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Chapter 1. Software Design and Performance (D)

1.1. Performance is Important and Difficult (D.1)

Adequate performance, in the sense of delay and throughput, is essential to the
useful functioning of most software products. However it is often the last aspect of a pro-
gram to be analyzed, only after integration and during final testing. At such a late stage
the necessary changes may be difficult and expensive. Projects are delayed, go over cost
targets, or fail altogether because of performance problems. This problem has been
described by Smith as the “fix-it-later” approach, and she believes many programmers
are averse to even considering performance in their designs.

The situation is made worse by the rush to market, and by the greater use of dis-
tributed systems such as client-server systems, communicating over the Internet or simi-
lar internal networks. Distribution and concurrency make these systems much harder to
understand.

If one wants to estimate performance earlier, for example when designing the
architecture of software, there is a frustrating lack of machinery to help. The standard
approaches to design have limited places for performance requirements or information. It
isn’t clear what information is needed, and it is easy to get into a maze of detail, with no
guidance as to what is important. Design notations and CASE tools give relatively assis-



tance. In sequential programming it is not so bad, for experience and a few well-known
guidelines are often enough to find the good design options. In network-based concurrent
systems, and in parallel programming, there have been many disappointments where sys-
tems just do not deliver the expected performance. There are too many factors, and
designer intuition cannot pull them all together without help.

The known approach to performance is through measurement on a nearly com-
plete product. The techniques are sophisticated and difficult to apply correctly, but great
detail can be obtained with adequate instrumentation. Measurement is essential and noth-
ing written here is intended to downplay it, but earlier analysis is essential and this work
attacks it via models. These models are constructed from the designs, combined with
experience, and are used to calculate estimates to guide the early design, and to give
insight into what kinds of situations are likely to arise.

This report assembles some thinking tools suitable for analyzing concurrent and
distributed systems, using models. Using the tools, some recurring patterns of design are
identified and their performance issues are analyzed in a general way. The main tool is a
“layered model” notation that can describe the most important features of computer sys-
tems, from the viewpoint of performance. The features include both the hardware and the
software design, and the software may include many concurrent processes, and proces-
sors and paths executing in parallel.The notation is used to describe and analyze a num-
ber of “performance-oriented patterns” or POPs, which seem to occur often in computer
systems. These patterns occur at different levels of detail, from high-level architectural
relationships between interacting processes (or between the processes and the hardware),
down to detailed sequences of actions within a single process. However the main focus is
at the level of concurrency design and architecture.

1.2. Patterns (D.2)

Performance-oriented patterns (POPS) are architectural or structural design ele-
ments which often recur in software designs. They define relationships between entities
and activities. They have something in common with software design patterns, which are
partial solutions to certain design problems in a form that can be reused, but POPs are
more generic since they do not address function. One POP can represent many different
design patterns.

Examples of three different kinds of POP are shown in Figures DC, DD and DE.
These are very simple recognizable structural patterns in three different software points-
of-view.

Figure DC is instantly recognizable as showing a sequence of activities with a
parallel operation, with forking and joining of the flow. The boxes are activities and the
arrows represent predecessor relationships. We will term this kind of model an “activity
graph”, but it is also known as a “task graph” in the literature. Figure DD shows a module
interface, just a calling interface between two procedures in a sequential program. The
boxes in this figure represent procedures, or some other kind of structural module (object,
Ada package). Figure DE shows a similar call but now occurring between two processes
with a client-server relationship. The parallelograms represent parallel tasks that execute
concurrent and the “call” is a remote procedure call. The different processors for the two



tasks are also shown as ellipses. These are very small patterns that are only building
blocks in creating an architecture; our goal is to create a repertoire of useful patterns that

wen can recognize in any design, and that can guide our understanding of its performance
problems.
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Figure 1.1. An Activity Diagram with a Fork-Join Pattern
(Figure DC)
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Figure 1.2. A Module Pattern, where one Module Calls Another (Figure DD)
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Figure 1.3. A Client-Server Pattern, where one Concurrent Task Requests Service from
Another (Figure DE)

In the activity-graph view expressed by Figure DC we can analyze the possibili-
ties and the effectiveness of parallel execution. How long is each of the three subpaths? If
two are quite short compared to the third, parallelism offers little improvement. What
program parameters affect the subpath lengths? How much of subpath time is overhead to
set up the parallel execution on a separate processor, perhaps with communication over a
network?

In the view expressed in Figure DD we can examine the effect of modularization
on performance. Crossing a module boundary introduces some overhead to pass parame-
ters, which may be greater than the “useful work” in a very small procedure. Aggregating
or “inlining” module B into module A may introduce savings, whose value depends on
the frequency of calling B.

More significant issues become visible in concurrent software with communicat-
ing processes as shown in Figure DE. For one thing the overhead of an interprocess “call”
(which may be a remote procedure call or RPC) is commonly much higher. Thus there
may be an advantage in combining many requests into one list of requests to reduce over-
head (batching of requests).

Quite complex patterns occur between processes, and it is the particular purpose
of this report to examine this class of patterns, at the level of concurrency architecture.
However in doing so we will sometimes want to use activity patterns and module patterns
as well.

1.3. Using Patterns to Improve a Design (D.3)

There are two ways that patterns can help in improving the performance of a
design. First, there are some standgatiern substitutionthat can be used, such as

* inlining a procedure,
* parallelizing a section of code



* introducing an optimistic algorithm
which may reduce the overall work, or cause a response to complete earlier.

Second, when a pattern is detected, one could take advantage of standard rules for
optimizing the pattern by modifying the software within it (if such rules existed). We can
call thisoptimization within the patterrOne purpose of this report is to find some of
these rules, by examining some of the patterns from this point of view and trying to
understand how they can be improved. Given a nudge from such a generic indication of
the improvement, it is still up to the designer to find a way to achieve the indicated
change. For example to maximize the capacity of a pipeline the balance of effort should
be shifted towards the earlier stages, if there is significant variance in the execution delay
of the stages. How to achieve this is up to the designer.

Even these few examples show that to exploit patterns one has to have some
parameters (such as frequencies of calls) and some performance results (such as varia-
tions in delays). The numbers could come from measurements, from simulations, or from
an analytic model. The report uses a notational framework for the parameters, whatever
their source. There may appear to be a bias towards analytic layered modelling, but it is
not basic to the ideas. Analytic models have been used to study issues in the report,
because they make a self-contained story, but the ideas are general.

1.4. An Office Workflow System (D.4)

A basic but rather typical example will motivate the analysis approach developed
later. It is a small office system for storing and processing documents, with a workflow
manager that sequences and tracks the operations. Each user has a client workstation (a
desktop PC) running the office applications for entering and processing documents. Stor-
age and workflow processing are managed by a single Workflow server task running on a
server workstation and accessed over a local area networks (LAN). The storage itself is
on a single disk attached to the server. For simplicity we consider the server to be a single
task, and we will ignore the LAN delay in considering the system performance.
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Figure 1.4. Office Workflow System (Figure DG)
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This vertical system architecture is a simple case of a common pattern we will
later call a “tower”, and all towers share a set of performance characteristics, problems
and cures. We will study the pattern in order to be ready for it in any form it takes, and to
find its limits.

Some design issues for the software that may affect performance are, how much
of the work to do on the clients (the question of “thick” clients versus “thin” clients) and
whether the server design must be multi-threaded.

The performance measure we most want to know is the mean response time R-
Client for those worksteps that access the server, for different numbers of users N-Client.
Other measures that may help us understand the performance are the throughput of the
server for different numbers of the users, and the utilizations of the server CPU, the
Workflow task and the disk (that is, the fraction of time each one is busy). These utiliza-
tions are named U-Server, U-Wflow, and U-Disk.

The software design influences the performance by the way it causes the program
to execute operations that take time, and sequences of operations. This is termed the
“workload” of the program, and in this case the workload has the following aggregate
workload parameters, with values we shall suppose we know:

» the client CPU time per user interaction (CPU-Client),
 the time the users think between entering commands in the client software (Z-Client),

» the mean number of requests to the Workflow task, per user interaction (Y-Client-
Wflow),

» the CPU demand of the Workflow task, per request to it (CPU-Wflow),

» the mean number of disk operations by the Workflow task, per request to it (Y-Wflow-
Disk),

» the mean disk operation time (S-Disk).

There are four resources which may bottleneck this system and limit its perfor-
mance: the disk, the server CPU, the server memory, and the Workflow task itself, if it is
single-threaded. (A single-threaded task in this work is one which can only serve one
request at a time, and cannot serve the next request until the previous one is completed.)
Consider the workflow task first:

Bottleneck at the Workflow Task (Single-threaded)this is the only task run-
ning on the Server, then its time to run for one request is the sum of the CPU time and the
disk time. Call this sum S-Wflow, for the service time of the Workflow task. When it is
computing, the disk is idle and when it is doing I/O the CPU is idle, so neither of these
can be saturated. With enough users however the task can be saturated, so a queue of user
requests builds up. In this condition the throughput f-Wflow of the Workflow task is lim-
ited to

f-Wflow = 1/ S-Wflow = 1 / (CPU-Wflow + Y-Wflow-Disk * S-Disk)

and the throughput of the clients is limited (because they have to wait for Workflow ser-
vice) to a rate determined by the number of requests it makes to the server:
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f-Client = f-Wflow / Y-Client-Wflow

We will see that the mean response time R-Client then is given by a simple equation
R-Client = (N-Client / f-Client) - (Z-Client + CPU-Client)

which can be re-arranged into the form, for large (many client users) N-Client

R-Client = N-Client * Y-Client-Wflow * (CPU-Wflow + Y-Wflow-Disk * S-Disk)
- (Z-Client + CPU-Client)

Figure DM plots the equations for R-Client and f-Client. These curves are a
familiar feature of performance analysis. From the equations one can see the software
design affects this response time through three of the parameters:

» CPU-Wflow, the CPU demand of one response of the Workflow task, which could be
reduced by tuning the code;

* Y-Client-Wflow, the frequency of demands to the Server, which might be reduced by
reorganizing the interface between the user applications and the Workflow task or by
migrating more functionality to the Clients;

» Y-Wflow-Disk, the frequency of disk operations, which might be reduced by re-orga-
nizing the data storage on disk.

Software design also has an effect via the single threaded design of the Workflow
task. The task is always busy, either using the CPU or waiting for the Disk. Neither
device is saturated. However a multithreaded design is a lot more complex, and has addi-
tional CPU overhead costs. In turn this complexity is less serious if one uses a standard
multithreaded design pattern.

Balanced Executionif CPU-Wflow and S-Disk were about equal, then the
throughput limit could in principle be doubled by using two threads in the Workflow task.
The response time R-Client would be reduced by at least a factor of 2, and maybe by
quite a bit more, depending on the other parameters. (The first term in R-Client would be
cut in half, before subtracting the final term.) If there were a lot of inter-thread overhead,
this would increase CPU-Wflow and reduce the potential gains somewhat, but as a gen-
eral rule Tower patterns demand multi-threading for best performance.

To get the same effect by tuning the CPU time, it would have to be cut to zero,
which is clearly impossible. A 10% reduction in CPU-Wflow would give a 5% increase
in the saturation throughput, and a reduction in R-Client that would depend on other
parameters as well, but would be at least 5%.

Bottleneck at the DiskSupposing that there are lots of threads, a bottleneck may
appear at the disk. The symptom would be that U-Disk is 1.0 and other utilizations are
lower. Disk saturation occurs at the disk throughput value

f-Disk = 1/S-Disk
which corresponds to a Client throughput of
f-Client = 1/(Y-Client-Wflow * Y-Wflow-Disk * S-Disk)

12



Using the analysis derived in the next chapter we will find that this gives a client response
time of

R-Client = (N-Client * Y-Client-Wflow * Y-Wflow-Disk * S-Disk) - (Z-Client +
CPU-Client)

The notable difference from the last situation is that the Client response time is
governed entirely by the bottleneck at the disk, in the limit for large enough N-Client.
The CPU demand does not have any effect and tuning the code for CPU time would be a
waste of effort. What will pay off in this situation is reducing the requests to the disks,
somehow.

Bottleneck at the CPU and Memory bottleneck at the CPU is similar to the
Disk, except that now the CPU time is the dominant factor. This is the case with the
greatest payoff for code tuning.

A memory bottleneck can arise because the program code is too large, the data
space in main memory is too large, or there are too many threads (each of which gets a
copy of the thread data structures). The effect in a system with virtual memory is to cause
excessive loading and unloading of memory to the swap space on disk, known as thrash-
ing. Thus this looks like a bottleneck at the disk, and instrumentation must be used which
identifies the paging operation traffic separately, to identify this.

A final possibility in a multi-threaded system is a bottleneck due to heavy use of a
control such as a critical section that protects a shared global data structure or file. What
this does is restrict the effective number of threads.

This simple system with so many possibilities should make a convincing case,
that the only way to make viable predictions about performance is through a model. How
to do this, is the subject of the chapters to come. Chapter H will explain the hardware
contention and bottleneck calculations. Chapter S describes how to model a single mod-
ule or task from the ground up, and introduces patterns in sequential software. Chapter C
goes into combinations of concurrent tasks, and patterns to enhance concurrency. It is all
put together for the Tower pattern in Chapter P.

1.5. How to Use this Report (D.5)

The material in this report is intended to be used in making architectural design
decisions at any point in time, during early systems analysis when the entire system is
only on paper, during high-level design, for diagnosis of performance problems when
significant improvements are being sought, and when planning additions to an existing
system.

1.6. Structure of the Report

The report starts from two points, the nature of simple performance problems
caused by bottlenecks (which motivates a good deal of our thinking), and how to describe
a software system in terms of activities, modules and processes with resource limitations.
Chapter 2 describes performance problems from the simpler viewpoint of programs
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which use one resource at a time, typically some device, and the effect and symptoms of
a bottleneck at one of the devices. Chapter 3 describes the execution within a single
seqguential process in two complementary and connected ways, both of which are needed
to understand performance within design (as discussed for instance in [maps and paths]:
a path or scenario view called activity graphs and a structural or design view of interact-
ing sequential modules. Patterns in these two viewpoints are also discussed, along with
optimizations which are well-known folklore to many developers. The conceptual frame-
work of Chapter 3 is called “Multilayered Service Systems (Sequential)” or MSS(Seq),

in which the layers are essentially layers of procedure calls.

Chapter 4 extends this conceptual framework to concurrent processes executing
remote procedure calls, so concurrency and multiple resources for concurrent processes
is introduced into the mix. Multi-threaded processes with homogeneous server threads
are included in this discussion. This framework is designated MSS(Res), and is rich
enough to address many distributed systems while retaining much of the flavour and sim-
plicity of the sequential system analysis. However parallelism within a single scenario is
limited to something called a “second phase of service” in Section 4.X.

Chapter 5 uses the notations of these earlier chapters to describe and analyze a
variety of architectural patterns that contain concurrency and multi-threaded servers.
These are patterns at the level of tasks and their interactions. For some of these patterns
some preliminary versions of optimization rules are stated, based on experience to date;
this aspect of the work is somewhat preliminary, and is included to encourage further
similar work. “Completeness” of this kind of result is in any case illusory, as problems
and their solutions will progress over time.

Chapter 6 extends the discussion to systems with parallelism internal to a single
scenario, described by parallel paths with forking and joining (which could be imple-
mented by heterogeneous threads forked within the process). These systems are undoubt-
edly important in the future of design. The main examples in present-day systems occur
in parallel transaction processing and in parallel scientific computing.

Chapter 7 focuses on finer-grained patterns within a concurrent system. This is
actually more difficult in some ways than the task-level patterns considered before,
because the pattern may contain fragments of several tasks. In particular different pat-
terns for inter-task communications are considered here. This work is also incomplete, as
it begins to address the host of fine-grained design patterns that have been described or
proposed in recent years.
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Chapter 2. Software, Hardware, and Bottlenecks (H)

The workflow example in Chapter D showed how performance of a program is determined
by the workload it generates for the parts of the computer. It is the amount of work that must be
done by each device (CPU, disk drives, CD-ROMs, printers, and network devices) that determines
the responsiveness of the program. The most heavily loaded device may act as a system bottle-
neck, and it turns out that in many cases the program’s performance is determined almost entirely
by its bottleneck. The bottleneck is important because it points to improvements, in the parts of
the software that load up the bottleneck device.

Linear Software

This chapter lays down basic performance definitions and shows how to determine a bot-
tleneck and its effect on performance. It is restricted to sequential programs which execute one
operation at a time, which we will tertmear software. Linear software executes one activity at a
time, using one resource at a time. There is no program parallelism in linear software; when exe-
cuting an operation on a peripheral device or a remote server, it does not execute on its own CPU
as well. There are no locks or mutexes or other resources that must be “held” while executing.
Linear software is a starting point for our study of distributed software intended to run on net-
works, which is often “non-linear” in the sense that it may use many devices at once and may have
different kinds of logical resources as well as hardware resources.

A program puts a certain amount of load on each device in the system, called the resource
demand for the device. These demands are the central factor in bottleneck analysis.

This chapter shows how linear software is described in terms of its resource demands, and
how the demand numbers can be obtained. It summarizes the analysis of bottlerayksdy
totic boundswhich are valuable for a quick approximate understanding of the relationship
between software, hardware and performance, and it briefly explains more detailed analysis of
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device contention effects by queueing models, which are extensively covered in other works.
Finally it returns to the software design problem and introduces the design improvement tech-
niques which are dealt with in later chapters.

2.1. Performance Terminology: Directory Server Example
Response to a System Request

Performance is always defined in relation to the completion of some unit of work by a pro-
gram or a group of programs, and a single completion is called a response. The time from when a
request made to perform the work (by clicking on a button, or entering a command) until it is
completed is the response time, and the time from completing one request to completing the next
is the response cycle time. The rate of completing responses is the throughput of that class of
response.

One type of request will be calledtkssof request, and often the user is associated with
the class of request he or she is making (so there might be e-mail class users, word-processing
users, and compiling users, for instance). If there is just one type of request in the program, or if a
set of request types or even a set of programs are being lumped together in the analysis, then there
is just one class of request and of user. We can define the average performance measures:

* meansystenresponse tim&(c)sec. for class,

* mean request-creation delay, or “think tin&t) sec., between the end of one request and the
beginning of the next.

* meansystenresponse cycle timé(c) sec. for class; C(c) = Z(c) + R(c).
» throughput of(c) requests/sec., on average, for class

@ Directory Service
Request (Class)
[ ]

Directory Server

-
Classc Userls ratef(c)/sec.
I}Ijg%)%ctive .
(mean résponse
Z(c)sec. time)
(mean think
time)
L .

Response L

Figure 2.5. Performance Terminology at the User/System Interface (Name Server).
(Figure HB)
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Figure HB shows an example representing a directory server which receives requests
across a network, from users. Each request gives a logical name, such as the name of a printer, and
the server retrieves from storage (in main memory or on disk) a physical network address that cor-
responds to it, to which the user can send print requests directly. In the telephone system there are
name servers like this that translate 1-800 numbers into customer phone numbers; in the Network
File System (NFS) there is a yellow-pages server to provide addresses for services like printers,
and in the internet there are many name servers to determine the routing of messages.

Directory Server

/ Ycpu(C) operations\

f(c)/sec

“User”

Station

N(c) users ~

Z(c) mean

think time
Disk
. / Service

Center

\_ Ypisk(C) operations

Figure 2.6. Stations in an Abstract Performance Model (Name Server). (Figure
HC)

Figure HC shows the system components as abstract stations. The user is replaced by a
module which may represent a person making requests, or a program making them. The computer
system is opened up to show the devices, and the response is traced through the system by a track
showing the sequence of operations in the CPU and the disk. The program code is indicated by a
parallelogram inside the symbol for the CPU. We can see that in one execution of the program, a
number ofYp;gi(C) requests are made to the Disk, anddisk response timegdg(c) is defined as

the time from poinb to c.
Rpisk(C) = mean response time to one request to dévighin a classs operation.

In general for devicewe define
Yi(c) = mean number of requests to devigeer response of class

The start and end of a response must be exactly defined. In Figure HC a response is
defined to begin at poiatwhen the request reaches the name server node from the network, and
to end at pointl when the reply message is sent. This is a response from the viewpoint of the
designer of the name server, but a user sitting at a remote node would see a different definition,
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beginning when he/she originates the request and ending when the result is returned. In yet
another case, it might not be a human user but a program at the remote node which originates the
request and receives the reply.

If we compare this model to the Workflow Server example in Figure DG we see that the
Users correspond to the Clients, the Workflow Server corresponds to the Directory Server, and the
CPU and Disk have the same roles as in the earlier examples.

One Device: Response and Demand

The view of performance at a single device is much like that for the program as a whole.
For example the disk device shown in more detail in Figure HD serves requests to read and write
blocks, and it has a response time of its own. We will assume that a device has only one operation

fpisk(C) requests/sec.
from classe operations

A
¢ Yo
/ ¢ gueue of waitir@

requests (mean

“Disk” Service
Center)
Rpisi(C) sec _
totgl Server with
(response time) Opisk S€ec

operation time

- /

Figure 2.7. In a Model, a Device is a Queue and a Server. (Figure
HD)

(this can easily be relaxed). The properties of a service by a device will be identified by subscripts,
so devica has a throughput, a response timg;, etc. In Figure HC or HD the disk response time

is the time to traverse from poibtto pointc. Also a device has a characteristic time to execute an
operation, and a utilization level.

* fi(c) = rate of requests to devicéy classe jobs
» O; = mean operation time for an operation by devjiae sec., in a classoperation

* Uj(c) = mean utilization of deviceby classe jobs,U;(c) = fi(c)Gi(c). This is the mean
fraction of time the device is busy.

* U; = mean total utilization of devigeU; = f; O;, a fractionU; = Z.U;(c)

*(Uj < 1.0,ifdevice isasingle devicey; < mifitincludesm identical subdevices, for
example a multiprocessor with CPUs.)

* nj(c) = mean number of clagsiobs using and waiting for device
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Thedemandy workload clasg on one device is the average total execution time needed
to complete a classsystem response. Usiigc) andO;(c), the average resource demands per

response are:
* average service demabx{c) = Y;(c) O(c) sec. per response of class

The resource demands describe the workload of cdassthe hardware, and from them a
great deal can be determined abi(t) C(c) andU;(c) for each device.

To illustrate the calculation of demands, consider the directory server example with one
class ¢=1), with aCPU of operation time 100 nanoseconds and a disk of operation time 18 milli-
seconds.

Ocpu(1) = 107 sec;Opjsx = 0.018 sec

Also suppose the program is such that it demands half a million operationsGilihe
and an average of 1.7 operations by the disk. Then

Ycpu(1) = 500,000Ypisk = 1.7 requests/response.
Dcpy(1) = 0.05 sec/respondBjg, = 0.0306 sec/response.

This is a very aggregated, abstract workload description It does not describe the order of
operations, or the probability of a single response requiring 1, 2 or even 5 disk operations. How-
ever (as we will see) it is enoughldoundthe system capacity and response time, for a system
with linear software.

The values for CPU operations are often numerically awkward, with very small operation
times and very large numbers of operations. One visit by a job to the CPU queue (the ready-to-run
gueue) leads to many operations before the job give up the CPU. Sometimes we will use millions
of instructions for a CPU workload.

For the directory server example there is just one class of response (class 1). The devices

are a CPU and a DISK. The CPU has an operation time of (sd\3et0, and the disk has an
operation time of 0.18 sec. Suppose there is an average of 1.7 disk operations, the CPU time per
response is 500,000 operations. Then

d chu(l) = 500,000,Dcpu(1) = 0.05 sec.
* Ypis(1) = 1.7, Dpjg(1) = 0.0306 sec.

This does not state in what order the operations are carried out, or the probability distribu-
tion of either the number of operations or the time per operation. However for each response, it
states that on average, a certain number of seconds of work must be done while tracing the path of
the response. This is just the operation time of the devices and does not include waiting for a

device to become available, so the time to actually do the operation may be greater. In linear soft-
ware this work must be done in some sequential order.

Users
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DelayZ(1)
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“outside” with ! f(3) >

Open Class an infinite :

3 population of ' R(3)

users | -
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Figure 2.8. Users, Requests, and Open and Closed Classes. (Figure HE)

The users generating classesponses are said to be themselves in cJassl there are
N(c) of them. Often we know(c) and it also is a parameter of the workload for the class. This
makesc a “closed” class in the analysis. For a closed class it is important that we know the mean
request-creation delay or “think tim&(c), which is the delay of a “User” station in the model.
We will use the terms:

* populationN(c) of a closed class
» mean numben;(c) of classe requests are using and waiting for device

When there are several classes there may be one total popMlatiuoh is creating
requests of several classes, in certain given proportions; then the group of classes is called a
“chain” (we will not have to go into details, but this has the effect of averaging the classes
together, and considering the chain itself as a class). Thus sometimes a model may have a “chain
¢’ in place of a “class”.

Sometimes we only know thhl(c) is very large, and we prefer to ignore its actual value,
and instead assume that we know the rate of creation of requests by thd(aleBsich a class is
called an “open” class, since we are only sure of the requests actually in the system at any time,
and they arrive and leave. In theory the mean number of requests being processed could go to
infinity! We have, for open systems:
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* mean population(c) of classe requests in the system.
» mean numben;(c) of classe requests are using and waiting for device
Response Measures

All the above deals with average values of performance meaR{c¢sR(c), n(c). They

are the simplest figures to use, but it is sometimes necessary to look at the variance of some mea-
sures as well, or the distribution. For example one may need to know the percentiles of the
response time. A telephone switch must give dial tone within half a second, in 99% of requests for
connection, for instance.

Consider the response time, andﬁ&ét) stand for the actual random “response time”
guantity that has average vaRé&). The dial tone requirement could be written as “the probabil-

ity that R<0.5 sec for a “request-for-connection” class system operation must be at least 0.99”,
or:

Prob{l;e (request-for-connection) < 0.5 sec} > 0.99

A percentile specification oR can be abbreviated &g or Rgg, Or more generally &,, which
is a value oR such that

Prob{R <R} > /100

Then for dial tone we hawyg = 0.5 sec. Figure HF illustratéd aRgk.

For queue lengths we may also have restrictions, due for instance to finite storage space. In
message-based systems, when message buffers overflow it is sometimes necessary to discard mes-
sages, and the subsequent recovery operations cause loss of performance. So we may need to
know the probability that the queue lengths exceed a limit.

Unfortunately the analysis of distributions is much more complex than the analysis of
averages. It almost always requires a detailed simulation or measurement study of the system. The
simple performance bounds analysis described below only applies to averages. However, many
response and queue distributions in computer and communications systems are approximately
exponential. Then the percentiles are roughly proportional to the mean, with the form
R, =In(1-x)R which gives

Rgs O3R

Rog 04.6R

Using this fact an analysis of the mean gives at least an indication of percentile values, which
should be confirmed by more detailed analysis.
2.2. Obtaining Demand Parameters

Demand values for a program which is implemented and running may be obtained from
measurements made by the operating system, or by instrumenting the software. Many operating
systems record the CPU consumption of each process during a certain interval which might be

21



A Density function oR

5% of the area
under the curve

I | » R Response
time
(mRean) Ros

Figure 2.9. Distributions and Percentiles of Response Times.
(Figure HF)

several minutes. If the number of responses for a certain class of users is also known over the
same interval, then the CPU demand per response is directly obtainable. The modeller may wish
to group into a single class a number of users running different programs, in which case the cor-
rect procedure is to add up the CPU consumption for the different programs and users, and divide
by the total responses. Care must be taken about responses at the edges of the interval.

Similarly the operating system records the number of I/Os, although special instrumenta-
tion may be needed to record which disk they go to. Indeed these days they often go to a file
server, which would have to be instrumented also.

A more extensive discussion of this question is found in [jain92], chapters 7 and 8, and in
[menasce94], chapter 9.

Notice that demand measurement needed for bottleneck analysis and performance predic-
tions is different from measuring performance values themselves, sicaraf. With measured
demands and a model, performance values can be extrapolated for larger numbers of users, faster
devices or more devices and so on, while for an experimental performance evaluation the results
apply only to the measured configuration.

There are many measurement tools which are intended not to measure demands, but to
measure performance values themselves. The approach taken here is inteuggictmenthese
measurements by starting early and by using models. It is not intended as a replacement for mea-
surement.
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Some metrics are easier to measure than others. Utilizations and throughput counts are rel-
atively easy and are measured by standard operating system tools saghastatand in UNIX.

2.3. Basic Performance Bounds for Linear Software

Given the very simple information defining the resource demands and the number of
users, one can obtain useful quick information about the potential of the system for performance,
from bounds. The Workflow Server example in Section 1.4 described bounds due to saturation,
and now this section derives their equations and gives typical diagrams for single-class systems,
and for two classes. These bounds are described in every reference on performance modelling, so
only a brief summary will be given here. The bounds are based on two observations:

* no device can be more than 100% utilized: this creates a limit on throughput,

* No response time can be less than the amount of work that must be done: this creates a limit
on response time.

Asymptotic bounds are optimistic values of the mean throughput and response times that cannot
be actually achieved except in asymptotically large or small systems. It is amazing how many
guestions can be answered by asymptotic bound calculations.

2.3.1. Saturation Bounds

The throughput of a response cannot be increased beyond a rate that saturates some
device, i.e. makes its utilization 100%. This means, if only one classs the system, and all
devices are single servers, the system throughput is bounded by

U, < f(c)D;(c) < 1.0 for each device(all single servers)
which limits the throughput to the range

f(C) < fadC) = Min1/D;(c) = 1/ D, 4,(C) (1a)
whereD,,,.(c) = max D;(c) .

A closed system with one class is self-limiting gt since any attempt to overload it only
leads to longer queues and delays at the bottleneck device (the one wittHOgrgestopen sys-
tem will “blow up” for a rate of arrivals larger tha,,,, and in practice such systems have to limit
their arrivals by rejecting some of them.

When there are several classes then saturation arises due to the total load at a device. That
is, at devicae the throughputs are bounded by

U; = ¥ f(0)Di(c)< 1.0 (1b)
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2.3.2. Path Bounds

For a closed system a response also cannot be repeated faster than allowed by the time it
takes its user to complete a cycle of user operations (such as thinking and typing) and the com-
puter operations to complete the response. This means that for linear software with only single
servers,

R(¢)=D(c) = ZDi(c)

The user think/type dela;se(c) is not included irR(c), but is a part of the total cycle
time:

C(c) =D(c) + Zge((0) -

If the response time includes some other pure delay terms that have a constant mean (i.e.
no contention) they will also be includedRc). Let us denote their sum gy {c) sec., then

R(c) 2 D(c) + Zg ()
C(€) 2D(C) + Zg ) + Zyge,(C) = D(C) + Z(c) (2)

We note that delays such agZdo not limit throughput directly, by saturation. Typically,

they do not represent device demands, but are nominal figures used to represent delays in some
subsystem which is not being analyzed, such as a transport delay through a network.

2.3.3. Little’s Formula for Delays and Throughputs
There is a very powerful and simple relationship between flows and delays in all kinds of
systems, illustrated in Figure HJ.

R = mean residence time
- >

Any State or Subsystem
Any flow of which the entities enter and leave
entittes — 5|
at ratef/sec.
n = mean number of entities in
the state or subsystem

Little’s Formula:n = fR

Figure 2.10. Little’s Formula for Flows and Delays. (Figure HJ)

If
f = mean flow rate into and out of the subsystem
n = mean number of entities
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R = mean residence time in the subsystem

then the result, known as Little’'s Formula, is

n = fR (3

The “subsystem” can be chosen arbitrarily: it could be an entire computer system, one
device in it, or just one queue of waiting jobs at one device. If we khamdR we can deriven, or
if we known andR we can derivé, and so on.

For our closed computer system model the “subsystem” is an entire response cycle, giv-
ing:
N(c) = f(c)C(c) (4)

2.3.4. Asymptotic (Optimistic) Bounds: Summary

For a closed system we can use Eq. 4 to put the bounds (Eqg. 1) and (Eq.2). Taking Eq.1
and substituting\N(c)/C(c)for f(c) gives

N(c)/C(c)<1/D,,,{c)
C(c) 2N(c)D,,5{C)

R(©) = N(€)D 2{C) = Zyser(©) ()
and from Eq.2, substituting(c) = N(c)/f(c) (by Little’s result)
N(c)/ f(c)=D(c) + Zsygc) +Zse/(C)
f(c) < N(©)/[D(C) + Zg,{C) + Zyse(©)] (6)

Figures HK and HL summarize these bounds for a single class system for the Directory
Server example of Figure HC with the parameter values of Table #T. Notice that the two bounds
in each diagram intersect at a pdit= 201.6 representing a user population size at which con-
tention delays become significaNtt divides cases with negligible contention, from those where
contention is an important factor.

Table 1: Directory Server Example: Parameters (Table #T)

DemandD; (sec) orZ; (sec)

CPU 0.05
Disk 0.0306
User Think | 10
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Figure 2.11. Asymptotic Bounds on Throughput, for the Directory Server
(Figure HK)

2.3.5. Two-Class Example: Asymptotic Bounds for a Reservations System

A more complex example is described by Figure HM10. It represents a Web Server which
handles inquiries for theater and concert tickets. A user makes a series of inquiries to retrieve
pages with information about show dates, ticket availability and price, and may also purchase
tickets. The server uses two sets of files on two separate disks, one with the reservation informa-
tion and one for marketing information. A special “reference” station is added to the model to
mark the end of a session, and there are eight requests per session. A second class of users, class
2, uses only the CPU and Disk B. Demands are shown per User request for both classes.

New features introduced in this model are, an additional station with a pure delay for
Credit Card authorization, a second class of users, and a reference point for throughput which is
not a User station.

If a user makes a purchase, the credit-card information is submitted for authorization by
the card issuer. The credit card company’s computer system introduces a delay which is included
as a simple mean deldy.creq Which provides a non-zero value g, sin this example.

26



15

10+
Saturation Bound R = 0.05N -10
04
o 5r *
£
|_
(O]
2 .
o Response Time R _
% -
& oF———————————————— —— — — — — — o= R
Path Bound Rmin = 0.0806 e
_5 - P e .
_10 - | | | | | | |
0 50 100 150 200 250 300 350 400

Number of Users, Nusers

Figure 2.12. Asymptotic Bounds on Response Time, for the Directory Server
(Figure HL)

The demands for class 1 in Figure HM10 are worked out in the next chapter, for an entire
session with an average of 8 user requests in a session. In the Figure here, the values are divided
by 8 to obtain average values per request.

It is normal for a distributed system to be shared by different communities of users that run
different programs and impose quite different workloads. Figure HM10 shows these as a separate
class called “Other Users”. As long as they all run linear software, their workloads are fully repre-
sented by their separate demands, as shown in Figure HM10. Notice how class 2 is different from
class 1; it makes heavier CPU demands, and lighter Disk demands, and has a longer “think” time
ZUser

The bound values derived in the last section give separate path bounds for each class, and
one composite saturation bound for each device. The total demand and total pure delay values are:

D(1) = 0.0124 + 0.132 + 0.174 = 0.318
Z(1) = 7 + 0.225 = 7.225
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Figure 2.13. Two Classes of Workload. Demands are in sec/response. (Figure HM10)

Class 1 path bounds from Eq. (1a) and (2):
C(l) = 0.318 +7.225 = 7.543 sec
R(1) = 7.543-7=0.543
f(1) < 50/(0.318 + 7.225) = 6.63/sec
Class 2 path bounds from Eq. (1a) and (2):
C(2) = 0.21 +22=22.21sec

v

\
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R(2) = 0.21 sec
f(2) < 20/22.21 = 0.90/sec
Device composite bounds on throughput, from Eq. (1b):
CPU: 0.0124(1) + 0.15f(2) < 1.0
DiskA: 0.132f(1) < 1.0

DiskB: 0.174f(1) + 0.06f(2) < 1.0
The throughput bounds are plotted in Figure HP1.

Throughput Bounds for Reservation System Users and Other Users
10 T T

Class [l path T

Other Users Throughput, responses/sec.

DiskA —

Class 2 path

0 |

|
0 5 10 15
Reservation System User Throughput, responses/sec.

Figure 2.14. Asymptotic Throughput Bounds for Reservations System Users and

Other Users. (Fig. HP1)

2.3.6. Other Bounds

Further bounds can be found. For example, because one cannot do worse than wait for
every competing job at every station, one obtains pessimistic bounds on delay and throughput:
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C(c) = N(c)D(C) + Zjger + Zsys
f(c) =2 N(c)/[N(c)D(C) + Zyger*+ Zgyd

With stronger mathematical assumptions about the nature of the workload there are also
tighter bounds called “Balanced Job Bounds” [BJB82].

2.4. Contention and Queueing Models

The bounds discussed so far do not predict the effect of interference, and this is the role of
a queueing model. Queueing models were used to predict the “actual” values represented by solid
lines in Figures HK and HL, and the point X in Figure HP1. Given a set of demands, one can com-
pute response time and throughputs by a queueing model. Most solvers make assumptions, how-
ever, and the assumptions may not be accurate.

This work is going to sidestep the subject of solving queueing models, as they have been
well documented. One does need a model, rather than just bounds. For example in Figure HP1 the
bounds only delineate a feasible region, they do not suggest exactly where the throughputs will lie
within it. However in this work we will concentrate on deriving models, leaving the mathematics
of solving them to one side. To study solution techniques consider Menasce [menasce94], Harri-
son [Harrison93], Walrand [walrand].

2.5. Software Design Options

The performance engineer has many ways of modifying software to make it perform bet-
ter. Staying within the bounds of linear software, these all boil down to reducing the demands D in
some way. Either the number of operations requested by the program must be reduced, or the
average time per operation (which may be affected by cache efficiency, for instance). If it is not
necessary to stay with linear software, other mechanisms such as parallel execution may be used.

2.5.1. Reducing the Operation Counts

Some approaches for reducing the number of operations are summarized here. Some these
have been summarized by Smith in a number of principles culled from good practice, but | have
reorganized and renamed them.

Attack the BottleneclGive first and most attention to reducing the number of operations at
the bottleneck devicdf it is a disk, try to reduce the amount of data stored, or use a more compact
format, or store more data in memory to avoid re-reading it later.

Batchingis a well-known way to reduce operation counts by grouping operations together.
The operations themselves are not reduced but the overhead to transfer data and initialize the
algorithm can often be performed just once per group.

Early binding(“fixing principle” of Smith [CUS90]). Late binding is introduced for flexi-
bility and to hide complexity, in the form of pointers, symbolic addresses, inherited functionality,
procedures, and many others. Late binding always has overhead to determine the run-time value
of the binding, and sometimes the overhead is surprisingly large. In hiding complexity late bind-
ing also hides from the designer the knowledge of the run-time costs involved in an operation.
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Well-known examples of early binding for performance improvement are
» allocating static memory for storing data, instead of allocating as needed,
 unwinding loops,
« flattening an inheritance hierarchy,
* initializing a fixed buffer pool or task pool, instead of allocating them as needed.

High Runnerg“centering” principle of Smith). Concentrate effort on sections of code for
which the total demand is high; this is particularly productive when a very small section of code is
heavily used. Profiling tools commonly identify these sections as those in which the program
spends a high percentage of its time. The actual optimizations do not follow any general princi-
ples, but folklore insists that one can always reduce a set of operations by spending effort.

Special Casesr Fast Path([CUS90]). This is a version of high runners, in which a special
case can be determined by a test and then processed in an especially simple way. For instance, the
special case may need no processing at all, or its result may always be zero or empty.

Locality: store data in some sense “near” the operations on it, to reduce the overhead of
accessing and modifying it. The trend to objects which store data and operations together rein-
forces this advice.

Scrutinize algorithmsAlgorithms are often used out of habit, and may have efficiency
trade-offs according to the size of data in the application. Look at the alternative algorithms and
evaluate them for the particular program being designed.

Optimistic designThis is a variation on Special Cases, in which the test for the special
case can only be done after trying to perform it. The special simple processing is done first, on the
optimistic assumption that it applies to the case, and the test is done after. If the assumption turns
out not to apply, then a more elaborate version of the processing is done after undoing any side
effects of the optimistic step. Hash table storage is a widely used example, in which the optimistic
assumption is that there will be no collision on the hashed address.

Good ideas for efficient programming are contained in the bBagamming Pearls
[pearls1]More Programming Pearlpearls2], andNriting Efficient Programsby Jon Bentley
[bentley?].

2.5.2. Reducing the Operation Times through Locality

With modern processors and operating systems the times for operations at the program-
ming level is often reduced by caching and virtual memory (memory hierarchy effects). Programs
can be modified to reduce their operation times by improving their locality of reference, which in
turn increases the efficiency of the memory hierarchy. For instance a repetitive execution of a
short section of code will run completely in the cache, whereas if it includes many procedure calls
to different locations in the program memory the cache may have to be reloaded for every transfer.
Similarly a large number of operations on a small block of data may execute with all the data in
cache, where a series of traversals over a large data array causes the data to be reloaded on each
pass. Stepping through a data array on elements stored adjacently in memory causes fewer reloads
than jumping back and forth in memory.
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Anything which applies to processor caches also applies, at a larger granularity, to virtual
memory, and to file caches. A program which uses a small working set of pages at a time will
make fewer demands for paging operations (which are otherwise invisible to the programmer, but
which must be included in our performance models) and will run faster. If it uses a small set of
disk pages for data they may be retained in the file system cache of file pages, and they can be
read and written much faster than if physical disk operations are needed.

The effect of the memory hierarchy on operation times can be dramatic, on the order of 10
to 1 at both the processor cache and the virtual memoryf/file cache level. Rules for enhancing
locality can be described, and tools such as optimizing compilers are available to help, but in gen-
eral the results are not predictable by simple models.

This work will assume that a certain level of effort is made in this area, with target values
for efficiency which are then incorporated in the demand values for operations. That is, there will
be a translation factor between the operations the programmer sees, and the device operation
demands, which will account for a baseline level of efficiency in the memory hierarchy. For exam-
ple, one file system operation will be converted into a certain average number (perhaps less than
one) of disk device operations, corresponding to the baseline efficiency of caching.

2.5.3. Improvements by Restructured Software

Beyond simply reducing operation counts and times, restructuring a program can yield
performance dividends.

» Structural aggregationRemove the overhead of context changes by bringing modules
together. This can include in-lining of code that might otherwise be a procedure call, or
placing objects in the same process that might otherwise be pipelined.

* Distribution: Move load away from a bottleneck by placing some services on a remote server
accessed by a remote procedure call. This move, prompted by resource saturation (important
in heavy load), is opposite to the previous which is prompted by reduced total demand
(important in light or moderate load).

» SpecializationSeparate service requests into groups handled by efficient specialized servers.
This can combine “Special Cases” for work reduction with “Distribution”. It is the basis for
multi-tier Client-Server systems.

2.5.4. Improvements which lead to Non-Linear Software

This chapter has been concerned with linear software, that executes sequentially and uses
just one resource at a time. At lower levels in the system hardware and software, parallel execution
and simultaneous resources are often used (pipelining, overlapped 1/0, mutexes) in ways that the
application designer does not see. The visible architecture and design can also use these explicitly.

Evaluating the use of simultaneous resources, concurrency and parallelism is the subject of
the remaining chapters. The opportunities for better performance include

« Parallel processingExecute some work in parallel on separate devices. This includes
overlapped 1/O, delayed writes and commits, as well as parallel subtransactions and
multicasts.
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» Multiply ResourcesProvide additional “copies” of a logical resource so that competing tasks
can proceed together. This includes multithreaded or asynchronous servers and replicated
servers (as in multicopy databases).

* Resource RestructuringRe structure the sequence in which resource are obtained, to
combine some resources. For example in run-to-completion systems a table has exclusive
control of all resources controlled by the scheduler, which may make a critical section
unnecessary.

2.6. Summary of Chapter H

This chapter described the basics of workload modelling at the level of execution on the
system as a whole, in terms of classes of users and their demand in devices. It showed how simple
optimistic bounds can be obtained from a small amount of workload data. It briefly described
alternative ways to reduce the demands made by programs.

All this is meant as an introduction to procedures for breaking down workload module by
module, in the next chapter, and for describing and evaluating “non-linear” software, in the chap-
ters after that.

2.7. Related Reading

Modelling by queueing networks is well suited for linear software and is treated in many
excellent papers and books. Recent examples are

R. Jain [jain92], which has special strength in analysis of data and results, and experimental
design, but also includes a summary of modelling by queueing networks.

Menasce, Almeida and Dowdy [menasce94], which describes models for systems running
on networks, and a blend of approaches including queueing.

Allen [allenProb], which is mostly on the theoretical issues underlying the queueing
models, but has a chapter on performance modelling.
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Chapter 1. Tracing Performance to Software Scenarios and
Modules (S)

1.1. Introduction

The previous chapter showed how device bottlenecks can be traced back to users executing
a certain program, which was represented there as a workload class. The connection is given by
performance parameters, mainly the demand of each program for each hardware resource, per
response of the program. Each program may have several users. Only linear software (which does
one thing at a time) was covered, and only physical resources (devices used one at a time).

This chapter describes the links between the software design and the performance
parameters. It focuses on analyzing one particular software module, and the execution of one
particular type of response. The designer can think in the software domain and about the particular
application, and determine the parameters that will give performance figures; the notation and
some simple associated data reductions provide the links. An important feature of the software
description that is not evident in the hardware models of the previous chapter is the need to use
abstraction to hide detail in the software. An activity may be made up of many other more detailed
activities, or a module may be broken down into submodules, and it is essential in considering
software of any complexity to be able to do this, and to reason about it at a level that addresses the
designer’s concerns.

Faced with a set of programs, or designs for programs, how can we extract the essential
information for predicting performance? How can we understand the performance issues well
enough to improve the software? This chapter uses two descriptions, the first based on behaviour
described by scenarios, and the second based on modules. Scenarios will describe the internals and
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the flow possibilities of modules, so we will use scenarios to give the details and modules to
summarize them. In both cases a queueing model will be derived similar to those seen in the last
chapter. These models are lacking various advanced features such as models of critical sections or
parallelism, which are addressed in the next chapter.

This chapter also considers scenarios with parallel paths, a first step to modelling nonlinear
software.

1.1.1. Scenarios, Use Cases and Activity Graphs

Scenarios describe the processing paths of the system, and are sometimes written down as
part of the analysis of a new design or a new feature. An example of a popular scenario capture
technique is Jacobson’s Use Cases [OOSE], about which Jacobson says:

“Quote...”

Typically one needs several (or many) Use Cases to describe all the functions of a system,
and for exceptions. For performance analysis it is permissible to focus on just a few scenarios,
which are known to contribute most of the workload, and to ignore those that are seldom
performed, or only performed to handle exceptions. Which scenarios to include is a matter of
judgement; some kinds of exception handling may occur often enough to demand inclusion.

A Use Case describes a system response in a narrative form that can be easily related to the
requirements and the user’s view of the system, so it provides an interface between the high-level
understanding of a performance problem, and the technical model. A Use Case is a narrative with
a sequence of steps, possibly including alternatives that may occur at some steps, and identifying
as Actors the participants which are outside the software to be designed.

Theatre Ticket-Reservation System

For example the theatre-ticket reservation system already described as a queueing model
has a major Use Case for connecting, interacting and purchasing tickets. It involves Actors which
are outside the software to be designed (but may be in the performance model): a User, a database
server DB, and a credit-card verification system CCReq. A simple high-level narrative form of the
Use Case is:

* a user issues a request to connect to the reservation system, which is processed to set up data
tables and connection parameters (detail suppressed here).

» The system presents the user with a menu of choices to
* Display. display program and price information, or ticket availability information,
» Reservedefine a reservation for tickets, to be paid for by a credit card,
* Confirm confirm a reservation, a step included to allow the user to have second thoughts
and cancel the transaction,
* Disconnect.

» The system presents the appropriate operating window for one of the three choices and the
user fills it out, possibly returning to the menu for another choice or a more detailed window
within the same category.

« If the choice is Display or Reserve, the operation will include read accesses to the ticket
database to provide information,

36



Activity Graph Comments on Adtities and Steps

Connect to client

Connect
Loophead: Loop for repeated client interactions
Choice of interaction
0.75 | Display Display shows and seats
0.15 | Reserve Reserve seats
Confirm Confirm sale of seats
0.1
Verify CC Get and verify credit card data
]
Disconnec Disconnect from client
Update DH Update database with interaction data

(for later analysis of market information)

Figure 3.1. Example of an Activity Graph for a Ticket Reservations System. (Figure SA)

* If the choice is Confirm and the user does confirm a purchase and give credit card
information, a request to verify the credit card information is sent to the appropriate credit
card issuer’s system (represented here by a single actor CCReq for simplicity), and the ticket
database (actor DB) is updated with the sale,

» when the choice is Disconnect, a disconnection dialog is issued to the user and the network
connection is torn down,

» Update following the disconnection, information on the session is added to the marketing
database (actor DB again) for the theatre reservations system, including the time of day, the
number and type of interactions and the size of the sale.
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The ticketing and marketing databases are different but in this analysis they are both assumed to
be provided by the same system, identified as the actor DB. This Use Case description will be the
basis of the activity graph in Figure SA below, which captures the performance parameters of the
activities traced in the Use Case.

Jacobson goes on to develop the software design from a set of Use Cases; we will instead
go on to develop a performance model. We do not require that the design be done by Jacobson’s
method. The value of the Use Case is to provide a bridge between the definitions and actions seen
by users, and the internal details. In fact every performance study has to include some kind of
explanation of the work being done by the different classes of users in the model, and a Use Case
is just a convenient framework for doing it. We will encode each Use Case in an activity graph to
capture the performance data, and then reduce the parameters to represent a module or a complete
program.

1.1.2. Modules

Modules are central to design, and to a performance model of a design. “Module” is a
flexible term that refers to any identifiable piece of software, which might be a language unit such
as an object, a procedure, a task, an Ada “package” or a Module “module”, or just a section of code.
For performance analysis a certain level of module granularity is chosen by the analyst or designer,
and performance parameters are determined for one request to the module. Booth and Weicek
called such a module description a “performance abstract data type” [booth&weicek], since it hides
its other internals for modelling purposes.

If a module M represents abject itimplies a need to model different kinds of calls to the
method®f the object, providing different services and having different workloads. The discussion
below uses the term “entry” to designate these different services.

Modules take two complementary roles, as units providing service to programs, and as
domains of analysis. As a unit providing service, the module (or rather its “entries”) has a given
set of execution demands, so its internals need not be examined. When a module is a domain of
analysis its entries’ internals are described either by scenarios or by module refinement, and
execution demands are obtained.

Scenarios for module entries will be represented by activity graphs which provide a
detailed description that reflects their requirements (Use Cases) or their design (execution flow).
The activity graph description can beducedo a module entry description. But the activity graph
can also show the frequency of useottiermodules, so the activity graph concept is related to the
module concept in two ways:

Module M, entry Ghas execution described Bgtivity Graph g
Activity Graph g, step MvokesModule m execution

Figure SAL illustrates these relationships. Invocation of external modules is routinely part
of the activity graph definition to be described next, while the Mollutkescription is derived
from its activity graphs by eeduction Riwhich condenses the graph description into a few
demand parameters.

38



activity

% Module M,
Modulem Y entryg
Reduction
resource . R1 resource
demands Activity A demands
uses
modulem

:>
: v

Module M, entryg
resource demands

(Set of modules used éﬁfg\é'ﬁé encapsulate _
by g) for ModuleM the activity analysis
entry g ' and parameters

Figure 3.2. Relationships Between Module Descriptions and
Scenarios (Activity Graph) Descriptions (Figure SAL)

If we are building a system from existing modules then the modules do not stand in
isolation, but one module may call other modules. It is a convenience to be able to hide the further
calls by aggregating the other modules into the first one, to get a total workload description for the
one interface as indicated in Figure SAM.

The following sections define Activity Graphs which capture the performance parameters
of scenarios within modules, and the manipulations that allow parameters captured in a scenario to
be used with a module representation, and in a performance model.

We will expect to use the scenario reduction to encapsulate the scenarios in module
parameters. We will incorporate other modules via their own demand parameters, suitably
aggregated to the level needed by the scenarios. The analysis may be recursive, so low-level
modules will be reduced and used by higher level modules or scenarios.

The programs considered in this chapter will mostly still be linear, so we can concentrate
on the analysis and combination of modules. This gives the simplest version MSS(Modules) of the
MSS framework, for multi-layered service system by modules. Parallelism in activity graphs will
be introduced, to be exploited later. In later chapters we will see how the demands generalize to
include demands for logical resources and external services, to give the more general framework.
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1.2. Activity Graphs to Capture Scenarios and Workloads

An activity graph expresses a scenario with performance parameters. In the very first
planning of a program scenarios are the easiest way to describe the necessary processing, which
has been exploited by Jacobson in inventing Use cases. Many other established software design
techniques also employ or generate scenarios. If scenarios are not available from the design or
requirements analysis, they may be created just for performance analysis. Activity graphs are just
a notation we will use here for adding performance information to these scenarios. Other authors
have called them “task graphs” or “precedence graphs”, and defined them in much the same way.
Smith for example defines “execution graphs” for the same purpose, and describes a practical
performance review process to generate parameters from expert expectations [CUS90].

What is new here, compared to Smith’s “execution graphs”, is including calls to modules
in describing an activity (Smith only included device operations.) Methods for gathering and
exploiting data on existing modules are emphasized. Modules being designed will be treated in the
same way as existing modules except that their performance data is derived from expectations.
Since a higher level of module re-use will give less dependence on imprecise estimates, and more
dependence on known information from the existing modules, it will also give a more accurate
performance analysis.

1.2.1. Activity Graph Notation

An activity graph describes the predecessor-successor relationships of software activities, and
their workload parameters. An activity may be any portion of processing by a program which can
be identified and named without ambiguity. An activity graph has activities as nodes and arcs
which show the flow from one activity to another; there are also nodes which provide more
complex connections between activities.
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Figure SB defines the notation used in this work for picturing activity graphs. An activity
is represented by a box, with a sequence of boxes joined by arcs, to define a sequence of activities.
A conditional or optional activity is shown within a special choice box that has a triangle above
and below, with a place to show its probability. Within one condition, a sequence may be shown,
but further nesting of conditions is better represented by nested activity graphs (described later). A
set of alternative cases is a collection of alternatives with their probabilities. A loop is identified
by a circle at the head, with a mean loop count attached to it. Nested loops may be shown. Parallel
operations with forks and joins use a horizontal bar to show the fork or the join. The sequence of
processing in each branch of the fork-join may be shown on a separate graph which expands the
activity shown for each branch. The same bar for parallelism is used when a message is sent or
received in such a way that the flow forks or joins.

Logical resources such as critical sections and locks are important in distributed or
concurrent software, and location within the flow of the point of acquisition or release of a resource
can be indicated.

An activity graph is drawn vertically down the left side of the page with performance
parameters beside it. The notation is defined so that different activities are located on different
lines, so the performance information for each activity is written beside the activity in a tabular
form.

1.2.2. Performance Parameters and Calculations in an Activity Graph

The performance parameters of an activity graph will be explained first using the example
shown in Figure SKD. There are two activity graphs for a moduweth two high level operations
(or entries), calledn.elandm.e2 The function of this module is not our concern, but it uses file
operations and two X-windows functions listed here as Xwin.create, to create a new window, and
Xwin.inout, to read and write text in the window. Xwin is a module with two entries, inout and
create.

Each activity is described by a “MeanTimes” parameter in the first column (how many
times itis executed, for one execution of the graph) and by its usgigfl servicesvhich include
logical processor instruction executions, file operations, and execution of other software modules.
There is a column for each service, giving its mean execution counts. CPU operations are taken to
be machine language instructions, and a unit of one million instructions (one M-In) is used for the
CPU demands.

When this information is first obtained it is usually easier and more useful to define values
for logical services rather than for hardware operations. Thus, a number of file read operations may
be identified in the software and the expected number of these operations within one activity may
be recorded. This leaves the task of identifying

» how much is read and written
» how many disk operations or network operations occur for each file operation
» how long each disk operation takes

to a later analysis, when more is known about the application, the operating system, the
configuration, and the choice of hardware devices. For instance a file to be read may be on a disk
attached to the processor, or accessed over a local network from a network file system like NFS.
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The difference arises not in the description of the software but in other decisions. We may in the
end build separate models for the two cases, both based on the same software and activity graph,
but substituting different file operation sub-models. The case of file operations will be considered
again, for example to deal with the size of each operation.

At the bottom of Figure SKD a set of totals is shown, which are the total request counts for
service demands when the graph is executed once. The graph can be represented as a single
aggregate activity, possibly for use within a graph written at a larger scale, and these are the
parameters of that aggregate activity.

1.2.3. Activity Graph Workload Parameters: Alternatives

The analyst can decide what will be considered to be internal to each activity and what is
considered to be a service obtained by the activity from outside the software modelled by the graph.
Making a service external allows it to be analyzed separately, and its parameters to be used in other
models, so it is an aid in re-using performance information.

If, in Figure SKD, we wanted to consider the file operations and the X-server operations
Xwin.create and Xwin.inout as internal to the activities A to G we would have to substitute in their
CPU service and disk operation request counts. Then we obtain the service request counts just for
CPU and disk operations as shown in Figure SKDD. In this way all the logical service requests can
be eliminated and the device request rate found,; it is then only a small step to get a performance
model. This will be detailed below as Reduction R1.

1.2.4. A Large Activity Graph Example: Theatre Reservations System

Now the more complex activity graph given earlier in Figure SA for the theater reservation
system use case will be analyzed to develop a workload characterization for the system. Looking
again at Figure SA, the first activity is to set up a connection with a user that selects the service.
There follows a loop representing the repeated interactions with new web pages for information,
or for making the reservation. The loop shows a mean loop count of six, and four kinds of
interactions in a “choice” box identified by a triangle above and below, with a probability for each
choice. Each user interaction displays a page, waits for the user to react and then makes a choice
depending on the user’s input. Thus there is one user selection of a hot-link or menu item, for each
“choice”. The probabilities given here show that three-quarters of all interactions just display
information as the user navigates the possible programmes for which there are tickets for sale.
Fifteen percent are interactions for making a reservation, involving selection of seats and prices
and filling in details of the desired sale. Somewhat less (10%) are interactions to finally confirm
the sale, verify the credit-card transfer with the bank via a network transaction with a credit-card
server, and set up the processing of the order. Finally there is a disconnect operation and a database
operation to save certain data about the users activities, for later use by marketing.

The activity graph is much simpler than a complete program specification, in that it lacks
details (such as data definitions and transformations) and it may lack entire functions. Functions
that are almost never performed can be left out, particularly in a preliminary analysis. For instance,
this graph doesn't specify what is done if the credit-card server doesn't answer.
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Figure 3.5. Activity Graphs for a Module with Two Entries (Figure SKD)
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“Entire” Device demands per repetitionrafel

K CPU Disk-ops
MeanTimes (M-In)
A 1 0.136 2.34
B 1 0.95
1 3.87
C
Activity graph for Weighted sum 4.956 2.34
entrym.el (K x demand)
Device demands per repetitionrofe2
K CPU Disk-ops
MeanTimes (M-In)
D 1 0.15
1 0.01
E 0.9 1.07
F 0.1 2.34
G 1 0.15 3.25
Act|v|ty graph Welghted sum 1.507 3.25
for entrym.e2 (K x demand)

Figure 3.6. Activity Graphs for a Module with Two Entries, with Software Ser-
vice Demands Resolved into their Device Demands (Figure SKDD)

The value of an activity graph is for understanding and communicating issues to do with
performance. It is most useful in the early stages of planning, when there may be no other unified
description of program behaviour, or for capturing and understanding a complicated behaviour
pattern with important performance effects. It may be produced and reviewed by a development

group, and be used to gather expert opinions about expected resource demands of the activities, if
(as usual) some data are missing.
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The activity graph and its table of the performance parameters is shown in Figure SC. For
each line (meaning, for each activity or node) there is a “MeanTimes” figure, which is calculated
from the loop counters and the choice probabilities. Then there are mean numbers of requests for
services, each time the activity is executed. A service could be:

. cpu Data Base Netware CCReq
Graph Node  MeanTimes v - Server  Server Server

(ops) (ops)  (ops)

Connect

Connect 1 0.010 1

6 Loophead 6 0.001

| Choice 6  0.001
0.75|| Display Display 4.5 0.005 1 1
0.15 Reserve Reserve 0.9 0.015 2 1
0.1

Verity | verity cc 06 0004 1 1

Disconnect| Disconnect 1 0.001 1

[Update DB| jp4aeps 1 0007 1

Figure 3.7. Ticket Reservations System: Activity Graph for a Reservation
Session, with Parameters. (Figure SC)

* an operation by a device, for instance a CPU instruction or a disk operation,
* a logical service provided by a software module, such as a file operation provided by the file
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system, or a logging operation provided by a module called “EventLogger”

* a logical service provided by some remote system, for which the program must wait, such as
the Credit Card Server in the Figure. These services will be treated as if they arise from a
module which executes on a remote system.

Notice that we delay estimating the CPU time or the other service times at this point; the
analysis is more portable if we can first estimate logical operations and services, find the totals, and
only at the end insert the device operation times. Then the operation times may be changed easily
to consider other devices or models. Similarly the use of services by other modules is simply
identified at first; when the other modules are analyzed their parameters can be filled in. This
allows one to analyze one module at a time, to “divide and conquer”. Too often a performance
analysis is abandoned because the analyst is asked for too much information in one step.

Figure SC shows the mean request counts made to the following devices and services:
* a CPU, in millions of instructions (M-Ins) executed by the activity

» a network information server module, such as a Web server, in operations each of which
handles one request from the Web client,

» a database server module, in operations (all queries and updates counted equally).

The parameters in Figure SC show only the direct demands for service made by the
activities of the graph. That is, the CPU demand by the activity itself is shown, but not the CPU
demand of a module which it calls, even if the module runs on the same processor. The parameters
which are shown are called the “local” parameters of the activities. The local parameters are the
MeanTimesK(a) for activity a, and the request valu¥ga) for logical service requests from
devices and modules:

K(a) = mean number of times activiis executed, each time the entire graph is executed
Yi(a) = mean requests by activigfor logical servica, per execution o

For exampleYcp (Display) = 5000 instruction¥ptapaskPisplay) = 1. For the loop logic,
Ycp(LoopHead) = 1000 instructions is the cost of executing the logic to control the loop, each
time through.

To distinguish the CPU demand for the entire activity, including all the services used by
the activity, we will call it the “entire” CPU demand. It is found by the first of the two graph
reductions described below.

1.2.5. ReductionR1, from an Activity Graph to a Device Workload Model (Linear Software
Case)

This reduction systematizes the previous discussion about substituting for the parameters
of a service, for the particular case where all the logical services are to be substituted successively
until only requests to devices are left. These will constitute a performance model at the device level
as described in the previous chapter. It is assumed that the activity graph is sequential (no parallel
subpaths).

We go from an activity graph to a set of device demands in three steps:

1. Add up the demands for logical services vertically in the g@gpaking into account the
MeanTimes factoK(a) of each node. This gives the total local request cof(g}of
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the graplg as a whole, both to devices and to module services.

Yi(9) = TK@Y(@)

2. Eliminate services in modules which are internal to the system described by the graph
(the decision as to which modules are internal must be made by the analyst). By
successive substitutions reduce the total local request counts for module services down
to entire demands for operations from device.

Y'i(g) = entire demand, or total service demand from the gyafuhservice, wherei
must be external to the software R, servicei must be aleviceor an external
subsystem which is modelled as a device.

Each service by a module is assumed to have known average device request counts.
Suppose that

* the graplg uses servicpan average dfj(g) times, and
* servicg has an external request countypf]) for operations of device
then servicg contributesy;'(j)Y;(g) to the entire count for deviceand

Yi(9) = Yi(9) + 5 Yi(i)Y;(9)
]

3. Associate a physical device with each device-service and determine its operation time
O;. This gives the demaridi(g) for the graph, in seconds of resours®rvice, per
execution of the grapir

Di(9) = Y'i(9)0; .
Figure SE walks through the steps of reducRdrior the example shown in Figure SA.
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lowing “Table 1”7, and add up the columns.

Reduction R1
Step 1: From “Table 0” given in Figure SA, Multiply “MeanTimes” into “Request Counts”, to give the fol-

Activity cPU . Data Base Netware  CCReq
M-Ins Disk Server Server Server User Input
(ops) (ops) (ops)
Connect 0.010 1
Loophead 0.006
Choice 0.006
Display 0.0225 4.5 4.5
Reserve 0.0135 1.8 0.9
Confirm 0.012 0.6
Verify CC 0.024 0.6 0.6
Disconnect 0.001 1
Update DB 0.007 1
Entire Demands=Sum 0.102 7.9 8.0 0.6
Step 2(a): Module Service Demands to be eliminated
Module Services CPU Disk User Input
Database Server, per op. 0.085 2
Netware Server, per op. 0.012 1.5 1
Step 2(b): Computeentire demanddor Ticket Reservations, to give “Table 2":
CPU Disk CCReq. User input
Local demands (Step 1): 0.102 0.6
7.9 x Database demands 0.6715 15.8
8.0 x Netware demands 0.096 12.0 8.0
Total for Ticket Res.
= ‘Entire’ demands
Y, (Ticket Res) 0.8695 27.8 0.6 8.0
Step 3: Put in Operation TimesO;
CPU Disk CCReq User input
Device operation time
(O))(sec) 0.1 0.011 3 7 sec.
Device demands
(D; = YO;) (sec) 0.08695 0.306 1.8 56 sec.
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Figure 3.8. Steps 1, 2 and 3 in Reducti®hof the Ticket Reservation System “Reserva-
tion Session” Parameters, to Hardware Device Demands per Response. (Figure SE)

For Step 1, the data table beside the activities in Figure SA will be called “Table 0”. In each

row, the repetition count MeanTimes (ikga) for activity a) is multiplied by every entry in the

row to give “Table 1.” The columns are summed to give the total local demands, that is the request
counts made by the activities in the graph. These include logical services in the last four columns.
For instance the local CPU requests made by Display is 0.005 Millions of instructions each time,
or 0.0225 M-Ins on average each time a client connects to the service (4.5 repetitions x 0.005), and
the total over all the activities is 0.102 M-Ins, or 102,000 machine instructions. The interrogations
of the user, and a delay for the user to make a selection, are included in the last column.

Step 2 is shown in two parts. Part 2(a) is an auxiliary table with a row for each module used
by the activities in “Table 1”, and the module requests are broken down into demands for logical
device-service requests. There are just two modules, the Database and Netware Servers, which are
internal to the graph workload. These will have device demands substituted for them. The other
two logical demands columns (CCReq, Server and User) show services which are external to the
system being analyzed by the graph reduction, so their request counts are retained at this stage. In
step 2(b) these definitions are then substituted into the totals to give the line of “entire” device-
service requests, \Yfor the graph which will be called “Table 2”. For instance the Database Server
requires 85,000 CPU instructions and 2 disk-accesses per request (in the appropriate mixture of
read and write request types, one assumes -- a point that will be addressed shortly). As there were
found to be 7.9 requests to the DataBase server in traversing the graph, this contributes 0.6715 M-
Ins (7.9 x 0.085) to the entire CPU demand for the graph. The 8 requests to the Netware server are
assumed to each involve one delay for a user interaction. The user is external to the system, and so
is treated as if he/she were a device, as is also the external server of the credit-card company.

For Step 3, operation times are defined for the devices, and the device de&mareds
calculated. If the CPU runs at 10 MIPs we obtain a time of 0.1 sec for each M-In, and the demand
of 0.8695 M-In gives 0.08695 sec of CPU demand for each response. We could round this to 87
msec. We have an option to give times for the external services CCReq and User. If we can supply
times, we can include delays for these services in a queueing model M¢he, user input delay
is included here as 7 seconds; the total of 8 user delays per response is thus entered as 56 sec. In
this table the external CCServ delay is also given a value of 3 sec. Later we will see another option
for modelling, which includes CCServ within the model as a module.

The result of this reduction is a set of loadings for the CPU and disk devices and for the
Users and CCReq (as external servers) in seconds of service, for each execution of the activity
graph. This corresponds to an entire user session with the server, but we will treat it like a
“response” (a unit of operation) as described in the previous chapter. Then the |@adireys
exactly the demand parameters of the hardware queueing models described in the last chapter.

The important values for a hardware queueing model are:
* CPU demand®qp; = 0.087 sec./session,
» disk demandp;g, = 0.306 sec,
* User delayZjs¢r = 56.0 sec., and
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* CCReq delayccreq= 1.8 sec.

The servers for User and CCReq are pure delays, or infinite servers in the queueing context,
and in the queueing model the two values of delay per response are added to give a total “infinite
server” delay o se, + Zgys= 57.8 sec./session.

To get the demand values per user response that were analyzed in Section 2.3.5, we divide
the demands per session found here, by 8 responses per session.

1.2.6. Summary and directions

This section has shown how the execution scenarios or Use Cases of a system can be
developed into activity graphs which capture those aspects of behaviour which are important for
performance. It is emphasized that an activity graph can be much less detailed, and less logically
complete, than a software specification, since it only has to capture attributes which are executed
during performance critical responses, and executed often enough to influence performance. It has
also shown how the parameters of an activity graph can be reduced to give total values for the
graph, and to give a simple performance model based on device contention alone.

The analysis of hardware-based performance limits is easy to do, and is recommended as a
first step in any study. However a deeper analysis may be essential:

* a stochastic queueing model can introduce the effects of random interference, and give
performance in unsaturated systems,

* opportunities for parallel subpaths and concurrent operations may be found and analyzed,

* logical resources shared by concurrent processes should be described in the graph, and their
effects found.

and these further needs are the object of the MSS framework. To fully investigate them we will
need to use the extended properties of activity graphs, such as forks and joins, and it will be a great
convenience to capture the idea of a service provided by a module. In fact the role of the activity
graphs is to help understand and define the behaviour of modules.

1.3. Patterns in Activity Graphs

Although our main interest is in patterns of concurrent tasks, it is essential to recognize
some performance-oriented patterns for sequential activity graphs. POPs are used to express
performance problems in the software, and to solve them. In an activity graph a POP is typically a
part of the graph (a subgraph), which may be modified or transformed to reduce its level of
resource demands. In sequential code expressed by an activity graph or subgraph the only
performance “problem” is too large a resource demand, such as too much CPU demand. Less is
always better. Demands are expressed through the entire requestyg@8atsgraph). A great
deal of analysis has been performed on certain algorithms to determine their demands for certain
operations, and to find better algorithms with smaller demands; this may provide solutions to some
problems. Works such as Bentley’s “Programming Pearls” [pearls1l] make suggestions for
systematically improving the efficiency of code. C. U. Smith [CUS90] has collected folklore about
efficiency and organized it into a number of “performance principles”, some of which we will see
in our patterns.
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In general, demands may be reduced by either
» modifying a demand parameter of an activity, or
« transforming the subgraph to another that has a smaller demand (using a different algorithm)

For instance a CASE block with branches Branchand probabilitiep;,... is a simple pattern,
and its entire request count for resoure

Y;’ (CaseBlock) :z p; Yi"(Branch)

A costly branch (with largé&;’) may be reIativeI& unimportant if its probability is low enough. As

a first step towards reducing the ovehl[CaseBlock), attention should be concentrated on
branches with a large prodygy;’; then the internals of the branch should be examined to find a
way to reduce it¥;’ value.

We shall consider two important sequential patterns,
* the “fast path” pattern,
* the “optimistic” pattern and its variations.

These patterns can take many forms. They reappear later in concurrent software, and lie behind
many of the mechanisms that give Internet software its scalability.

1.3.1. The Fast Path Pattern

A fast path executes special fast processing that is applicable only to a special case of whatever is
being done. Suppose there is an activity A which can process the most general case of the data,
then in figure SFG it is replaced by

* a test to determine if the special case holds,

» a CASE block which executes the special case as activity A* if possible, or otherwise the
general case A.

A simple example from the earliest days of computer hardware is an arithmetic multiplier
that tests if one of the arguments is zero, and if itis, writes zero as the result. The well-known UNIX
Make utility tests to see if binaries are “up-to-date” and only recompiles them if the source has
changed.

In the Reservations activity graph, a fast path for retrieving a page of theatre program
information could first examine the cache of web browser, and if a valid copy of the page is in
cache, retrieve and display that page without making the request over the net. Of course to have a
page in cache, it is necessary to maintain a cache, which means doing some extra work in other
places in the activity graph. Also a page with volatile information like a list of available seats would
have to be reloaded every time.

Consider the quantitative advantage of using a particular fast path, ignoring for the moment
any extra work in other parts of the program that may be needed to support it. Suppose the
probability of the special case®g as shown, then the ratio of the resource demands with the fast
path, to the demands without it, are
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Test for fast casA*
p* A* Fast Case
A
1-p* A General Case
(a) Original Activity A (b) Fast Path Pattern

A* = Fast version oA
p* = ProbabilityA* can be used

Figure 3.9. A Fast Path Pattern (Figure SFG)

Ratio = [’ (Test) +p* Y’ (A*) + (1-p*) Y, (A)] / Y}’ (A)

For cases with an advantage, Ratio < 1.0. If there is extra work outside the fast path, a fraction of
it suitable to charge against a single execution of the pattern is added to the numerator.

Clearly there may be more than one special case with its own fast path. The tests may be
done all at once, giving amway CASE block, or one at a time starting with the most likely case,
giving recursively nested CASE blocks.

All this discussion has been in terms of a single resauvgeile implicitly there may be
many resources used by the pattern. If all are decreased, then for a sequential program there will
be a performance gain. However if some are decreased at the expense of others, the net gain or loss
will have to evaluated by a model (a point made repeatedly by Smith). For linear software with no
simultaneous resources, a queueing model is sufficient. In general it is more important to reduce
the use of resources that are heavily used by the program, and performance may not suffer from
additional demands for a lightly used resource. Thus a model solution may guide the tradeoffs
made when some resource demands increase and others decrease.

In C. U. Smith’s work there is a “Centering Principle” which we may translate roughly to
say, “use a fast path when Ratio < 1” [CUS90].

While a fast path may reduce the mean value of the demands if Ratio < 1, it also tends to
increase the demand variability expressed as the Coefficient of Variation (CV = variance/ square
of the mean). This is because an operation which is a mixture of other operations with different
mean demands has a higher demand CV than any of its parts.

53



1.3.2. The “Optimistic” Pattern

What is called “optimistic design” uses the same idea as a fast path, but in situations where it is
impossible to do the test without first executing the special case. This case is executed “optimisti-
cally” in the hope that it will succeed. If it does not, then in many cases it is necessary to undo its
results in a Recovery step before proceeding to the general case, which is called the “conserva-
tive” case since it does not depend on the optimistic assumption. This gives the transformation of
activity A as shown in Figure SFK(b). There is another optimistic pattern that can be applied if the
conditions that make the test fail may have changed. One may retry the optimistic step again after
executing the Recovery.This gives an entirely optimistic transformation as shown in Figure
SFK(c).
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A*

Test the results
of A* for validity

A
RecoveryUndo the results of
1-p* A*
A .
Do Ainstead

(a) Original Activity

(b) Basic Optimistic Pattern
(with general case as a fall-back)

¢ (p* = Prob{Success})
N = l*
P
A* Optimistic version of activity
Recovery l
Test Loop test (for validity
of result ofA*)

(c) Entirely Optimistic Pattern (Retd¢* until Test passes) (p* = Prob{Success})

Figure 3.10. Two Optimistic Patterns: (a) Original conservative activity (b) Basic opti-
mistic transformation with conservative fallback to original processing (c) Alternative
“entirely optimistic” transformation (Figure SFK)

Examples of optimistic transformations are pervasive, and they have been systematically
studied by for example Bubenik, [bubenik] Strom and Yemini [stromyemini] and Cowan
[HOPEsem95]. A good example of an entirely optimistic design is the use of optimistic locking of
data. The processing of data is carried out without any lock, on the assumption that there is no
conflict. The fact the data is being used is recorded, and the results are written in a form that can
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easily be annulled. At the end of the operation the possibility of conflict is checked from the data
usage records, and if there has been no conflict the results are made permanent (“committed”); if
there has been a conflict the results are annulled (rolled back) in a Recovery step and the
transaction is restarted, possibly after a period of backoff to reduce the chances of another conflict.

Obtain Lock N = %*
on Data
Set Flag “Using Data”
A
Recovery A* Same Activity
(Roll Back)
Test that data
Release Lock were used without
Test conflict, and
unset flag
®
(a) Conservative Locking (b) Optimistic Locking

(an “entirely optimistic” pattern)

Figure 3.11. Optimistic Locking. (Figure SFN)

An other example of optimism is van Jacobson’s optimization of the TCP/IP protocol stack
for network file systems using Header Prediction [TCPspeed89], where a packet received by a
workstation is written directly to the space it will eventually reach if it is a message to the kernel
(e.g. for a remote file request) rather than a message to an application. A large proportion of
messages satisfy this, and it saves a copy operation. The recovery, if the header has been read and
found to belong to a user message, is to move the packet to a user buffer area. This is also cheaper
than the original conservative option of moving it twice. In this case, as in many others, the
conservative path is modified in the optimistic design.

The advantage of an optimistic transformation is generally not quite as great as a fast path
because the fast operation, the test and perhaps the Recovery have to be carried out, instead of just
the test. In Figure SFK(b) the Ratio between the original and the Basic Optimistic demand for
resource is seen to be

Ratio = [ (A*) + Y’ (Test) + L-p*) [Y;’ (Recovery) +; (A)1] / Y’ (A)

Figure SFP shows the values of the Ratio for some values of p* and the demands, assuming
the following relationship among the demands:
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Y’ (A*) =Y’ (Test) =Y, (Recovery) =a Y;' (A).
Then:

Ratio = 2a + (1- p*) (1+a)

Demand Ratio for a Basic Optimistic Pattern
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Optimistic Path Demand as a Fraction of Conservative Demand
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Figure 3.12. Basic Optimistic Pattern: Demand Ratio [Basic Optimistic/Original], for

various effort ratiosd) and success ratiop*). (Fig. SFP)

In Figure SFK(c) the Entirely Optimistic version has the demand ratio

Ratio =a [(3/p*) - 1]

which has the values shown in Figure SFQ for the same assumptions as in Figure SFP. Actual
implementations such as optimistic locking may have variations on the pattern such as the extra

operations shown for setting flags.A Parallel Section Pattern
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Demand Ratio for a Completely Optimistic Pattern
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Figure 3.13. Entirely Optimistic Pattern: Demand Ratio [Entirely Optimistic/Original],
for various effort ratioso() and success ratiop*). (Fig. SFQ)

1.3.3. A Parallel Section Pattern

This pattern does not really belong in a chapter on sequential software, but it does fit in with
activity graphs, so it will be briefly discussed. Figure SFR shows the parallelization of one activity
into a set of parallel branches, which we will assume are executed truly in parallel by separate
processors. The pattern in Figure SFR(b) shows overhead activities that stand approximately for
the effort of sending messages to the other processors and initiating the branches and then later
gathering the results together.

Evaluating the benefit of parallelism requires finding the delay along each branch, which
absolutely requires a performance prediction.
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Fork Overhead

>

OH1 OH2 OH3 | Overhead to set up

l ¢ ¢ ¢ parallel operator

Al A2 A3 Sub-activities

OH4 OH5 OH6 | Overhead to terminate
parallel operations
and communicate
results

Join overhead

Figure 3.14. Parallel Activity Pattern (Figure SFR)

1.3.4. Conclusions about Patterns in Activity Graphs

Many design patterns are best understood and analyzed within the behaviour sequences
they generate, in our activity graphs. The cases examined here are just patterns which reduce total
demands within a single process. When we get into concurrent and parallel behaviour we will
return to activity graphs to describe useful POPs that traverse multiple processes.

1.4. Module Models

Activity graphs are a step towards a module model. A software designer uses a Use Case
or other scenario definition to help arrive at a design in terms of a set of software components and
interactions. We have seen how an activity graph captures the performance parameters of a
scenario; anodule modesimilarly captures the performance parameters of the components and
interactions of a design. The modules in the model correspond with the components in the design,
at some selected level of granularity, but there may be some points of difference.

The view of a software module adopted for modelling is that of an object (the module) with
methods (calle@éntrieg. Each method executes a distinct computation, so it has a separate set of
workload parameters. If activity graphs are used to define the module behaviour there is one graph
for each entry.

The modules in the performance model may deviate from the software component
structure. The analyst may group a set of software components into a single aggregate module in
the model, to avoid excessive detail and excessive labour in determining parameters. Alternatively
the analyst may subdivide a single “method” into several entries, if its behaviour and workload can
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be very different for different values of its arguments. For example instead of having different
named entries, a component might have an operation code as one of its arguments, with a different
case of execution for each code; the analyst might then model each path as a separate entry.
Similarly if two entries with different names have almost the same workload parameters they may
be merged in the model. For purposes of performance modelling, entries are services with distinct
demand parameters.

1.4.1. Module Notation

The performance parameters of ergrgf modulem, denoted as entr§m.e),have exactly
the same meaning as the parameters of an activity. That is, they are a set of mean counts for
requests for a set of services, for each time the entry is invoked. In place of aativityvrite the
entry namem.g to obtain:

Yi(m.e)= the local request count for requests by efitne)for servicel, (wherei may be a
service by a device or by a module) each time gntrg)is invoked.

Y'(m.e)= total requests from ent(yn.e)for operations by servidewhen entrym.e)is
invoked.

A module modeis a graph with module entries and devices as nodes, and requests from
entry to entry, or from entry to device, as arcs, labelled with the mean request count for the
requesting entry. The notation for the mean request count from(emajto entry(k.d) is
Y(k.a(m.e) while the mean count for device operations on device serigc€; (m.e) The CPU
device which hosts the module is not represented in the graph to avoid a profusion of arcs in larger
models; the request count instead is represented as a label on the entry (we will call the CPU the
“host” device of the module).

Module models will be assumed to aeyclic graphsthat is there are no calling cycles, and
therefore no recursive calls. This restriction can be removed, at the cost of more difficult math.

Figure SKE(a) shows the moduieanalyzed earlier in Figure SKD, making demands on a
file system and on an X server, Xwin, with the CPU demands in millions of instructions shown in
square brackets. Host demands can also be specified in time units, so to be complete itis necessary
to specify the units.

If we have the parameters in terms of requests to other modules we can aggregate the
modules together to get the entire demands of all the modules. Figure SKE shows this for the
modulemconsidered above; part (b) shows the file-service module aggregated into modnie
part (c) shows all the services aggregated into madule

1.4.2. ReductionR2, from an Activity Graph to a Module Entry

An entry may be analyzed by creating an activity graph for it, in which case the entry
parameters can be obtained from the total parameters of the graph. A reduction similar to R1 is
applied:

1. Determine which logical services used by module m are internal and which are external.
2. For each entrgm.e)in modulem, there is an activity graph

3. Apply steps 1 and 2 of reducti®ito graphg to find its “entire” demand parameters
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el e2
[0.4] | [0.5]

Modulem

3

File op inout | Xwin
Module [0.75] | [0.29] | module

(a) Modulem showing File-operations and Xwin as external

el e2
[0.436]| [0.55] Modulem

create inout Xwin
[0.75] [0.29] module

(b) Modulem showing Xwin as external, File-operations as internal

el e2 Modulem

2.34 3.25

(c) Modulem showing all operations as internal

Figure 3.15. Module Reductid®2 (Figure SKE)
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Yi(9).
4. The entire demands of graglare the local demands of enfrmg.e)
Yi(mOe) = Y'(9)
This is how the parameters in Figure SKE were found.

For another example consider the Reservation Session in Figure SA as a module, such that
all the logical services (Database, Netware, CCReq, User) are given by external modules.
Reservation Session is a kind of pseudo-module representing the behaviour of a user, and the main
control program, during a session. It has just one entry. Since there are no internal modules to be
reduced the graph reduction only requires stepRDbliits local demand¥; are found in Step 1 of
Figure SE to be:

-- to CPU, 0.102 M-In,

-- to Disk, O

-- to Database Server, 7.9
-- to Netware Server, 8.0,
-- to credit-card server, 0.6

This is sufficient to describe the operation of a session as a module with these demands.
Graphical notation is shown in Figure SJ.

“Reservation Session” Pseudo-Module

0.102 M-In 8.0 29 0.6

Netware

Database CCReq
Server

Figure 3.16. Local demands a Ticket “Reservation Session”, derived from the activ-
ity graph in Step 1 and Step 2(a) of Figure 3.8 (SE). The pseudo-module “Reserva-
tion Session” is entered once per user session. (Figure SJ)

On the other hand if the Database and Netware Servers were considered to be internal to
the Reservation System module, their demands would be included inside the pseudo-module as in
Table 2 of Figure SD, and the average module demands are:

62



-- to CPU, 0.8695 million instructions

-- to disk, 27.8 disk operations

-- to credit-card server, 0.6 requests for verification
-- to user, 8.6 requests for input.

This is displayed graphically in Figure SK.

“Reservation Session” Pseudo-Module

8.0 0.8695 MIn 27.8 \
@ CCReq
Server

Figure 3.17. Entire demands for a User Session, derived from Step 2(b)
of Figure 3.8 (SE) (Figure SK)

Another way to configure the system would have two disks, DiskA for the Netware server
and DiskB for the database. Examining Figure SJ we see that the 27.8 disk operations divide into
12 to DiskA and 13.8 to DiskB. In this case, using the operation times in Table SE, the queueing
model parameters are

Dcpy = 0.087 sec/session@icp, = 107 sec,Y’cpy = 0.8695 M-In
Dpiska= 0.132 sec iDpgka = 0.011 secY’piska= 12

Dpiskg = 0.174 sec iDp skg = 0.011 secY’'piskg = 15.8
Dccreqg= 1.8 sec i0ccreq™ 3 s€CY'ccreq™ 0-6

Dysgr= 56 sec ifOysgr= 7 secY'ysegr= 9

The queueing model in Figure HM is based on these demands, but divided by 8 and stated
per response instead of per session.

1.4.3. Reservation System Module TicketRes

The example just completed reduced an activity graph by mechanical steps to a pseudo-
module “Reservation Session”. If we re-examine the activity graph we can see that it represents,
not the behaviour of a software module, but the behaviour of a complete session of the reservation
server interacting with the user. If we want to separate the software behaviour from the user
behaviour we can identify three kinds of user requests to the reservation system: Connect, Interact
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(described by the Choice block in the middle), and Disconnect. We can reorganize the activity
graph of Figure SA into the form of Figure SKC, showing each kind of request as a high level
activity, with six repetitions of “Interact”. Each high level activity becomes an entry to the new
module TicketRes. Figure SKM shows the module TicketRes (with three entries) to represent the
software part of the system, and the pseudo-module “Reservation Session” now representing a user
session making requests into it.

Reservation Session Pseudo-Module

1
’/ 6l k‘ TicketRes

Connect Interact Disconnect

l/ ¢

Netware CCReq Databage
Server Service Server

Figure 3.18. TicketRes Module (Represents the Software System separately from the user be-
haviour). (Figure SKM)

To obtain the parameters for the model in Figure SKM, we must restructure the activity
graph in Figure SC with 4 parts:

« one for the user behaviour, making choices;
* one for each of the entries Connect, Interact and Disconnect.

Connect

6

Interact

—+

Disconne¢

Figure 3.19. (Figure SKC)
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For the user behaviour we obtain Figure SKC. Connect is a single activity, sufficiently
described in Figure SC. Interact has a separate activity graph corresponding to the middle part of
Figure SC, but with the looping cost lumped with the “choice” cost, with the activity data shown
in Figure SKD. Disconnect consists of just the two final activities of Figure SC. The entry demands
are summarized in Table SKN.

Netware
Interact CPU DBServer  Server CCReq
MeanTimes | (M-In) (ops) (ops) (ops)
Choice 1 0.002
Display 0.75 0.005 1 1
Reserve 0.15 0.015 2 1
Confirm 0.1 0.002 1
Verify CC 0.1 0.004 1 1
Local Demands  § Ky, 0.14 1.15 1 0.1

Figure 3.20. Activity Data for the ‘Interact’ part of the “Reservation Session” activity graph.
(Figure SKD)

Assembling this information we can attach parameters to Figure SKM to obtain Figure
SKP. The parameters are still in terms of operations rather than times.

Table 2: Table SKN -- Entry Demands for the TicketRes Module

Entry

Connect
Interact
Disconnect
DB Server

Netware

CPU
(M-In)

0.01

0.014
0.008
0.085
0.012

Total Local Service Demands

Disk
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Reservation Session [7 sed]

/

Y

k‘ TicketRes

Connect
[0.01]

Interact
[0.014]

Disconnect
[0.008]

Netware CCReq Database
Server Service Server
[0.012] [3 sec.] [0.085]

Figure 3.21. TicketRes Module with Logical Device Demand
Parameters. (Figure SKP)

1.4.4. Obtaining Module Parameters Directly

We have been considering how to obtain module parameters by recording the plan for
execution of each entry as an activity graph, and reducing its parameters to the request counts as
given by ReductioiR2in Section 3.3. On the other hand it may be possible to obtain the entry
parameters directly, without the activity graph analysis. This section will describe the steps for
direct estimation.

The entry parameters are the mean request counts to services and to the host device or
devices. Some of the possibilities for direct estimation are:

* The module may exist, as for instance the file system, and its parameters can be measured. If
a prototype exists, request count parameters can (perhaps) be measured from it.

» Data from a similar system or a previous version of the system can be used to estimate the
parameters

* A parameter may be a simple property of the operation, such as the need to check the user
privileges exactly once, for the print service, even if multiple documents are to be printed.
Thus it can be taken from design documentation.

» A parameter may be a property of user behaviour (such as the number of pages in a document)
which could change without warning, and which must be estimated as a basis for planning.

» Some parameters may be allocated as a budget to be achieved by the developers. The budget
approach is often used with CPU time in developing an application, when a total CPU time
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budget is divided among various modules to be developed in parallel.

Measurement of request counts can be done by tracing and by profiling. The UNIX gprof
profiling utility counts all calls to a procedure from each other procedure, which is enough to
capture counts for procedural-type requests. For requests which are made by system calls, UNIX
tracing will record them but only on the basis of calls from within a certain process. Requests made
by remote procedure calls or socket-based messages must be captured by software probes.

Execution times can be instrumented similarly. If an entry is represented by a particular
procedure, then profiling is adequate. If an entry is associated with a branch in the program then it
may be necessary to use software probes and a timing utility to get the processor demand for a
given entry separately.

1.5. Multi-level Service Systems by Modules

In complex systems with many components the performance model maststisetion
to escape from excessive detail. Modules prowdetrolled levels of abstractioim the model, so
that a designer can abstract away some aspects in order to focus on others.

MSS(Modules)

The module-modelling framework MSS(Modules) presented in this section rounds out the
concepts and parameters needed to model linear software by modules. The previous section
showed how to reduce an activity graph describing flow and behaviour, to a module or a module
entry; here we will examine module models at different levels of detail, using an example of a
Printing Service that has a rich modular structure.

MSS(Modules) is essentially a procedure call-graph model with workload parameters.
Each entry has demand parameters for operations by devices and by other entries. When a module
makes a request to a service its own execution is suspended until a return is received from the
service. When an entry receives a request it begins to execute, and only terminates when it sends
a reply or a return to its requester or caller. This represents procedure calls and also idealized
Remote Procedure Calls (RPCs), which are implemented with request and reply messages between
concurrent processes. It does not allow concurrent execution within a single response, however,
and it does not represent logical resources. These will be introduced in the next chapter, in the
extended framework MSS(Resources).

MSS(Modules) is based on long-establigsed (move) notions for modelling workloads
based on call rates.

No Software Resources in MSS(Modules)

Because MSS(Modules) does not represent resource limits imposed within the software,
the modules in this limited framework must not queue their requests. If two users request the same
service at the same time, they both execute it. This implies that they both have the module linked
to their own copy of the executable, or the module is fully re-entrant, or, if the module is a distinct
process requested by RPCs, it forks a separate thread for each request.

Because the devices are the only resources, device queueing models are adequate for
analyzing the system level performance. The value of the module breakdown is to see the detailed
source of the workload, as it contributes to the device demands.
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1.5.1. An Exploration of MSS(Modules): A Printing Service

To explore the performance semantics of the MSS(Modules) framework, consider an
example with deep layering of services, shown in detail in Figure SM. It is a network printing
service which is accessed by entry PrintService of a software component called PrintManager. This
entry sends print jobs to a PrinterControl module, which in turn uses a PrinterDriver to send data
to the printer. The PrinterDriver has two entries, one for control interactions and one for
transferring page data, because its behaviour is quite different in these two cases. In the printer
itself there is an embedded control program, for instance a postscript interpreter and print engine,
controlling the printer hardware. It also has two entries, one for control and one for data. The
PrintManager is also shown to store and retrieve data through a Mgrinfo module with four entries,
one to check that the user has printing privileges, one to store the printfile or files supplied by the
user, one to search for a default printer if one was not specified, and then at the end of the print job,
one to write the accounting log information to charge for the job. Mgrinfo gets this information
from the FileSystem, shown as a module offering an interface to the program as part of the
operating system. This in turn uses network protocols and a network FileServer program, which
accesses a Disk device through a Disk Controller. PrintManager passes the location of each file to
print to the PrinterControl, which then accesses the stored printfile itself, one storage page at a
time, processes it if necessary and passes it to the PrinterDriver.

The parameters on the arcs express the fact that one user request to PrintManager can pass
one printfile, which is passed to the PrinterControl. Each filekssrage pages, which affects the
number of accesses to the FileSystem, and the requests to pass data to the printer. Notice that
PrinterControl passégpages to PrintDriver.Data, and for each of these requests one page is passed
to EmbeddedControl.Data

If a module has a single entry (or if only one of its entries is in the model) then it is
represented by a node which is both a module and an entry. The idea of a layered service system
implies that higher layers make requests of lower layers, which makes the graph acyclic (i.e., there
are no loops in the graph). Recursive use of services is not represented in MSS(Modules). This is
basically for simplicity, and an extension to represent recursive systems is straightforward.

Each module also uses one or more devices. Real software modules are intended to be
loaded and run on one particular device, which we will call its host device. It might be a CPU, a
smart terminal, a disk controller or a communications front end. The term “proper module” will be
used for a module which makes requests for device operations to just one device, its host. Within
this limit a proper module in the model may represent a single software module, or a subsystem
that is made up of many software modules that all run on the same host. Figure SM shows proper
modules with their host devices as ovals. There is one host device shown attached to each module,
but the same host may appear in two places; if two modules are colocated they point to the same
device. The Printer and Disk are separate devices (not hosts) represented by circles. FileSystem is
a module that runs on WS1 and on WS2.

In Figure SM, if devices are shown then the arc weight from ektlyt6 devicei is the
mean request count for device operations of the entry:

Y; (k.d)= mean number of requests for operations by deyibaring one invocation of
entry K.d)
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Figure 3.22. Module model of Printing service software. Ther& éite
pages in the average job. (Figure SM).
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Notice that a requests to devices and to other modules are shown in the same way, as arrows
going to circles (for devices) or to boxes (for modules or module entries), labelled with the mean
number of requests. A list of services used by the entry could include both types of descriptors
interchangeably.

In a detailed MSS(Modules) model like Figure SM a program is represented entirely in
terms of proper modules and their relationships. The detailed model can be aggregated by
combining modules, even to the point where the entire program is represented by a single module.
In this case it is probably not a proper module, because its submodules may well run on different
hosts and the whole program runs on the entire collection of hosts. The term “generalized module”
is applied to such an aggregate module that is distributed across several devices. The activities in
the activity graphs in Section 3.2 have the attributes of generalized modules. In Figure SN the
activities that make up the file system in the previous figure have been aggregated to give a
generalized module called FileSystem*, which uses WS1, WS2, WS3, the disk controller, and the
disk itself.

1.5.2. Changing the Level of Abstraction: Aggregation

Once a system like the Printing Service is fully understood and the analysis moves on to
other issues, it is useful to be able to hide its complexity by aggregating its modules. Any group of
modules can be aggregated into a single artificial “supermodule” which exists only in the
performance model, where it represents the workload effects of the software in the group of
modules. In the limit, if one aggregates all the modules used by a class of users, one arrives at a
supermodule representing the total demands per response used in Chapter H. (This is addressed
later by Reductiofr4). However if one aggregates into a moderate number of large modules for
separate subsystems, one can study in greater detail the impact and contribution of each subsystem.
This in turn can focus design effort where it is needed.

It is essential, in large systems, to be able to move up and down a ladder of different levels
of aggregation. Some performance issues require details to be exposed, while some can only be
understood at a large perspective. The following Redu&Bugives a controlled level of
abstraction.

1.5.2.1. Aggregation of Modules (ReductioR3)

First consider aggregation as an abstract question, as illustrated in Figures SR and ST.
There is a group E of modules A,B,C (with various entigsA.b, etc.) to be aggregated into a
single “super module” calledGG. What entries wilAGGhave, and how will their parameters be
determined?

A special simple case occurs when the interface offered by the group is only through a
single “top-level” module, as in Figure SR, however we can equally well have a situation where
the group offers external access to two or more of its internal modules, as in Figure ST. Notice that
an entry which is accessed externally may also be accessed internally, by calls from modules within
the set (provided this does not introduce a cycle into the graph), as shown at module B in Figure
ST. The algorithm to be described will handle all these situations.

The goal of aggregation is to find the mean request count for services demanded by the set
of modules, for each invocation of a service offered by the set. These sets can be denoted by:
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Figure 3.24. Aggregation with Single Access (access into the set

via one module, Modulg). (Figure SR)

E = set of entries of the modules to be aggregated, with elenness (
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Figure 3.25. Aggregation with Multiple Access (access into the set via more than one
module, Module#\ andB). (Figure ST)
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J = set of entries outside &foffering services used by entriesEnwith typical elemen,
| = set of entries i that offer services to other modules outsidg&,of

The algorithmR3to aggregate the set of modules into an aggregate maG@as as
follows:

1. Order the entries & in a list such that the first one makes no requests irsj@ad later
ones make requests only to entries or services that are eithertairiare earlier in the
list. This can always be done because the graph of entries is acyclic.

2. For every entryn.ein E that makes a request to an entry,isetY;’ (m.e)=Y; (m.e)
These will become the reduced request counts.

3. Consider the entries Ein order, starting with the first in the list.

4. For each entryk(d) in E, consider all requests from it to other entrimsg(in E, with
local request county, ¢fk.d). Augment the reduced request co¥(k.d) by the
amount:

% Y (mog(k L)Y (m Ce)
(m OE

When this is completed every entrylithas a set of reduced request counts to entrids in
Those entries i, that are visible to the users of the aggregated module, become the entries of the
aggregated module, and the rest are hidden. Thus if émtg)in E becomes the ent{fAGG.e)of
the new aggregated modWA&G, then the new local request counts(®&G.e)are the reduced
counts of(m.e)

Y(AGGL® = Y'(mUe forj0J

This aggregation has been described as if the demands to other modules are all requests to
software services, but it applies equally to requests to hardware services, which are automatically
included in the sel. The reduced mean request counts to hardware services are, as before, the
requests for logical services offered by the devices.

Figure SU shows an example of aggregation based on the printing service from Figure SM. The
parametek for the number of disk pages in the file to be printed has been set to 3.0. In Figure
SU(a), there are two clusters of modules to be aggregated,

* AGGPrintMan containing PrintManager and Mgrinfo, and

* AGGPrintCon containing PrintControl and PrinterDriver.
After aggregation, AGGPrintMan will offer entry PrintService, and AGGPrintCon will offer entry
Print.

In Figure SU the demands to the host device of each module are also shown. A special
convention is used to avoid showing all the host devices in the diagram. A parameter in square
brackets is given inside each entry, with the demand valueY,gsfrh.9]. The units of host
demand must be stated with the diagram; here they are logical service demands in instructions, but
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Figure 3.26. (a) Print Service: Identification of Modules for Aggregation,

|

:

|

| [2000]

|

: 0.9
PD |
(Printer | -
Driver) | FileServer
Module |

:

___________ l 1
(EEC bedded DiskController
mbedde

Printer [1_000]
Control)
Module 1

fork=3. (Figure SU(a))

75



AGGPrintMan.PrintService
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AGGPrintCon.Print
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Figure 3.27. (b) Aggregate View of Printing Service, with the Param-
eter Values fok = 3. (Figure SU(b))

in other diagrams they might be given as the time demands, in some suitable unit such as seconds
or milliseconds. Figure SV illustrates the request count to a host device with the device shown, and
the equivalent diagram with the request parameter in brackets.
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Version Showing the Host Devicg Device

Figure 3.28. The Shorthand for Host Device Request Counts (the parameter
in the brackets may also be demand D in units of time). (Figure SV)

Figure SU(b) shows the aggregated module model, found by applying aggregation algorithm
R3. To explain just two of the parameters in the reduced model,

YrilesystedAGGPrintMan.PrintService) = (1 X 3) + (1 x 2.7) + (0.7 x 1) + (1 x 1) = 7.4 = mean
requests to the file service on all paths from the entry through the Mgrinfo module.

YhosfAGGPrintCon.Print) = 25000 + (3 x 42000) + (3 x 17000) = 202 000 = mean processor
instructions per invocation of the Print entry, including the driver code.

These values can be found by applying Reduction R3 step by step.

Note that the fact that the graph of entries is acyclic does not prevent an entry from making a
request to another entry of the same module (a well-known feature of object-oriented
programming, for instance, when a method uses another method of the same object).
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1.5.2.2. Reduction to Obtain Hardware Demands of a Module Entry, and a Complete Pro-
gram

A single module entry is easily analyzed down to its device demands by RedR#ttion
Reduction R4: Let the designated entry be entry e, and define the sets

E = all entries called directly or indirectly lee

J = the set of devices used bégnd all entries ik,

| = the entrye alone.

Apply ReductionR3to this system. The resulting mean request c¥((ef) are the total
hardware demands of one invocation of eetrjo obtain the service demabgl multiply D;(e)
=Y;'(e)0;, whereQ; is the operation time of devige

A complete program can be described as a kind of module, such that a user executes the top-
level module and the rest of the workload is described by module relationships. The reduction
process described for module aggregation can be extended to give only demands for the devices,
when the top level module is executed. Suppose the top level module has just one entry (call it entry
SYS), and all other modules are accessed via the top level module, as indicated in Figure SX. Then
Reduction R4 gives the demandsygéSY S)requests anB;(SYSkeervice demand.

The print service example can be carried this one extra step to illustrate the above points,
beginning from the aggregated version in Figure SU(b). First we have to identify actual devices for
the host devices; suppose PrintMan runs on workstation WS1, PrintCon runs on WS2, and the
FileServer runs on WS3, and all these workstations have operation times of one microsecond. For
hardware loadings itis clearer to show the host devices explicitly, as in Figure SY(a). Figure SY(a)
reproduces Figure SU(b) except for dropping the prefix AGG in the aggregated module names, and
showing the host devices.

One thing that is exposed by showing the host devices is that one module may need to have
copies for different hosts, that is the copies run on different workstations. The example here is the
FileSystem module, which is the local interface on each workstation to the distributed file service;
it must run on both WS1 and WS2, and different request counts go to each copy. In Figure SY the
copies are called FS1 and FS2, and the breakdown of requests is shown. The host devices all have
operation times of a microsecond, but the disk and printer have longer operation times, which will
be shown in the next step.

In Figure SY(a) the dotted box includes all the software modules; applying Reduction R4 gives
a notional generalized module and entry we can call PrintJob.PrintService (corresponding to SYS
identified in the algorithm for R4), which represents the workload of a single print request. The
algorithm gives the reduced model and device request count parameters shown in Figure SY(b).
The last step is to multiply the request counts by the device operation times, which are one
microsecond for the host devices, 100 millisec. for the printer, and 14 millisec for the disk. This
gives the demands; shown below each device in Figure SY(b).
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Figure 3.29. Aggregation to Obtain Hardware Demands from a Module Mod-
el. (Figure SX)
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Figure 3.30. Print Service (with Value=3) after Reduction R4, with Host De-
vices and Service Times Shown. (Figure SY)
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From the demands, a queueing model can be constructed at once, following the methods of
Chapter H. We will first consider a flow of print requests at a given figtec, and no interference
from other processing (a rather artificial assumption). The capacity is limited to a rate of 3.33
requests per sec by the largest valu®pfwhich is at the Printer devic®(= 0.3 sec. per request).

The response delay of a print job, as a functiofy isfshown in Figure SZ, based on a Poisson
request flow and ./M/1 servers. Considering the high variability of the size of print jobs and the
work that they cause at the heavily-loaded, dominant devices, this may be a reasonable
approximation.

Figure 3.31. Response Delay of Print Jobs at a Fixed Request Rate, with
No Other Workload. (Figure SZ -- blank, to be done in Matlab)

1.5.3. Introducing Detail

It is also possible to begin the analysis at a coarse level of detail, and refine it later. Coarse-
level supermodule parameters can be obtained directly by measurements on the entire subsystem,
as described in section 3.4.4, and used for analysis without considering internal details of the
subsystem.

To refine the details of a supermodule into finer-grained modules requires a new study of its
internals. It is done by making new measurements that distinguish the demands of separate parts,
and request counts between them combined with activity graph analysis for behaviour that is
planned but not yet measured. One can also refine the entries of a module or supermodule, while
keeping the same module level, by estimating the workload demands of different types of requests.

The only “easy” way to move to fine detail is to keep a memory of an initial detailed analysis
which was then aggregated, and to return to it.

1.6. A Complete System Model

To use all this analysis to make performance predictions, one has to represent in some way the
rest of the workload of the network and the file server. As before, a simple version of the remaining
workload is an additional class or classes that execute user application processing on the CPU and
generate file server requests. This additional processing would compete with the print requests. A
second version would add the “other processing” to the workload of the printing service users
themselves.

First consider a complete model with a class of printing users, and a class of other users who
do not print. This is similar to the completion of the Reservation System model in Section 2.3.5.
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The MSS(Modules) reductidrR4in the previous section and Figure SY has given the workload
demand parameters of class 1 for printing users. The demand parameters of class 2 must be
determined. As we are considering a network environment, we may suppose that each other user
has a workstation and computer independently. Only when they make a file server request, do they
compete with the printing users.

The following reasoning will usually give a satisfactory model for “other users” belonging to
class 2:

* their workstation time (thinking, computing, access to local workstation disk) is a pure delay
Z(2) sec, between file server reque&&) is the time from a reply to one request, to making
the next. It is almost (but not quite) the same as 1/(file service request rate per user);

» the file service demand parameters are found per request. They include operation demands to
the file server CPUWS3in our Print Server model), and to the file server disk (or disks).

Another aspect of completing the model is to include demands to other devices, particularly
network devices. This is important if the network is a bottleneck. Otherwise it is sufficient to work
out network delays for message sending, and add a delay station that causeZ g.delthe
sender of a message.

A representative set of parameters are given in Table SZA and performance results for the
printing service with different class populations are given in Table SZB.

Table 3: Device Demands for Computing and Printing (Table SZA)

: Demands for Class D(a_mands for one
Device 1 Fllequuest by
User in class 2
WS1 0.46 0
WS2 .208 0
WS3 056 0.015
PC 199 0
DC .009 0.002
Printer .300 0
Disk 131 0.030
Local WS Delay 0 10
Total (D) 0.949 047
Delay (2) 0 10
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Table 4: Performance Results for the Printing Service with N1 Printing Users and N2
other Users (Table SZB)

Paragraph on the Results TO COME.

1.7. Patterns in Module Architectures

Our goal is to recognize POPs and to react to them, however the real opportunities are still
to come, with concurrency and software resources. At the level of purely linear software discussed
so far the opportunities are limited, and are largely concerned with reducing the demands required
for an operation.

A module architecture shows which objects participate in an operation, and how often each
intermodule request is made. A pattern may be any subgraph of modules and requests, and patterns
are distinguished mainly by their depth and breadth. Again we concentrate on sequential execution
within a single process, and on reducing total resource demands by changing patterns. Two types
of pattern changes may be used:

» substitution of a pattern that results in lower demands, for a pattern existing in the
architecture. As shown in Figure SVD, the substitute must satisfy the same interface but may
use different lower level modules, which become part of the new architecture. This is an
option when designing with replaceable components.

* aggregation or inlining of a lower module into one that calls it, to eliminate the calling
overhead in both modules. This can be important for a very small module which is called very
often.

The decision is governed by the module parameter estimates. To evaluate a substitution,
compare the entire demangs(entry) of all the entries of the original pattern to those of the
substitute. The entire demands are computed by applying the R3 reduction for each submodel as if
one was aggregating all the modules used by the entries of the pattern. If all the resource demands
are reduced the evaluation clearly indicates using the substitute; if some are reduced and others
increased the factors considered for activity patterns are used here also. A model is constructed and
solved to determine if the net gain is positive and large enough to warrant the change.

For inlining or aggregation, the results may be tiny or may be quite large. Large gains can
be made if the modules provide tiny fine-grained functions and are called many times. Consider a
procedure which makescalls to a second procedure, such that the overhead in each one is a
fractiona of the “useful work”; further suppose that the CPU demand of the useful work is the
same in both procedures (cal¥}t The entire CPU demands for the original and the inlined case
are:

original: Y(a +1+ya)+yY(a +1) =Y (1 +y+a +2ya)
inlined:Y (a + 1 +y)
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Figure 3.32. Substituting one Module Pattern for Another. (Figure SVD)

Ratio=pp +1+y]/[1+y+a +2ya] ~1/[1+ 2a], for largey

For a deeper calling stack, saynodimilar procedures,
original: Y(@ + 1 +ya) (1 +y + ... +y" )+ y" 1y (a + 1)
inlined: Y (o + 1 +y + y? + ... +y™?

which gives the same asymptotic value of Ratio = 1 / [Io} f&r largey. We conclude that the
gain from inlining is dominated by the relationship of calling overhead to useful work, repre-
sented bya. The number of calls, controlled gyaffects the total size of the term due to this pat-
tern but not the fractional improvement.

Richer and more interesting effects for module patterns are seen when the modules can be concur-
rent processes, as will be evident in Chapter P.

1.7.1. Controlling “Bloat”

CPU demand “bloat” occurs as software is maintained and evolved over several releases.
New features and allowances for new types of devices or services introduce overheads to select or
enable the feature or device. For example each time a new feature affects the program flow there
may be a test to see if it is enabled. Deeper class hierarchies introduce additional inheritance
overhead, following pointer chains to find the code to be executed for each method. Sometimes a
new feature is based on a new architectural abstraction that requires on-the-fly translation from
existing data structures or command architectures.

84



Often, in adding features, there are many possible ways to proceed. If the redesign is chosen
only for quick programming it may not be the best for controlling bloat. If performance effects are
predicted then an acceptable redesign can be found.

As an example, consider a generalized Printing Service that can manage several printers at
once, of different types. Each printer has its own driver, possibly in a different host workstation. A
decision is made to keep one PrinterControl module which interleaves the operations for all the
printers, and sends messages to their drivers. Now this module must keep track of the state of each
printer and handle messages from all of the drivers (indicating ready for more data, “error”
indications, “done”). A layer of software must be added to PrinterControl.Print to decide, for every
message it receives, which printer it is for. The extra decisions, access to the additional state, and
the cost of messaging to the Print Driver modules, all contribute to bloat.

Additionally this extended module must also respond to calls from PrintManager, so its
interfaces and control are even more complex.

1.8. Software Design Issues within the Linear MSS(Modules) Framework

MSS(Modules) is a performance analysis framework for a broad class of software that we
have calledinear. It includes all classical sequential programs, and also complex systems of
concurrent processes communicating by RPCs. The availability of concurrency and parallelism has
not led to a tide of non-linear software designs, rather the opposite. System and language designers
have attempted to deal with concurrency by supporting linear software that combines many
processes, doing one thing at a time.

1.8.1. Potential for Concurrency in Linear Software

Linear software can be structured as a set of several concurrent tasks communicating by
messages, either by RPCs in which the sending task suspends until it receives a reply, or by
asynchronous “hand-over” messages. There is a cost for this partitioning into concurrent tasks,
which is essentially the computing cost of message handling, the additional overhead to schedule
additional tasks, and message delays. These costs are often considerable.

Concurrent processes for the parts of an application have a definite role where the parts are
in separate places, by necessity (perhaps due to external interfaces in different places, or
geographic distribution of information), or where there is no distributed operating system (as in a
network of Workstations or in some small simple real-time kernels). These systems are becoming
more common as systems migrate onto networks, and local networks evolve into Intranets. The
next chapter studies linear versions of these systems as “ideal RPC” systems.

The performance advantages of concurrency within linear software are doubtful. It does
break a large execution into smaller parts, which may allow it to fit into a group of smaller
computers. It permits pipelining, which may have performance advantages if some stages have
specialized requirements. And it promotes flexibility of configurations. Overall however the
performance advantages of concurrency lead away from linear software, towards parallelism of
various kinds.

There is also a zone of interaction between software design and the capabilities of a
distributed operating system. There is no need to statically allocate the concurrent tasks if the
operating system can dispatch them to any idle processor of a “symmetric” multiprocessor system.
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If static allocation has an advantage it may be in reduced system bus traffic (each processor can
have its “own” memory) and better cache efficiency. In a symmetric multiprocessor it may not
even be helpful to divide a linear application into concurrent tasks, for if each user or response has
just one task this may provide sufficient concurrency.

1.9. Additional Reading
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Chapter 4. Distributed Linear Software (L)

4.1. Introduction

Much of the software written for distributed systems is linear, like the software described
in Chapters 2 and 3, or is nearly linear. It is linear because it is adapted from sequential software
written for a single system, or because it is easier to write software with a single thread of control.

The most common computing environment is now a network with one or several servers
for the file system, email, web pages, printers and so on. Even a simple application programmed
for a single PC will in fact use several other nodes. In these distributed environments there are
nodes connected by a network; each node is a distinct computer, with 1/0O devices (hard disk drive,
CD-ROM, video) and processor (possibly more than one). The “environment” that an application
designer must consider is the set of nodes that will run the application, and these may be all in one
place connected by a single LAN such as an office ethernet, or may be scattered and connected by
routers, gateways, and the Internet. In most of these environments every node can send a message
to every other node, although the speed and latency may not be the same on all these paths.

Examples of distributed applications that use linear software are in office computing, data
base access, transaction processing, data warehousing, decision support, computer aided design,
and multimedia conferencing. Some examples match two or more of these categories, as in a
decision support system accessing one or more databases.
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Compared to a single computer, a distributed environment poses additional performance
challenges for linear software: networks introduce additional delays, and device congestion is
harder to track and understand. Thus a large network application may be brought to a standstill by
one overloaded server, or a single slow network link.

The performance analysis of a given configuration of linear software is exactly the same in
a distributed environment, as for a single node. Provided the software satisfies the assumption of
linearity, that is there is no significant parallel execution within a single response, no logical
resources such as lock that cause significant delays, then as in Chapter H, the key to average
performance values is in the total demand on each device, within each class of response. However
there is a new factor in finding the demands, because the CPU demands usually depend heavily on
the interprocessor communications overhead, and not just on the payload activities captured in the
activity graphs and module demands.

This chapter considers the design factors for linear/distributed software, in cases where the
target environment is fully defined. That is, the set of nodes, their storage devices and speeds, the
existing (competing) workloads, and the communications infrastructure are all determined. The
software is to be designed to fit into this system. A combination of a design in modules, an
allocation of modules to tasks and tasks to processors, and a defined execution environment will
be called aonfiguration we will mostly consider a design intended for a single configuration. The
more general problem of scalable designs intended for a range of configurations is considered in
section L.?

We will particularly consider two architectural styles (these are control architectures):
» amulti-level servicestyle based on ideal Remote Procedure Calls (RPCs),
 apipedstyle based on ideal data and control handovers.
It will be apparent that the piped style is potentially more efficient, but it is often too inflexible.

In defining architectures the notion of level or layer often describes more than the control
aspect considered here. There may be levels, associated with levels of abstraction, as in data
communications protocols, but nonetheless data packets may be piped through a series of levels;
the control architecture is piped. When the originating level retains a degree of control we find a
hybrid architecture we will call “forwarding”.

4.2. Multi-level Linear/Distributed Software

These systems begin from a basic module architecture, and extend it across multiple nodes.
Calls and returns to entries that must cross from one node to another require sending a request
message and returning a result by a reply message, which we will call an “ideal RPC”. The actual
message handling may be via an RPC subsystem or by a pair of asynchronous messages, using any
protocol. The linearity assumption implies that the server process is fully re-entrant, so every
request is given its own thread or copy of the server.

The value of Remote Procedure Calls (RPCs) is that they conceal the complexity of
distributed operation. An RPC service is part of a set of services called midware, which hides the
complexity of remote operation, and glues a procedure call at the RPC client together with the
remote procedure, which acts as a server. It transforms the arguments of the call into messages
across a network, takes care of finding the address of the server, returns the reply message, and
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finally returns from the local procedure call at the client. The execution sequence for an RPC is
shown as an activity graph in Figure LA. In an ideal RPC the activities labelled PrepareRcv are
combined with the following Received activities, removing the (relatively small) amount of
parallel activity, and making the thread of execution fully sequential.

RPCs are useful for adapting sequential legacy software to a distributed environment.
Perhaps for the same reason they are the basis of a number of attempts to describe and standardize
“open distributed systems” in which software from many suppliers would interact. These include
DCE (Distributed computing Environment), RM-ODP (Reference Model for Open Distributed
Processing), and TINA (Telecommunications Information Network Architecture). In the
terminology of Open Distributed Processing or TINA, what we call a processor is a node, a task is
a capsule, a module is an object, and an entry is a method. There are some advantages in having a
different term for the performance model of an entity, than for the entity itself, so we will continue
to use the names task, thread, module and entry in the MSS model. It is sometimes convenient to
use “node” for processor, however.

The simplest building-blocks for distributed system behaviour with RPCs are these three
elementary behaviour templates, illustrated in Figures LOA and LA:

* a client loop as in Figure LOA(a) is executed by a user interface task or other load-creating
task, once per system response. The loop may include a delay for user to think and type (with
a delay we will callZ), and an activitypoResponsehich includes all the demands for service
that make up a system response. ActiliResponsenay be broken down into a more
detailed graph to describe the activities of the User task.

* a sequential server loop as in Figure LOA(b) walits to receive a request, executes RPC
overhead, executes an activity S, and returns a reply. S includes all the demands for service
needed to provide the designated service by the server, and may also be broken down into
more detail. This loop describes the simplest form of server, offering just one service (single
entry), and with just one thread and one phase.

« the main activity A contains requests to RPC servers. These are identified with their mean
request counts in the activity parameters.

* a service request generates some resource loading for RPC client overhead, and a request
to the server.

» an RPC template as in Figure LA describes a complete blocking request-reply interaction,
with the service activityperveprovided between the request and the reply.

Together these templates are used to build Client-Server Systems.
Client-Server Systems

Many information systems like the workflow example in Chapter 1 are organized around
client tasks running in user workstations on desktops, to run applications, format requests and
display results, and server tasks such as central database servers to supply the data. More complex
systems with a multi-tiered architecture have additional layers of servers in the middle.

The client and server software have the generic loop templates in Figure LOA, in which the
client activityDoResponsenakes on average two requests to the server, with each request
following the ideal RPC template in Figure LA. If we use the methods of the previous chapter to
create a module model from these activity graph templates we get the structure shown in
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(Client (Server

(Client RPC-S RPC-R (Server
module C) module) module) module S)
Call RPC

|
MarshallRequest

Send ' PrepareRcv!
R L
| |
S ranarab ey ! Receive
! PrepareRcv:
UnMarshall

S: Serve
[

I
MarshallReply

Send
—

|
Receive

(loop back to wait)

UnMarshall

(continue in C)

Figure 4.1. The RPC Behaviour Template. The real RPC includes the two
PrepareRcyv activities as shown, while the Idealized RPC moves their work-
load into the following Receive activities. (Figure LA)
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Figure LOD, in which workload parameter values have also been inserted. For each module Figure
LOD shows the aggregate workload parameters including requests to other modules. RPC
overhead modules have also been shown, RPC-S for the sender of the request (the client) and RPC-
R for the server. There are dashed boxes around the entire Client and Server modules to indicate
the aggregations, which are parallelogram-shaped rather than rectangular because this is the shape
we will use to indicate concurrent tasks.

Think

Y

C: DoResponse
I

Loop forever

User “think” time of Z sec.

Generalized activity by module C which
includes service request counts for RPC servers

(a) “Client Loop” Behaviour Template (Activity Graph)

RPC-R:
Accept Input

S: Serve

RPC-R: Deliver Outpu

[

Loop forever

Input activities by RPC-R module

Generalized activity by module S which
includes all execution and requests for
other services

Output activities by RPC-R module

(b) “Sequential Server Loop” Behaviour Template (Activity Graph)

Figure 4.2. Figure LOA
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Let us consider the effects of distribution on a simple centralized application. In the
centralized version the Client Function and Service modules run together and can be aggregated
into a single workload. Using the methods of the last section, we obtain demands:

Device (one CPU) SDisk User (think)
DemandD;(sec/resp) 2.70 0.51 10
With many users the one CPU saturates the system at 1/2.7 = ... responses/sec.

The client-server version shown in Figure LOD places the user interface module in the
desktop, and adds RPC overhead functions and costs of 0.1 sec per call to both send and receive.
Figure LOE redraws this model showing only the tasks and devices. Now the device demands are:

Device CProc SProc SDisk User (think)
(Client) (Server)
DemandD;(sec/resp) 0.6 2.5 0.510 10

Because there is one client workstation for each user the CProc demands are equivalent to “think”
times. Figure LOF shows the equivalent queueing network model, in which saturation is almost
unchanged, because not enough functionality was moved to the client, and SProc is still the
bottleneck with demand of 2.5 sec.

[nterface Application
Module st
[0.4] / Aggregate //
/ 2.7
2 ) [2.7]
/
Service /
Module| -
[1.15]
17

Figure 4.3. Centralized Version of Application. (Figure LOC)

Further improvement could be obtained by moving additional functions to the client
workstation, making it a “thick” client. The trick is to move a submodule of MServ that is not too
tightly coupled to the rest, to avoid introducing heavy communications costs.
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e
/ , , /| for Client
, Client Function Module MC | |
/| z=10sec /
/ [0.4 sec/response] /
)2/ !
/
RPC-S /
[0.1s/request]
/
/ Aggregate
for Server

| [RPCR "
' 1[0.1sec/request] ,'
’l

/

/

/

/

/
\
Service Module MServ 17’
[1.15s/request]

Figure 4.4. Client-Server Version of Application. (Figure LOD)

Performance Predictions
A queueing solution of the original application and the client-server version for 5 clients

shows these results, confirming that not much has improved:
Table 5: Performance of Client-Server Version
Original Client-Server

User throughput 0.303/sec
User response time 6.5 sec.
SProc utilization

SDisk utilization
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Client
Z =10 sec
D = 0.6 sec
2
(Host)
@ / D
(Host)
Server

Client Workstation
Processors

Processor

Figure 4.5. Layered Service Model for Client-Server Example, with Parameters Aggregated to
the Task Level. (Fig LOE)

Clients C
Infinite Server
(User Think + Workstation Execution)

Figure 4.6. Queueing Model for an Idealized Simple Client Example, with an Infi-
nite-threaded Server and Sequential Execution. (Fig. LOF)
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4.3. The Layered Modelling Viewpoint (L3)

In layered modelling the software modules or tasks are viewed as servers, and these
servers’ service time is analyzed as well as the hardware delays. In linear software the software
servers are all infinite servers and have no queues of requests waiting to execute, although requests
may be queueing for the hardware to execute them. The module and task service times are the sums
of the device response times that make up their execution. Nonetheless the shift of viewpoint from
hardware to software is a great help to focusing on the connection between software modules and
performance.

Layered Model of the Print Service

The print server software introduced in Figure SM will illustrate the uses and advantages
of layered modelling in greater depth. In Figure SU the system was aggregated into modules.
Figure LBA describes a deployment of these same modules as tasks on four different computers,
plus the User nodes. The contents of these tasks are shown again in Figure LB so that RPC
overhead modules (RPC-R and RPC-S) and task switching modules (TS) can be added, and a
hypothetical module model for the local applications run by the users is included. This gives the
layered model and aggregated parameters of Figure LC. In Figure LC the embedded processors
PCProc and DCProc have been added for the printer controller and disk controller. The RPC-R and
RPC-S modules were allocated 20 ms of host execution per invocation (including the request and
the reply), and the TS modules were allocated 5 ms per invocation. The arrows labelled (h) connect
each task to its host device. The parameter “Z = 1500 in the User task indicates a think time of 1.5
sec per execution cycle of the User task.

4.3.1. Queueing Model of the Print Server (L3.1)

If we assume ideal RPC interaction as in Figure LA then the execution of one print request
is entirely sequential, as it moves from task to task and from node to node. We may imagine an
execution token representing work done for the User task, migrating across the network to the
remote procedure and returning after.

The demandB); of the devices in the queue model are exactly the total demand values
calculated in Figure SY for the print service, apart from the “User” task which was not represented.
The values in Figure SY assumed that all processors had an operation tine s#d.Pas we will
do here.

A gueueing network model can be constructed based on the mean demands alone, if
suitable assumptions on scheduling disciplines and service times are made (e.g. processor-shared
nodes, exponential distributions at printer and disk), and it gives the response times and
throughputs shown in Figure LDF.

The weakness of the queueing model is revealed on closer examination:

* Itassumes that PCProc and the Printer can be processing separate jobs. Is that possible? Is the
printer-controller PCProc really a separate device? Can it even operate while the printer itself
is printing, or does it wait for the printer and then process the next page? If it waits then Printer
and PCProc should perhaps be modelled as one server with demand 0.499, and a lower
maximum throughput! If there is overlap, it is probably only after the first page begins to
print.
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User

/ y \ Node A

/PrintManage/

File Access FA1
/
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/érinter Contr7/

N - ™
File Access FA;/—/ File Server

N g, !

Disk Controller

Embedded Controll/e( ¢

S
File Server Node

Printer Node

Figure 4.7. Tasks Involved in Print Server Operation (Figure LBA)

* If we wish to expand capacity with an additional printer, can we use one PrintManager
sending requests to two PrinterControl processes? Or do we need some kind of duplication in
PrintManager also? This could depend on whether PrintManager waits for the end of the print
job or not; in the queueing model it is assumed to go on at once to the next job, even while it

is in the middle of storing the file on disk in entry Ml.Store.
Ouir first step to understanding some of these questions is to analyze the software module

responses within the queueing model.
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Figure 4.9. Print Server: Concurrent Task Model (including communica-
tions overheads) (all times psec). (Figure LC)
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User Workstations 1.5+0.1=1.6 sec.

Node A 0.046 s
Node B 0.208
FS Node 0.056
PC Proc 0.199
CD Proc 0.009
Printer 0.3
Disk 0.131

Figure 4.10. Print Server: Queueing Model Demands in
sec/response. (Figure LD)

4.3.2. Task Service Times in the Print Server (L.3.2)

To understand the performance aspects of individual software tasks we will consider the
service timeX(e) of entrye (the time to execute the entry and all nested operations), and the
response tim&(e)of entrye. These quantities are not usually a product of queueing network
analysis, since the entry structure is aggregated out in computing total demands. Define:

* X(e) = service time of entrg (an entry of some task)
From the earlier analysis of an entry, we have defined the parameters:
* Dy os{€) = mean service demand made to its host device, per invocation ofeemrgeconds.

* Y4(e)= mean request count for service from erdyper invocation of entreg, (this is the same
definition as in the previous chapter, applied to a task entry instead of a module entry).

When entrye makes a request to entdy the blocking delay at entryis Ry(e), read as “response
time ofd, called frome'

* R4(e) = mean total delay for one request from eetty entryd.

In the same way the actual time it takes the host to prdyjgge) seconds of service may be
longer tharD(e) because of contention delays, so we will denote R(byste):

* R(hosle) = mean total delay for the host device, including queueing, to prbyjsige)
seconds of service to enteyThis may comprise several separate service times.

A device other than the host is treated as a “task”.

Then itis easy to see that the service time of an entry is the sum of the operations it carries
out, in two parts: a term for internal delays and operations done directly by the host device, and a
sum for delay due to other servers:
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Figure 4.11. Print Server: Queueing Model (Results for Performance seen by Users)
(Figure LDF)
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X(€) = Z(&) + R(nost @ + 3 Yy(e)Ry(e)

In an ideal-RPC system with no logical resource link{§iost|ecan be found for alhost
e from a queueing model, and th¥(e) andRy(e) can be found recursively for all the calls and
entries. The queueing model requires some assumptions about the system, notably that either the
services times at a given host must be the same for all entries (for FIFO host such as a printer or
disk) or the host service discipline must be processor-sharing (often acceptable for a processor) or
infinite-server. TherR(host|e)s proportional to the demandlaistfrom entrye, per response
(which isY're Dy .(€) -

The queueing network model in this case has a single chain with many classes, which we
will aggregate and treat initially as a single class. It has parameters and performance measures:

Y'0st = total operation requests to deviugst per response
Dhost= total service demand devibest per response
Rhost= total time a token spends at devicestper response.
Then:

R(hOSt 9 = Rhoschost(e)Y'e/Dhost

4.4. Distributing the Functions in Multi-level Systems (L.4)

In multi-level linear software, the placement of functions affects the balance of workload
at nodes, the amount of communications overhead at node CPUs, and the network loading. If we
regard the module model as a graph with module as nodes and calls as arcs, a placement of
functions is a partitioning of the graph into parts with one part for each node. A communications
cost is incurred where an arc crosses a partition boundary.

It is also important to determine file placement, and we can include it within function
placement by identifying the file access module for the data separately, and placing it on the Mode
that also has the file stored. Then the remote file access overhead becomes a communications
overhead cost between the module using the data and the node that stores it, if they are not co-
located.

Let m be an index that runs over the module names in the system banah index that
runs over the node names, and define:

H(my,my) = the communications overhead cpu demand added to magufenodulem,
is on a different node,

A(my,my) = 1 if modulesmy andm, are on different nodes
= 0 otherwise
a(m,n)= 1 if modulem s placed on node
= 0 otherwise.

Each module occurs just once. Then the problem of maximizing the saturation throughput, or
minimizing the saturation response time, boils down to choosing the placart@ntinimize the
largestD,,:
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min  max Dy
{aj n
(Stone & Bokhari)
MULTIFIT-COM here)

4.5. Piped Linear/Distributed Software

Piped software does not conform to the module model developed in the last chapter. It is
more primitive, and is based directly on activity graph model. The sequence of activities is
aggregated into modules, with one module for each stage in the pipeline. At the completion of a
module, instead of returning its result, the module sends it in an asynchronous message to the next

stage.

org  -- quick descrpn
-- simple example *
-- allocation Bokhari
-- expensive handover (files or filters)
-- compare sequence to hierarchical structure, master slave
-- compare to call all way down and return
-- derive forwarding.
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automation, communications systems management, etc.
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When we begin to analyze model results we find that certain arrangements of concurrent
tasks recur and have charateristic performance attributes. These architectural level patterns will be
included in our repertoire of “performance-oriented patterns”. This chapter considers four
architectural patterns which are extremely common in existing and proposed designs, and which
are seen in classification of software architectures such as the one by Shaw [?7?].

* The “Tower” pattern is a layered set of servers showing vertical separation of functions, seen
in descriptions of client-server and transaction processing systems. This is a simplified
version of Shaw’s “Client-Server” architecture.

* The “Lattice” pattern is a set of cross-linked Towers, representing layered service with several
servers at each layer. This is a more general version of Shaw’s “Client-Server” architecture
and could represent a three-tier client-server system or a distributed transaction processing.

» The “Peer-to-Peer” is a model for symmetrical servers which exchange requests with each
other. It contains a transformation which produces a special case of the Lattice Patterns.

* The “Flow” pattern represent pipelined processing. This is very common and is one of Shaw’s
categories. We consider also extended versions of this pattern with servers shared by pipeline
tasks.

Further architectural patterns which incorporate fork-join behaviour patterns will be
studied in a later chapter.

5.1. The “Tower” Pattern

The name “tower” will be applied to a set of layered servers, which are, as it were, piled
one on top of the other to make a tower of tasks. In each of the middle layers there is just one server,
while at the top there may be many users, and at the bottom there may be many servers. The basic
pattern is shown in Figure PA, with a sethdf user tasks, in the top layer, layer 1, making requests
to a single server in layer 2, which in turn makes requests to a single server in layer 3, down to
where layel-1 makes requests i servers in layek. We have already seen that a database
system may have layers like this, with user tasks running on desktops, with a Transaction Manager,
a Data Manager, and a File Server, and with a set of disks at the bottom.

The Tower pattern has the usual workload parameters, which are the same for each tasks in
a given level. They will each be labelled with subscripts for the legeuinting down from the
user tasks at the top:

* there areN, tasks (assumed symmetrical) at |dyadlentified as T,".
* The task at levdlhasm threads, fronh = 2 toL-1.
» The tasks at the bottom are single threaded.

» Each task at levdlhas an average host demanddp§ec, and makes an averaggjakquests
to each server at the next lower level.

* As a result each task at levebk invoked on averagg times per user task cycle, wherg=
1andvi=y1Y,..y.1,1 =2, 3.....

« If fis the total rate of requests from the user level, the invocation rate of each tasklat layer
is f| =V f.

» TheN; user tasks at the top are single threaded and execute in cycles. A cycle begins with the
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N, Users

Level I=1 ' f requests/sec (total)
1 server

Level 2 - m, threads

1 server
mg threads

1 server
my threads

N_=3 servers
Level 5 1 thread each

FIGURE 3. Tower Pattern with Five Levels (Figure PA)

user “thinking” forZ seconds, then making a request which the task executes. The end of each
cycle of each user task begins the next cycle, with a cycle tidég ofcluding the delay.
The user response timeXs - Z

« the total response rate over all user taskessponses per second, is giverf ByN;/X;.

A software bottleneck is a serious concern for this pattern. It may occur where a resource-
constrained server makes blocking requests to a lower-level service, thread, or resource. The effect
is stronger where there are more lower-level servers in the fan-out, but just one lower-level server
plus the constrained task’s own processor is enough. As well as thread resources, the distribution
of host demands and other requests over the levels determines the severity and location of a
bottleneck.

Task saturation is indicated by utilization, the fraction of time the task is busy. The task
source time, or the read sevice timengf1, is X; and includes blocked time waiting for requests
to lower server to complete. At the bottom letethe tasks only have host executionp)§o=D, .

We will consider two kinds of utilization:

* host utilization per task at levieis HU, = f|D, = fv|D,
» task utilization at levdlis defined per thread (if there is more than one), giving
U, =f X/ m=fv X /m, | =2.In this case saturation is indicated Uyapproachingn.
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» task utilization of each user taskdg = f X; / Ny, since the utilization is shared among the
N; user tasks,

» task utilization of a task at levelisU; =fv| X, since they are single-threaded

Basic Case: Towerl

Let us begin with Towerl as shown in Figure PA. It has five levels, with 10 user tasks at
level 1, then three middle levels with single-threaded servers T2, T3, T4, each with its own
processor, and finally three identical bottom-level servers T5_1, T5_2, T5_3. Each server is
invoked once per response and has one unit of execution demggnd,[D, =1). When this system
executes, the service time of T4 is four units, one unit for itself and one unit for each of the three
bottom-level servers. T3 adds one unit for itself, for a total of five, and T2 takes six units for its
task service time. Because the tasks are single-threaded, T2 must finish with one response before
it starts the next. The lower level tasks never have more than one request to deal with at a time; T2
effectively sequentializes the entire system. The T2 service time of six units defines the maximum
throughput capability as one response every six unitsz 0k66, approximately. At this maximum
throughput, each processor is used at only one-sixth of its capacity. This is an extreme case of a
software bottleneck.

What this example will show is that

* when any resource is saturated, all finite higher-level resources are saturated too, while lower-
level resources are not,

* bottleneck relief must include the saturated resource, but may have to include other resources
too, to get full potential value.

* bottleneck relief will be provided in these examples by multi-threading of tasks, and there is
a rule of thumb for how many are needed,

» when there is contention at a resource, its service time increases when throughput goes up,
making it difficult to predict the limits from light-traffic measures.
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Draft: October 18, 2001

Throughput f = 0.166 requests/sec) (Figure PB)

Task Utilization Task Service Host Utilization
Levell Y, Times X| HU,
1 (Users) 1.0 60 0.166
2 1.0 6 0.166
3 0.833 5 0.166
4 0.666 4 0.166
5 0.166 1 0.166

Figure PB shows the task resource saturation at different levels in the system, for different
throughputs up to the maximum. At the lower values, the users have a delay between the
completion of one request and starting a new one, while at the highest value there is none. The
device utilizations are not shown but they are numerically equal to the throughputs. The lowest
curve is for a long user “think time” which gives a low total request rate; the second is for a
moderate think time giving a moderate rate. Notice how the task utilizations build up at the higher
levels, while the device utilizations are the same over the levels. Blocking delays pile up at the
higher levels and cause longer task service times, which reflect in higher task utilizations. Because
T2 has a single thread, there can only be one active response in the system below it. Since there is
no message queueing at levels 3 to 5, the way the delay piles up is very simple. Each task’s service
time X is the sum of its own host demabdand the service times of the tasks below it; task
utilization is proportional t&X. Therefore, a server below a single threaded task cannot be fully
utilized; some of the time it must be waiting for the next request.

Even though this is a very oversimplified example, it is worth understanding. We can see
that:

* the bottleneck at level 2 is due to it being single threaded; for higher throughput we must be
able to process several requests at once, which implies multi-threading at levels 2 down to 4.
On the other hand, threads in level 5 would do no good as these tasks do not block.

« if we cannotincrease the threading levels then the system will continue to be sequential at and
below level 2. We could get equivalent or better performance by running all the tasks on a
single processor at and below level 2. It would be even better to merge them into a single task,
because it would reduce demand for intertask communications overhead! (This overhead has
not been separated out here, but is certainly present.)

* the first improvement would be to introduce multiple threads to level 2; then the bottleneck
would move down to level 3. Second, multi-thread level 3, and it would move to level 4.
Finally with multiple threads at level 4, the bottleneck should move down to level 5 and also
to the devices of all levels. Because the heaviest device utilization in Figure PB(d) is 1/6, we
can in principle search for a sixfold increase in throughput, when we introduce multiple
threads. A sixfold increase would make 1.

* How many threads to introduce? If one only introduces them in level 2, two threads is enough,
because one can be executing while the second one is blocked while T3 executes for it. More
would just have to wait for T3 to begin serving them. A similar argument could be made at
level 3, but for level 4 (because there are three servers at the next level down), more threads
are useful. But then, if one increases the number at level 4 it will pay off to increase them also
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at the higher levels.

Thread Rule of Thumb #1

* A simple rule of thumb when (as here) there is no phase-2 work, is that the threads at a level
should be the sum of the threads in all the servers at the next level down, plus one, to avoid
idle time on a task due to blocking. On the other hand if for any reason a higher level task is
constrained in its number of threads, lower level tasks need not have more. For level 1, the
N; user tasks are treated as threads, so the most threads we expect to be useful is 10.

If the rule of thumb is applied to Tower 1 it says level 5 has 3 tasks of one thread, so level
4 requires 4 threads, level 3 requires 5, and level 2 requires 6. Level 1 has 10 users each of which
is constrained to be a single thread. We will focus on the levels 2 to 4, which mavey, my) =
(6, 5, 4).

Multi-threading

Figure PC shows the results when one introduces multithreading level by level, starting at
the top at level 2. The rule of thumb is used to determint be one more than the sum of values
for the next level down. The figure shows the mean number of busy threads in part (a), and the
relative saturation of thread resources (mean busy threads over total threads) in part (b), and the
mean task service time in part (c). Look first at the values at the right side of the table, as threading
is introduced gradually:

* (Mmp, Mg, my) = (2,1,1) and throughput 0.20/sec;
* (3, 2, 1), and throughput 0.22/sec;
* (6, 5, 4) and throughput 0.47/sec.

The big payoff really comes with threads in level 4, although providing threads only at level
4 would have no effect at all!

The rule of thumb may underestimate the number of threads that can provide a benefit,
basically because threads in a server may compete with each other for the next server down the
tower (which could not happen when there was only one). It is really necessary to evaluate the
effect of threading. Higher numbers of threads give some additional improvement, indicated by the
other curves in the Figure:

* (Mmp, mg, my) = (7, 6, 5) and = 0.55/sec,
* (8, 7, 6) and throughput 0.58/sec,

* (9, 8, 7), and throughput 0.62/sec,

* (10, 10, 10) and throughput 0.65/sec.
* (00,00,00) 0.65/sec.

This pattern frequently underperforms, compared to expectations. Why can this example
not exceed 0.65 responses/sec even if the users are flooding it with input, there are infinite threads,
and each task separately can handle 1.0/sec.? The answer lies in (1) the relatively small number of
user tasks, just 10, compared to the amount of work for each response (7 units). Even with more
processors, we could never exceed 10/7=1.42 responses/sec. and (2) in random interference of
requests, due to the variability in the execution demands. For these evaluations the host demands
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were random and exponentially distributed, which is higher variability than is found in some
applications, but lower than others. It makes a curious trade-off. With deterministic times there
would be no improvement above the rule-of-thumb values (6, 5, 4), at which a full 1.0 response per
second is obtained. Random interference throttles back the capacity at (6,5,4) to less than half of
that, but then allows additional threads to regain part of the difference.

TABLE 4. Multi-threaded Tasks in Tower 1: Throughput, Task Saturations and Other
Measures. (Figure PC)

Threading Level Cases, defined by m, my)
(0,00,0) | (10,10,10)| (9,8,7) (8,7,6) (76,5 (6,5,4) (3.2,0) (2,1,1)
Through
put f 0.65 0.65 0.62 0.58 0.55 0.4749¢4 0.2235R1 0.200847
Levell (a) Mean Busy Threads = Task Utilizatidgy X
1 10 10 10 10 10 10 10 10
2 9.34 9.35 8.8 7.95 7 5.51 2.90 .96
3 7.8 7.8 7 6.2 5.36 3.89 1.64 1
4 6.24 6.22 5.4 4.7 4 2.75 0.89 0.8
5 0.65 0.65 0.62 0.59 0.55 0.47 0.22 0.2
Levell (b) Task Utilization per ThreadJ{/m)
1 1 1 1 1 1 1 1
2 0.94 0.98 0.993 1 0.92 0.97 0.98
3 0.78 0.88 0.89 0.89 0.78 0.82 1
4 0.62 0.77 0.78 0.8 0.69 0.89 0.8
5 065 | 062 0.59 0.55 0.47 0.22 0.2
Levell (c) Task Thread Service Times)
1 15.38 15.38 16.13 17.24 18.18 21.05 44.74 49.91
2 14.37 14.38 14.19 13.71 12.73 11.60 12.98 9.77
3 12 12 11.29 10.69 9.75 8.19 7.32 4.99
4 9.6 9.57 8.71 8.10 7.27 5.78 4 3.99
5 1 1 1 1 1 1 1 1

Only a model can predict the balance of these factors. For example,

« if the number of users is increased to 25, and variability is kept the same, the throughput for
infinite threads goes up but only to 0.83/sec... (PDM)

« if the variability of execution times is reduced, so its coefficient of variation is 0.5, then f =
... (PDN)

Effect of Variability in Execution Times

High-variance execution and communication behaviour has been observed in networks and
in execution statistics and has quite serious performance effects. [refs] High variance or “Self-
similarity” was first observed in network traffic when it tends to nullify the advantages of large
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scale and multiplexing of traffic. High variance in software execution times increases contention
delays and reduces average throughput. However some of that reduction can be gained back by
exploiting multi threading.

Consider Tower 1 with rule-of-thumb thread levels of (6, 5, 4), mean service demands of
1.0 units and execution-time standard deviatign of 0 (deterministic), 1.0 (exponential
distribution), and 10 (hyper-exponential), and then consider the gain obtained by making the thread
units infinite.
TABLE 5. Variability of Execution Demand (Figure PDR)

Thread Levels
(my,mp,,mz) = 6,5,4 Infinite Threads
Execution Throughput Mean Busy Throughput Mean Busy Threads
Demand Std. Dev. | f Threads f (my, My, Mg)
op Resp/sec. (my, My, M) Resp/sec.
0 1.0 (6, 5, 4) 1.0
10 0.47 (.55, .39, .27) 0.65
In these results we see the interesting fact that higher variability at = 10 reduces

throughput dramatically and increased thread levels restore only a fraction - about a third - of the
lost throughput. User response time is even more dramatically affected.

Because of the complexity of the interactions even in a relatively trivial architecture like
Tower 1, a model is essential for determining the risk posed by variability. Thread levels alone,
unfortunately, do not solve the problem and restore the capacity. Another mechanism for achieving
improvements is through priority scheculing, essentially by reducing the priority of threads that
have executed for a long time. With high-variance jobs a thread that has already had a long time is
more likely to need yet more, so they reveal themselves. Unfortunately this kind of dynamic
priority scheduling is not yet common on workstations.

Critical Sections Limit Thread Effects

Unfortunately we cannot make all processing multithreaded. Often there is interference
between threads because they share resources or data, which requires a critical section in which
only one of the threads can execute at a time. It may then be simplest to restrict a task to a single
thread and concentrate on making it efficient. Only a critical section which covers local execution
only, without any service requests, will have almost no performance effect.

A critical section which covers some but not all service requests is modelled as shown in
Figure PE. The pseudo-task CS includes that part of T3 which is within the critical section, and has
a single thread. Waiting for CS models the waiting for the critical section. CS includes both
execution and some service requests to T4. The execution in T3 and requests from T3 to T4 are
divided between the critical section, and non-critical execution of each thread, in aratig :(1- ).
With g=1, T3 is effectively single-threaded, while wgh = 0O the critical section disappears.

What we see in Figure PE is how the choke-point due to the critical section spreads
congestion back up into the system, so that attempts to correct the problem by changes above that
point are doomed to failure. The number of threads that are worth providing above T3 depends on
how many threads can be used effectively at T3, and this drgps as increases.
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FIGURE 4. Towerl with a Critical Section Modelled by Pseudo-Task CS.
(Figure PE)

How can we estimate the thread resources needed, with such complicated factors at play?
A method for estimation is considered next.

TABLE 6. A Critical Section in T3 with Thread Levels of Tower 1 (my mg, my) = (6, 5, 4). (Figure PESIM)

Critical Section Ration 3 (B = fraction of T3 execution within the critical section)

0.0001 0.33 0.67 1.0
Throughput f

0.5 0.36 0.26 0.2
Levell (a) Mean Busy Threads
1 0 10 10 10
2 6 6 6 6
3 4.5 4.6 4,74 4.8
CS 0.14 0.86 0.98 1.0
4 3.21 2.01 1.22 0.8
5 0.5 0.35 0.26 0.2
Levell (b) Task and Critical Section Utilization (per Thread)
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0




TABLE 6. A Critical Section in T3 with Thread Levels of Tower 1 (my mg, my) = (6, 5, 4). (Figure PESIM)
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Critical Section Ration 3 (B = fraction of T3 execution within the critical section)
0.0001 0.33 0.67 1.0
Throughput f
0.5 0.36 0.26 0.2
3 0.9 0.92 0.95 0.96
4 0.8 0.50 0.30 0.2
5 0.5 0.35 0.26 0.2
Levell (c) Task Thread Service Times
1 20 27.8 38.5 50.0
2 12 16.7 23.1 30
3 9 12.8 18.2 24
4 6.42 5.6 4.7 4
5 1 1 1 1

Prior Estimation of Thread Resources

Is there a simple way to estimate the desirable number of threads to provide, that is more
accurate than the rule of thumb of one more than the sum over the next level down? An approach
which has the advantage that it deals with critical sections, second phases and other potential
complexities in the interaction patterns, is to analyze for infinite threads in every task, but including
any necessary critical sections. For Tower 1, the diagram in Figure PEM with infinite threads at
levels 2 to 4 shows the idea. Levels 1 and 5 are left single threaded because at level 1 threads make
no sense, while at level 5 they make no difference. The results show the mean number of active
threads:

*m =1 X, = mean active threads per task at lével

TABLE 7. Estimating Thread Levels from Models with Infinie Levels ((n,, mg, my) are
infinite) (Figure PEM)

Critical Section Ratio 3 (B = fraction of T3 execution within the critical section)
0.0001 0.37 0.67 1.0
Throughput f
0.69 0.36 0.24 0.2
Levell (a) Mean Busy Threads
1 10 10 10 10
2 9.3 9.64 9.76 9.8
3 7.9 9.13 9.46 9.56
Cs 0.29 0.83 0.96 1
4 6.12 2.04 1.19 0.8
5 0.69 0.36 0.24 0.2

10
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In Figure PEM, infinite threads give only a modest increase in throughput over Figure PD,
from 0.62 to 0.67, even with no critical section. The mean number of busy threads is about the
same. When the critical section fraction increases, moreover, we can see how rapidly the useful
number of threads drops. When using these results, it will be useful to make the actual number of
threads a little bigger than this; when in doubt pick a configuration and run an analysis.

Most interesting, even with infinite threads and no critical section, the device utilization is
only 68%, indicating that 32% of the processing capacity is still not being utilized. This is due to
the layered structure, random contention, and the relatively small number of users. However
calculations with 20 and 30 users saw device utilizations rise only a little (to 82% and 88%
respectively) while the response time skyrocketed from 13 units for 10 users, to 24.3 units for 20,
and 34 units for 30.

Delay and a Lightly Loaded Tower Pattern

All of this section has considered only the maximum throughput obtainable from a tower-
patterned subsystem, rather than the delay to an input request. It turns out that the changes which
favour higher capacity also mostly favour smaller response delays in this case. If delay is the
important factor and the system is lightly loaded (eg, there is a longer think time Z between
requests), then a satisfactory response time may be obatined with fewer threads. The number of
threads required for the servers will be lower, without penalty, just because they would mostly be
idle.

Unbalanced Execution Demands
[Figure PEQ and discussion to come]
Summary

Thread resources must be considered in designing for performance, but they must be
applied consistently to all tasks, and they cannot overcome other resource constraints such as a
critical section between threads.

5.2. Variations on the Tower Pattern

Towerl is oversimplified in two broad ways. First, real systems are less symmetrical. Their
demands are not balanced between levels or tasks, levels may share host processors, the request
values are not unity between levels, and there may be second phases of service. Second, they may
be interconnected to other tasks, so there may be more services requested at intermediate levels,
and requests may come in from other subsystems to various levels. Here we will consider request
flows in and out of a tower, and second phase effects.

Fanout:

A vertical sequence of tasks in a larger system may be identified for careful study as a tower
pattern, if the links between it and the rest of the system are very weak. If they are not so small as
to be completely ignored, requests made to tasks outside the tower can be represented as appended
or fanoutrequests. They have the effect of inducing additional delay to threads of the task in the
tower making the request. Figure PG shows Tower 1 with Téskiakingyza fanout requests to
the appended tagK8A with service time 2 units.

11
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FIGURE 5. Fan-in and Fan-out Requests in Towerl. (Figure PG)

If T3is single-threaded it blocks for longer and the tower performance declines; if it can
be multi threaded then part of the performance is recovered, as shown in Figure PGF. The rule of
thumb suggests thatk; be one plus the sum of; and the thread count 38A

Second-phase execution at the appended server changes the picture totally; if it is mostly
second-phase there will be almost no effect, as the reply will come back almost at once.

TABLE 8. Effect on User Throughput of Additional Fan-out Requests forT3 to T3A. (Figure PGF)

User Throughput
Y34 (Mean requests TBA) 0 0.5 1.0 15 2.0
Single-threaded: 0.167 0.143 0.125 0.111 o0.10
(mp,mg,my) = (6,5,4) 0.465 0.421 0.358 0.288 0.231
Infinite threads 0.67 0.626 0.481 0.331 0.249

Fan-in:

Requests may similarly flow into a tower pattern from other subsystems. Suppose they are
represented by an open flow of requests atfate  arriving atllével , as shown in Figure PGH.
Now, asf' increases it tends to saturate that level, and the responBg tgues up due to
gueueing delays. The blocking time to the next level up increases, and this makes a higher
threading level there more worthwhile.

12
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Second Phases:

“Second phase execution” comprises activities carried out by a server after the reply is sent.
In real RPCs there is at least a small amount of second phase in the PrepareRcv activity shown in
Figure PC, getting ready for the next message reception. But many servers are designed so the
reply is sent as early as possible, with various postponable execution done in the second phase,
such as buffer deletion, or writing and closing files. File servers with cached writes are a simple
and ubiquitous example of second phase, for the actual write is done after the data is stored in the
cache and the client is acnowledged.

The effect of a task’s work being in the second phase on a Tower is interesting. In a lightly
loaded Tower it results in shorter response times, because a client is blocked less and the server
executes in parallel. In a heavily loaded Tower with a bottleneck at that task, however, the effect
on the maximum capacity is small. With second phases at a certain level, the level above may
require more threads to reach its full capacity, because second phases increase the possibility of
gueueing; a task may even have to queue when it is the only requester to a server. With increased
possibility of queueing additional threads may sit blocked, while others work on new requests.

[Figure PGL to come]

For a Tower with a fan-out, work which is moved into a second phase of the appended task
can improve capacity.

Tasks which Share Host Processors:

Where tasks in a Tower share host processors it breaks the pure Tower pattern, for two levels then
share a common server. This may reduce the number of threads that can be used with advantage.
For instance if two neighboring levels share a host processor, to a first approximation the two
tasks could be considered as one in rule of thumb. It should be modified to say that they have the
same number of threads, rather than the upper one having one more.

In general, situations have to be considered in detail with a full evaluation.

5.3. Lattice Pattern

A lattice is a set of interconnected, more or less similar Towers, giving a diagram which
looks like a lattice-work for climbing plants (e.g., Figure PH). It arises when two or more similar
systems are connected together, for example

* a government social services agency has regional offices, each with its own databases of
clients, budgets, personnel, etc., but they are linked together for consolidated reporting and to
deal with cases which move from one region to another,

« divisions of a company, even though co-located, have their own information systems, but
these are connected together for rapid and uniform handling of inter-divisional transactions
and joint operations, and for gathering data for upper management.

e acompany and its suppliers provide some restricted access to each others information systems
to speed up handling of orders and technical arrangements, and tracing of shipments and

13
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payments.

Figure PH shows a totally symmetrical Lattice with three connected Towers of five levels
each. Each server makes requests to servers at the next level down, spread across all the towers. A
“connectedness” parametedescribes the degree to which requests are spread across the other
towers:

¢ = (mean requests from a server in lel/& servers in each other tower)/(requests in the
same tower)

The requests from level 4 to level 5 are not connected between the Towers, but kept local.
In Figure PH the request ratgsandy; are made to add up to 1,86 1/(1+2).

A connectedness parameter of unity shows that the requests are equally spread across the
towers, while a parameter of zero shows each tower isolated from the others at that level. When
the towers are completely symmetrical the connectedness parameter does not affect the load at a
server because as many requests flow in from other towers, as flow out to them. this is not true,
however if one tower has more users or different execution or request count parameters.

Symmetrical Lattice

In a symmetrical lattice with identical Towers, connectedness does not change the total
load on each server, it just moves it around. However it turns out that in a single-threaded lattice
the mixing of requests between towers makes a large difference to capacity, because it increases
the chances of waiting at a lower server, due to random interference between requests from
different towers. Figure PHA shows how the service times increase due to longer blocking delays,
and the throughput drops from .167 with0O, to 0.98 withc=1.0. This is worth remembering for
single-threaded servers.

TABLE 9. Effect of “Connectedness” on Lattice 1 (Figure PHA)

Throughput, User Responses/sec

“Connectedness” ¢ 0 0.2 0.4 0.6 0.8 1.0
Thropughput

(Mo, mg,my) = (1,1,1) 0.167 0.114 0.103 0.100 0.983 0.980
Throughput

(my,mg,my) = (6,5,4) 0.455 0.452 0.450 0.450 0.449 0.449

However multiple threads make a big difference. Figure PHA also shows results for the
“rule-of-thumb” levels of threadsr, m;, my) = (6,5,4), and the same levels of connectedness.
There is still a penalty compared to Figure PC, but it is small. We can effectively carry the one-
tower analysis into the Lattice situation. Also, threads give robustness, and make the throughputs
insensitive to the connectedness.

Real lattices are only roughly symmetrical. Regional or divisional elements of an
organization are not of equal size, and they have specialized needs. We have discovered that a
single tower is a good predictor for symmetrical lattive behaviour provided there are enough
threads. Is this still true for unsymmetrical cases? To what extent can the towers be analyzed
separately? Under what conditions is there a single dominant tower, or bottleneck server? We will
consider:

14
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* providing a higher capacity to the users attached to one tower,
* one server in one tower which makes an increased execution demand,
« the location of a new bottleneck when one is alleviated.

5.4. Peer-to-Peer Pattern

Up to this point all the software considered has been hierarchical with requests descending
to servers. What happens in a system with no hierarchy, in which equal peer processes
communicate? Such systems are important because of their robustness to failure and their
symmetry. Examples arise in distributed databases, and distributed systems to manage facilities or
services:

* in an air traffic control system each major airport is a node, and makes requests to
neighbouring nodes for state updates, or to hand off aircraft to the next controller. Many of
these interactions may be blocking, to ensure correct reception.

* in a distributed factory management system each production center may be a node with its
own state, interacting with others to coordinate movement of goods through stages of
processing and into the warehouse.

Some analysis is needed before a peer-to-peer system can be modelled with our MSS
framework. It is necessary to understand the exact interaction behaviour. For instance, it would be
a poor design that used single threaded tasks, and symmetrical blocking interactions as in Figure
PLA. When a task makes a blocking request to a peer task, and waits for a reply, a situation is set
up which might cause mutual request deadlock, with both tasks waiting for replies and ignoring
their request queues. The first step in preventing this is to have multiple threads so a new thread
can pickup an incoming request while another thread is blocked waiting for the peer. Even this can
deadlock if all threads are waiting (although this is unlikely). A better design (and we suppose that
most systems are actually built this way) would recognize that the processing of a request from the
peer is different from one generated locally. For one thing it has been partly processed already. For
another, the processing can usually now be satisfied at the one site. The Peer/Peer pattern builds
these observations into the model, by dividing each task into parts, as shown in Figure PLB. One
part Local (for local request handler) handles local requests generated by users, a second part
Remote (for remote request handler) handles requests from the peer task(s), and a third part CSect
handles critical sections shared by the first two. Local and Remote can be multi-threaded. The LRH
and RRH tasks are distinguished to make the model clear; the actual software architecture may not
have separate tasks for local and remote requests, but internally the functions associated with them
should be recognizable.

The pattern is a special case of a Lattice. In Figure PLB, Task A is modelled by three
pseudo tasks. ALocal handles all the requests from AUsers, by invoking AServices for requests
which can be satisfied locally, and sending a request to BRemote for requests which can only be
satisified at B. If there are more sites the model expands easily by spreading requests out to them
also.

There are many design options which affect performance. Commonly TaskA and TaskB
will be multi threaded so they can respond to remote requests. There may be common code and a
common thread pool for Local and Remote. The difference between Local and Remote requests
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FIGURE 7. Equal, Symmetrical “Peer-to-Peer” Interaction. (Figure
PLA)
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FIGURE 8. A Layered Set of Pseudo-Tasks Represent Task A and Task B.
(Figure PLB)

may be only a flag in the request, which causes the path of further processing to follow the paths
for Local and Remote psudo tasks in Figure PLB. An important detail may require a further
addition to Figure PLB: the Figure translates to a Layered Queueing model with separate thread

17
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pools for the Local and Remote pseudo task. A common thread pool for TaskA can be modelled
by an additional speudo task AThread which serves both ALocal and ARemote, as in Figure PLC.
Separate “entries” on AThreads are used to keep the strams of requests separate.

ALocal

ARemote

AThfeads

v

AServices

FIGURE 9. A Common Thread-Pool for ALocal and ARemote
Modelled by a Pseudo-Task AThreads. (Figure PLC)

5.5. Pipelines with Rendezvous (No buffering)

Our layered model applies directly to pipelines in which the next stage must accept a data
token before the previous stage is free to do more work. To apply it we introdtae @hasefor
handing on the data token, so there are three phases as follows:

phase 1accept a new data token and acknowledge it;

phase 2operate on it (Processing);

phase 3send the output token or tokens on, and wait for acknowledgement.
[Remainder to come]
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Chapter 6. P: Patterns

Using the small-scale patterns of the last chapter for internal task resources, execution and
interaction, we can build and analyze performance models. The MSS(Res) framework of models
describes a wide variety of distributed service systems for business computing, industrial
automation, communications systems management, etc.

When we begin to analyze model results we find that certain arrangements of concurrent
tasks recur and have characteristic performance attributes. These architectural level patterns will
be included in our repertoire of “performance-oriented patterns”. This chapter considers four
architectural patterns which are extremely common in existing and proposed designs, and which
are seen in classification of software architectures such as the one by Shaw [??].

» The “Tower” pattern is a layered set of servers showing vertical separation of functions, seen
in descriptions of client-server and transaction processing systems. This is a simplified
version of Shaw’s “Client-Server” architecture.

» The “Lattice” patternis a set of cross-linked Towers, representing layered service with several
servers at each layer. This is a more general version of Shaw's “Client-Server” architecture
and could represent a three-tier client-server system or a distributed transaction processing.

» The “Peer-to-Peer” is a model for symmetrical servers which exchange requests with each
other. It contains a transformation which produces a special case of the Lattice Patterns.

* The “Flow” pattern represent pipelined processing. This is very common and is one of Shaw’s
categories. We consider also extended versions of this pattern with servers shared by pipeline
tasks.

Further architectural patterns which incorporate fork-join behaviour patterns will be
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studied in a later chapter.

6.1. The “Tower” Pattern

The name “tower” will be applied to a set of layered servers, which are, as it were, piled
one on top of the other to make a tower of tasks. In each of the middle layers there is just one server,
while at the top there may be many users, and at the bottom there may be many servers. The basic
pattern is shown in Figure PA, with a sethdf user tasks, in the top layer, layer 1, making requests
to a single server in layer 2, which in turn makes requests to a single server in layer 3, down to
where layel-1 makes requests i servers in layek. We have already seen that a database
system may have layers like this, with user tasks running on desktops, with a Transaction Manager,
a Data Manager, and a File Server, and with a set of disks at the bottom.

N, Users

Level I=1 ' f requests/sec (total)
1 server

Level 2 - m, threads

1 server
mg threads

Level 3

1 server
my threads

N_ =3 servers
1 thread each

Figure 6.1. Tower Pattern with Five Levels (Figure PA)

The Tower pattern has the usual workload parameters, which are the same for each tasks in
a given level. They will each be labelled with subscripts for the leeeuinting down from the
user tasks at the top:

* there areN, tasks (assumed symmetrical) at |dyadlentified as T,".
* The task at levdlhasm threads, fronh = 2 toL-1.
» The tasks at the bottom are single threaded.
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 Each task at levdlhas an average host demanddp§ec, and makes an averaggjakquests
to each server at the next lower level.

* As a result each task at levdk invoked on averagg times per user task cycle, wherg=
1andvi=yY,..y.1,1=2, 3.....

* If f is the total rate of requests from the user level, the invocation rate of each tasklat layer
is f| =V f.

* TheN, user tasks at the top are single threaded and execute in cycles. A cycle begins with the
user “thinking” forZ seconds, then making a request which the task executes. The end of each
cycle of each user task begins the next cycle, with a cycle tidég ofcluding the delay.

The user response timeXs - Z

« the total response rate over all user taskesponses per second, is giverf ByN;/X;.

A software bottleneck is a serious concern for this pattern. It may occur where a resource-
constrained server makes blocking requests to a lower-level service, thread, or resource. The effect
is stronger where there are more lower-level servers in the fan-out, but just one lower-level server
plus the constrained task’s own processor is enough. As well as thread resources, the distribution
of host demands and other requests over the levels determines the severity and location of a
bottleneck.

Task saturation is indicated by utilization, the fraction of time the task is busy. The task
source time, or the read service timeng$1, is X, and includes blocked time waiting for requests
to lower server to complete. At the bottom letehe tasks only have host executionp)§o=D, .

We will consider two kinds of utilization:

* host utilization per task at levieis HU, = f|D, = fv|D,
* task utilization at levdlis defined per thread (if there is more than one), giving
U, =f X/ m=fv X /m, | =2.In this case saturation is indicated Uyapproachingn.

» task utilization of each user taskdg = f X; / Ny, since the utilization is shared among the
N; user tasks,

» task utilization of a task at levelisU; =fv_ X, since they are single-threaded
Basic Case: Towerl

Let us begin with Towerl as shown in Figure PA. It has five levels, with 10 user tasks at
level 1, then three middle levels with single-threaded servers T2, T3, T4, each with its own
processor, and finally three identical bottom-level servers T5_1, T5_2, T5_3. Each server is
invoked once per response and has one unit of execution demant, D, =1). When this system
executes, the service time of T4 is four units, one unit for itself and one unit for each of the three
bottom-level servers. T3 adds one unit for itself, for a total of five, and T2 takes six units for its
task service time. Because the tasks are single-threaded, T2 must finish with one response before
it starts the next. The lower level tasks never have more than one request to deal with at a time; T2
effectively sequentializes the entire system. The T2 service time of six units defines the maximum
throughput capability as one response every six unitsz0k66, approximately. At this maximum
throughput, each processor is used at only one-sixth of its capacity. This is an extreme case of a
software bottleneck.

What this example will show is that

125



Draft October 18, 2001

* when any resource is saturated, all finite higher-level resources are saturated too, while lower-
level resources are not,

* bottleneck relief must include the saturated resource, but may have to include other resources
too, to get full potential value.

* bottleneck relief will be provided in these examples by multi-threading of tasks, and there is
a rule of thumb for how many are needed,

» when there is contention at a resource, its service time increases when throughput goes up,
making it difficult to predict the limits from light-traffic measures.
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Throughput f = 0.166 requests/sec) (Figure PB)

Task Utilization Task Service Host Utilization
Levell Y, Times X| HU,
1 (Users) 1.0 60 0.166
2 1.0 6 0.166
3 0.833 5 0.166
4 0.666 4 0.166
5 0.166 1 0.166

Figure PB shows the task resource saturation at different levels in the system, for different
throughputs up to the maximum. At the lower values, the users have a delay between the
completion of one request and starting a new one, while at the highest value there is none. The
device utilizations are not shown but they are numerically equal to the throughputs. The lowest
curve is for a long user “think time” which gives a low total request rate; the second is for a
moderate think time giving a moderate rate. Notice how the task utilizations build up at the higher
levels, while the device utilizations are the same over the levels. Blocking delays pile up at the
higher levels and cause longer task service times, which reflect in higher task utilizations. Because
T2 has a single thread, there can only be one active response in the system below it. Since there is
no message queueing at levels 3 to 5, the way the delay piles up is very simple. Each task’s service
time X is the sum of its own host demabdand the service times of the tasks below it; task
utilization is proportional t&X. Therefore, a server below a single threaded task cannot be fully
utilized; some of the time it must be waiting for the next request.

Even though this is a very oversimplified example, it is worth understanding. We can see
that:

* the bottleneck at level 2 is due to it being single threaded; for higher throughput we must be
able to process several requests at once, which implies multi-threading at levels 2 down to 4.
On the other hand, threads in level 5 would do no good as these tasks do not block.

« if we cannotincrease the threading levels then the system will continue to be sequential at and
below level 2. We could get equivalent or better performance by running all the tasks on a
single processor at and below level 2. It would be even better to merge them into a single task,
because it would reduce demand for intertask communications overhead! (This overhead has
not been separated out here, but is certainly present.)

* the first improvement would be to introduce multiple threads to level 2; then the bottleneck
would move down to level 3. Second, multi-thread level 3, and it would move to level 4.
Finally with multiple threads at level 4, the bottleneck should move down to level 5 and also
to the devices of all levels. Because the heaviest device utilization in Figure PB(d) is 1/6, we
can in principle search for a sixfold increase in throughput, when we introduce multiple
threads. A sixfold increase would make 1.

* How many threads to introduce? If one only introduces them in level 2, two threads is enough,
because one can be executing while the second one is blocked while T3 executes for it. More
would just have to wait for T3 to begin serving them. A similar argument could be made at
level 3, but for level 4 (because there are three servers at the next level down), more threads
are useful. But then, if one increases the number at level 4 it will pay off to increase them also
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at the higher levels.

Thread Rule of Thumb #1

* A simple rule of thumb when (as here) there is no phase-2 work, is that the threads at a level
should be the sum of the threads in all the servers at the next level down, plus one, to avoid
idle time on a task due to blocking. On the other hand if for any reason a higher level task is
constrained in its number of threads, lower level tasks need not have more. For level 1, the
N; user tasks are treated as threads, so the most threads we expect to be useful is 10.

If the rule of thumb is applied to Tower 1 it says level 5 has 3 tasks of one thread, so level
4 requires 4 threads, level 3 requires 5, and level 2 requires 6. Level 1 has 10 users each of which
is constrained to be a single thread. We will focus on the levels 2 to 4, which mayvey, m,) =
(6, 5, 4).

Multi-threading

Figure PC shows the results when one introduces multithreading level by level, starting at
the top at level 2. The rule of thumb is used to determin& be one more than the sum of values
for the next level down. The figure shows the mean number of busy threads in part (a), and the
relative saturation of thread resources (mean busy threads over total threads) in part (b), and the
mean task service time in part (c). Look first at the values at the right side of the table, as threading
is introduced gradually:

* (Mmp, Mg, my) = (2,1,1) and throughput 0.20/sec;
* (3, 2, 1), and throughput 0.22/sec;
* (6, 5, 4) and throughput 0.47/sec.

The big payoff really comes with threads in level 4, although providing threads only at level
4 would have no effect at all!

The rule of thumb may underestimate the number of threads that can provide a benefit,
basically because threads in a server may compete with each other for the next server down the
tower (which could not happen when there was only one). It is really necessary to evaluate the
effect of threading. Higher numbers of threads give some additional improvement, indicated by the
other curves in the Figure:

* (Mmp, mg, my) = (7, 6, 5) and = 0.55/sec,
* (8, 7, 6) and throughput 0.58/sec,

* (9, 8, 7), and throughput 0.62/sec,

* (10, 10, 10) and throughput 0.65/sec.
* (00,00,00) 0.65/sec.

This pattern frequently underperforms, compared to expectations. Why can this example
not exceed 0.65 responses/sec even if the users are flooding it with input, there are infinite threads,
and each task separately can handle 1.0/sec.? The answer lies in (1) the relatively small number of
user tasks, just 10, compared to the amount of work for each response (7 units). Even with more
processors, we could never exceed 10/7=1.42 responses/sec. and (2) in random interference of
requests, due to the variability in the execution demands. For these evaluations the host demands
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were random and exponentially distributed, which is higher variability than is found in some
applications, but lower than others. It makes a curious trade-off. With deterministic times there
would be no improvement above the rule-of-thumb values (6, 5, 4), at which a full 1.0 response per
second is obtained. Random interference throttles back the capacity at (6,5,4) to less than half of
that, but then allows additional threads to regain part of the difference.

TABLE 7. Multi-threaded Tasks in Tower 1: Throughput, Task Saturations and Other
Measures. (Figure PC)

Threading Level Cases, defined by m, my)
(0,00,0) | (10,10,10)| (9,8,7) (8,7,6) (76,5 (6,5,4) (3.2,0) (2,1,1)
Through
put f 0.65 0.65 0.62 0.58 0.55 0.4749¢4 0.2235R1 0.200847
Levell (a) Mean Busy Threads = Task Utilizatidgy X
1 10 10 10 10 10 10 10 10
2 9.34 9.35 8.8 7.95 7 5.51 2.90 .96
3 7.8 7.8 7 6.2 5.36 3.89 1.64 1
4 6.24 6.22 5.4 4.7 4 2.75 0.89 0.8
5 0.65 0.65 0.62 0.59 0.55 0.47 0.22 0.2
Levell (b) Task Utilization per ThreadJ{/m)
1 1 1 1 1 1 1 1
2 0.94 0.98 0.993 1 0.92 0.97 0.98
3 0.78 0.88 0.89 0.89 0.78 0.82 1
4 0.62 0.77 0.78 0.8 0.69 0.89 0.8
5 065 | 062 0.59 0.55 0.47 0.22 0.2
Levell (c) Task Thread Service Times)
1 15.38 15.38 16.13 17.24 18.18 21.05 44.74 49.91
2 14.37 14.38 14.19 13.71 12.73 11.60 12.98 9.77
3 12 12 11.29 10.69 9.75 8.19 7.32 4.99
4 9.6 9.57 8.71 8.10 7.27 5.78 4 3.99
5 1 1 1 1 1 1 1 1

Only a model can predict the balance of these factors. For example,

« if the number of users is increased to 25, and variability is kept the same, the throughput for
infinite threads goes up but only to 0.83/sec... (PDM)

« if the variability of execution times is reduced, so its coefficient of variation is 0.5, then f =
... (PDN)
Effect of Variability in Execution Times

High-variance execution and communication behaviour has been observed in networks and
in execution statistics and has quite serious performance effects. [refs] High variance or “Self-
similarity” was first observed in network traffic when it tends to nullify the advantages of large
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scale and multiplexing of traffic. High variance in software execution times increases contention
delays and reduces average throughput. However some of that reduction can be gained back by
exploiting multi threading.

Consider Tower 1 with rule-of-thumb thread levels of (6, 5, 4), mean service demands of
1.0 units and execution-time standard deviatign  of O (deterministic), 1.0 (exponential
distribution), and 10 (hyper-exponential), and then consider the gain obtained by making the thread
units infinite.
TABLE 8. Variability of Execution Demand (Figure PDR)

Thread Levels
(my,mp,,mz) = 6,5,4 Infinite Threads
Execution Throughput Mean Busy Throughput Mean Busy Threads
Demand Std. Dev. | f Threads f (my, My, Mg)
op Resp/sec. (my, My, M) Resp/sec.
0 1.0 (6, 5, 4) 1.0
10 0.47 (.55, .39, .27) 0.65
In these results we see the interesting fact that higher variability at = 10 reduces

throughput dramatically and increased thread levels restore only a fraction - about a third - of the
lost throughput. User response time is even more dramatically affected.

Because of the complexity of the interactions even in a relatively trivial architecture like
Tower 1, a model is essential for determining the risk posed by variability. Thread levels alone,
unfortunately, do not solve the problem and restore the capacity. Another mechanism for achieving
improvements is through priority scheduling, essentially by reducing the priority of threads that
have executed for a long time. With high-variance jobs a thread that has already had a long time is
more likely to need yet more, so they reveal themselves. Unfortunately this kind of dynamic
priority scheduling is not yet common on workstations.

Critical Sections Limit Thread Effects

Unfortunately we cannot make all processing multithreaded. Often there is interference
between threads because they share resources or data, which requires a critical section in which
only one of the threads can execute at a time. It may then be simplest to restrict a task to a single
thread and concentrate on making it efficient. Only a critical section which covers local execution
only, without any service requests, will have almost no performance effect.

A critical section which covers some but not all service requests is modelled as shown in
Figure PE. The pseudo-task CS includes that part of T3 which is within the critical section, and has
a single thread. Waiting for CS models the waiting for the critical section. CS includes both
execution and some service requests to T4. The execution in T3 and requests from T3 to T4 are
divided between the critical section, and non-critical execution of each thread, in aratig :(1- ).
With g=1, T3 is effectively single-threaded, while wgh = 0O the critical section disappears.

What we see in Figure PE is how the choke-point due to the critical section spreads
congestion back up into the system, so that attempts to correct the problem by changes above that
point are doomed to failure. The number of threads that are worth providing above T3 depends on
how many threads can be used effectively at T3, and this drgps as increases.
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Figure 6.2. Towerl with a Critical Section Modelled by Pseudo-Task CS. (Figure PE)

How can we estimate the thread resources needed, with such complicated factors at play?
A method for estimation is considered next.

TABLE 9. A Critical Section in T3 with Thread Levels of Tower 1 (my mg, my) = (6, 5, 4). (Figure PESIM)
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Critical Section Ration 3 (B = fraction of T3 execution within the critical section)

0.0001 0.33 0.67 1.0
Throughput f

0.5 0.36 0.26 0.2
Levell (a) Mean Busy Threads
1 0 10 10 10
2 6 6 6 6
3 4.5 4.6 4,74 4.8
CS 0.14 0.86 0.98 1.0
4 3.21 2.01 1.22 0.8
5 0.5 0.35 0.26 0.2
Levell (b) Task and Critical Section Utilization (per Thread)
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0




TABLE 9. A Critical Section in T3 with Thread Levels of Tower 1 (my mg, my) = (6, 5, 4). (Figure PESIM)
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Critical Section Ration 3 (B = fraction of T3 execution within the critical section)
0.0001 0.33 0.67 1.0
Throughput f
0.5 0.36 0.26 0.2
3 0.9 0.92 0.95 0.96
4 0.8 0.50 0.30 0.2
5 0.5 0.35 0.26 0.2
Levell (c) Task Thread Service Times
1 20 27.8 38.5 50.0
2 12 16.7 23.1 30
3 9 12.8 18.2 24
4 6.42 5.6 4.7 4
5 1 1 1 1

Prior Estimation of Thread Resources

Is there a simple way to estimate the desirable number of threads to provide, that is more
accurate than the rule of thumb of one more than the sum over the next level down? An approach
which has the advantage that it deals with critical sections, second phases and other potential
complexities in the interaction patterns, is to analyze for infinite threads in every task, but including
any necessary critical sections. For Tower 1, the diagram in Figure PEM with infinite threads at
levels 2 to 4 shows the idea. Levels 1 and 5 are left single threaded because at level 1 threads make
no sense, while at level 5 they make no difference. The results show the mean number of active
threads:

* m =fi X = mean active threads per task at ldvel

TABLE 10. Estimating Thread Levels from Models with Infinite Levels (fn,, ms, m,) are
infinite) (Figure PEM)

Critical Section Ratio 3 (B = fraction of T3 execution within the critical section)
0.0001 0.37 0.67 1.0
Throughput f
0.69 0.36 0.24 0.2
Levell (a) Mean Busy Threads
1 10 10 10 10
2 9.3 9.64 9.76 9.8
3 7.9 9.13 9.46 9.56
Cs 0.29 0.83 0.96 1
4 6.12 2.04 1.19 0.8
5 0.69 0.36 0.24 0.2

In Figure PEM, infinite threads give only a modest increase in throughput over Figure PD,
from 0.62 to 0.67, even with no critical section. The mean number of busy threads is about the
same. When the critical section fraction increases, moreover, we can see how rapidly the useful
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number of threads drops. When using these results, it will be useful to make the actual number of
threads a little bigger than this; when in doubt pick a configuration and run an analysis.

Most interesting, even with infinite threads and no critical section, the device utilization is
only 68%, indicating that 32% of the processing capacity is still not being utilized. This is due to
the layered structure, random contention, and the relatively small number of users. However
calculations with 20 and 30 users saw device utilizations rise only a little (to 82% and 88%
respectively) while the response time skyrocketed from 13 units for 10 users, to 24.3 units for 20,
and 34 units for 30.

CONCLUSION?
Delay and a Lightly Loaded Tower Pattern

All of this section has considered only the maximum throughput obtainable from a tower-
patterned subsystem, rather than the delay to an input request. It turns out that the changes which
favour higher capacity also mostly favour smaller response delays in this case. If delay is the
important factor and the system is lightly loaded (e.qg., there is a longer think time Z between
requests), then a satisfactory response time may be obtained with fewer threads. The number of
threads required for the servers will be lower, without penalty, just because they would mostly be
idle.

Unbalanced Execution Demands
Figure PEQ
Summary

Thread resources must be considered in designing for performance, but they must be
applied consistently to all tasks, and they cannot overcome other resource constraints such as a
critical section between threads.

on unbalance over levels? here or earlier?

6.2. Variations on the Tower Pattern

Towerl is oversimplified in two broad ways. First, real systems are less symmetrical. Their
demands are not balanced between levels or tasks, levels may share host processors, the request
values are not unity between levels, and there may be second phases of service. Second, they may
be interconnected to other tasks, so there may be more services requested at intermediate levels,
and requests may come in from other subsystems to various levels. Here we will consider request
flows in and out of a tower, and second phase effects.

Fanout:

A vertical sequence of tasks in a larger system may be identified for careful study as a tower
pattern, if the links between it and the rest of the system are very weak. If they are not so small as
to be completely ignored, requests made to tasks outside the tower can be represented as appended
or fanoutrequests. They have the effect of inducing additional delay to threads of the task in the
tower making the request. Figure PG shows Tower 1 withTtdskakingy;, fanout requests to
the appended tadi3A with service time 2 units.

If T3is single-threaded it blocks for longer and the tower performance declines; if it can be
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Figure 6.3. Fan-in and Fan-out Requests in Towerl. (Figure PG)

multi threaded then part of the performance is recovered, as shown in Figure PGF. The rule of
thumb suggests that; be one plus the sum of, and the thread count d8A

Second-phase execution at the appended server changes the picture totally; if it is mostly
second-phase there will be almost no effect, as the reply will come back almost at once.

TABLE 11. Effect on User Throughput of Additional Fan-out Requests fofT3 to T3A. (Figure PGF)

User Throughput
yaa (Mean requests E3A) 0 0.5 1.0 15 2.0
Single-threaded: 0.167 0.143 0.125 0.111 0.10
(mp,mg,my) = (6,5,4) 0.465 0.421 0.358 0.288 0.231
Infinite threads 0.67 0.626 0.481 0.331 0.249

Fan-in:

Requests may similarly flow into a tower pattern from other subsystems. Suppose they are
represented by an open flow of requests atfate  arriving atllével , as shown in Figure PGH.
Now, asf' increases it tends to saturate that level, and the responBg tgues up due to
gueueing delays. The blocking time to the next level up increases, and this makes a higher
threading level there more worthwhile.
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Second Phases:

“Second phase execution” comprises activities carried out by a server after the reply is sent.
In real RPCs there is at least a small amount of second phase in the PrepareRcv activity shown in
Figure PC, getting ready for the next message reception. But many servers are designed so the reply
is sent as early as possible, with various postponable execution done in the second phase, such as
buffer deletion, or writing and closing files. File servers with cached writes are a simple and
ubiquitous example of second phase, for the actual write is done after the data is stored in the cache
and the client is acknowledged.

The effect of a task’s work being in the second phase on a Tower is interesting. In a lightly
loaded Tower it results in shorter response times, because a client is blocked less and the server
executes in parallel. In a heavily loaded Tower with a bottleneck at that task, however, the effect
on the maximum capacity is small. With second phases at a certain level, the level above may
require more threads to reach its full capacity, because second phases increase the possibility of
gueueing; a task may even have to queue when it is the only requester to a server. With increased
possibility of queueing additional threads may sit blocked, while others work on new requests.

Figure PGL

For a Tower with a fan-out, work which is moved into a second phase of the appended task
can improve capacity.

Tasks which Share Host Processors:

Where tasks in a Tower share host processors it breaks the pure Tower pattern, for two levels then
share a common server. This may reduce the number of threads that can be used with advantage.
For instance if two neighboring levels share a host processor, to a first approximation the two
tasks could be considered as one in rule of thumb. It should be modified to say that they have the
same number of threads, rather than the upper one having one more.

In general, situations have to be considered in detail with a full evaluation.

6.3. Partitioning and Replication

When a server is saturated and multi-threading has done all it can (or is inappropriate), it can be
further scaled up by partitioning it, or replicating it. Either way, the one server is replaced by
servers. These solutions are particularly appropriate if there are geographical or functional
domains that can be served separately. Partitioning divides either the function, or the data of the
original servelA among then replacement serverg*, so that for a particular service (or for par-
ticular data) a request must be made to the one server that can provide it; replication provides
complete copies ¢k including its data. The partitioned components are in some sense simpler
than the original, but the client must now choose between them; the replicated components do not
require changes to the clients.

Partitioning and replication are substitution patterns inside a larger architectural pattern such as a
Tower. They can be introduced to remove a bottleneck at some server. They are a more expensive
change than introducing multi-threading, since they normally imply separate hosting of each rep-
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lica or partition. We will compare them to multi-threading, within the Tower of the previous sec-
tions, when one level is modified.

Partitioning is the simpler solution to understand. It is a module replacement pattern, as illustrated
in Figure PJC. Servd is partitioned, along with a further sen@that it uses. The black dots
indicate the interface points of the replacement, where they partition eldspantiC; are con-
nected. There is a Router module added to each of theAisétke original serveB, to choose

which partition to use, giving the new us&t. There are thae partitioned serverB;* to B,*, and

for eachB;*, a processor and perhaps a copy or parti@gnof some serve€, or some other sub-
systems associated wih For instance iB is a database server then there will usually be a file
system attached to it, which will be partitioned into a separate file syStefior eachB;*. In data
partitioning, eaclB;* will have the full set of entries, but their demand parameters may be smaller
since they access a smaller volume of data; in function partitioning;theill have different sub-

sets of entries, but the entries will have the same demands. In general the demand parameters of
Bi* and their subsystems may be functions of the numbépartitions.

In the Towerl architecture we will suppose levi be partitioned into n symmetrical part-serv-
ers, each with all the functions of the original and the same demand parameters. The threads at the
level above makgl+1/n requests to each part-server.

'y;a/a'v"\
ee OtherBy*

from otherB*, C;*

(a) original

| Figure 6.4. A partitioning Pattern for a Sen&with an Associated Task. (Fig. PJC)
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*xxxxdkxxxRasylts and discussion.

reekkeekkkk\Would it be useful to consider just a client and a replicated server first? The server
has a disk, and is already multithreaded

Another Partitioning pattern (considered later) invokes separate partitions in parallel to execute
parts of a large operation.

Replication also divides the service requests into n groups, but usually one client always goes to
the same replica, since they are all equivalent. It might for instance use the closest one. The pat-
tern, illustrated in Figure PJF, has to allow for an additional aspect not required for partitioning,
which is replica coordination operations. For instance any updates made to one replica must be
propagated to all of them, and an update transaction must acquire the equivalent of a write lock.
Techniques for replica coordination are discussed in [Taylor and Trantafilou], and the figure
roughly represents one of their techniques called..... For an update transaction a majority of so-
called “primary copies” of the data item must be write-locked, then after the update is done at the
one replica it is propagated to all replicas. We will assume all copies are primary copies to avoid
the detailed consideration of this factor, which is described in [..]. This generates inter-replica
messages which are shown as going to a coordination server at each remote replica site which
describes the coordination workload but not the actual lock resource (which is not represented in
this pattern, for simplicity).

YABR YABW YABR YaBW
B Read Write Bi1-1F /' Read Write
1 X Requests to the
YBCR Yecw YBCR| YBC Coordination
servers
-
c /Coor;lna BCW
Gi
(a) original Requests
to allG
| | | | |
Replication Unit Other Replication Units

(b) Replicated

Figure 6.5. A Replication Pattern for a Server B with Reads and Writes.
(Figure PJF)
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The demands are strongly affected by the update fraction in the request stream. If the read and
update requests are mingled, this fraction (cg)l must be known. The figure assumes that the

two fractions have been divided and directed to two separate entries Read and Write, in the origi-
nal serveA.

The replica Read entries are unchanged. The replica Write entries include requests to half the
other sites’ coordination servers (half of the primary copies) for write locks, and to all sites for
update propagation. The Write entry of the coordination server is shown with the same demands
as a Write imA, going directly to all storage servers.

Partitioning puts an additional load on the clients, but a smaller load on the servers because it
avoids the coordination workload. Thus if the servers are the bottleneck, partitioning will give
higher performance than replication, but replication is siompler to program and offers additional
benefits for reliability.

Examples of partitioned subsystems: departmental data bases, RAID disk arrays, segmented
memories, multiple buses.

Examples of replicated systems: mirrored web sites
(Examples of replications for reliability, not primarily performance: mirrored disks,..)

It was said earlier that special advantages occurred if the system can be divided along geographic
or functional lines. Then the group of users of each replica or partition is defined by the division.
There may be savings in communications costs and delays. In the case of partitioned systems each
group of users probably is not completely isolated from the other partitions, but has a kind of con-
centration on its local partition. Say a fractipof the users’ requests go to the local partition, and

the rest are equally distributed. In general the performance improves as beta increases; this will be
examined in the next section, which describes a partitioned version of a Tower, called a Lattice.

6.4. Lattice Pattern

A lattice is a set of interconnected, more or less similar Towers, giving a diagram which
looks like a lattice-work for climbing plants (e.g., Figure PH). It arises when two or more similar
systems are connected together, for example

* a government social services agency has regional offices, each with its own databases of
clients, budgets, personnel, etc., but they are linked together for consolidated reporting and to
deal with cases which move from one region to another,

« divisions of a company, even though co-located, have their own information systems, but
these are connected together for rapid and uniform handling of inter-divisional transactions
and joint operations, and for gathering data for upper management.

e acompany and its suppliers provide some restricted access to each others information systems
to speed up handling of orders and technical arrangements, and tracing of shipments and
payments.

Figure PH shows a totally symmetrical Lattice with three connected Towers of five levels
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each. Each server makes requests to servers at the next level down, spread across all the towers. A
“connectedness” parametedescribes the degree to which requests are spread across the other
towers:

¢, = (mean requests from a server in ldvel servers in each other tower)/(requests in the same
tower)

The requests from level 4 to level 5 are not connected between the Towers, but kept local.
In Figure PH the request ratgsandy; are made to add up to 1,86 1/(1+2).

A connectedness parameter of unity shows that the requests are equally spread across the
towers, while a parameter of zero shows each tower isolated from the others at that level. When
the towers are completely symmetrical the connectedness parameter does not affect the load at a
server because as many requests flow in from other towers, as flow out to them. this is not true,
however if one tower has more users or different execution or request count parameters.

Symmetrical Lattice

In a symmetrical lattice with identical Towers, connectedness does not change the total
load on each server, it just moves it around. However it turns out that in a single-threaded lattice
the mixing of requests between towers makes a large difference to capacity, because it increases
the chances of waiting at a lower server, due to random interference between requests from
different towers. Figure PHA shows how the service times increase due to longer blocking delays,
and the throughput drops from .167 witkO, to 0.98 withc=1.0. This is worth remembering for
single-threaded servers.

TABLE 12. Effect of “Connectedness” on Lattice 1 (Figure PHA)

Throughput, User Responses/sec

“Connectedness” ¢ 0 0.2 0.4 0.6 0.8 1.0
Throughput

(my,mg,my) = (1,1,1) 0.167 0.114 0.103 0.100 0.983 0.980
Throughput

(my,mg,my) = (6,5,4) 0.455 0.452 0.450 0.450 0.449 0.449

However multiple threads make a big difference. Figure PHA also shows results for the
“rule-of-thumb” levels of threadsr, ms, my) = (6,5,4), and the same levels of connectedness.
There is still a penalty compared to Figure PC, but it is small. We can effectively carry the one-
tower analysis into the Lattice situation. Also, threads give robustness, and make the throughputs
insensitive to the connectedness.

Real lattices are only roughly symmetrical. Regional or divisional elements of an
organization are not of equal size, and they have specialized needs. We have discovered that a
single tower is a good predictor for symmetrical lattice behaviour provided there are enough
threads. Is this still true for unsymmetrical cases? To what extent can the towers be analyzed
separately? Under what conditions is there a single dominant tower, or bottleneck server? We will
consider:

* providing a higher capacity to the users attached to one tower,
* one server in one tower which makes an increased execution demand,
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« the location of a new bottleneck when one is alleviated.

6.4.1. One High-Capacity Tower in a Lattice

more users, and more demanding in request counts. Increased speed of servers by same
factor (say, times five).

vary c, look at how it bogs down and also slows the others, as c increases. For a given c,
how much to add to the others?

is there a critical ¢ which is equivalent to “ignorable connectedness?”

software mod: change the slow systems to proactively update the fast one (feed the speed)
(design around dominant data paths) (like prefetching -- optimistic?) then ¢ = 0 on high-cap tower,
and there are extra calls on the others. Some negative impact on others.

6.4.2. One Server with Heavy Execution
Single bottleneck
delay spreads up and sideways as its D is increased.
effect depends on c
What is the threshold for a bottleneck to appear?

6.4.3. Bottleneck Migration

two heavy servers, fix the biggest one, how sharply does the bneck move and what are the
effects on users? Prediction, beginning from an operating state or model.

6.5. The Funnel Pattern

A Funnel may arise as a Lattice in which the number of partitions in a level decreases with depth.
Instead of planning the system as similar nearly autonomous systems that are cross-connected,
each level is considered separately, with a number of partitions appropriate for its functions and
workload. Another origin for this pattern may have independent applications at each level, In cli-
ent-server systems we often see many different applications available to the users, backed up by
smaller numbers of specialized information-access servers, which finally access corporate data-
bases at the bottom level.

Whatever the origin, here we shall consider layered servers with a concentration of work onto
fewer servers at the lower levels. The base case in Figure PKD has three levels below the Users.
There are four groups of Users at level 1, three servers at level 2, two at level 3 and one at level 4.
Each server and User has a separate processor. Initially we shall consider a fully symmetrical sys-
tem with the parameters:

* Users at level In; = 4 groupsN; = 25 Users per group, host demand 1 sec to a private
processor, a “thinking time” &; = 5 secy;=1 request to each level-2 server.

* Servers at level 2:4+ 3 partitions, single threaded, host demageé 0.1 sec all in phase 1,
Y, = 1 request to each level-3 server.
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* Levels 3 and 4 the same as level 2 exogpt 2 andn, = 1 (and level 4 being the bottom
makes no requests).

Thus there are 3 requests on average, and 0.3 sec of work to be done at each level, to satisfy one
User request. We may wonder if the “funneling in” is appropriate, or is a problem. Perhaps equal
partitioning would be better.

Level 1

Level 2

Level 3

Level 4

| Figure 6.7. Funnel Pattern (Figure PKD)

Some performance evaluations will address these questions:

* as before, what is the impact of multithreading at the different levels? The vatye of
threads at levels= 2 and 3 will be varied. The result we will find is that, as before, the impact
is considerable, and more threads are useful at higher level. However the rule of thumb
(which suggestay = 2, m, =5) overstates the requirements at the higher levels.

* is the smaller number of partitions at the lower levels appropriate, or would more partitions
have a useful impact? The valuesigfandn, will be increased. In the results it is not clear
that the improvement is sufficient to justify the additional processors.

* how important is the balance of work between levels, and between partitions? Work will be
concentrated in one server at each level, and in each level in turn. The results show
remarkable insensitivity to the balance of work between the partitions in one level,
concentrating work at the bottom level is bad, but at the other levels it has little effect.

Base Case and Multithreading
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Here are results for the total User throughpot different threading levelsrp, ny) at levels 2
and 3. Response times seen by the user can be calcul&ed10/f - 6sec (cycle time minus
the local execution and the thinking time).

Results table for base case witiy,( ) = (1,1), (1,2), (3,2), (5,2), (10,10p0(%0 )
Discussion
Width of Lower Levels

Here are results for the total User throughpiatrr different numbers of serverad, n4 at levels 3

and 4. The service times and total number of requests to the next lower level have been kept the
same, but the requests are divided equally among the servers in the lower level. Thus the load at
levels 3 and 4 is shared more widely ik increased.

Table of results form3, ng = (2,1), (2,2), (3,2), 3,3)
Discussion
Horizontal Balance of Load

Keeping the funnel shape withd, n3, n4 = (3,2,1), these experiments considered unequal host
service demands in the partitions in each level. They modified the host service demands at levels 2
and 3 so the total host demand to be satisfied at each level was still 0.3 sec, butrihef th&o

largest demand to the others increased.

Table of results forrg, rg) = (1, 1), (10, 1), (1,10), (10,10)
Discussion.
Vertical Balance of Load

Again keeping the funnel shape and the request frequencies, these experiments considered redis-
tributing the total host demand across the levels by changing the host serviceigesy|,

which are initially (0.1, 0.1, 0.1). There are still 3 requests on average to each level, to satisfy a
User request.

Table of results withsp, s, 5;) =(0.1, 0.1, 0.1), (0.2, 0.025, 0.025), (0.29, 0.005, 0.005), (0.025,
0.2, 0.025), (0.005, 0.29, 0.005), (0.025, 0.025, 0.2), (0.005, 0.005, 0.29)

Discussion
6.5.1. Comments on Funnels and Related Patterns
Unbalanced partitioning, and unbalanced server levels, are a rich optimization problem which

cannot be completely characterized in a short space. In specific cases it can be addressed incre-
mentally through software bottleneck analysis.
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ref to “shape” measurements paper.

6.6. Peer-to-Peer Pattern

Up to this point all the software considered has been hierarchical with requests descending
to servers. What happens in a system with no hierarchy, in which equal peer processes
communicate? Such systems are important because of their robustness to failure and their
symmetry. Examples arise in distributed databases, and distributed systems to manage facilities or
services:

* in an air traffic control system each major airport is a node, and makes requests to
neighbouring nodes for state updates, or to hand off aircraft to the next controller. Many of
these interactions may be blocking, to ensure correct reception.

* in a distributed factory management system each production center may be a node with its
own state, interacting with others to coordinate movement of goods through stages of
processing and into the warehouse.

Some analysis is needed before a peer-to-peer system can be modelled with our MSS
framework. It is necessary to understand the exact interaction behaviour. For instance, it would be
a poor design that used single threaded tasks, and symmetrical blocking interactions as in Figure
PLA. When a task makes a blocking request to a peer task, and waits for a reply, a situation is set
up which might cause mutual request deadlock, with both tasks waiting for replies and ignoring
their request queues. The first step in preventing this is to have multiple threads so a new thread
can pickup an incoming request while another thread is blocked waiting for the peer. Even this can
deadlock if all threads are waiting (although this is unlikely). A better design (and we suppose that
most systems are actually built this way) would recognize that the processing of a request from the
peer is different from one generated locally. For one thing it has been partly processed already. For
another, the processing can usually now be satisfied at the one site. The Peer/Peer pattern builds
these observations into the model, by dividing each task into parts, as shown in Figure PLB. One
part Local (for local request handler) handles local requests generated by users, a second part
Remote (for remote request handler) handles requests from the peer task(s), and a third part CSect
handles critical sections shared by the first two. Local and Remote can be multi-threaded. The LRH
and RRH tasks are distinguished to make the model clear; the actual software architecture may not
have separate tasks for local and remote requests, but internally the functions associated with them
should be recognizable.

The pattern is a special case of a Lattice. In Figure PLB, Task A is modelled by three
pseudo tasks. ALocal handles all the requests from AUsers, by invoking AServices for requests
which can be satisfied locally, and sending a request to BRemote for requests which can only be
satisfied at B. If there are more sites the model expands easily by spreading requests out to them
also.

There are many design options which affect performance. Commonly TaskA and TaskB
will be multi threaded so they can respond to remote requests. There may be common code and a
common thread pool for Local and Remote. The difference between Local and Remote requests
may be only a flag in the request, which causes the path of further processing to follow the paths
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>
Task A /4 Task B

A Services B Services

Figure 6.8. Equal, Symmetrical “Peer-to-Peer” Interaction. (Figure PLA)

ALocal BLocal

BRemote

|
|
|
|
|
|
|
|
|
i
E ARemote
|
|
|
|
|
|
|
|
|
|

AServices BServices

Figure 6.9. A Layered Set of Pseudo-Tasks Represent Task A and Task B. (Figure
PLB)

for Local and Remote pseudo tasks in Figure PLB. An important detail may require a further
addition to Figure PLB: the Figure translates to a Layered Queueing model with separate thread
pools for the Local and Remote pseudo task. A common thread pool for TaskA can be modelled
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by an additional pseudo task AThread which serves both ALocal and ARemote, as in Figure PLC.
Separate “entries” on AThreads are used to keep the streams of requests separate.

ALocal

ARemote

AThfeads

v

AServices

Figure 6.10. A Common Thread-Pool for ALocal and ARemote Modelled
by a Pseudo-Task AThreads. (Figure PLC)

6.7. Synchronous Pipelines including Servers

The pipeline is one of the most obvious ways to introduce concurrency into a sequential computa-
tion. A pipeline works at the speed of its slowest stage, so to obtain maximum performance the
workload of the stages must be suitably balanced. Many familiar pipelines such as UNIX pipes
are asynchronous, with some kind of buffer between stages; if a buffer fills up it blocks the stage
that is feeding it. If the storage is infinite we can model the pipeline by a sequence of tasks with
asynchronous messages, as in Figure PMD(a), or with forwarding headed by a multiserver with
multiplicity m = infinity (Figure PMD(Db)). In practice space is never infinite and finite buffers

often have important effects on performance. There is an extensive literature on “tandem queues
with blocking”, which handles this case. We will model it within our MSS(Resources ) framework
for completeness. A special case of finite buffering is zero buffering, shown in figure PMD(c),
which we shall analyze first.

In an unbuffered or synchronous pipeline each task sends its output to its successor and waits for
a signal acknowledging receipt of the message; this is a rendezvous in which all the work is done
in phase two. After phase two the task sends to the next stage and blocks; it is appropriate to sep-
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arate this from the phase-2 “body” of the work, which must all be completed first, into a third
phase. Blocking in phase three can be important, since each stage can only take a new input when
it has successfully passed on its previous output to its successor. If the service time of each stage
is deterministic then the pipe works simply at the rate of the slowest task, but we shall consider
some degree of randomness in the execution time.

Table XA shows the throughput of the pipeline in Figure PMD(c) for random execution demands
of exponential type (coefficient of variation = 1) and different degrees of imbalance between the
workload of the stages. The optimum balance is tapered, lighter at the the beginning and heavier
towards the end of the pipe, in a ratio of about 1.5 to 1. ******Qther comments.

*****Table XA from pipeline paper in 1988. Bad balance and optimum taper. Exponential ser-
Vice*****

Unfortunately it is not only an imbalance of load that can bottleneck a synchronous pipeline, but
also a large-variance service time tends to spread blocking back through the pipe. The effect of
variance is considered in Table XB, alone and in combination with imbalance.

***x*Table XB... new... variance and balance.*****

The natural response to variability in execution times is to add buffering to absorb some of the
variations. In our MSS(Res) framework buffers can be represented as an additional synchronous
multiserver stage which simply passes data on to the pipeline stage in its second phase, as shown
in Figure PME. Because the previous stage has a rendezvous with the buffer “task” it blocks when
no free buffer is available. Since the default queueing of the buffer task threads at the following
worker stage is FIFO, this represents FIFO service to the buffers. Table XC shows throughput
results for a four-stage pipeline with different numbers of buffers and different variability and bal-
ance.

T4 Buffern
n_
(0 0.1) mn threads ) 001

4___Stagen—>|
| Figure 6.11. A Stage in a Buffered Pipeline with Blocking. (Fig. PME)

***+*Table XC ... new... buffers, balance, variability*****

147



| Draft October 18, 2001

A feature of pipelines which has been little studied is the possibility that a stage uses a server out-
side the pipeline, and perhaps shares it with other pipeline stages. Blocking on the server might
significantly slow down the overall system, and make it useful to multithread the pipeline stages.

Since in our framework a processor is just another kind of server, this analysis can be applied to
pipeline stages which share a processor. One might suppose that if two successive stages share a
processor it is as if they are coalesced into a single stage, but what if they are in different parts of
the pipe?

*e+Example of both situations, and results.... *****

More situations can be conveniently modelled as well. One example is window flow control over
the entire pipeline, such that internally there are no particular buffer limits but the number of
items being processed in total is limited to say mtot. This could be applied when there is a set of
shared buffers, shared by the stages, which might be practical in a shared-memory multiprocessor
or a virtual-shared-memory system. A conveinet model would use a multiserver with mtot servers
as a gateway to limit the entry, and have it forward through the pipeline as in Figure PMD(b).
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T4
0,0,1 (0,0,1) (0,0,1) / [0,5,0]

(a) Asynchronous pipeline

T2 ™ / T4
0,0,07 [0,5,0] / (0,017 [0,50] / (0,01)/ [0,s,0]

(mthreads)

(b) Forwarded pipelinenfitems max.)

T4
(0,0,1) (0,0,1) (0,0,1) / [0,,0]

(c) Synchronous pipeline

wait

Interactions in a Synchronous Pipeline

| Figure 6.12. Pipeline Patterns. (Figure PMD)
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(analysis without servers)

with rv unbuffered and buffered, brief. balance.
CV, balance effect

overall window control alternative (shared buffers)

Servers

6.8. Pipelines with Rendezvous (No buffering)

Our layered model applies directly to pipelines in which the next stage must accept a data
token before the previous stage is free to do more work. To apply it we introdtae ahasefor
handing on the data token, so there are three phases as follows:

phase iaccept a new data token and acknowledge it;
phase 2operate on it (Processing);
phase 3send the output token or tokens on, and wait for acknowledgment.

150



| Draft: October 18, 2001

Performance - Oriented Patterns in Software
Design (A multi-level service approach)

C. M. Woodside

Dept. of Systems and Computer Engineering
Carleton University, Ottawa K1S 5B6
copyright 1996 C. M. Woodside

(Draft version produced for classroom use, October 1996)

Chapter 7. Patterns with Parallel Paths (J for Join)

7.1 Servers with Internal Parallelism

Parallel execution is one of the main ways to obtain increased performance, although experience
says it is easier to imagine than to achieve. In practice a parallel path can be set up in two slightly
different ways:

* by sending an asynchronous message to another task, which then proceeds in parallel,
» by forking a distinct thread, which then invokes a service which executes in parallel.

The second approach can lead to a built-in join of the threads, which retains knowledge of the
relationship between the sibling parallel paths, and is thus more powerful, although the same
effect can be programmed with asynchronous messages (user-managed parallelism) This chapter
models both approaches the same way, as if the program sets up distinct, heterogeneous threads
which manage parallel paths.

The difference between these threads and the ones in a multithreaded server, is that these are het-
erogeneous, and they interact with each other (for instance through critical sections).

This chapter will examine four basic architectural patterns that exploit parallelism: Parallel ser-
vice, deferred RPC communications in various situations, parallelism in pipelines, and parallelism
in communications software.
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7.2 Parallel Activities and Task Activity Graphs

A basic form of parallel service, seen for instance in parallel subtransactions, has a large job
divided into parts and each part is farmed out to a separate setwexads are forked, each

thread sends a request to “its” server and blocks, and when all are unblocked the threads join and
the large job is completed. Figure JDA shows this pattern in the simple form just described, with
activities associated with an entry E of Server.

EntryE
0 Servers
'/ \ Server
S and
al a2 a3 its

Activities

afinal!

Y

phase2

e [ ][]

| Figure 7.1. Parallel Service and Task Activity Graph. (Fig. JDA)

Parallelism is described in Figure JDA by activities and precedence. The first activity is triggered
by the entry, and the others follow in precedence indicated by the arrows. The activity with a “!”
after its name generates a reply from the entry to its client when it completes, and represents the
end of phase 1. We will call this subgraph, attached to a task, a Task Activity Graph. The phased
patterns of execution of an entry which we have been using can be modelled by Task Activity
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Graphs as shown in Figure JDC(a) for two phases, and figure JDC(b) for three phases as used in
pipelines. An activity in a Task Activity Graph has exactly the same demand parameters as a
phase, and a phase is a kind of activity.

phl! phl Request to
* l next stage
h2
P ph2 | — | ph3
(a) Two Phase (b) Three Phase
Server Server (as in

a Pipeline)

| Figure 7.2. Task Activity Graph for Phases of Service. (Figure JDC)

The Task Activity Graph notation in Figure JDA is a reduced version of our earlier Activity
Graphs for capturing execution sequences, with all the sequential, case-structured and looping
detail reduced into single activities, and all the parallel structure retained.

In the earlier Activity Graph notation in Figure SB, a fork represents a point where two or more
separate paths are begun. In a diagram, each parallel path has just one activity which represents
another activity graph with the full details. When we reduce the activity graph of an entry to find
its demands we reduce this nested activity graph (provided it does not in turn contain parallel
paths) separately using reduction R1. In effect, when there is parallelism we do not reduce the
activity graph for the entry all the way, but we stop at the level of activities in parallel. At a join,
the continuation must wait for all the subpaths to complete before it can continue. We will assume
that forks do not have to join later (they can terminate separately), but joins must derive from pre-
vious forks. We will also assume at least for now that a fork-join must be enclosed within a single
phase, so for example the reply will not be issued by one of a set of parallel activities (this will be
relaxed, as it might give a performance advantage to do so).

Referring again to the notation in Figure SB, there is also an asynchronous message send in an
activity graph. This will be reduced to a demand parameter giving the number of similar messages
generated by the enclosing reduced activity or phase. If the message is a reply to the current
request however it is treated differently; it acts to separate phase 1 from phase 2. In a full Task
Activity Graph this is represented by a “!I” attached to the last activity in the phase, optionally
with the entry name.

Finally, in Figure SB there is an asynchronous receive indicated, but we shall not deal with these
at this point, unless they are messages that initiate a service. In this case the service begins with
phase 2, because there is no reply to an asynchronous request.
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7.3 Parallel Service

Figure JDA describes a simple case of a useful pattern for parallel subtransactions in a large data
base, or for parallel operations in a scientific program (where the join is called a “barrier synchro-
nization”. The performance is affected by possible contention between the servers which are acti-
vated in parallel, which can increase the individual path delays, and by the join delay (which in
turn is increased by high variance in the path delays). First consider results for non-conflicting
servers with different variability, and for different levels of conflict. Let

n = number of parallel servers
5,1 and $,= service time in phase 1 and 2 for seiver
cv, = coefficient of variation of service times at seiver

Then Table JF shows mean response time results over these parameters,

Discussion. Longer with larger cv, longer with more, phase 2 has no effect.

Now consider some of the same cases with a common server S, aggessed by each of the
parallel servers in phase 1, adimes in phase 2.

Longer with y, phase 2 does matter somewhat.

7.4 Asynchronous or Deferred RPCs

An asynchronous or deferred RPC is one in which the sender does not block at once for the reply,
but blocks later. Thus the sender has an activity which occurs between sending the request and
waiting for the reply. This pattern also describes prefetches, hints sent to a storage server, and any
case where a request is sent before the result is needed. It corresponds in a way to phase 2 work,
only at the sender. The pattern is easily described as in Figure JGA, with activity a being done
before sending the request, and b, before blocking. The throughput results for 10 ggeas-as

ies, for a fixed sum, + s, + s, = 1, are shown in Table JGC.

improves with sb up to a point. Rule of Thumb related to second phase of server?

effectiveness in Tower, Lattice, with phase 2
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Server
[0.05,0.05

| Figure 7.3. The Asynchronous RPC Pattern and Example. (Figure JGA)

7.5 Parallel Pipelines
basic idea

with servers

7.6 Parallelism in Communications

packets:similarity to pipelines; basic comm patterns for one packet, for many
packet parallel protocol stacks

group comm operations (nack approach = optimistic)

sxrsseErom here on, old text *rsssics

Introduction

6.7. Parallel Servers

6.8 Asynchronous RPCs
basic pattern

effectiveness in Tower, Lattice, with phase 2
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6.9 Parallel Pipelines
basic idea

with servers

6.10 Parallelism in Communications
packets: similarity to pipelines; basic comm patterns for one packet, for many
packet parallel protocol stacks

group comm operations (nack approach = optimistic)
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