
Abstract Dependable distributed systems are difficult to
build. This is particularly true if they have dependability re-
quirements that change during the execution of an application,
and are built with commercial off-the-shelf hardware. In that
case, fault tolerance must be achieved using middleware soft-
ware, and mechanisms must be provided to communicate the
dependability requirements of a distributed application to the
system and to adapt the system’s configuration to try to achieve
the desired dependability. The AQuA architecture allows dis-
tributed applications to request a desired level of availability
using the Quality Objects (QuO) framework and includes a de-
pendability manager that attempts to meet requested availabil-
ity levels by configuring the system in response to outside re-
quests and changes in system resources due to faults. The
AQuA architecture uses the QuO runtime to process and invoke
availability requests, the Proteus dependability manager to con-
figure the system in response to faults and availability requests,
and the Ensemble protocol stack to provide group communica-
tion services. Furthermore, a CORBA interface is provided to
application objects using the AQuA gateway. The gateway pro-
vides a mechanism to translate between process-level communi-
cation, as supported by Ensemble, and IIOP messages, under-
stood by Object Request Brokers. Both active and passive repli-
cation are supported, and the replication type to use is chosen
based on the performance and dependability requirements of
particular distributed applications.

1. Introduction
Many modern applications are distributed. By their very

nature, such applications are difficult to build and maintain
[Zin97]. Distributed object middleware, such as CORBA
[OMG96], has contributed to the prevalence of distributed
applications by simplifying their development and mainte-
nance. It does so by hiding implementation details behind
functional interfaces. However, many applications also have
non-functional requirements such as dependability and per-
formance. These requirements may change during an execu-
tion and are not explicit in implementations based on current
middleware, making them difficult or impossible to achieve
by current approaches.

There have been several efforts to add support for speci-
fying non-functional requirements in distributed applications
(e.g., [Koi97], among others). Quality Objects (QuO)
[Zin97, Loy98], one such effort, allows distributed applica-
tions to specify quality of service (QoS) requirements at the
application level using the notion of a “contract,” which is a
finite state machine specifying actions to be taken based on
the state of the distributed system and the desired require-

1 This research has been supported by DARPA Contracts
F30602-96-C-0315 and F30602-97-C-0276.

ments of the application. The QuO framework provides an
environment in which a programmer can specify contract
states in terms of high-level QoS measures, the system ele-
ments that need to be monitored to determine the QoS that is
being received, and the adaptation mechanisms that are used
to try to achieve the desired QoS. In this framework, “prop-
erty managers” are used to try to achieve desired QoS re-
quirements, based on the desires of one or more QuO con-
tracts.

This paper describes a use of the QuO framework called
AQuA (Adaptive Quality of Service Availability). The goal
of AQuA is to allow distributed applications to request and
obtain a desired level of availability using a QuO contract
through a property manager. In an attempt to meet the re-
quested availability levels, the property manager configures
the system in response to those requests and to changes in
system resources due to faults. The AQuA framework uses
the QuO runtime [Loy98] to process and make availability
requests, the Proteus dependability manager to configure the
system in response to faults and availability requests, and
Ensemble [Hay98] to provide group communication serv-
ices. In addition, a CORBA interface is provided to applica-
tion objects using the AQuA gateway. The gateway trans-
lates between process-level communication, as supported by
Ensemble, and IIOP messages, understood by Object Re-
quest Brokers (ORBs), in CORBA. The gateway also sup-
ports a variety of “handlers,” which are used by Proteus to
tolerate crash failures, value faults, and time faults.

Fault tolerance in AQuA is provided by Proteus, which
dynamically manages the replication of distributed objects to
make them dependable. The first function of Proteus is to
decide, based on the desired availability of the application,
how to provide fault tolerance. The choice of how to provide
fault tolerance involves choosing a style of replication (ac-
tive or passive), the type (algorithm and location) of voting
to use, the degree of replication, the type of faults to tolerate
(crash, value, or time), the location of the replicas, and other
possible factors. This function is achieved by translating
high-level availability requirements transmitted by the appli-
cation through QuO into a system configuration with an ade-
quate level of fault tolerance, if possible. The second func-
tion of Proteus is to implement the chosen fault tolerance
scheme. After the system configuration has been chosen,
Proteus takes action based on the decision by dynamically
modifying the current configuration. This is done by start-
ing/killing replicas and activating/deactivating fault tolerance
mechanisms such as voters and monitors.

The AQuA architecture is not the only approach that tries
to make distributed objects dependable. (A survey of closely

AQuA: An Adaptive Architecture that Provides Dependable Distributed Objects1

Michel Cukier, Jennifer Ren, Chetan Sabnis, David Henke,
Jessica Pistole, and William H. Sanders

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory and

Electrical and Computer Engineering Department
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, USA
{cukier, ren, sabnis, henke, pistole, whs}@crhc.uiuc.edu

David E. Bakken, Mark E. Berman,
David A. Karr, and Richard E. Schantz

BBN Technologies
Cambridge, Massachusetts 02138, USA

{dbakken, mberman, dkarr, schantz}@bbn.com

related work is given in Section 6.) It does, however, offer
significant advantages over traditional ways of building de-
pendable distributed systems. First, it raises the level of ab-
straction at which a programmer thinks about fault tolerance
much higher, relative to existing group communication sys-
tems, allowing an application programmer high-level control
over the type of faults that should be tolerated and the level
of availability desired from a distributed object. Second, it
dynamically adapts the configuration of a system at runtime,
in response to faults that occur, to try to maintain a desired
level of availability. Third, it recognizes that applications
will require different levels of availability during different
phases of their executions, and supports system reconfigura-
tion in response to changing application requirements. In
short, it provides a highly flexible approach for building de-
pendable, distributed, object-oriented systems that support
adaptation due to both faults and changes in an application’s
availability requirements.

The remainder of this paper is organized as follows.
First, Section 2 presents an overview of the AQuA architec-
ture, reviewing the core technologies that are used, and
showing how they fit together. Section 3 describes how
groups are used in AQuA to achieve different types of object
replication and how reliable communication is achieved be-
tween groups of the same or different replication type. Sec-
tion 4 describes the types of faults that can be tolerated, and
how errors are detected and the corresponding faults treated.
Section 5 then presents the architecture chosen to implement
the described design. Section 6 reviews other approaches to
achieving dependable distributed objects, putting the AQuA
approach in context. Finally, Section 7 concludes this paper
and offers suggestions for future work.

2. AQuA Overview
Before describing the AQuA architecture itself, it is help-

ful to review the technologies that are used in AQuA to sup-
port group communication (Ensemble) and quality of service
specification (QuO). After doing so, we describe the AQuA
architecture at a high level, focusing on the structure of Pro-
teus and the AQuA gateway.

2.1 Ensemble and Maestro

Groups can be used in distributed computing systems to
help manage the complexity of large applications or to help
provide non-functional properties, such as availability or se-
curity. The full benefits of the group concept, however, can
be realized only if one knows how to coordinate groups of
processes that work together to fulfill a common purpose. To
provide fault tolerance at the most basic level, the AQuA
system uses the Ensemble group communication system
[Hay98] to ensure reliable communication between groups of
processes, to ensure atomic delivery of multicasts to groups
with changing membership, and to detect and exclude from
the group members that fail by crashing.

The Ensemble protocol stacks used in AQuA provide in-
ter-process communication based on the virtual synchrony
model [Bir96]. Both total and causal multicast are used in
the AQuA group structure, resulting in a total order of deliv-
ered messages between different groups of replicated ob-
jects.

Ensemble assumes that the process failures are fail-silent
(or crash failures), and detects process failures through the

use of “I am alive” messages. The AQuA architecture uses
this detection mechanism to detect crash failures, and pro-
vides input to Proteus to aid in recovery. Value and time
failures are not detected by Ensemble, and hence must be
detected at a higher level in the AQuA architecture, as will
be described in Section 4.

Maestro [Vay97] provides an object-oriented interface
(in C++) to Ensemble. Object-oriented applications can thus
be written by deriving from Maestro classes that provide re-
liable communication.

2.2 Quality Objects

QuO [Zin97, Loy98] allows distributed object-oriented
applications to specify dynamic QoS requirements. The goal
of QuO is to develop a common middleware framework,
based on distributed object computing, that can manage and
integrate non-functional system properties such as network
resource constraints, availability requirements and security
needs. In the AQuA approach, QuO is used to transmit ap-
plications’ availability requirements to Proteus, which at-
tempts to configure the system to achieve the desired avail-
ability. QuO also provides an adaptation mechanism that is
used when Proteus is unable to provide a specified level of
availability.

In particular, contracts in QuO can have multiple avail-
ability requirements specified a priori to allow for multiple
fallback positions, if Proteus fails to provide a requested
level of availability. To do this, QuO uses two types of re-
gion to summarize conditions of interest. Negotiated regions
specify the expected behavior of the local and remote object,
and are defined by predicates on the state system condition
objects, which provide a view of the state of the distributed
system. Reality regions are defined within each negotiated
region, and specify measured or observed conditions of in-
terest in the distributed system. They are also specified by
predicates, this time on a portion of the state of the distrib-
uted system itself, as viewed through “system condition ob-
jects.” In the case of AQuA, system condition objects pro-
vide information to the QuO contract from the dependability
manager concerning whether requested availability require-
ments are being met. At any given time, there is one current
negotiated and reality region (if more than one predicate is
true, one is chosen). A transition between regions occurs
when the predicate of the current one becomes false and a
new one is true. Transitions can be used to request changed
levels of availability to Proteus, or to notify the local object
that the desired level of availability could not be met, using a
callback to the local object.

In this way, QuO provides mechanisms for distributed
applications to inform a system of the level of availability
they desire, mechanisms for a system to inform applications
of the level of availability that they are receiving, and
mechanisms for adaptation under changing fault, workload,
and environmental conditions. Applications thus have a sim-
plified awareness of system conditions, without having total
responsibility for managing availability, and the system can
effectively manage the applications’ desires in changing
system conditions. From the functional point of view, the use
of QuO makes no difference to the application, since QuO
provides the same IDL interface to the client.

2.3 Proteus

Most group communication systems, including Ensem-
ble, are based on the assumption that processes fail by
crashing, but no mechanism is implemented to ensure
that processes fail only by crashing. Furthermore, recovery
by automatically starting new processes on the same or dif-
ferent hosts is not implemented in the protocol stack. Instead,
it is left to the application. A fault tolerance framework is
thus necessary to tolerate other fault types and provide more
sophisticated recovery mechanisms than process exclusion.
The framework could be implemented at the process level by
implementing further fault tolerance in Ensemble. However,
in order to be independent of any particular group communi-
cation system and to fully use the features offered by
CORBA applications, we have provided additional fault tol-
erance above the group communication infrastructure. The
framework we have developed is able to tolerate crash fail-
ures of processes and hosts, as well as value and time faults
of CORBA objects. In addition to the fault tolerance mecha-
nisms themselves, two types of replication can be used: ac-
tive and passive. For each replication scheme, different
communication schemes can be used. Different replication
schemes and communication schemes enable tolerance of
different types of faults, and provide different recovery char-
acteristics.

Proteus consists of a set of monitors, voters, object facto-
ries, and a replicated manager. The manager contains both an
“advisor” and a “protocol coordinator.” The monitors and
voters are in the path of remote object invocations, and han-
dle replies from a set of replicas. Specifically, voters decide
which, if any, of the replies from replicas to present to an
object, and monitors implement timers to detect delay and
omission faults. Object factories start and kill objects on
hosts, under the direction of the manager. The manager re-
ceives requests from multiple QuO runtimes regarding de-
sired availability of specific remote objects and, using its ad-
visor, makes decisions regarding the type of fault tolerance
to provide. The protocol coordinator within the manager then
carries out the decisions of the advisor, through communica-
tion with the handlers and object factories.

2.4 AQuA Architecture Overview

Figure 1 shows the different components of the AQuA
architecture, in one particular configuration. These compo-
nents can be assigned to hosts in many different ways, de-
pending on the availability that objects desire of remote ob-
jects they use.

As pictured in this figure, a QuO runtime is associated
with each process that contains objects that make remote
object invocations with managed availability. Each QuO
runtime manages one or more QuO contracts. The QuO run-
time may run either as a separate process, or, if the applica-
tion is written in Java, in the same process as the
application. For simplicity in the discussion that follows, we
assume it is a separate process, although either configuration
can be used in AQuA. The QuO runtime, like the applica-
tion, communicates using CORBA, sending requests to Pro-
teus for the use of remote objects with certain availabilities,
and receiving information from Proteus regarding the level
of availability that is being provided.

An AQuA system also contains one or more Proteus
managers, which determine a configuration of the system
based on reports of faults and desires of application objects.
A Proteus object factory resides on each machine that can
support distributed objects and is used to create and destroy
objects, as well as to provide load and other information to
Proteus managers.

Communication between all architecture components
(i.e., applications, the QuO runtime, object factories, and
Proteus managers) is done using gateways, which translate
CORBA object invocations into messages that are transmit-
ted via Ensemble. Communication between each component
and a gateway is via IIOP messages generated by standard
ORBs associated with each component. Details about how
this is done are given in the next two sections. The gateway
is written in C++ using the Maestro interface to Ensemble. In
addition to translating messages between IIOP and Ensemble
formats, the gateway implements Proteus monitors and vot-
ers, using handlers. Finally, the Gossip name server, which is
part of Ensemble, is used to provide name service to Ensem-
ble processes.

3. Groups in the AQuA Architecture
This section describes the group structure that is used to

achieve reliable multicast and point-to-point communication
among multiple groups of replicated objects, object factories,
the replicated Proteus manager, and QuO.

In AQuA, we use a general object model, rather than the
more restrictive client/server model. The model of computa-
tion is thus based on interactions between objects that can be
replicated. Objects can initiate requests (acting as clients)
and respond to requests (acting as servers). In the AQuA ar-
chitecture, the basic unit of replication is a two- or three-
process pair, consisting of either an application and gateway,
or application, gateway and QuO runtime. A QuO runtime is

Figure 1: Overview of the AQuA Architecture
Maestro/Ensemble Group Communication System

Gossip
Name
Server

Gossip
Name
Server ServerServerGateway

Object QuO

Gateway

Proteus
Dependability

Manager

Gateway

Object
FactoryGateway
Object
FactoryGateway
Object
FactoryGateway
Object
FactoryGateway

Object
Factory

GatewayClientClientClient

Object QuO

IIOP
Encoder/Decoder

Dispatcher

Proteus Handlers

Advisor

Protocol
Coordinator

Voters Monitors Buffers

Gateway

ServerServerGateway

Object

included if an object contained in the application process
makes a remote invocation of another object and wishes to
specify a quality of service for that object. A basic replica-
tion unit may contain one or more distributed objects, but to
simplify the following discussion, we refer to it as an “ob-
ject.” Furthermore, when we say that an “object joins a
group” we mean that the gateway process of the object joins
the group. Mechanisms are provided to ensure that if one of
the processes in the object crashes, the others are killed, thus
allowing us to consider the object as a single entity that we
want to make dependable.

Using this terminology, we can now describe the group
structure and mechanisms used for intra-group multicast, in-
ter-replication group communication via connection groups,
and point-to-point communication. Four group types are
used in the AQuA architecture: “replication groups,” “con-
nection groups,” “PCS (Proteus Communication Service)
group,” and “point-to-point groups.” By defining multiple
replication and connection groups and a dependable method
for communication, we can avoid the unacceptable commu-
nication overhead associated with large groups. This pro-
vides a scalable architecture.

3.1 Replication Groups

A replication group is composed of one or more identical
objects. Each replication group has one object that is desig-
nated as its leader. All objects in the group have the capacity
to be the object group leader, and a protocol is provided to
make sure that a new leader is elected when the current
leader fails. The leader performs special functions, as will be
described in the next section. For implementation simplicity,
we designate the object whose gateway process is the En-
semble group leader of the corresponding process replication
group as the leader of the object group, since we can then
use the Ensemble leader election service to elect a new
leader if the leader object fails.

In the AQuA architecture, two types of replication are
performed in replication groups: active and passive. In addi-
tion, different communication schemes can be implemented.
Each configuration has advantages and disadvantages from
performance and dependability perspectives. The type and
degree of replication used is determined by the requirements
of calling objects, as communicated by the QuO runtimes of
each calling object.

In active replication, all replicas process input messages.
Different communication schemes can be used: 1) only the
leader replica sends out replies; 2) all send out replies, and
the first is chosen; or 3) all send replies, and voting occurs.
The type of communication that is employed depends on the
type of faults tolerated and the requirements of the applica-
tion. Active replication, as currently implemented in AQuA,
thus requires determinism; i.e., for each replica, the same in-
puts must lead to the same output. Future versions of the ar-
chitecture may allow non-determinism, by providing high-
level hooks that replicas can use to initiate an agreement
protocol to synchronize important parts of their states. Toler-
ating a crash failure of a leader replica is faster in active rep-
lication than in passive replication. Furthermore, since all
replicas process the requests, total ordering is required, and
is provided by the inter-group communication scheme de-
scribed in the next subsection. Active replication, however,

has increased computation requirements, relative to passive
replication, since all replicas need to process each request.

When voting is done, replication groups that use active
replication can tolerate three classes of faults: crash failures,
value faults and time faults. If one of the first two
communication mechanisms is used, value failures cannot be
tolerated. However, these communication approaches have
performance advantages over active replication with voting.
In particular, if only one replica sends replies, only it needs
to process each message immediately upon receipt (allowing
requests within other objects to be scheduled in a less urgent
fashion), since only the leader provides replies. Furthermore,
if all replicas send replies, but the first is used, remote invo-
cations can complete more quickly than if a vote takes place.

In passive replication, only the primary replica processes
input messages and sends out the replies. In the absence of
faults, other replicas, called standby replicas, do not process
the input messages and do not send out the replies. The state
of the standby replicas must therefore be regularly updated.
Since only one replica processes requests, this method is not
able to tolerate value failures. On the other hand, unlike ac-
tive replication, determinism is not required. Moreover, total
ordering of requests and replies is not required (causal or-
dering can be used). Finally, passive replication has low
computation overhead, relative to active replication, but
leads to increased communication overhead, because of the
regular state transfers required.

3.2 Connection Groups

Communication between replication groups is done using
connection groups. Such communication must be done in a
way that supports the ordering needed for the type(s) of rep-
lication used in the constituent replication groups, and that
allows for recovery from faults that occur in any phase of
communication between two groups of replicas. Informally,
a connection group is a group consisting of the members of
two replication groups that wish to communicate. The goal in
defining connection groups is to provide the properties of
group communication (atomic multicast with total or causal
ordering) when communicating between replication groups,
while avoiding the overhead associated with single, large
groups.

This section will describe the example, for active repli-
cation in both replication groups, of a synchronous commu-
nication scheme where all replicas in the replication groups
reply and the first reply is chosen. To specify precisely how
this is done, it is helpful to introduce some notation. In par-
ticular, let Oi,k be object k of replication group i, and let ob-
ject Oi,0 be the leader of the group. Furthermore, let {Oi} be a
replication group i of size noi, composed of the objects Oi,k

(k=0, …, noi-1). Using this notation, Figure 2 shows the
communication within a connection group made up of repli-
cation groups {Oi} and {Oj}. To illustrate how communica-
tion takes place, suppose that replication group i is the
sender group and group j the receiver group.

To send a request to the replica objects Oj,k, (k=0, …,
noj-1), all objects Oi,k (k=0, …, noi-1) use reliable point-to-
point communication to send the request to Oi,0 (arrows la-
beled “1” in the figure). The objects Oi,k also keep a copy of
the request in case it needs to be resent. The leader then
multicasts the request in the connection group composed of
the replication groups i and j (arrows labeled “2”). The ob-

jects Oi,k use the multicast to signal that they can delete their
local copy of the request. The objects Oj,k (k=0, …, noj-1)
store the multicast on a list of pending rebroadcasts. Since
there can be multiple replication groups, in order to maintain
total ordering of all messages within the replication group,
Oj,0 multicasts the message again in the replication group j
(the arrows labeled “3”). The Oj,k use the multicast as a sig-
nal that they can deliver the message and delete the previ-
ously stored copy from the connection group multicast.

After processing the request, all objects Oj,k send the re-
sult through a point-to-point communication to the leader
Oj,0. The set of steps used to transmit the request is then used
to communicate the reply from replication group j to group i.
In this manner, total order is maintained between messages
sent from multiple replication groups to another group, and
messages are buffered in a way that tolerates crash failures
during any phase of the communication.

3.3 The Proteus Communication Service Group

Reliable multicast is also needed for communication with
the replicated Proteus manager. In AQuA, this is achieved
using the Proteus Communication Service (PCS) group. The
PCS group consists of the Proteus replicas and objects that
desire to communicate with the Proteus manager. In particu-
lar, objects complaining about an object value or time fault,
providing notification of a view change, or communicating a
QuO request to the Proteus manager will join the PCS group
when they wish to communicate. After having communicated
the desired information, the communicator will leave the
PCS group. Since communication with the Proteus manager
is fairly infrequent, the overhead in joining and leaving the
PCS group is small relative to maintaining a group that con-
sists of all objects that may want to communicate with the
Proteus manager. By using a group structure to communicate
with the replicated Proteus manager, we ensure that all rep-
lica managers receive the same information.

3.4 The Point-to-Point Groups

A point-to-point group is used to send messages from a
Proteus manager to an object factory. Each factory object is
in its own point-to-point group. When the Proteus manager
wishes to send a message to the receiving object, the Proteus
manager joins the group for that object. Once the Proteus
manager is a member of the group, it multicasts its message,
waits for an acknowledgement, and then leaves the group.
By using this group for communication of messages from a
Proteus manager to other objects, all communication be-
tween any two objects in the AQuA architecture can be
monitored at the level of the gateways. Note that not all
Proteus manager replicas are involved in joining the group.
That is because there is higher overhead in Ensemble if mul-
tiple objects join a group simultaneously.

For an illustration of replication groups, connection
groups, and the PCS group, consider Figure 3. Solid lines de-
fine the replication and connection groups. Dashed lines rep-
resent the PCS group. We see in Figure 3 that even though a
connection group is composed of two replication groups, a
replication group can be included in several connection
groups. The structure of the PCS group in the figure shows
that the leaders of the replication groups 2 and 4 are commu-
nicating with Proteus. Note that, most of the time, only repli-
cation group leaders will join the PCS group. However, in

 Figure 2: Communication in AQuA via Connection Groups

case of time faults, any member of a replication group may
join the PCS group to complain about the time fault. In the
next section, we describe how this group structure is used to
tolerate and treat crash failures, and value and time faults.

4. Fault Tolerance in AQuA
Most group communication systems, including Ensem-

ble, assume that processes fail only by crashing, and do not
automatically restart replicas after a failure occurs. Since no
mechanism is implemented in Ensemble to ensure that only
crash failures occur, additional fault tolerance is needed to
tolerate value and time faults. This section explains how this
is done using the group organization described in the previ-
ous section, voters and monitors in gateways, and the Proteus
manager. Before explaining how fault tolerance is imple-
mented, it is important to precisely define the class of faults
we consider.

4.1 Fault Model

Proteus handles object faults of three types: crash fail-
ures, value faults, and time faults. In doing so, we do not ex-
plicitly consider link faults, and note that they may exhibit
themselves as one or more (possibly correlated) object faults,
which can be detected using the methods described in this
section. Furthermore, we assume that Proteus only needs to
be concerned with value faults that occur within objects
themselves, since faults that occur on links can be detected
using conventional coding techniques. More precisely, we
tolerate value faults that occur in the content of messages
transmitted from an application or QuO runtime.

A crash failure occurs when an object stops sending out
messages and when the internal state is lost. In the AQuA ar-
chitecture, the crash failure of an object is due to the crash
failure of at least one element composing the object. The
software is thus implemented in a way that causes the crash
of one process to cause the others to be killed. In particular,
if the QuO runtime and/or the application appear to have
crashed, the gateway process kills the non-failed process be-
fore killing itself. When a gateway crashes, the other (non-
failed) processes in the object are also killed, using Unix
signals.

A value fault occurs when the message arrives in time but
contains the wrong content. In Proteus, we assume that the
gateway does not fail by sending out wrong messages. Value
faults of an object are thus due to value faults of the applica-

Connection group

(2)

(2) (2)

Replication group i

Replication group j

(3) (3)

Oj,2Oj,1
Oj,0

Oi,0
Oi,3Oi,2

(2)
(2)

(1)
(1)

(1)
Oi,1

(2)

tion and/or the QuO runtime. Proteus contains mechanisms
to tolerate value faults originating in both places.

A time fault includes delay and omission faults. A delay
fault occurs when the message has the right content but ar-
rives late. An omission fault occurs when no message is re-
ceived. The handler in each gateway possesses mechanisms
to tolerate such time faults. In particular, two timeouts for
delay and omission faults are introduced. Delay faults occur
when messages arrive after the timeout defining a delay fault
but before the timeout associated with an omission fault. An
omission fault is thus a message that is received after the
timeout defining omission faults, or that is not received.

4.2 Error Detection

Proteus detects single and multiple process crash failures
(a host failure is a well-known example of a multiple process
crash failure). The detection mechanism used by Proteus to
detect crash failures is based on the detection mechanism
implemented in Ensemble. Among the elements composing
the object, only the gateway process is an Ensemble process.
However, since the crash of the application process or the
QuO runtime process leads directly to the crash of the gate-
way process (cf. Section 4.1), Ensemble can detect the crash
of any element of an object. The detection mechanism in En-
semble requires that each Ensemble group member (gateway
process) regularly broadcast “I am alive” messages inside the
group. The frequency of the messages can be based on the
needs of the application. If several messages are not received
from a given replica, the replica is considered to have failed.
The leader of the group then excludes the presumed failed
replica by initiating a view change of the group composition.
This view change is communicated to the Proteus manager
through the PCS group. The comparison between the old
structure of the group and the new composition allows the
dependability manager to detect the crash failure.

In the gateway handler, voters detect value faults that oc-
cur in the QuO runtime and/or in the application part of each
object. A voter is implemented in the gateway part of each
object, but only the voter present in the leader of the replica-
tion group is active. When an object on the client side sends
out a request (the request is sent from either the QuO runtime
or the application through the gateway), it sends it to the
leader of its replication group. Then the voter of the leader
votes on the requests. If some requests differ from the ma-
jority, a (single or multiple) value fault has occurred. In this
case, the leader gateway process of the replication group
joins the PCS group to notify the Proteus manager about the
value fault. Equivalently, on the server side, after a request
has been processed by the different replicas of the replication
group, all replicas send back their reply to the leader of the
server replication group. The voter of the leader then votes
on the different replies. A value fault has occurred if one or
more replies differ from the majority. The leader gateway
process then joins the PCS group to complain about the
value fault. Proteus thus detects a value fault by the commu-
nication of the complaint when the leader joins the PCS
group.

Time errors are detected by monitors that record infor-
mation regarding various times and omissions. Where and
how the timers operate depends on the type of faults that are
being tolerated. A monitor is implemented in the gateway
part of each object. When tolerance to time faults is required,

Figure 3: Example Group Structure in AQuA

all monitors of the object members of the replication groups
where tolerance is desired are activated. Since several times
need to be recorded, several different types of monitors are
used. In each case, the recorded time depends on whether the
concerned object is the leader of a replication group, and on
whether the object is on the sender or the receiver side.

Time faults are communicated to the Proteus manager
using the PCS group structure described earlier, i.e., the
gateway of the object that detects the fault joins the PCS
group, multicasts the complaint to the Proteus managers, and
then leaves the PCS group. These times are used to diagnose
the cause of the time fault, so treatment can take place.

4.3 Fault Treatment

Decisions regarding fault treatment are made by the Pro-
teus manager advisor, using fault information communicated
from the gateways. After a decision is reached, the object
factories and gateways make the configuration change, under
control of the protocol coordinator. In this section, we de-
scribe how crash failures, value faults, and time faults are
treated using these Proteus components.

Specifically, in the case of a crash failure, since the num-
ber of replicas may need to be maintained, a new object may
be started either on the same host or on another host. When
and where the new object is started is decided by the advisor.
The new object joins the replication group from which the
replica crashed and the state of the leader is transferred to the
new replica. The state of the gateway of the leader object is
transferred using Maestro. The states of the QuO runtime
and the application are transferred from the corresponding
elements of the leader object by using a state transfer mecha-
nism independent of the group communication framework.
State transfer is performed by invoking the get_state method
on an existing replica and then invoking the set_state
method on the new replica. Get_state and set_state are
CORBA-style methods that must be specified by an applica-
tion developer in order to use AQuA with the application.

For value and time faults, the fault treatment consists of
two phases. First, the source of the fault is determined, based
on information provided to the advisor. Note that for value
and time faults, the fault may not be in an object that reports
a fault. Using complaints from the various object monitors
and voters, the advisor decides whether to kill suspected
replicas, whether to start new replicas, and where to start
new replicas. Second, the replicas for which a value or a time
fault has been detected may be killed (the three elements
composing the failed objects are killed) and new replicas be
started, if mandated by the advisor, in order to maintain the
global number of replicas. They can be started on the hosts
on which the replicas have been killed or on other hosts. The
newly created objects then join the replication groups from

• • • • • • • • •

 • • • •• • •

•

 •

 •

Connection group 1

Connection group 3

Connection group 2
Replication group 1

Replication group 4

Replication group 2

Replication group 3

Proteus manager 1

Proteus manager 2

Proteus manager 3

PCS groups

which objects have been killed, and the leaders of these rep-
lication groups transfer their state to the new objects. Spe-
cifically, the state of the gateway of the leader object is then
transferred to the new objects using Maestro, and the states
of the QuO runtime and the application are transferred using
the same method as described for crash failures.

5. AQuA Architecture
From a structural point of view, AQuA consists of one or

more possibly replicated objects (containing a gateway, and
possibly, a QuO runtime) and Proteus. Each of these con-
stituent pieces is described in more detail below.

5.1 QuO Runtime

The AQuA architecture is designed to support adaptation
at many different levels to changing conditions that may af-
fect the dependability of the entire system. The overall phi-
losophy is to isolate adaptation at the lowest level capable of
adequate response. Thus, Proteus bears responsibility for
configuring the system to ensure dependability and for re-
sponding to individual failures. However, there are cases
where application availability requirement change or Proteus
is not able to deliver the requested level of availability. In
these cases, adaptation requires cooperation between the ap-
plication and the Proteus dependability manager. The QuO
runtime provides services to facilitate such cooperation. The
most important of these services are contracts, system condi-
tion objects, and delegates. As mentioned previously, QuO
contracts provide a high-level summary of the level of avail-
ability requested by an application and the level of availabil-
ity actually being delivered. The contract is accessed through
QuO system condition objects and delegates.

Within the QuO runtime, system condition objects pro-
vide the primary windows into the dependability manage-
ment capability provided by Proteus. System condition ob-
jects present a very simple interface to the application pro-
grammer, typically exporting only set_value and get_value
methods. A contract receives its input information by moni-
toring the values of specific QuO system conditions. This
monitoring is achieved by indicating in the contract’s de-
scription that the contract “subscribes” to some collection of
system conditions. For instance, AQuA availability contracts
subscribe to system condition objects set by the application
to specify the desired level of availability. In addition, they
subscribe to system condition objects that are regularly up-
dated to indicate Proteus’s best current estimate of delivered
availability. Whenever any of these subscribed objects is up-
dated, the contract reevaluates the current contract regions to
determine whether any changes require adaptive response
from the application. This response may be implemented ei-
ther in-band (synchronously) with object group method in-
vocations or out-of-band (asynchronously). Out-of-band re-
sponse is identified in the contract description and triggered
by transitions between contract regions. For instance, if Pro-
teus reports reduced availability for a particular object
group, a contract reevaluation might invoke a designated ad-
aptation procedure within the affected application. The ap-
plication then adapts to compensate, perhaps by using an al-
ternative implementation that does not rely on the question-
able object group.

In-band application-level adaptation is facilitated by QuO
delegates. A QuO delegate is a software component that pro-

vides for QoS-adaptive behavior while exhibiting the func-
tional behavior of an ORB proxy object. That is, a QuO
delegate has the same IDL interface as the remote object on
which the client program is performing a remote method in-
vocation. However, the delegate contains code that checks
the current contract regions and changes behavior appropri-
ately. All method invocations on QuO objects are routed
through a corresponding QuO delegate. In most cases, the
delegate checks the current contract regions and acts as a
pass-through, simply passing the method invocation on to the
remote object group. However, in cases where the current
contract status indicates a non-standard condition, the dele-
gate may provide for different behavior.

5.2 Proteus

Structurally, Proteus consists of a dependability manager,
handlers (which implement voters and monitors in the gate-
way), and object factories. The dependability manager is
replicated, and consists of an advisor and a protocol coordi-
nator. The advisor makes decisions on how to reconfigure a
system, based on faults that occur and the aggregate avail-
ability requirements of applications as communicated via the
QuO runtime. The protocol coordinator then takes actions
based on these decisions.

Voters and monitors are implemented in gateway han-
dlers, described more precisely in the next subsection. Two
types of voters are currently implemented in the gateway.
The first one forwards the first reply that arrives (without a
vote). Note the new use of the term “voter” here; in previous
sections we only called the function “voting” if a vote took
place, but now, from an implementation point of view, for-
warding the first reply is done by a voter. The second type of
voter sends out a reply only when a majority of replies are
identical (2k+1 replicas are needed to tolerate k value faults;
the majority is then reached when k+1 messages are identi-
cal). This voter is used with active replication when value
faults must be tolerated. When active replication is used but
value faults do not need to be tolerated, the first type of voter
is used. Monitors are used to detect time errors by setting
timers as needed to detect when delays or omissions occur.

An object factory is implemented on each host. The
function of each object factory is to kill processes, to start
processes, and to measure the host load, in order to provide
information to the advisor to be used in deciding which hosts
to start objects on.

The role of the protocol coordinator is to carry out the
decisions of the advisor in a consistent way. The protocol
coordinator contains the algorithms necessary to execute the
decisions and to order the different executions. In particular,
the advisor tells the protocol coordinator

• where to start objects,
• where to kill objects,
• what the replication type of a replication group is,
• which voter type to set,
• which monitor to set, and
• which host load to check.
The algorithms implemented in the protocol coordinator

manage, by interacting with handlers and object factories, the
starting and killing of objects, the changing of voter and
monitor types, and checking of host loads. Furthermore, the
protocol coordinator implements the type of replication for

each replication group and coordinates the level of fault de-
tection (setting of voter and monitor types), the fault treat-
ment (killing and starting of replicas) and the load checking.

The advisor determines an appropriate system configura-
tion based on requests transmitted through QuO contracts
and observations of the system. The QuO contract contains
requirements concerning the fault tolerance and the perform-
ance of the system. Among other things, a QuO contract in
AQuA specifies

• the fault types (crash failures and/or value faults
and/or time faults) to tolerate for each replication
group,

• the number of simultaneous faults of each type to
tolerate,

• the timeouts defining a delay fault and an omission
fault,

• the minimum probability of proper service for a
given time interval, and

• the duration during which Proteus can try to recover
transparently from a failure resulting in an unaccept-
able configuration before having to send a callback
to the application (via QuO) indicating that the con-
figuration is not acceptable.

For each replication group that uses QuO, this informa-
tion is communicated to the advisor, which uses it, in con-
junction with information regarding host loads and faults and
failures that have occurred, to determine the configuration
the system should be in. All decisions of the advisor result-
ing in actions are communicated to the protocol coordinator,
which carries them out.

5.3 Gateway

The AQuA gateway translates between CORBA object
invocations generated by application objects and the QuO
runtime and messages that are multicast by Ensemble in a
way that allows for flexible and extensible handling and the
filtering of duplicate requests and replies. Figure 4 illustrates
the different parts of a gateway: the IIOP gateway, the dis-
patcher, and the handler. The IIOP gateway decomposes
IIOP messages and places them on a queue for the dis-
patcher. The dispatcher provides bookkeeping information
across multiple handler instances (e.g., if an object has mul-
tiple contracts involving multiple application groups). The
handler contains voters, monitors, and buffers that are con-
trolled by the Proteus advisor, and is the interface to Maestro
and the group communication services.

The translation between CORBA request/replies and En-
semble messages is done as follows. Specifically, as shown
in Figure 4, an invocation from a CORBA object goes
through the IIOP gateway, the dispatcher, and the handler
before reaching Maestro and Ensemble. In the handler, a
message will go through buffers and possibly monitors and
voters. A reply, which comes in as a message at the Maestro-
Ensemble level, goes through the handler, the dispatcher and
the IIOP gateway before reaching the CORBA ORB. As with
the outbound request, the message may pass through the
voter and/or monitor, depending on the type of faults that are
being tolerated. In addition, both the request and reply are in
the handler until rebroadcast by the replication group leader
(as described in Section 3) to tolerate crash failures.

Figure 4: AQuA Gateway Structure

6. Related Work
There has been much work on building reliable distrib-

uted systems; however, most of this work has focused on the
process level, and has not used CORBA or a high-level
quality of service specification method such as QuO to spec-
ify an application’s desired availability at a high level.

Specifically, one main thrust has been to provide fault
tolerance at the process level through the use of the group
communication paradigm. Work in this area has been exten-
sive, and includes ISIS [Bir94], Horus [Ren96], Maes-
tro/Ensemble [Vay97, Hay98], Totem [Mos95], Transis
[Dol96], ROMANCE [Rod93], Cactus [Bha97], and Ram-
part [Rei96], among others. Among these, Maestro/Ensemble
is unique in that it provides a CORBA invocation interface
but does not provide the support for replication provided by
the gateway handlers, and Rampart is unique in that it pro-
vides support for tolerating malicious intrusions.

In addition, there has been work with the explicit goal of
building fault tolerant systems. In particular, the Delta-4
project [Pow91, Pow94] aimed to provide fault tolerance
through the use of an atomic multicast protocol, specialized
hardware to ensure crash failure of processes, and support
for active, semi-active, and passive replication. Also notable
are Chameleon [Bag98], the FRIENDS system [Fab98],
MARS [Kop88], the Sun Enterprise Cluster [Sun97], and
Wolfpack [Wolf97]. All of these provide explicit support for
building fault tolerant applications. However, they do not
permit the specification of, and adaptation based on, high-
level availability requirements as is possible using AQuA.

Several systems have also been developed to provide
fault tolerance for CORBA applications. Three systems with
goals similar to AQuA are the Eternal system [Nar97],
OpenDREAMS [Fel96] and Piranha-Electra [Maf95,
Maf97].

The Eternal system adds fault tolerance to CORBA ap-
plications by object replication. Replica consistency is
maintained by total ordering of multicast operations, detec-
tion of duplicate invocations and responses, transfer of state
between replicas, consistent scheduling of concurrent opera-
tions, and fulfillment operations for restoring a consistent
state after network partitioning and remerging. The Eternal
system contains a “translator” called the Interceptor, which
maps between CORBA objects and the group communica-
tion (Totem [Mos95]) processes.

The Eternal system is close in spirit to the AQuA archi-
tecture; however, two major points differentiate the two

Maestro-Ensemble

LAN

Monitor

CORBA ORB

Gateway Handler

G
at

ew
ay

IIOP Interface

Dispatcher

Voter Buffers

projects. First, in the Eternal system, fault tolerance is devel-
oped at the level of the group communication system. In the
AQuA system, significant fault tolerance is implemented in
the gateway, above the group communication system. Sec-
ond, Eternal does not support dynamic system configuration
changes in response to changing application requirements, as
AQuA does. In AQuA, this functionality is achieved by
communication between the application, the QuO runtime,
and the Proteus manager.

Electra [Maf95] provides fault tolerance to CORBA by
building a specialized ORB. The Electra ORB adds several
properties of group communication systems to a common
ORB. In particular, Electra allows dynamic replication of
important object implementations. Moreover, a failure de-
tection service is provided to detect and report failed objects
consistently.

Piranha can be seen as a basic version of Proteus, man-
aging only crash failures and replacing the advisor by a GUI.
However, since Electra uses a non-standard ORB to provide
group communication services, it is incompatible with other
ORBs if the fault tolerant features are used. In contrast, the
AQuA architecture uses a gateway that translates IIOP mes-
sages understood by standard CORBA ORBs into messages
for the processes of the group communication system.

The OpenDREAMS research project has focused on the
design and the implementation of an Object Group Service
(OGS), which provides facilities for CORBA object group
communication. The mechanisms used to build the group
framework are group multicast, dynamic group membership,
view change and state transfer. This object-level group
communication system is simpler and less flexible than En-
semble but has the advantage that it is implemented on top of
CORBA objects as a new CORBA service. This approach is
promising, and has the potential to provide group services to
CORBA objects; however, it requires that the application
developers be aware of and explicitly make use of the OGS.

7. Conclusions
This paper presents an overview of the AQuA architec-

ture, which provides a flexible and extensible approach to
building dependable, object-oriented distributed systems.
Systems built using the AQuA architecture support adapta-
tion due to both faults in the environment and changes in an
application’s availability requirements. Within the AQuA ar-
chitecture, the QuO runtime supports generation of an appli-
cation’s availability requests, the Proteus dependability man-
ager supports configuration of the system in response to
faults and availability requests, and Ensemble supports group
communication services. In addition, the AQuA architecture
offers a standard CORBA interface to applications, provid-
ing all the advantages of CORBA in developing and main-
taining distributed applications.

Acknowledgements
We would like to thank several other members of the

AQuA and QuO teams, namely Ayesha Ibrahim, Joe Loyall,
Paul Rubel and John Zinky, for support and discussions. We
would also like to thank several members of the Ensemble
team, Ken Birman, Tim Clark, Mark Hayden, and Alexey
Vaysburd, for their help in using Maestro and Ensemble. Fi-
nally, we would like to thank Silvano Maffeis for discussions

regarding the use of CORBA with group communication
systems.

References
[Bag98] S. Bagchi, K. Whisnant, Z. Kalbarczyk, and R. K. Iyer, “Chameleon: A
Software Infrastructure for Adaptive Fault Tolerance,” To appear in Proc. of the
17th IEEE Symposium on Reliable Distributed Systems, Purdue University,
West Lafayette, IN, USA, October 1998.
[Bha97] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu, “Coyote:
A System for Constructing Fine-Grain Configurable Communication Services,”
Technical Report TR97-12, Department of Computer Science, University of
Arizona, July 1997.
[Bir94] K. P. Birman and R. van Renesse (Eds.), “Reliable Distributed Com-
puting with the Isis Toolkit,” Los Alamitos, CA: IEEE Computer Society Press,
1994.
[Bir96] K. P. Birman, “Building Secure and Reliable Network Applications,”
Greenwich, CT: Manning Publications, 1996.
[Dol96] D. Dolev and D. Malki, “The Transis Approach to High Availability
Cluster Communication,” Comm. of the ACM, vol. 39, no. 4, 1996, pp. 64-70.
[Fab98] J-Ch. Fabre and T. Perennou, “A Metaobject Architecture for Fault-
Tolerant Distributed Systems: The FRIENDS Approach,” IEEE Trans. on Com-
puters, vol. 47, no. 1, 1998, pp. 78-95.
[Fel96] P. Felber, B. Garbinato, R. Guerraoui, “The Design of a CORBA Group
Communication Service,” Proc. of the 15th IEEE Symposium on Reliable Dis-
tributed Systems, pp. 150-159, Niagara on the Lake, Ontario, Canada, October
1996.
 [Hay98] M. G. Hayden, “The Ensemble System,” Ph.D. thesis, Cornell Univer-
sity, 1998.
[Kar97] D. A. Karr, “Specification, Composition, and Automated Verification
of Layered Communication Protocols,” Ph.D. thesis, Cornell University, 1997.
[Koi97] J. Koistinen, “Dimensions for Reliability Contracts in Distributed Ob-
ject Systems,” HP Laboratories Technical Report, October 1997
[Kop88] H. Kopetz, et al., “Distributed Fault-Tolerant Real-Time Systems: The
MARS Approach,” IEEE Micro, vol. 9, no. 1, pp. 25-40.
[Lan97] S. Landis, S. Maffeis, “Building Reliable Distributed Systems with
CORBA,” in Theory and Practice of Object Systems, vol. 3, no. 1, pp. 31-43,
1997.
[Lap92] J.-C. Laprie, ed., “Dependability: Basic Concepts and Terminology,”
Springer-Verlag, Vienna, 1992.
[Loy98] J. P. Loyall, R. E. Schantz, J. A. Zinky, D. E. Bakken, “Specifying and
Measuring Quality of Service in Distributed Object Systems,” To appear in
Proc. of ISORC’98, Kyoto, Japan, April 1998.
[Maf95] S. Maffeis, “Run-Time Support for Object-Oriented Distributed Pro-
gramming,” Ph.D thesis, University of Zurich, 1995.
[Maf97] S. Maffeis, “Piranha: A CORBA Tool for High Availability,” IEEE
Computer, vol.30, no.4, 1997, pp.59-66.
[Mos95] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, C.
Lingley-Papadopoulos, T. P. Archambault, “The Totem System,” Proc. of the
25th Annual International Symposium on Fault-Tolerant Computing, pp. 61-66,
Pasadena, CA, June 1995.
[Nar97] P. Narasimhan, L. E. Moser, P. M. Melliar-Smith, “Replica Consis-
tency of CORBA Objects in Partitionable Distributed Systems,” Distributed
Systems Engineering, vol. 4, no. 3, September 1997, pp. 139-150.
[OMG96] Object Management Group, “CORBA 2.0, July 96 revision,” OMG
Document 96-08-04, July 1996.
[Pow91] D. Powell, ed., “Delta-4: A Generic Architecture for Dependable Dis-
tributed Computing,” ESPRIT Research Reports, vol. 1, Springer-Verlag, 1991.
[Pow94] D. Powell, “Lessons Learned from Delta-4,” IEEE Micro, vol. 14, no.
4, 1994, pp.36-47.
[Rei96] M. K. Reiter, “Distributing Trust with the Rampart Toolkit,” Comm. of
the ACM, vol. 39, no. 4, 1996, pp. 71-74.
[Rém98] D. Rémy, J. Vouillon, “Objective ML: An Effective Object-oriented
Extension to ML,” To appear in Theory And Practice of Objects Systems, 1998.
[Ren96] R. van Renesse, K. P. Birman, S. Maffeis, “Horus: A Flexible Group
Communication System,” Comm. of the ACM, vol. 39, no. 4, 1996, pp. 76-83.
[Rod93] L. Rodrigues, P. Verissimo, “Replicated object management using
group technology,” Proc. of the Fourth Workshop on Future Trends of Distrib-
uted Computing Systems, pp. 54-61, Lisboa, Portugal, September 1993.
[Sun97] Sun RAS Solutions for Mission-critical Computing, White Paper, Oc-
tober 1997, http://www. sun.com/cluster/wp-ras/
[Vay97] A. Vaysburd, K. P. Birman, “Building Reliable Adaptive Distributed
Objects with the Maestro Tools,” Proc. of Workshop on Dependable Distributed
Object Systems, OOPSLA’97, Atlanta, Georgia, October 1997.
[Wolf97] Microsoft Clustering Architecture “Wolfpack,” White Paper, May
1997, http://www.microsoft.com/ntserver/info/ wolfpack.htm.
[Zin97] J. A. Zinky , D. E. Bakken, R. E. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,” Theory and Practice of Object Sys-
tems, vol. 3, no. 1, pp. 55-73, April 1997.

