded, while with = 0 the critical section disappears.

What we see in Figure PE is how the choke-point due to the critical section spreads
congestion back up into the system, so that attempts to correct the problem by changes abo
point are doomed to failure. The number of threads that are worth providing above T3 depen
how many threads can be used effectively at T3, and this drops as increases.

TABLE 5. Variability of Execution Demand (Figure PDR)

Thread Levels

(m1,m2,m3) = 6,5,4 Infinite Threads

 Execution
Demand Std. Dev.

Throughput
f
Resp/sec.

Mean Busy
Threads
(m1, m2, m3)

Throughput Mean Busy Threads
 f (m1, m2, m3)
Resp/sec.

0 1.0 (6, 5, 4) 1.0

10 0.47 (.55, .39, .27) 0.65

σD

σD

σD

β β
β β

β

8

Draft: October 18, 2001

play?
How can we estimate the thread resources needed, with such complicated factors at
A method for estimation is considered next.

TABLE 6. A Critical Section in T3 with Thread Levels of Tower 1 (m2, m3, m4) = (6, 5, 4). (Figure PESIM)

Critical Section Ration β (β = fraction of T3 execution within the critical section)

Throughput f
0.0001 0.33 0.67 1.0

0.5 0.36 0.26 0.2

Level l (a) Mean Busy Threads

1 0 10 10 10

2 6 6 6 6

3 4.5 4.6 4.74 4.8

CS 0.14 0.86 0.98 1.0

4 3.21 2.01 1.22 0.8

5 0.5 0.35 0.26 0.2

Level l (b) Task and Critical Section Utilization (per Thread)

1 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0

Users

T2

T3

T4

T5-1 T5-2 T5-3

CS

FIGURE 4. Tower1 with a Critical Section Modelled by Pseudo-Task CS.
(Figure PE)
9

Draft: October 18, 2001

 more
roach
tial
ding
s at

s make
ctive
Prior Estimation of Thread Resources

Is there a simple way to estimate the desirable number of threads to provide, that is
accurate than the rule of thumb of one more than the sum over the next level down? An app
which has the advantage that it deals with critical sections, second phases and other poten
complexities in the interaction patterns, is to analyze for infinite threads in every task, but inclu
any necessary critical sections. For Tower 1, the diagram in Figure PEM with infinite thread
levels 2 to 4 shows the idea. Levels 1 and 5 are left single threaded because at level 1 thread
no sense, while at level 5 they make no difference. The results show the mean number of a
threads:

• = fl Xl = mean active threads per task at levell

3 0.9 0.92 0.95 0.96

4 0.8 0.50 0.30 0.2

5 0.5 0.35 0.26 0.2

Level l (c) Task Thread Service Times

1 20 27.8 38.5 50.0

2 12 16.7 23.1 30

3 9 12.8 18.2 24

4 6.42 5.6 4.7 4

5 1 1 1 1

TABLE 7. Estimating Thread Levels from Models with Infinie Levels ((m2, m3, m4) are
infinite) (Figure PEM)

Critical Section Ratio β (β = fraction of T3 execution within the critical section)

Throughput f
0.0001 0.37 0.67 1.0

0.69 0.36 0.24 0.2

Level l (a) Mean Busy Threads

1 10 10 10 10

2 9.3 9.64 9.76 9.8

3 7.9 9.13 9.46 9.56

CS 0.29 0.83 0.96 1

4 6.12 2.04 1.19 0.8

5 0.69 0.36 0.24 0.2

TABLE 6. A Critical Section in T3 with Thread Levels of Tower 1 (m2, m3, m4) = (6, 5, 4). (Figure PESIM)

Critical Section Ration β (β = fraction of T3 execution within the critical section)

Throughput f
0.0001 0.33 0.67 1.0

0.5 0.36 0.26 0.2

ml
10

Draft: October 18, 2001

PD,
 the
seful

ber of

n is
e to

er

r 20,

wer-
which

he

ber of
ly be

e
 as a

heir
 request
ey may
 levels,
quest

ower
all as
pended

in the
In Figure PEM, infinite threads give only a modest increase in throughput over Figure
from 0.62 to 0.67, even with no critical section. The mean number of busy threads is about
same. When the critical section fraction increases, moreover, we can see how rapidly the u
number of threads drops. When using these results, it will be useful to make the actual num
threads a little bigger than this; when in doubt pick a configuration and run an analysis.

Most interesting, even with infinite threads and no critical section, the device utilizatio
only 68%, indicating that 32% of the processing capacity is still not being utilized. This is du
the layered structure, random contention, and the relatively small number of users. Howev
calculations with 20 and 30 users saw device utilizations rise only a little (to 82% and 88%
respectively) while the response time skyrocketed from 13 units for 10 users, to 24.3 units fo
and 34 units for 30.

Delay and a Lightly Loaded Tower Pattern

All of this section has considered only the maximum throughput obtainable from a to
patterned subsystem, rather than the delay to an input request. It turns out that the changes
favour higher capacity also mostly favour smaller response delays in this case. If delay is t
important factor and the system is lightly loaded (eg, there is a longer think time Z between
requests), then a satisfactory response time may be obatined with fewer threads. The num
threads required for the servers will be lower, without penalty, just because they would most
idle.

Unbalanced Execution Demands

[Figure PEQ and discussion to come]

Summary

Thread resources must be considered in designing for performance, but they must b
applied consistently to all tasks, and they cannot overcome other resource constraints such
critical section between threads.

 5.2. Variations on the Tower Pattern

Tower1 is oversimplified in two broad ways. First, real systems are less symmetrical. T
demands are not balanced between levels or tasks, levels may share host processors, the
values are not unity between levels, and there may be second phases of service. Second, th
be interconnected to other tasks, so there may be more services requested at intermediate
and requests may come in from other subsystems to various levels. Here we will consider re
flows in and out of a tower, and second phase effects.

Fanout:

A vertical sequence of tasks in a larger system may be identified for careful study as a t
pattern, if the links between it and the rest of the system are very weak. If they are not so sm
to be completely ignored, requests made to tasks outside the tower can be represented as ap
or fanout requests. They have the effect of inducing additional delay to threads of the task
tower making the request. Figure PG shows Tower 1 with taskT3makingy3A fanout requests to
the appended taskT3A, with service time 2 units.
11

Draft: October 18, 2001

 can
ule of

ostly

y are
PGH.
If T3 is single-threaded it blocks for longer and the tower performance declines; if it
be multi threaded then part of the performance is recovered, as shown in Figure PGF. The r
thumb suggests thatm3 be one plus the sum ofm4 and the thread count ofT3A.

Second-phase execution at the appended server changes the picture totally; if it is m
second-phase there will be almost no effect, as the reply will come back almost at once.

Fan-in:

Requests may similarly flow into a tower pattern from other subsystems. Suppose the
represented by an open flow of requests at rate arriving at level , as shown in Figure
Now, as increases it tends to saturate that level, and the response timeRL’ goes up due to
queueing delays. The blocking time to the next level up increases, and this makes a higher
threading level there more worthwhile.

TABLE 8. Effect on User Throughput of Additional Fan-out Requests forT3 to T3A. (Figure PGF)

User Throughput

y3A (mean requests toT3A) 0 0.5 1.0 1.5 2.0

Single-threaded: 0.167 0.143 0.125 0.111 0.10

(m2,m3,m4) = (6,5,4) 0.465 0.421 0.358 0.288 0.231

Infinite threads 0.67 0.626 0.481 0.331 0.249

Users

T2

T3

T4

T5-1 T5-2 T5-3

T3A

Fan-in requests
at rate f/sec

Fan-out requests
to server T3A

FIGURE 5. Fan-in and Fan-out Requests in Tower1. (Figure PG)

f ' L'
f '
12

Draft: October 18, 2001

sent.
own in
so the
hase,
imple
in the

htly
server
ffect
ay
ility of

reased
sts.

task

ls then
antage.
o

ve the

ich
ilar

s of
nd to

but
tions

ystems
and
Second Phases:

“Second phase execution” comprises activities carried out by a server after the reply is
In real RPCs there is at least a small amount of second phase in the PrepareRcv activity sh
Figure PC, getting ready for the next message reception. But many servers are designed
reply is sent as early as possible, with various postponable execution done in the second p
such as buffer deletion, or writing and closing files. File servers with cached writes are a s
and ubiquitous example of second phase, for the actual write is done after the data is stored
cache and the client is acnowledged.

The effect of a task’s work being in the second phase on a Tower is interesting. In a lig
loaded Tower it results in shorter response times, because a client is blocked less and the
executes in parallel. In a heavily loaded Tower with a bottleneck at that task, however, the e
on the maximum capacity is small. With second phases at a certain level, the level above m
require more threads to reach its full capacity, because second phases increase the possib
queueing; a task may even have to queue when it is the only requester to a server. With inc
possibility of queueing additional threads may sit blocked, while others work on new reque

[Figure PGL to come]

For a Tower with a fan-out, work which is moved into a second phase of the appended
can improve capacity.

Tasks which Share Host Processors:

Where tasks in a Tower share host processors it breaks the pure Tower pattern, for two leve
share a common server. This may reduce the number of threads that can be used with adv
For instance if two neighboring levels share a host processor, to a first approximation the tw
tasks could be considered as one in rule of thumb. It should be modified to say that they ha
same number of threads, rather than the upper one having one more.

In general, situations have to be considered in detail with a full evaluation.

 5.3. Lattice Pattern

A lattice is a set of interconnected, more or less similar Towers, giving a diagram wh
looks like a lattice-work for climbing plants (e.g., Figure PH). It arises when two or more sim
systems are connected together, for example

• a government social services agency has regional offices, each with its own database
clients, budgets, personnel, etc., but they are linked together for consolidated reporting a
deal with cases which move from one region to another,

• divisions of a company, even though co-located, have their own information systems,
these are connected together for rapid and uniform handling of inter-divisional transac
and joint operations, and for gathering data for upper management.

• a company and its suppliers provide some restricted access to each others information s
to speed up handling of orders and technical arrangements, and tracing of shipments
13

Draft: October 18, 2001

els
wers. A
ther

e

ocal.

oss the
hen

ad at a
 true,

total
lattice
reases

lays,

the
.
ne-
hputs

hat a
h
ed
e will
payments.

Figure PH shows a totally symmetrical Lattice with three connected Towers of five lev
each. Each server makes requests to servers at the next level down, spread across all the to
“connectedness” parameterc describes the degree to which requests are spread across the o
towers:

cl = (mean requests from a server in levell to servers in each other tower)/(requests in th
same tower)

The requests from level 4 to level 5 are not connected between the Towers, but kept l
In Figure PH the request ratesyl andylεl are made to add up to 1, soyl = 1/(1+2cl).

A connectedness parameter of unity shows that the requests are equally spread acr
towers, while a parameter of zero shows each tower isolated from the others at that level. W
the towers are completely symmetrical the connectedness parameter does not affect the lo
server because as many requests flow in from other towers, as flow out to them. this is not
however if one tower has more users or different execution or request count parameters.

Symmetrical Lattice

In a symmetrical lattice with identical Towers, connectedness does not change the
load on each server, it just moves it around. However it turns out that in a single-threaded
the mixing of requests between towers makes a large difference to capacity, because it inc
the chances of waiting at a lower server, due to random interference between requests from
different towers. Figure PHA shows how the service times increase due to longer blocking de
and the throughput drops from .167 withc=0, to 0.98 withc=1.0. This is worth remembering for
single-threaded servers.

However multiple threads make a big difference. Figure PHA also shows results for
“rule-of-thumb” levels of threads (m2, m3, m4) = (6,5,4), and the same levels of connectedness
There is still a penalty compared to Figure PC, but it is small. We can effectively carry the o
tower analysis into the Lattice situation. Also, threads give robustness, and make the throug
insensitive to the connectedness.

Real lattices are only roughly symmetrical. Regional or divisional elements of an
organization are not of equal size, and they have specialized needs. We have discovered t
single tower is a good predictor for symmetrical lattive behaviour provided there are enoug
threads. Is this still true for unsymmetrical cases? To what extent can the towers be analyz
separately? Under what conditions is there a single dominant tower, or bottleneck server? W
consider:

TABLE 9. Effect of “Connectedness” on Lattice 1 (Figure PHA)

Throughput, User Responses/sec

“Connectedness” c 0 0.2 0.4 0.6 0.8 1.0

Thropughput

 (m2,m3,m4) = (1,1,1) 0.167 0.114 0.103 0.100 0.983 0.980

Throughput

(m2,m3,m4) = (6,5,4) 0.455 0.452 0.450 0.450 0.449 0.449
14

15

D
raft: O

ctober 18, 2001

Users_3

T_32

T_33

T_44

T-2 T-3
Users_1

T_12

T_13

T_14

T5-1 T5-2 T5-3

FIGURE 6. Lattice Pattern. (Figure PH)

Users_2

T_22

T_23

T_24

T5-1 T5-2 T5-3 T-1

c1y1

c2y2

c3y3

c1y1

c2y2

c3y3

Draft: October 18, 2001

nding

ities or

y of

ith its

SS
uld be
Figure
is set
ring
hread
is can

that
m the
y. For
 builds
. One
part
t CSect
LRH

ay not
h them

e
ests
nly be
them

skB
and a
uests
• providing a higher capacity to the users attached to one tower,

• one server in one tower which makes an increased execution demand,

• the location of a new bottleneck when one is alleviated.

 5.4. Peer-to-Peer Pattern

Up to this point all the software considered has been hierarchical with requests desce
to servers. What happens in a system with no hierarchy, in which equal peer processes
communicate? Such systems are important because of their robustness to failure and their
symmetry. Examples arise in distributed databases, and distributed systems to manage facil
services:

• in an air traffic control system each major airport is a node, and makes requests to
neighbouring nodes for state updates, or to hand off aircraft to the next controller. Man
these interactions may be blocking, to ensure correct reception.

• in a distributed factory management system each production center may be a node w
own state, interacting with others to coordinate movement of goods through stages of
processing and into the warehouse.

Some analysis is needed before a peer-to-peer system can be modelled with our M
framework. It is necessary to understand the exact interaction behaviour. For instance, it wo
a poor design that used single threaded tasks, and symmetrical blocking interactions as in
PLA. When a task makes a blocking request to a peer task, and waits for a reply, a situation
up which might cause mutual request deadlock, with both tasks waiting for replies and igno
their request queues. The first step in preventing this is to have multiple threads so a new t
can pickup an incoming request while another thread is blocked waiting for the peer. Even th
deadlock if all threads are waiting (although this is unlikely). A better design (and we suppose
most systems are actually built this way) would recognize that the processing of a request fro
peer is different from one generated locally. For one thing it has been partly processed alread
another, the processing can usually now be satisfied at the one site. The Peer/Peer pattern
these observations into the model, by dividing each task into parts, as shown in Figure PLB
part Local (for local request handler) handles local requests generated by users, a second
Remote (for remote request handler) handles requests from the peer task(s), and a third par
handles critical sections shared by the first two. Local and Remote can be multi-threaded. The
and RRH tasks are distinguished to make the model clear; the actual software architecture m
have separate tasks for local and remote requests, but internally the functions associated wit
should be recognizable.

The pattern is a special case of a Lattice. In Figure PLB, Task A is modelled by thre
pseudo tasks. ALocal handles all the requests from AUsers, by invoking AServices for requ
which can be satisfied locally, and sending a request to BRemote for requests which can o
satisified at B. If there are more sites the model expands easily by spreading requests out to
also.

There are many design options which affect performance. Commonly TaskA and Ta
will be multi threaded so they can respond to remote requests. There may be common code
common thread pool for Local and Remote. The difference between Local and Remote req
16

Draft: October 18, 2001

 paths

hread
may be only a flag in the request, which causes the path of further processing to follow the
for Local and Remote psudo tasks in Figure PLB. An important detail may require a further
addition to Figure PLB: the Figure translates to a Layered Queueing model with separate t

A User

Task A

A Services

B User

Task B

B Services

FIGURE 7. Equal, Symmetrical “Peer-to-Peer” Interaction. (Figure
PLA)

ALocal

ARemote

ACS

AServices

AUser

TaskA

BLocal

BRemote

BCS

BServices

BUser

TaskB

FIGURE 8. A Layered Set of Pseudo-Tasks Represent Task A and Task B.
(Figure PLB)
17

Draft: October 18, 2001

elled
PLC.

data
pools for the Local and Remote pseudo task. A common thread pool for TaskA can be mod
by an additional speudo task AThread which serves both ALocal and ARemote, as in Figure
Separate “entries” on AThreads are used to keep the strams of requests separate.

 5.5. Pipelines with Rendezvous (No buffering)

Our layered model applies directly to pipelines in which the next stage must accept a
token before the previous stage is free to do more work. To apply it we introduce athird phasefor
handing on the data token, so there are three phases as follows:

phase 1: accept a new data token and acknowledge it;

phase 2: operate on it (Processing);

phase 3: send the output token or tokens on, and wait for acknowledgement.

[Remainder to come]

ALocal

ARemote

ACS

AServices

AThreads

Local Remote

FIGURE 9. A Common Thread-Pool for ALocal and ARemote
Modelled by a Pseudo-Task AThreads. (Figure PLC)
18

Draft October 18, 2001

n and
odels

rrent
ns will
r
which

seen

veral
cture
ssing.

each
ns.

aw’s
peline
Performance - Oriented Patterns in Software
Design (A multi-level service approach)

C. M. Woodside

Dept. of Systems and Computer Engineering

Carleton University, Ottawa K1S 5B6

copyright 1996 C. M. Woodside

(Draft version produced for classroom use, October 1996)

Chapter 6. P: Patterns

Using the small-scale patterns of the last chapter for internal task resources, executio
interaction, we can build and analyze performance models. The MSS(Res) framework of m
describes a wide variety of distributed service systems for business computing, industrial
automation, communications systems management, etc.

When we begin to analyze model results we find that certain arrangements of concu
tasks recur and have characteristic performance attributes. These architectural level patter
be included in our repertoire of “performance-oriented patterns”. This chapter considers fou
architectural patterns which are extremely common in existing and proposed designs, and
are seen in classification of software architectures such as the one by Shaw [??].

• The “Tower” pattern is a layered set of servers showing vertical separation of functions,
in descriptions of client-server and transaction processing systems. This is a simplified
version of Shaw’s “Client-Server” architecture.

• The “Lattice” pattern is a set of cross-linked Towers, representing layered service with se
servers at each layer. This is a more general version of Shaw’s “Client-Server” archite
and could represent a three-tier client-server system or a distributed transaction proce

• The “Peer-to-Peer” is a model for symmetrical servers which exchange requests with
other. It contains a transformation which produces a special case of the Lattice Patter

• The “Flow” pattern represent pipelined processing. This is very common and is one of Sh
categories. We consider also extended versions of this pattern with servers shared by pi
tasks.

Further architectural patterns which incorporate fork-join behaviour patterns will be
123

Draft October 18, 2001

iled
erver,
e basic
ts
n to

nager,

sks in
studied in a later chapter.

6.1. The “Tower” Pattern

The name “tower” will be applied to a set of layered servers, which are, as it were, p
one on top of the other to make a tower of tasks. In each of the middle layers there is just one s
while at the top there may be many users, and at the bottom there may be many servers. Th
pattern is shown in Figure PA, with a set ofN1 user tasks, in the top layer, layer 1, making reques
to a single server in layer 2, which in turn makes requests to a single server in layer 3, dow
where layerL-1 makes requests toNL servers in layerL. We have already seen that a database
system may have layers like this, with user tasks running on desktops, with a Transaction Ma
a Data Manager, and a File Server, and with a set of disks at the bottom.

The Tower pattern has the usual workload parameters, which are the same for each ta
a given level. They will each be labelled with subscripts for the levell, counting down from the
user tasks at the top:

• there areNl tasks (assumed symmetrical) at levell, identified as “Tl”.

• The task at levell has ml threads, froml = 2 toL-1.

• The tasks at the bottom are single threaded.

UsersLevel l=1

Level 2

Level 3

Level 4

Level 5

T2

T3

T4

T5-1 T5-2 T5-3

N1 Users
f requests/sec (total)

1 server
m2 threads

1 server
m3 threads

1 server
m4 threads

NL=3 servers
1 thread each

Figure 6.1. Tower Pattern with Five Levels (Figure PA)
124

Draft October 18, 2001

ayer

th the
each

ource-
effect

erver
bution
f a

sk
s

s at

s

 three
r its
before
e; T2

mum

e of a
• Each task at levell has an average host demand ofDl sec, and makes an average ofyl requests
to each server at the next lower level.

• As a result each task at levell is invoked on averagevl times per user task cycle, wherev1 =
1 andvl = y1 y2... yl-1, l = 2, 3.....

• If f is the total rate of requests from the user level, the invocation rate of each task at ll
is fl = vl f.

• TheN1 user tasks at the top are single threaded and execute in cycles. A cycle begins wi
user “thinking” forZseconds, then making a request which the task executes. The end of
cycle of each user task begins the next cycle, with a cycle time ofX1, including the delayZ.
The user response time isX1 - Z.

• the total response rate over all user tasks,f responses per second, is given byf = N1/X1.

A software bottleneck is a serious concern for this pattern. It may occur where a res
constrained server makes blocking requests to a lower-level service, thread, or resource. The
is stronger where there are more lower-level servers in the fan-out, but just one lower-level s
plus the constrained task’s own processor is enough. As well as thread resources, the distri
of host demands and other requests over the levels determines the severity and location o
bottleneck.

Task saturation is indicated by utilization, the fraction of time the task is busy. The ta
source time, or the read service time ofml>1, is Xl and includes blocked time waiting for request
to lower server to complete. At the bottom levelL the tasks only have host execution, soXL = DL.
We will consider two kinds of utilization:

• host utilization per task at levell is HUl = flDl = fvlDl,

• task utilization at levell is defined per thread (if there is more than one), giving

Ul = f l Xl / ml = f vl Xl /ml, . In this case saturation is indicated byUl approachingml.

• task utilization of each user task isU1 = f X1 / N1, since the utilization is shared among the
N1 user tasks,

• task utilization of a task at levelL is UL = f vL XL, since they are single-threaded

Basic Case: Tower1

Let us begin with Tower1 as shown in Figure PA. It has five levels, with 10 user task
level 1, then three middle levels with single-threaded servers T2, T3, T4, each with its own
processor, and finally three identical bottom-level servers T5_1, T5_2, T5_3. Each server i
invoked once per response and has one unit of execution demand (vl = 1,Dl =1). When this system
executes, the service time of T4 is four units, one unit for itself and one unit for each of the
bottom-level servers. T3 adds one unit for itself, for a total of five, and T2 takes six units fo
task service time. Because the tasks are single-threaded, T2 must finish with one response
it starts the next. The lower level tasks never have more than one request to deal with at a tim
effectively sequentializes the entire system. The T2 service time of six units defines the maxi
throughput capability as one response every six units, orf = .166, approximately. At this maximum
throughput, each processor is used at only one-sixth of its capacity. This is an extreme cas
software bottleneck.

What this example will show is that

l 2≥
125

Draft October 18, 2001

lower-

urces

re is

es up,
• when any resource is saturated, all finite higher-level resources are saturated too, while
level resources are not,

• bottleneck relief must include the saturated resource, but may have to include other reso
too, to get full potential value.

• bottleneck relief will be provided in these examples by multi-threading of tasks, and the
a rule of thumb for how many are needed,

• when there is contention at a resource, its service time increases when throughput go
making it difficult to predict the limits from light-traffic measures.
126

Draft October 18, 2001

erent

 The
est

gher
 the
cause
here is
ervice

lly

 see

st be
to 4.

at and
on a
task,
d has

neck
.

also
, we

ugh,
More
e at
reads
also
Figure PB shows the task resource saturation at different levels in the system, for diff
throughputs up to the maximum. At the lower values, the users have a delay between the
completion of one request and starting a new one, while at the highest value there is none.
device utilizations are not shown but they are numerically equal to the throughputs. The low
curve is for a long user “think time” which gives a low total request rate; the second is for a
moderate think time giving a moderate rate. Notice how the task utilizations build up at the hi
levels, while the device utilizations are the same over the levels. Blocking delays pile up at
higher levels and cause longer task service times, which reflect in higher task utilizations. Be
T2 has a single thread, there can only be one active response in the system below it. Since t
no message queueing at levels 3 to 5, the way the delay piles up is very simple. Each task’s s
time X is the sum of its own host demandD and the service times of the tasks below it; task
utilization is proportional toX. Therefore, a server below a single threaded task cannot be fu
utilized; some of the time it must be waiting for the next request.

Even though this is a very oversimplified example, it is worth understanding. We can
that:

• the bottleneck at level 2 is due to it being single threaded; for higher throughput we mu
able to process several requests at once, which implies multi-threading at levels 2 down
On the other hand, threads in level 5 would do no good as these tasks do not block.

• if we cannot increase the threading levels then the system will continue to be sequential
below level 2. We could get equivalent or better performance by running all the tasks
single processor at and below level 2. It would be even better to merge them into a single
because it would reduce demand for intertask communications overhead! (This overhea
not been separated out here, but is certainly present.)

• the first improvement would be to introduce multiple threads to level 2; then the bottle
would move down to level 3. Second, multi-thread level 3, and it would move to level 4
Finally with multiple threads at level 4, the bottleneck should move down to level 5 and
to the devices of all levels. Because the heaviest device utilization in Figure PB(d) is 1/6
can in principle search for a sixfold increase in throughput, when we introduce multiple
threads. A sixfold increase would makef = 1.

• How many threads to introduce? If one only introduces them in level 2, two threads is eno
because one can be executing while the second one is blocked while T3 executes for it.
would just have to wait for T3 to begin serving them. A similar argument could be mad
level 3, but for level 4 (because there are three servers at the next level down), more th
are useful. But then, if one increases the number at level 4 it will pay off to increase them

TABLE 6. Performance of Tower1 Shown in Figure PA (Figures are for each task at levell) (Total
Throughput f = 0.166 requests/sec) (Figure PB)

Level l
Task Utilization

Ul

Task Service
TimesXl

Host Utilization
HUl

1 (Users) 1.0 60 0.166

2 1.0 6 0.166

3 0.833 5 0.166

4 0.666 4 0.166

5 0.166 1 0.166
127

Draft October 18, 2001

level
 avoid
sk is
, the
.

evel
which

ng at
s
 the

nd the
ading

vel

efit,
n the
 the
y the

mple
reads,
ber of

 more
ce of
mands
at the higher levels.

Thread Rule of Thumb #1

• A simple rule of thumb when (as here) there is no phase-2 work, is that the threads at a
should be the sum of the threads in all the servers at the next level down, plus one, to
idle time on a task due to blocking. On the other hand if for any reason a higher level ta
constrained in its number of threads, lower level tasks need not have more. For level 1
N1 user tasks are treated as threads, so the most threads we expect to be useful is 10

If the rule of thumb is applied to Tower 1 it says level 5 has 3 tasks of one thread, so l
4 requires 4 threads, level 3 requires 5, and level 2 requires 6. Level 1 has 10 users each of
is constrained to be a single thread. We will focus on the levels 2 to 4, which have (m2, m3, m4) =
(6, 5, 4).

Multi-threading

Figure PC shows the results when one introduces multithreading level by level, starti
the top at level 2. The rule of thumb is used to determineml to be one more than the sum of value
for the next level down. The figure shows the mean number of busy threads in part (a), and
relative saturation of thread resources (mean busy threads over total threads) in part (b), a
mean task service time in part (c). Look first at the values at the right side of the table, as thre
is introduced gradually:

• (m2, m3, m4) = (2,1,1) and throughput 0.20/sec;

• (3, 2, 1), and throughput 0.22/sec;

• (6, 5, 4) and throughput 0.47/sec.

The big payoff really comes with threads in level 4, although providing threads only at le
4 would have no effect at all!

The rule of thumb may underestimate the number of threads that can provide a ben
basically because threads in a server may compete with each other for the next server dow
tower (which could not happen when there was only one). It is really necessary to evaluate
effect of threading. Higher numbers of threads give some additional improvement, indicated b
other curves in the Figure:

• (m2, m3, m4) = (7, 6, 5) andf = 0.55/sec,

• (8, 7, 6) and throughput 0.58/sec,

• (9, 8, 7), and throughput 0.62/sec,

• (10, 10, 10) and throughput 0.65/sec.

• () 0.65/sec.

This pattern frequently underperforms, compared to expectations. Why can this exa
not exceed 0.65 responses/sec even if the users are flooding it with input, there are infinite th
and each task separately can handle 1.0/sec.? The answer lies in (1) the relatively small num
user tasks, just 10, compared to the amount of work for each response (7 units). Even with
processors, we could never exceed 10/7=1.42 responses/sec. and (2) in random interferen
requests, due to the variability in the execution demands. For these evaluations the host de

∞ ∞ ∞,,
128

Draft October 18, 2001

ere
e per
half of

ut for

 f =

s and
elf-
ge
were random and exponentially distributed, which is higher variability than is found in some
applications, but lower than others. It makes a curious trade-off. With deterministic times th
would be no improvement above the rule-of-thumb values (6, 5, 4), at which a full 1.0 respons
second is obtained. Random interference throttles back the capacity at (6,5,4) to less than
that, but then allows additional threads to regain part of the difference.

Only a model can predict the balance of these factors. For example,

• if the number of users is increased to 25, and variability is kept the same, the throughp
infinite threads goes up but only to 0.83/sec... (PDM)

• if the variability of execution times is reduced, so its coefficient of variation is 0.5, then
... (PDN)

Effect of Variability in Execution Times

High-variance execution and communication behaviour has been observed in network
in execution statistics and has quite serious performance effects. [refs] High variance or “S
similarity” was first observed in network traffic when it tends to nullify the advantages of lar

TABLE 7. Multi-threaded Tasks in Tower 1: Throughput, Task Saturations and Other
Measures. (Figure PC)

Threading Level Cases, defined by (m2, m3, m4)

() (10,10,10) (9,8,7) (8,7,6) (7,6,5) (6,5,4) (3,2,1) (2,1,1)

Through
put f 0.65 0.65 0.62 0.58 0.55 0.47496 0.223521 0.200347

Level l (a) Mean Busy Threads = Task Utilization (Ul)

1 10 10 10 10 10 10 10 10

2 9.34 9.35 8.8 7.95 7 5.51 2.90 .96

3 7.8 7.8 7 6.2 5.36 3.89 1.64 1

4 6.24 6.22 5.4 4.7 4 2.75 0.89 0.8

5 0.65 0.65 0.62 0.59 0.55 0.47 0.22 0.2

Level l (b) Task Utilization per Thread (Ul/ml)

1 1 1 1 1 1 1 1

2 0.94 0.98 0.993 1 0.92 0.97 0.98

3 0.78 0.88 0.89 0.89 0.78 0.82 1

4 0.62 0.77 0.78 0.8 0.69 0.89 0.8

5 0.65 0.62 0.59 0.55 0.47 0.22 0.2

Level l (c) Task Thread Service Times (Xl)

1 15.38 15.38 16.13 17.24 18.18 21.05 44.74 49.91

2 14.37 14.38 14.19 13.71 12.73 11.60 12.98 9.77

3 12 12 11.29 10.69 9.75 8.19 7.32 4.99

4 9.6 9.57 8.71 8.10 7.27 5.78 4 3.99

5 1 1 1 1 1 1 1 1

∞ ∞, ∞,
129

Draft October 18, 2001

ntion
ck by

ds of

hread

f the

like
one,
ieving
that
ime is

ce
 which
 single
tion

n in
d has

4 are
-).

ve that
ds on
scale and multiplexing of traffic. High variance in software execution times increases conte
delays and reduces average throughput. However some of that reduction can be gained ba
exploiting multi threading.

Consider Tower 1 with rule-of-thumb thread levels of (6, 5, 4), mean service deman
1.0 units and execution-time standard deviation of 0 (deterministic), 1.0 (exponential
distribution), and 10 (hyper-exponential), and then consider the gain obtained by making the t
units infinite.

In these results we see the interesting fact that higher variability at = 10 reduces
throughput dramatically and increased thread levels restore only a fraction - about a third - o
lost throughput. User response time is even more dramatically affected.

Because of the complexity of the interactions even in a relatively trivial architecture
Tower 1, a model is essential for determining the risk posed by variability. Thread levels al
unfortunately, do not solve the problem and restore the capacity. Another mechanism for ach
improvements is through priority scheduling, essentially by reducing the priority of threads
have executed for a long time. With high-variance jobs a thread that has already had a long t
more likely to need yet more, so they reveal themselves. Unfortunately this kind of dynamic
priority scheduling is not yet common on workstations.

Critical Sections Limit Thread Effects

Unfortunately we cannot make all processing multithreaded. Often there is interferen
between threads because they share resources or data, which requires a critical section in
only one of the threads can execute at a time. It may then be simplest to restrict a task to a
thread and concentrate on making it efficient. Only a critical section which covers local execu
only, without any service requests, will have almost no performance effect.

A critical section which covers some but not all service requests is modelled as show
Figure PE. The pseudo-task CS includes that part of T3 which is within the critical section, an
a single thread. Waiting for CS models the waiting for the critical section. CS includes both
execution and some service requests to T4. The execution in T3 and requests from T3 to T
divided between the critical section, and non-critical execution of each thread, in a ratio :(1
With =1, T3 is effectively single-threaded, while with = 0 the critical section disappears.

What we see in Figure PE is how the choke-point due to the critical section spreads
congestion back up into the system, so that attempts to correct the problem by changes abo
point are doomed to failure. The number of threads that are worth providing above T3 depen
how many threads can be used effectively at T3, and this drops as increases.

TABLE 8. Variability of Execution Demand (Figure PDR)

Thread Levels

(m1,m2,m3) = 6,5,4 Infinite Threads

 Execution
Demand Std. Dev.

Throughput
f
Resp/sec.

Mean Busy
Threads
(m1, m2, m3)

Throughput Mean Busy Threads
 f (m1, m2, m3)
Resp/sec.

0 1.0 (6, 5, 4) 1.0

10 0.47 (.55, .39, .27) 0.65

σD

σD

σD

β β
β β

β

130

Draft October 18, 2001

play?
How can we estimate the thread resources needed, with such complicated factors at
A method for estimation is considered next.

TABLE 9. A Critical Section in T3 with Thread Levels of Tower 1 (m2, m3, m4) = (6, 5, 4). (Figure PESIM)

Critical Section Ration β (β = fraction of T3 execution within the critical section)

Throughput f
0.0001 0.33 0.67 1.0

0.5 0.36 0.26 0.2

Level l (a) Mean Busy Threads

1 0 10 10 10

2 6 6 6 6

3 4.5 4.6 4.74 4.8

CS 0.14 0.86 0.98 1.0

4 3.21 2.01 1.22 0.8

5 0.5 0.35 0.26 0.2

Level l (b) Task and Critical Section Utilization (per Thread)

1 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0

Users

T2

T3

T4

T5-1 T5-2 T5-3

CS

Figure 6.2. Tower1 with a Critical Section Modelled by Pseudo-Task CS. (Figure PE)
131

Draft October 18, 2001

 more
roach
tial
ding
s at

s make
ctive

PD,
 the
seful
Prior Estimation of Thread Resources

Is there a simple way to estimate the desirable number of threads to provide, that is
accurate than the rule of thumb of one more than the sum over the next level down? An app
which has the advantage that it deals with critical sections, second phases and other poten
complexities in the interaction patterns, is to analyze for infinite threads in every task, but inclu
any necessary critical sections. For Tower 1, the diagram in Figure PEM with infinite thread
levels 2 to 4 shows the idea. Levels 1 and 5 are left single threaded because at level 1 thread
no sense, while at level 5 they make no difference. The results show the mean number of a
threads:

• = fl Xl = mean active threads per task at levell

In Figure PEM, infinite threads give only a modest increase in throughput over Figure
from 0.62 to 0.67, even with no critical section. The mean number of busy threads is about
same. When the critical section fraction increases, moreover, we can see how rapidly the u

3 0.9 0.92 0.95 0.96

4 0.8 0.50 0.30 0.2

5 0.5 0.35 0.26 0.2

Level l (c) Task Thread Service Times

1 20 27.8 38.5 50.0

2 12 16.7 23.1 30

3 9 12.8 18.2 24

4 6.42 5.6 4.7 4

5 1 1 1 1

TABLE 10. Estimating Thread Levels from Models with Infinite Levels ((m2, m3, m4) are
infinite) (Figure PEM)

Critical Section Ratio β (β = fraction of T3 execution within the critical section)

Throughput f
0.0001 0.37 0.67 1.0

0.69 0.36 0.24 0.2

Level l (a) Mean Busy Threads

1 10 10 10 10

2 9.3 9.64 9.76 9.8

3 7.9 9.13 9.46 9.56

CS 0.29 0.83 0.96 1

4 6.12 2.04 1.19 0.8

5 0.69 0.36 0.24 0.2

TABLE 9. A Critical Section in T3 with Thread Levels of Tower 1 (m2, m3, m4) = (6, 5, 4). (Figure PESIM)

Critical Section Ration β (β = fraction of T3 execution within the critical section)

Throughput f
0.0001 0.33 0.67 1.0

0.5 0.36 0.26 0.2

ml
132

Draft October 18, 2001

ber of

n is
e to

er

r 20,

wer-
which

he
n
ber of
ly be

e
 as a

heir
 request
ey may
 levels,
quest

ower
all as
pended

n the

n be
number of threads drops. When using these results, it will be useful to make the actual num
threads a little bigger than this; when in doubt pick a configuration and run an analysis.

Most interesting, even with infinite threads and no critical section, the device utilizatio
only 68%, indicating that 32% of the processing capacity is still not being utilized. This is du
the layered structure, random contention, and the relatively small number of users. Howev
calculations with 20 and 30 users saw device utilizations rise only a little (to 82% and 88%
respectively) while the response time skyrocketed from 13 units for 10 users, to 24.3 units fo
and 34 units for 30.

CONCLUSION?

Delay and a Lightly Loaded Tower Pattern

All of this section has considered only the maximum throughput obtainable from a to
patterned subsystem, rather than the delay to an input request. It turns out that the changes
favour higher capacity also mostly favour smaller response delays in this case. If delay is t
important factor and the system is lightly loaded (e.g., there is a longer think time Z betwee
requests), then a satisfactory response time may be obtained with fewer threads. The num
threads required for the servers will be lower, without penalty, just because they would most
idle.

Unbalanced Execution Demands

Figure PEQ

Summary

Thread resources must be considered in designing for performance, but they must b
applied consistently to all tasks, and they cannot overcome other resource constraints such
critical section between threads.

 on unbalance over levels? here or earlier?

6.2. Variations on the Tower Pattern

Tower1 is oversimplified in two broad ways. First, real systems are less symmetrical. T
demands are not balanced between levels or tasks, levels may share host processors, the
values are not unity between levels, and there may be second phases of service. Second, th
be interconnected to other tasks, so there may be more services requested at intermediate
and requests may come in from other subsystems to various levels. Here we will consider re
flows in and out of a tower, and second phase effects.

Fanout:

A vertical sequence of tasks in a larger system may be identified for careful study as a t
pattern, if the links between it and the rest of the system are very weak. If they are not so sm
to be completely ignored, requests made to tasks outside the tower can be represented as ap
or fanout requests. They have the effect of inducing additional delay to threads of the task i
tower making the request. Figure PG shows Tower 1 with taskT3 makingy3A fanout requests to
the appended taskT3A, with service time 2 units.

If T3 is single-threaded it blocks for longer and the tower performance declines; if it ca
133

Draft October 18, 2001

e of

ostly

y are
PGH.
multi threaded then part of the performance is recovered, as shown in Figure PGF. The rul
thumb suggests thatm3 be one plus the sum ofm4 and the thread count ofT3A.

Second-phase execution at the appended server changes the picture totally; if it is m
second-phase there will be almost no effect, as the reply will come back almost at once.

Fan-in:

Requests may similarly flow into a tower pattern from other subsystems. Suppose the
represented by an open flow of requests at rate arriving at level , as shown in Figure
Now, as increases it tends to saturate that level, and the response timeRL’ goes up due to
queueing delays. The blocking time to the next level up increases, and this makes a higher
threading level there more worthwhile.

TABLE 11. Effect on User Throughput of Additional Fan-out Requests forT3 to T3A. (Figure PGF)

User Throughput

y3A (mean requests toT3A) 0 0.5 1.0 1.5 2.0

Single-threaded: 0.167 0.143 0.125 0.111 0.10

(m2,m3,m4) = (6,5,4) 0.465 0.421 0.358 0.288 0.231

Infinite threads 0.67 0.626 0.481 0.331 0.249

Users

T2

T3

T4

T5-1 T5-2 T5-3

T3A

Fan-in requests
at rate f/sec

Fan-out requests
to server T3A

Figure 6.3. Fan-in and Fan-out Requests in Tower1. (Figure PG)

f ' L'
f '
134

Draft October 18, 2001

sent.
own in
e reply

such as

cache

htly
server
effect
ay
ility of

reased
sts.

task

ls then
antage.
o
ve the

an be
y

of the
-
des
ler
do not

h as a
ensive
h rep-
Second Phases:

“Second phase execution” comprises activities carried out by a server after the reply is
In real RPCs there is at least a small amount of second phase in the PrepareRcv activity sh
Figure PC, getting ready for the next message reception. But many servers are designed so th
is sent as early as possible, with various postponable execution done in the second phase,
buffer deletion, or writing and closing files. File servers with cached writes are a simple and
ubiquitous example of second phase, for the actual write is done after the data is stored in the
and the client is acknowledged.

The effect of a task’s work being in the second phase on a Tower is interesting. In a lig
loaded Tower it results in shorter response times, because a client is blocked less and the
executes in parallel. In a heavily loaded Tower with a bottleneck at that task, however, the
on the maximum capacity is small. With second phases at a certain level, the level above m
require more threads to reach its full capacity, because second phases increase the possib
queueing; a task may even have to queue when it is the only requester to a server. With inc
possibility of queueing additional threads may sit blocked, while others work on new reque

Figure PGL

For a Tower with a fan-out, work which is moved into a second phase of the appended
can improve capacity.

Tasks which Share Host Processors:

Where tasks in a Tower share host processors it breaks the pure Tower pattern, for two leve
share a common server. This may reduce the number of threads that can be used with adv
For instance if two neighboring levels share a host processor, to a first approximation the tw
tasks could be considered as one in rule of thumb. It should be modified to say that they ha
same number of threads, rather than the upper one having one more.

In general, situations have to be considered in detail with a full evaluation.

6.3. Partitioning and Replication

When a server is saturated and multi-threading has done all it can (or is inappropriate), it c
further scaled up by partitioning it, or replicating it. Either way, the one server is replaced bn
servers. These solutions are particularly appropriate if there are geographical or functional
domains that can be served separately. Partitioning divides either the function, or the data
original serverA among then replacement serversAi* , so that for a particular service (or for par
ticular data) a request must be made to the one server that can provide it; replication provin
complete copies ofA including its data. The partitioned components are in some sense simp
than the original, but the client must now choose between them; the replicated components
require changes to the clients.

Partitioning and replication are substitution patterns inside a larger architectural pattern suc
Tower. They can be introduced to remove a bottleneck at some server. They are a more exp
change than introducing multi-threading, since they normally imply separate hosting of eac
135

Draft October 18, 2001

ec-

rated

e

ller

ters of

-
s at the
lica or partition. We will compare them to multi-threading, within the Tower of the previous s
tions, when one level is modified.

Partitioning is the simpler solution to understand. It is a module replacement pattern, as illust
in Figure PJC. ServerB is partitioned, along with a further serverC that it uses. The black dots
indicate the interface points of the replacement, where they partition elementsBi andCi are con-
nected. There is a Router module added to each of the usersA of the original serverB, to choose
which partition to use, giving the new userA*. There are then partitioned serversB1* to Bn* , and
for eachBi* , a processor and perhaps a copy or partitionCi* of some serverC, or some other sub-
systems associated withB. For instance ifB is a database server then there will usually be a fil
system attached to it, which will be partitioned into a separate file systemCi* for eachBi* . In data
partitioning, eachBi* will have the full set of entries, but their demand parameters may be sma
since they access a smaller volume of data; in function partitioning theBi* will have different sub-
sets of entries, but the entries will have the same demands. In general the demand parame
Bi* and their subsystems may be functions of the numbern of partitions.

In the Tower1 architecture we will suppose levell to be partitioned into n symmetrical part-serv
ers, each with all the functions of the original and the same demand parameters. The thread
level above makeyl+1/n requests to each part-server.

A

B

PB

PC

C

D (not partitioned)

yAB

yBD

yCD

yBC

(a) original

A

Router

yAB/n

otherBi*B1*

PB1*
yBC

C1*
yBD

yCD
PC1*

D from otherBi*, Ci*

Figure 6.4. A partitioning Pattern for a ServerB with an Associated TaskC. (Fig. PJC)
136

Draft October 18, 2001

r

cute

es to
e pat-
ing,
st be
 lock.

f so-
t the

avoid
ca
hich
ted in
**********Results and discussion.

***********Would it be useful to consider just a client and a replicated server first? The serve
has a disk, and is already multithreaded

Another Partitioning pattern (considered later) invokes separate partitions in parallel to exe
parts of a large operation.

Replication also divides the service requests into n groups, but usually one client always go
the same replica, since they are all equivalent. It might for instance use the closest one. Th
tern, illustrated in Figure PJF, has to allow for an additional aspect not required for partition
which is replica coordination operations. For instance any updates made to one replica mu
propagated to all of them, and an update transaction must acquire the equivalent of a write
Techniques for replica coordination are discussed in [Taylor and Trantafilou], and the figure
roughly represents one of their techniques called..... For an update transaction a majority o
called “primary copies” of the data item must be write-locked, then after the update is done a
one replica it is propagated to all replicas. We will assume all copies are primary copies to
the detailed consideration of this factor, which is described in [..]. This generates inter-repli
messages which are shown as going to a coordination server at each remote replica site w
describes the coordination workload but not the actual lock resource (which is not represen
this pattern, for simplicity).

A

B

C

yABR

yBCW

(a) original

yABW

yBCR

Read Write

A

B1-1F

Ci

yABR

yBCW

yABW

yBCR

Read Write

yBCW
1 1

Requests
to all Ci

B1-

Requests to the
Coordination
servers

Coordinate

Replication Unit Other Replication Units

(b) Replicated

Figure 6.5. A Replication Pattern for a Server B with Reads and Writes.
(Figure PJF)
137

Draft October 18, 2001

 and

e origi-

 the
for
ands

e it
e

ional

ed

raphic
ision.
s each

f con-
d
will be
ttice.

ich
ilar

s of
nd to

but
tions

ystems
and

els
The demands are strongly affected by the update fraction in the request stream. If the read
update requests are mingled, this fraction (call itγ) must be known. The figure assumes that the
two fractions have been divided and directed to two separate entries Read and Write, in th
nal serverA.

The replica Read entries are unchanged. The replica Write entries include requests to half
other sites’ coordination servers (half of the primary copies) for write locks, and to all sites
update propagation. The Write entry of the coordination server is shown with the same dem
as a Write inA, going directly to all storage servers.

Partitioning puts an additional load on the clients, but a smaller load on the servers becaus
avoids the coordination workload. Thus if the servers are the bottleneck, partitioning will giv
higher performance than replication, but replication is siompler to program and offers addit
benefits for reliability.

Examples of partitioned subsystems: departmental data bases, RAID disk arrays, segment
memories, multiple buses.

Examples of replicated systems: mirrored web sites

(Examples of replications for reliability, not primarily performance: mirrored disks,..)

It was said earlier that special advantages occurred if the system can be divided along geog
or functional lines. Then the group of users of each replica or partition is defined by the div
There may be savings in communications costs and delays. In the case of partitioned system
group of users probably is not completely isolated from the other partitions, but has a kind o
centration on its local partition. Say a fractionβ of the users’ requests go to the local partition, an
the rest are equally distributed. In general the performance improves as beta increases; this
examined in the next section, which describes a partitioned version of a Tower, called a La

6.4. Lattice Pattern

A lattice is a set of interconnected, more or less similar Towers, giving a diagram wh
looks like a lattice-work for climbing plants (e.g., Figure PH). It arises when two or more sim
systems are connected together, for example

• a government social services agency has regional offices, each with its own database
clients, budgets, personnel, etc., but they are linked together for consolidated reporting a
deal with cases which move from one region to another,

• divisions of a company, even though co-located, have their own information systems,
these are connected together for rapid and uniform handling of inter-divisional transac
and joint operations, and for gathering data for upper management.

• a company and its suppliers provide some restricted access to each others information s
to speed up handling of orders and technical arrangements, and tracing of shipments
payments.

Figure PH shows a totally symmetrical Lattice with three connected Towers of five lev
138

139

D
raft O

ctober 18, 2001

Users_3

T_32

T_33

T_44

T-2 T-3
Users_1

T_12

T_13

T_14

T5-1 T5-2 T5-3

Figure 6.6. Lattice Pattern. (Figure PH)

Users_2

T_22

T_23

T_24

T5-1 T5-2 T5-3 T-1

c1y1

c2y2

c3y3

c1y1

c2y2

c3y3

Draft October 18, 2001

wers. A
ther

e

local.

oss the
hen

ad at a
 true,

otal
lattice
reases

lays,

the
.
ne-
hputs

hat a
h
ed
e will
each. Each server makes requests to servers at the next level down, spread across all the to
“connectedness” parameterc describes the degree to which requests are spread across the o
towers:

cl = (mean requests from a server in level l to servers in each other tower)/(requests in the sam
tower)

The requests from level 4 to level 5 are not connected between the Towers, but kept
In Figure PH the request ratesyl andylεl are made to add up to 1, soyl = 1/(1+2cl).

A connectedness parameter of unity shows that the requests are equally spread acr
towers, while a parameter of zero shows each tower isolated from the others at that level. W
the towers are completely symmetrical the connectedness parameter does not affect the lo
server because as many requests flow in from other towers, as flow out to them. this is not
however if one tower has more users or different execution or request count parameters.

Symmetrical Lattice

In a symmetrical lattice with identical Towers, connectedness does not change the t
load on each server, it just moves it around. However it turns out that in a single-threaded
the mixing of requests between towers makes a large difference to capacity, because it inc
the chances of waiting at a lower server, due to random interference between requests from
different towers. Figure PHA shows how the service times increase due to longer blocking de
and the throughput drops from .167 withc=0, to 0.98 withc=1.0. This is worth remembering for
single-threaded servers.

However multiple threads make a big difference. Figure PHA also shows results for
“rule-of-thumb” levels of threads (m2, m3, m4) = (6,5,4), and the same levels of connectedness
There is still a penalty compared to Figure PC, but it is small. We can effectively carry the o
tower analysis into the Lattice situation. Also, threads give robustness, and make the throug
insensitive to the connectedness.

Real lattices are only roughly symmetrical. Regional or divisional elements of an
organization are not of equal size, and they have specialized needs. We have discovered t
single tower is a good predictor for symmetrical lattice behaviour provided there are enoug
threads. Is this still true for unsymmetrical cases? To what extent can the towers be analyz
separately? Under what conditions is there a single dominant tower, or bottleneck server? W
consider:

• providing a higher capacity to the users attached to one tower,

• one server in one tower which makes an increased execution demand,

TABLE 12. Effect of “Connectedness” on Lattice 1 (Figure PHA)

Throughput, User Responses/sec

“Connectedness” c 0 0.2 0.4 0.6 0.8 1.0

Throughput

 (m2,m3,m4) = (1,1,1) 0.167 0.114 0.103 0.100 0.983 0.980

Throughput

(m2,m3,m4) = (6,5,4) 0.455 0.452 0.450 0.450 0.449 0.449
140

Draft October 18, 2001

 same

en c,

peed)
wer,

re the

epth.
cted,
 and

In cli-
 up by
 data-

to
Users.
vel 4.
al sys-
• the location of a new bottleneck when one is alleviated.

6.4.1. One High-Capacity Tower in a Lattice

more users, and more demanding in request counts. Increased speed of servers by
factor (say, times five).

vary c, look at how it bogs down and also slows the others, as c increases. For a giv
how much to add to the others?

is there a critical c which is equivalent to “ignorable connectedness?”

software mod: change the slow systems to proactively update the fast one (feed the s
(design around dominant data paths) (like prefetching -- optimistic?) then c = 0 on high-cap to
and there are extra calls on the others. Some negative impact on others.

6.4.2. One Server with Heavy Execution

Single bottleneck

delay spreads up and sideways as its D is increased.

effect depends on c

What is the threshold for a bottleneck to appear?

6.4.3. Bottleneck Migration

two heavy servers, fix the biggest one, how sharply does the bneck move and what a
effects on users? Prediction, beginning from an operating state or model.

6.5. The Funnel Pattern

A Funnel may arise as a Lattice in which the number of partitions in a level decreases with d
Instead of planning the system as similar nearly autonomous systems that are cross-conne
each level is considered separately, with a number of partitions appropriate for its functions
workload. Another origin for this pattern may have independent applications at each level,
ent-server systems we often see many different applications available to the users, backed
smaller numbers of specialized information-access servers, which finally access corporate
bases at the bottom level.

Whatever the origin, here we shall consider layered servers with a concentration of work on
fewer servers at the lower levels. The base case in Figure PKD has three levels below the
There are four groups of Users at level 1, three servers at level 2, two at level 3 and one at le
Each server and User has a separate processor. Initially we shall consider a fully symmetric
tem with the parameters:

• Users at level 1:n1 = 4 groups,N1 = 25 Users per group, host demand 1 sec to a private
processor, a “thinking time” of Z1 = 5 sec, y1=1 request to each level-2 server.

• Servers at level 2: n2 = 3 partitions, single threaded, host demands2 = 0.1 sec all in phase 1,
y2 = 1 request to each level-3 server.
141

Draft October 18, 2001

isfy one
equal

ct
b

tions
r

ill be
• Levels 3 and 4 the same as level 2 exceptn3 = 2 andn4 = 1 (and level 4 being the bottom
makes no requests).

Thus there are 3 requests on average, and 0.3 sec of work to be done at each level, to sat
User request. We may wonder if the “funneling in” is appropriate, or is a problem. Perhaps
partitioning would be better.

Some performance evaluations will address these questions:

• as before, what is the impact of multithreading at the different levels? The value ofml =
threads at levelsl = 2 and 3 will be varied. The result we will find is that, as before, the impa
is considerable, and more threads are useful at higher level. However the rule of thum
(which suggestsm3 = 2,m2 =5) overstates the requirements at the higher levels.

• is the smaller number of partitions at the lower levels appropriate, or would more parti
have a useful impact? The values ofn3 andn4 will be increased. In the results it is not clea
that the improvement is sufficient to justify the additional processors.

• how important is the balance of work between levels, and between partitions? Work w
concentrated in one server at each level, and in each level in turn. The results show
remarkable insensitivity to the balance of work between the partitions in one level;
concentrating work at the bottom level is bad, but at the other levels it has little effect.

Base Case and Multithreading

T11
UsersLevel 1

T21 T22Level 2

T31 T32

T23

Level 3

T41Level 4

T12
Users

T13
Users

T14
Users

Figure 6.7. Funnel Pattern (Figure PKD)
142

Draft October 18, 2001

pt the
oad at

st
vels 2

d redis-

fy a

5,

ich
 incre-
Here are results for the total User throughputf for different threading levels (m2, m3) at levels 2
and 3. Response times seen by the user can be calculated asR = 100/f - 6 sec (cycle time minus
the local execution and the thinking time).

Results table for base case with (m2, m3) = (1,1), (1,2), (3,2), (5,2), (10,10), ()

Discussion

Width of Lower Levels

Here are results for the total User throughputf for different numbers of servers (n3, n4) at levels 3
and 4. The service times and total number of requests to the next lower level have been ke
same, but the requests are divided equally among the servers in the lower level. Thus the l
levels 3 and 4 is shared more widely ifn is increased.

Table of results for (n3, n4) = (2,1), (2,2), (3,2), 3,3)

Discussion

Horizontal Balance of Load

Keeping the funnel shape with (n2, n3, n4) = (3,2,1), these experiments considered unequal ho
service demands in the partitions in each level. They modified the host service demands at le
and 3 so the total host demand to be satisfied at each level was still 0.3 sec, but the ratiorl of the
largest demand to the others increased.

Table of results for (r2, r3) = (1, 1), (10, 1), (1,10), (10,10)

Discussion.

Vertical Balance of Load

Again keeping the funnel shape and the request frequencies, these experiments considere
tributing the total host demand across the levels by changing the host service times (s2, s3, s4),
which are initially (0.1, 0.1, 0.1). There are still 3 requests on average to each level, to satis
User request.

Table of results with (s2, s3, s4) =(0.1, 0.1, 0.1), (0.2, 0.025, 0.025), (0.29, 0.005, 0.005), (0.02
0.2, 0.025), (0.005, 0.29, 0.005), (0.025, 0.025, 0.2), (0.005, 0.005, 0.29)

Discussion

6.5.1. Comments on Funnels and Related Patterns

Unbalanced partitioning, and unbalanced server levels, are a rich optimization problem wh
cannot be completely characterized in a short space. In specific cases it can be addressed
mentally through software bottleneck analysis.

∞ ∞,
143

Draft October 18, 2001

nding

ities or

y of

ith its

SS
uld be
Figure
is set
ring
hread
is can

that
m the
y. For
 builds
. One
part
t CSect
LRH

ay not
h them

e
ests
nly be
o them

skB
and a
uests
 paths
ref to “shape” measurements paper.

6.6. Peer-to-Peer Pattern

Up to this point all the software considered has been hierarchical with requests desce
to servers. What happens in a system with no hierarchy, in which equal peer processes
communicate? Such systems are important because of their robustness to failure and their
symmetry. Examples arise in distributed databases, and distributed systems to manage facil
services:

• in an air traffic control system each major airport is a node, and makes requests to
neighbouring nodes for state updates, or to hand off aircraft to the next controller. Man
these interactions may be blocking, to ensure correct reception.

• in a distributed factory management system each production center may be a node w
own state, interacting with others to coordinate movement of goods through stages of
processing and into the warehouse.

Some analysis is needed before a peer-to-peer system can be modelled with our M
framework. It is necessary to understand the exact interaction behaviour. For instance, it wo
a poor design that used single threaded tasks, and symmetrical blocking interactions as in
PLA. When a task makes a blocking request to a peer task, and waits for a reply, a situation
up which might cause mutual request deadlock, with both tasks waiting for replies and igno
their request queues. The first step in preventing this is to have multiple threads so a new t
can pickup an incoming request while another thread is blocked waiting for the peer. Even th
deadlock if all threads are waiting (although this is unlikely). A better design (and we suppose
most systems are actually built this way) would recognize that the processing of a request fro
peer is different from one generated locally. For one thing it has been partly processed alread
another, the processing can usually now be satisfied at the one site. The Peer/Peer pattern
these observations into the model, by dividing each task into parts, as shown in Figure PLB
part Local (for local request handler) handles local requests generated by users, a second
Remote (for remote request handler) handles requests from the peer task(s), and a third par
handles critical sections shared by the first two. Local and Remote can be multi-threaded. The
and RRH tasks are distinguished to make the model clear; the actual software architecture m
have separate tasks for local and remote requests, but internally the functions associated wit
should be recognizable.

The pattern is a special case of a Lattice. In Figure PLB, Task A is modelled by thre
pseudo tasks. ALocal handles all the requests from AUsers, by invoking AServices for requ
which can be satisfied locally, and sending a request to BRemote for requests which can o
satisfied at B. If there are more sites the model expands easily by spreading requests out t
also.

There are many design options which affect performance. Commonly TaskA and Ta
will be multi threaded so they can respond to remote requests. There may be common code
common thread pool for Local and Remote. The difference between Local and Remote req
may be only a flag in the request, which causes the path of further processing to follow the
144

Draft October 18, 2001

r
hread
elled
for Local and Remote pseudo tasks in Figure PLB. An important detail may require a furthe
addition to Figure PLB: the Figure translates to a Layered Queueing model with separate t
pools for the Local and Remote pseudo task. A common thread pool for TaskA can be mod

A User

Task A

A Services

B User

Task B

B Services

Figure 6.8. Equal, Symmetrical “Peer-to-Peer” Interaction. (Figure PLA)

ALocal

ARemote

ACS

AServices

AUser

TaskA

BLocal

BRemote

BCS

BServices

BUser

TaskB

Figure 6.9. A Layered Set of Pseudo-Tasks Represent Task A and Task B. (Figure
PLB)
145

Draft October 18, 2001

PLC.

puta-
 the

ipes
stage
 with
 with

ueues
ork
),

aits for
done
 to sep-
by an additional pseudo task AThread which serves both ALocal and ARemote, as in Figure
Separate “entries” on AThreads are used to keep the streams of requests separate.

6.7. Synchronous Pipelines including Servers

The pipeline is one of the most obvious ways to introduce concurrency into a sequential com
tion. A pipeline works at the speed of its slowest stage, so to obtain maximum performance
workload of the stages must be suitably balanced. Many familiar pipelines such as UNIX p
are asynchronous, with some kind of buffer between stages; if a buffer fills up it blocks the
that is feeding it. If the storage is infinite we can model the pipeline by a sequence of tasks
asynchronous messages, as in Figure PMD(a), or with forwarding headed by a multiserver
multiplicity m = infinity (Figure PMD(b)). In practice space is never infinite and finite buffers
often have important effects on performance. There is an extensive literature on “tandem q
with blocking”, which handles this case. We will model it within our MSS(Resources) framew
for completeness. A special case of finite buffering is zero buffering, shown in figure PMD(c
which we shall analyze first.

In an unbuffered or synchronous pipeline each task sends its output to its successor and w
a signal acknowledging receipt of the message; this is a rendezvous in which all the work is
in phase two. After phase two the task sends to the next stage and blocks; it is appropriate

ALocal

ARemote

ACS

AServices

AThreads

Local Remote

Figure 6.10. A Common Thread-Pool for ALocal and ARemote Modelled
by a Pseudo-Task AThreads. (Figure PLC)
146

Draft October 18, 2001

d
t when
h stage
ider

nds
n the
eavier

r-

, but
ct of

the
onous
s shown
when
ing

put
bal-
arate this from the phase-2 “body” of the work, which must all be completed first, into a thir
phase. Blocking in phase three can be important, since each stage can only take a new inpu
it has successfully passed on its previous output to its successor. If the service time of eac
is deterministic then the pipe works simply at the rate of the slowest task, but we shall cons
some degree of randomness in the execution time.

Table XA shows the throughput of the pipeline in Figure PMD(c) for random execution dema
of exponential type (coefficient of variation = 1) and different degrees of imbalance betwee
workload of the stages. The optimum balance is tapered, lighter at the the beginning and h
towards the end of the pipe, in a ratio of about 1.5 to 1. *******Other comments.

*****Table XA from pipeline paper in 1988. Bad balance and optimum taper. Exponential se
vice*****

Unfortunately it is not only an imbalance of load that can bottleneck a synchronous pipeline
also a large-variance service time tends to spread blocking back through the pipe. The effe
variance is considered in Table XB, alone and in combination with imbalance.

*****Table XB... new... variance and balance.*****

The natural response to variability in execution times is to add buffering to absorb some of
variations. In our MSS(Res) framework buffers can be represented as an additional synchr
multiserver stage which simply passes data on to the pipeline stage in its second phase, a
in Figure PME. Because the previous stage has a rendezvous with the buffer “task” it blocks
no free buffer is available. Since the default queueing of the buffer task threads at the follow
worker stage is FIFO, this represents FIFO service to the buffers. Table XC shows through
results for a four-stage pipeline with different numbers of buffers and different variability and
ance.

*****Table XC ... new... buffers, balance, variability*****

Stagen

Tn-1
Buffer n
(mn threads) Tn(0,0,1) (0,1) (0,0,1)

Figure 6.11. A Stage in a Buffered Pipeline with Blocking. (Fig. PME)
147

Draft October 18, 2001

er out-
ight

ages.

ied to
 share a
arts of

 over
f
set of
cessor
rvers
).
A feature of pipelines which has been little studied is the possibility that a stage uses a serv
side the pipeline, and perhaps shares it with other pipeline stages. Blocking on the server m
significantly slow down the overall system, and make it useful to multithread the pipeline st

Since in our framework a processor is just another kind of server, this analysis can be appl
pipeline stages which share a processor. One might suppose that if two successive stages
processor it is as if they are coalesced into a single stage, but what if they are in different p
the pipe?

*****Example of both situations, and results....*****

More situations can be conveniently modelled as well. One example is window flow control
the entire pipeline, such that internally there are no particular buffer limits but the number o
items being processed in total is limited to say mtot. This could be applied when there is a
shared buffers, shared by the stages, which might be practical in a shared-memory multipro
or a virtual-shared-memory system. A conveinet model would use a multiserver with mtot se
as a gateway to limit the entry, and have it forward through the pipeline as in Figure PMD(b
148

Draft October 18, 2001
T1
[0,s1,0] (0,0,1) (0,0,1)(0,0,1)

T4
[0,s4,0]

T3
[0,s3,0]

T2
[0,s2,0]

(a) Asynchronous pipeline

T1
[0,s1,0] (0,0,1) (0,0,1)(0,0,1)

T4
[0,s4,0]

T3
[0,s3,0]

T2
[0,s2,0]

(b) Forwarded pipeline (m items max.)

(m threads)

T1
[0,s1,0] (0,0,1) (0,0,1)(0,0,1)

T4
[0,s4,0]

T3
[0,s3,0]

T2
[0,s2,0]

(c) Synchronous pipeline

1 2 3

phase

wait

Interactions in a Synchronous Pipeline

Figure 6.12. Pipeline Patterns. (Figure PMD)
149

Draft October 18, 2001

data
(analysis without servers)

with rv unbuffered and buffered, brief. balance.

CV, balance effect

overall window control alternative (shared buffers)

servers

6.8. Pipelines with Rendezvous (No buffering)

Our layered model applies directly to pipelines in which the next stage must accept a
token before the previous stage is free to do more work. To apply it we introduce athird phasefor
handing on the data token, so there are three phases as follows:

phase 1: accept a new data token and acknowledge it;

phase 2: operate on it (Processing);

phase 3: send the output token or tokens on, and wait for acknowledgment.
150

Draft: October 18, 2001

rience
ightly

the
e

chapter
threads

 are het-

er-
elism
Performance - Oriented Patterns in Software
Design (A multi-level service approach)

C. M. Woodside

Dept. of Systems and Computer Engineering

Carleton University, Ottawa K1S 5B6

copyright 1996 C. M. Woodside

(Draft version produced for classroom use, October 1996)

Chapter 7. Patterns with Parallel Paths (J for Join)

7.1 Servers with Internal Parallelism

Parallel execution is one of the main ways to obtain increased performance, although expe
says it is easier to imagine than to achieve. In practice a parallel path can be set up in two sl
different ways:

• by sending an asynchronous message to another task, which then proceeds in parallel,

• by forking a distinct thread, which then invokes a service which executes in parallel.

The second approach can lead to a built-in join of the threads, which retains knowledge of
relationship between the sibling parallel paths, and is thus more powerful, although the sam
effect can be programmed with asynchronous messages (user-managed parallelism) This
models both approaches the same way, as if the program sets up distinct, heterogeneous
which manage parallel paths.

The difference between these threads and the ones in a multithreaded server, is that these
erogeneous, and they interact with each other (for instance through critical sections).

This chapter will examine four basic architectural patterns that exploit parallelism: Parallel s
vice, deferred RPC communications in various situations, parallelism in pipelines, and parall
in communications software.
151

Draft: October 18, 2001

b

oin and
, with

ered
a “!”
ts the

hased
ity
7.2 Parallel Activities and Task Activity Graphs

A basic form of parallel service, seen for instance in parallel subtransactions, has a large jo
divided into parts and each part is farmed out to a separate server.n threads are forked, each
thread sends a request to “its” server and blocks, and when all are unblocked the threads j
the large job is completed. Figure JDA shows this pattern in the simple form just described
activities associated with an entry E of Server.

Parallelism is described in Figure JDA by activities and precedence. The first activity is trigg
by the entry, and the others follow in precedence indicated by the arrows. The activity with
after its name generates a reply from the entry to its client when it completes, and represen
end of phase 1. We will call this subgraph, attached to a task, a Task Activity Graph. The p
patterns of execution of an entry which we have been using can be modelled by Task Activ

a0

Users

EntryE

ServerS

a1 a2 a3

afinal!

phase2

S1Servers

Server
S and
its
Activities

S2 S3

Figure 7.1. Parallel Service and Task Activity Graph. (Fig. JDA)
152

Draft: October 18, 2001

sed in
 a

ping

ore
esents
 find
lel
 the
in,
ume
pre-

ngle
ll be

 in an
ages
nt
ask
ly

 these
s with
Graphs as shown in Figure JDC(a) for two phases, and figure JDC(b) for three phases as u
pipelines. An activity in a Task Activity Graph has exactly the same demand parameters as
phase, and a phase is a kind of activity.

The Task Activity Graph notation in Figure JDA is a reduced version of our earlier Activity
Graphs for capturing execution sequences, with all the sequential, case-structured and loo
detail reduced into single activities, and all the parallel structure retained.

In the earlier Activity Graph notation in Figure SB, a fork represents a point where two or m
separate paths are begun. In a diagram, each parallel path has just one activity which repr
another activity graph with the full details. When we reduce the activity graph of an entry to
its demands we reduce this nested activity graph (provided it does not in turn contain paral
paths) separately using reduction R1. In effect, when there is parallelism we do not reduce
activity graph for the entry all the way, but we stop at the level of activities in parallel. At a jo
the continuation must wait for all the subpaths to complete before it can continue. We will ass
that forks do not have to join later (they can terminate separately), but joins must derive from
vious forks. We will also assume at least for now that a fork-join must be enclosed within a si
phase, so for example the reply will not be issued by one of a set of parallel activities (this wi
relaxed, as it might give a performance advantage to do so).

Referring again to the notation in Figure SB, there is also an asynchronous message send
activity graph. This will be reduced to a demand parameter giving the number of similar mess
generated by the enclosing reduced activity or phase. If the message is a reply to the curre
request however it is treated differently; it acts to separate phase 1 from phase 2. In a full T
Activity Graph this is represented by a “!” attached to the last activity in the phase, optional
with the entry name.

Finally, in Figure SB there is an asynchronous receive indicated, but we shall not deal with
at this point, unless they are messages that initiate a service. In this case the service begin
phase 2, because there is no reply to an asynchronous request.

ph1!

ph2

(a) Two Phase
Server

ph1

ph2 ph3

Request to
next stage

(b) Three Phase
Server (as in
a Pipeline)

Figure 7.2. Task Activity Graph for Phases of Service. (Figure JDC)
153

Draft: October 18, 2001

e data
chro-
re acti-
h in
ing

reply,
t and
nd any
 2 work,
one
7.3 Parallel Service

Figure JDA describes a simple case of a useful pattern for parallel subtransactions in a larg
base, or for parallel operations in a scientific program (where the join is called a “barrier syn
nization”. The performance is affected by possible contention between the servers which a
vated in parallel, which can increase the individual path delays, and by the join delay (whic
turn is increased by high variance in the path delays). First consider results for non-conflict
servers with different variability, and for different levels of conflict. Let

n = number of parallel servers

sl,1 and sl,2= service time in phase 1 and 2 for serverl

cvl = coefficient of variation of service times at serverl

Then Table JF shows mean response time results over these parameters,

....

Discussion. Longer with larger cv, longer with more, phase 2 has no effect.

Now consider some of the same cases with a common server S, accessedy1 times by each of the
parallel servers in phase 1, andy2 times in phase 2.

Longer with y, phase 2 does matter somewhat.

7.4 Asynchronous or Deferred RPCs

An asynchronous or deferred RPC is one in which the sender does not block at once for the
but blocks later. Thus the sender has an activity which occurs between sending the reques
waiting for the reply. This pattern also describes prefetches, hints sent to a storage server, a
case where a request is sent before the result is needed. It corresponds in a way to phase
only at the sender. The pattern is easily described as in Figure JGA, with activity a being d
before sending the request, and b, before blocking. The throughput results for 10 Users assb var-
ies, for a fixed sumsa + sb + sc = 1, are shown in Table JGC.

.....

improves with sb up to a point. Rule of Thumb related to second phase of server?

effectiveness in Tower, Lattice, with phase 2
154

Draft: October 18, 2001
7.5 Parallel Pipelines

basic idea

with servers

7.6 Parallelism in Communications

packets:similarity to pipelines; basic comm patterns for one packet, for many

packet parallel protocol stacks

group comm operations (nack approach = optimistic)

***********From here on, old text ***********

Introduction

6.7. Parallel Servers

6.8 Asynchronous RPCs

basic pattern

effectiveness in Tower, Lattice, with phase 2

a

RPC b

c

User

10 Users

Server
[0.05,0.05]

Figure 7.3. The Asynchronous RPC Pattern and Example. (Figure JGA)
155

Draft: October 18, 2001
6.9 Parallel Pipelines

basic idea

with servers

6.10 Parallelism in Communications

packets: similarity to pipelines; basic comm patterns for one packet, for many

packet parallel protocol stacks

group comm operations (nack approach = optimistic)
156

	DRAFT DRAFT DRAFT DRAFT Performance-Oriented Patterns in Software Design (A multi-level service a...
	C.M. Woodside
	Dept. of Systems and Computer engineering
	Carleton University, Ottawa K1S 5B6
	copyright 1996, 1997 C.M. Woodside
	Chapter 1. Software Design and Performance (D)
	1.1. Performance is Important and Difficult (D.1)
	1.2. Patterns (D.2)
	Figure 1.1. An Activity Diagram with a Fork-Join Pattern (Figure DC)
	Figure 1.2. A Module Pattern, where one Module Calls Another (Figure DD)
	Figure 1.3. A Client-Server Pattern, where one Concurrent Task Requests Service from Another (Fig...

	1.3. Using Patterns to Improve a Design (D.3)
	1.4. An Office Workflow System (D.4)
	Figure 1.4. Office Workflow System (Figure DG)

	1.5. How to Use this Report (D.5)
	1.6. Structure of the Report

	Performance-Oriented Patterns in Software Design (A multi-level service approach)
	C.M. Woodside
	Dept. of Systems and Computer engineering
	Carleton University, Ottawa K1S 5B6
	copyright 1996, 1997 C.M. Woodside
	(Draft version produced for classroom use, September 1997)
	Chapter 2. Software, Hardware, and Bottlenecks (H)
	2.1. Performance Terminology: Directory Server Example
	Figure 2.5. Performance Terminology at the User/System Interface (Name Server). (Figure HB)
	Figure 2.6. Stations in an Abstract Performance Model (Name Server). (Figure HC)
	Figure 2.7. In a Model, a Device is a Queue and a Server. (Figure HD)
	Figure 2.8. Users, Requests, and Open and Closed Classes. (Figure HE)
	Figure 2.9. Distributions and Percentiles of Response Times. (Figure HF)

	2.2. Obtaining Demand Parameters
	2.3. Basic Performance Bounds for Linear Software
	2.3.1. Saturation Bounds
	(1a)
	(1b)

	2.3.2. Path Bounds
	(2)

	2.3.3. Little’s Formula for Delays and Throughputs
	Figure 2.10. Little’s Formula for Flows and Delays. (Figure HJ)
	(3)
	(4)

	2.3.4. Asymptotic (Optimistic) Bounds: Summary
	(5)
	(6)
	Figure 2.11. Asymptotic Bounds on Throughput, for the Directory Server (Figure HK)
	Figure 2.12. Asymptotic Bounds on Response Time, for the Directory Server (Figure HL)
	Table 1: Directory Server Example: Parameters (Table #T)

	2.3.5. Two-Class Example: Asymptotic Bounds for a Reservations System
	Figure 2.13. Two Classes of Workload. Demands are in sec/response. (Figure HM10)
	Figure 2.14. Asymptotic Throughput Bounds for Reservations System Users and Other Users. (Fig. HP1)

	2.3.6. Other Bounds

	2.4. Contention and Queueing Models
	2.5. Software Design Options
	2.5.1. Reducing the Operation Counts
	2.5.2. Reducing the Operation Times through Locality
	2.5.3. Improvements by Restructured Software
	2.5.4. Improvements which lead to Non-Linear Software

	2.6. Summary of Chapter H
	2.7. Related Reading
	BIBLIOGRAPHY

	Performance-Oriented Patterns in Software Design (A multi-level service approach)
	C.M. Woodside
	Dept. of Systems and Computer engineering
	Carleton University, Ottawa K1S 5B6
	copyright 1996, 1997 C.M. Woodside
	(Draft version produced for classroom use, September 1997)
	Chapter 1. Tracing Performance to Software Scenarios and Modules (S)
	1.1. Introduction
	1.1.1. Scenarios, Use Cases and Activity Graphs
	Figure 3.1. Example of an Activity Graph for a Ticket Reservations System. (Figure SA)

	1.1.2. Modules
	Figure 3.2. Relationships Between Module Descriptions and Scenarios (Activity Graph) Descriptions...
	Figure 3.3. Idea of Module Aggregation (Figure SAM)

	1.2. Activity Graphs to Capture Scenarios and Workloads
	1.2.1. Activity Graph Notation
	Figure 3.4. Activity Graph Notation. (Figure SB)

	1.2.2. Performance Parameters and Calculations in an Activity Graph
	Figure 3.5. Activity Graphs for a Module with Two Entries (Figure SKD)

	1.2.3. Activity Graph Workload Parameters: Alternatives
	Figure 3.6. Activity Graphs for a Module with Two Entries, with Software Service Demands Resolved...

	1.2.4. A Large Activity Graph Example: Theatre Reservations System
	Figure 3.7. Ticket Reservations System: Activity Graph for a Reservation Session, with Parameters...

	1.2.5. Reduction R1, from an Activity Graph to a Device Workload Model (Linear Software Case)
	1. Add up the demands for logical services vertically in the graph g, taking into account the Mea...
	2. Eliminate services in modules which are internal to the system described by the graph (the dec...
	3. Associate a physical device with each device-service and determine its operation time Oi. This...
	Figure 3.8. Steps 1, 2 and 3 in Reduction R1 of the Ticket Reservation System “Reservation Sessio...

	1.2.6. Summary and directions

	1.3. Patterns in Activity Graphs
	1.3.1. The Fast Path Pattern
	Figure 3.9. A Fast Path Pattern (Figure SFG)

	1.3.2. The “Optimistic” Pattern
	Figure 3.10. Two Optimistic Patterns: (a) Original conservative activity (b) Basic optimistic tra...
	Figure 3.11. Optimistic Locking. (Figure SFN)
	Figure 3.12. Basic Optimistic Pattern: Demand Ratio [Basic Optimistic/Original], for various effo...
	Figure 3.13. Entirely Optimistic Pattern: Demand Ratio [Entirely Optimistic/Original], for variou...

	1.3.3. A Parallel Section Pattern
	Figure 3.14. Parallel Activity Pattern (Figure SFR)

	1.3.4. Conclusions about Patterns in Activity Graphs

	1.4. Module Models
	1.4.1. Module Notation
	Figure 3.15. Module Reduction R2. (Figure SKE)

	1.4.2. Reduction R2, from an Activity Graph to a Module Entry
	1. Determine which logical services used by module m are internal and which are external.
	2. For each entry (m.e) in module m, there is an activity graph g.
	3. Apply steps 1 and 2 of reduction R1 to graph g to find its “entire” demand parameters Yi’(g).
	4. The entire demands of graph g are the local demands of entry (m.e):
	Figure 3.16. Local demands a Ticket “Reservation Session”, derived from the activity graph in Ste...
	Figure 3.17. Entire demands for a User Session, derived from Step 2(b) of Figure 3.8 (SE) (Figure...

	1.4.3. Reservation System Module TicketRes
	Figure 3.18. TicketRes Module (Represents the Software System separately from the user behaviour)...
	Figure 3.19. (Figure SKC)
	Figure 3.20. Activity Data for the ‘Interact’ part of the “Reservation Session” activity graph. (...
	Table 2: Table SKN -- Entry Demands for the TicketRes Module
	Figure 3.21. TicketRes Module with Logical Device Demand Parameters. (Figure SKP)

	1.4.4. Obtaining Module Parameters Directly

	1.5. Multi-level Service Systems by Modules
	1.5.1. An Exploration of MSS(Modules): A Printing Service
	Figure 3.22. Module model of Printing service software. There are k file pages in the average job...
	Figure 3.23. Printing service with devices shown. The file system has been aggregated to give a g...

	1.5.2. Changing the Level of Abstraction: Aggregation
	1.5.2.1. Aggregation of Modules (Reduction R3)
	Figure 3.24. Aggregation with Single Access (access into the set via one module, Module A). (Figu...
	Figure 3.25. Aggregation with Multiple Access (access into the set via more than one module, Modu...
	1. Order the entries of E in a list such that the first one makes no requests inside E, and later...
	2. For every entry m.e in E that makes a request to an entry in J, set Yj' (m.e) = Yj (m.e). Thes...
	3. Consider the entries in E in order, starting with the first in the list.
	4. For each entry (k.d) in E, consider all requests from it to other entries (m.e) in E, with loc...

	Figure 3.26. (a) Print Service: Identification of Modules for Aggregation, for k = 3. (Figure SU(a))
	Figure 3.27. (b) Aggregate View of Printing Service, with the Parameter Values for k = 3. (Figure...
	Figure 3.28. The Shorthand for Host Device Request Counts (the parameter in the brackets may also...

	1.5.2.2. Reduction to Obtain Hardware Demands of a Module Entry, and a Complete Program
	Figure 3.29. Aggregation to Obtain Hardware Demands from a Module Model. (Figure SX)
	Figure 3.30. Print Service (with Value k=3) after Reduction R4, with Host Devices and Service Tim...
	Figure 3.31. Response Delay of Print Jobs at a Fixed Request Rate, with No Other Workload. (Figur...

	1.5.3. Introducing Detail

	1.6. A Complete System Model
	Table 3: Device Demands for Computing and Printing (Table SZA)
	Table 4: Performance Results for the Printing Service with N1 Printing Users and N2 other Users (...

	1.7. Patterns in Module Architectures
	Figure 3.32. Substituting one Module Pattern for Another. (Figure SVD)
	1.7.1. Controlling “Bloat”

	1.8. Software Design Issues within the Linear MSS(Modules) Framework
	1.8.1. Potential for Concurrency in Linear Software

	1.9. Additional Reading
	BIBLIOGRAPHY

	DRAFT DRAFT DRAFT DRAFT Performance - Oriented Patterns in Software Design (A multi-level service...
	C. M. Woodside
	Dept. of Systems and Computer Engineering
	Carleton University, Ottawa K1S 5B6
	copyright 1996, 1997 C. M. Woodside
	Chapter 4. Distributed Linear Software (L)
	4.1. Introduction
	4.2. Multi-level Linear/Distributed Software
	Figure 4.1. The RPC Behaviour Template. The real RPC includes the two PrepareRcv activities as sh...
	Figure 4.2. Figure LOA
	Figure 4.3. Centralized Version of Application. (Figure LOC)
	Figure 4.4. Client-Server Version of Application. (Figure LOD)
	Figure 4.5. Layered Service Model for Client-Server Example, with Parameters Aggregated to the Ta...
	Figure 4.6. Queueing Model for an Idealized Simple Client Example, with an Infinite-threaded Serv...
	Table 5: Performance of Client-Server Version

	4.3. The Layered Modelling Viewpoint (L3)
	Figure 4.7. Tasks Involved in Print Server Operation (Figure LBA)
	Figure 4.8. Print Server Partitioned into Concurrent Tasks (Case with k=3 pages per job). (Figure...
	Figure 4.9. Print Server: Concurrent Task Model (including communications overheads) (all times i...
	4.3.1. Queueing Model of the Print Server (L3.1)
	Figure 4.10. Print Server: Queueing Model Demands in sec/response. (Figure LD)
	Figure 4.11. Print Server: Queueing Model (Results for Performance seen by Users) (Figure LDF)

	4.3.2. Task Service Times in the Print Server (L.3.2)

	4.4. Distributing the Functions in Multi-level Systems (L.4)
	4.5. Piped Linear/Distributed Software

	Performance - Oriented Patterns in Software Design (A multi-level service approach)
	C. M. Woodside
	Dept. of Systems and Computer Engineering
	Carleton University, Ottawa K1S 5B6
	copyright 1996 C. M. Woodside
	(Draft version produced for classroom use, October 1996)
	Chapter 1. The Goals of Performance Engineering
	Chapter 2. Performance Delivered by the Hardware
	Chapter 3. Tracing Performance to Software Modules and Behaviour
	Chapter 4. Concurrent and Resource-Limited Servers: MSS(Resources) (C)
	Chapter 5. P: Patterns
	5.1. The “Tower” Pattern
	FIGURE 3. Tower Pattern with Five Levels (Figure PA)
	TABLE 3. Performance of Tower1 Shown in Figure PA (Figures are for each task at level l) (Total T...
	TABLE 4. Multi-threaded Tasks in Tower 1: Throughput, Task Saturations and Other Measures. (Figur...
	TABLE 5. Variability of Execution Demand (Figure PDR)

	FIGURE 4. Tower1 with a Critical Section Modelled by Pseudo-Task CS. (Figure PE)
	TABLE 6. A Critical Section in T3 with Thread Levels of Tower 1 (m2, m3, m4) = (6, 5, 4). (Figure...
	TABLE 7. Estimating Thread Levels from Models with Infinie Levels ((m2, m3, m4) are infinite) (Fi...

	5.2. Variations on the Tower Pattern
	FIGURE 5. Fan-in and Fan-out Requests in Tower1. (Figure PG)
	TABLE 8. Effect on User Throughput of Additional Fan-out Requests for T3 to T3A. (Figure PGF)

	[Figure PGL to come]

	5.3. Lattice Pattern
	FIGURE 6. Lattice Pattern. (Figure PH)
	TABLE 9. Effect of “Connectedness” on Lattice 1 (Figure PHA)

	5.4. Peer-to-Peer Pattern
	FIGURE 7. Equal, Symmetrical “Peer-to-Peer” Interaction. (Figure PLA)
	FIGURE 8. A Layered Set of Pseudo-Tasks Represent Task A and Task B. (Figure PLB)
	FIGURE 9. A Common Thread-Pool for ALocal and ARemote Modelled by a Pseudo-Task AThreads. (Figure...

	5.5. Pipelines with Rendezvous (No buffering)

	Performance - Oriented Patterns in Software Design (A multi-level service approach)
	C. M. Woodside
	Dept. of Systems and Computer Engineering
	Carleton University, Ottawa K1S 5B6
	copyright 1996 C. M. Woodside
	(Draft version produced for classroom use, October 1996)
	Chapter 6. P: Patterns
	6.1. The “Tower” Pattern
	Figure 6.1. Tower Pattern with Five Levels (Figure PA)
	TABLE 6. Performance of Tower1 Shown in Figure PA (Figures are for each task at level l) (Total T...
	TABLE 7. Multi-threaded Tasks in Tower 1: Throughput, Task Saturations and Other Measures. (Figur...
	TABLE 8. Variability of Execution Demand (Figure PDR)

	Figure 6.2. Tower1 with a Critical Section Modelled by Pseudo-Task CS. (Figure PE)
	TABLE 9. A Critical Section in T3 with Thread Levels of Tower 1 (m2, m3, m4) = (6, 5, 4). (Figure...
	TABLE 10. Estimating Thread Levels from Models with Infinite Levels ((m2, m3, m4) are infinite) (...

	6.2. Variations on the Tower Pattern
	Figure 6.3. Fan-in and Fan-out Requests in Tower1. (Figure PG)
	TABLE 11. Effect on User Throughput of Additional Fan-out Requests for T3 to T3A. (Figure PGF)

	Figure PGL

	6.3. Partitioning and Replication
	Figure 6.4. A partitioning Pattern for a Server B with an Associated Task C. (Fig. PJC)
	Figure 6.5. A Replication Pattern for a Server B with Reads and Writes. (Figure PJF)

	6.4. Lattice Pattern
	Figure 6.6. Lattice Pattern. (Figure PH)
	TABLE 12. Effect of “Connectedness” on Lattice 1 (Figure PHA)

	6.4.1. One High-Capacity Tower in a Lattice
	6.4.2. One Server with Heavy Execution
	6.4.3. Bottleneck Migration

	6.5. The Funnel Pattern
	Figure 6.7. Funnel Pattern (Figure PKD)
	6.5.1. Comments on Funnels and Related Patterns

	6.6. Peer-to-Peer Pattern
	Figure 6.8. Equal, Symmetrical “Peer-to-Peer” Interaction. (Figure PLA)
	Figure 6.9. A Layered Set of Pseudo-Tasks Represent Task A and Task B. (Figure PLB)
	Figure 6.10. A Common Thread-Pool for ALocal and ARemote Modelled by a Pseudo-Task AThreads. (Fig...

	6.7. Synchronous Pipelines including Servers
	Figure 6.11. A Stage in a Buffered Pipeline with Blocking. (Fig. PME)
	Figure 6.12. Pipeline Patterns. (Figure PMD)

	6.8. Pipelines with Rendezvous (No buffering)

	Performance - Oriented Patterns in Software Design (A multi-level service approach)
	C. M. Woodside
	Dept. of Systems and Computer Engineering
	Carleton University, Ottawa K1S 5B6
	copyright 1996 C. M. Woodside
	(Draft version produced for classroom use, October 1996)
	Chapter 7. Patterns with Parallel Paths (J for Join)
	7.1 Servers with Internal Parallelism
	7.2 Parallel Activities and Task Activity Graphs
	Figure 7.1. Parallel Service and Task Activity Graph. (Fig. JDA)
	Figure 7.2. Task Activity Graph for Phases of Service. (Figure JDC)

	7.3 Parallel Service
	7.4 Asynchronous or Deferred RPCs
	Figure 7.3. The Asynchronous RPC Pattern and Example. (Figure JGA)

	7.5 Parallel Pipelines
	7.6 Parallelism in Communications
	6.7. Parallel Servers
	6.8 Asynchronous RPCs
	6.9 Parallel Pipelines
	6.10 Parallelism in Communications

