
SYSC-3006

Parallel Input/Output

SYSC-3006

Basic Concepts of I/O

• Input/Output is the information exchange between CPU and
(external) connected devices

• Block Diagram of a Simple Computer System

Processor

Memory

I/O

Bus

connected devices

keyboard
mouse
display
printer
disk drives
commn links, etc.

SYSC-3006

Basic Concepts of I/O

• Interfacing and programming I/O devices: different from our
previous programs

– Electrical characteristics different from CPUs
• Analog devices, power, current drive

– I/O devices operate asynchronously from the CPU (and the
program being run)

• Transfer data: processor and I/O device synchronize
or “handshake” to exchange information

SYSC-3006

I/O

Basic Concepts of I/O

• Independent I/O components associated with each
connected device.

• I/O components: interfaces that “electrically” connect
external device to computer’s internal bus.

– Bus connection allows CPU to read and/or write device

keyboard component(s)

commn component(s)

bus

connected devices
keyboard
mouse
display
printer
disk drives
commn links, etc.

SYSC-3006

I/O Ports

• Port: allows exchange of information between bus (connected to
CPU and memory) and I/O components (connected to

devices)
• 3 kinds of Ports:

– Control: write values to these – control behaviour of
component/device

– Status: read values from these – find out about current state of
component/device

– Data: read and/or write values of these – exchange application
information

• Some ports: read-only, write-only or read&write.

• Ports: often bit-mapped.

SYSC-3006

I/O Addresses

• When connected to a computer system, each port is assigned an
I/O address

– Device (port) identified by its I/O addresses
– CPU read/write from/to I/O address to receive/send data

from/to device

• Microprocessor architectures: two kinds of I/O addresses
1. Isolated I/O
2. Memory-Mapped I/O

Concept !

SYSC-3006

I/O Addressing Schemes : Isolated I/O

- Microprocessor: dedicated instructions for I/O operations.
- Separate address space for I/O devices.

Processor

Memory

I/O Device

Memory Map

0000

FFFFF

Control (RD/WR)

Address

Data

I/O Control (IOR/IOW)

I/O Map

0000

FFFFh

SYSC-3006

I/O Addressing Scheme : Memory Mapped I/O

• Microprocessor: same instruction set to perform memory and I/O
operations.

• I/O devices and memory components resident in same memory space.

Processor

Memory

I/O Device

Memory Map

I/O Map

0000

FFFFF

Control (RD/WR)

Address

Data

SYSC-3006

Intel Uses Isolated I/O

• 80x86 family, I/O addresses range 0-FFFFh
• PC: devices assigned standard I/O addresses (used by all

manufacturers of PCs)
– Keyboard 60h
– Speaker 61h
– Parallel Printer (LPT1) 3BCh-3BFh

I/O ports ≠ memory cells

• Memory transfers : MOV AL, [61h]

• I/O transfers : IN AL, 61h
OUT 61h, AL

Implementation
of a Concept

SYSC-3006

Intel 8086 IN Instruction

Mnemonic : IN
Semantics : Read from I/O port
Syntax :

IN AL, imm8 ß 8-bit read
IN AX, imm8 ß 16-bit read
– imm8: 8-bit I/O address in the range 00h-FFh

IN AL, DX
IN AX, DX
– DX: 16-bit I/O address in the range 0000h-FFFFh

Addressing Modes are different!

Legacy of 8085
which had an 8-bit
I/O space

SYSC-3006

Intel 8086 OUT Instruction

Mnemonic OUT
Semantics : Write to I/O port
Syntax :

OUT imm8, AL ß 8-bit write
OUT imm8, AX ß 16-bit write

OUT DX, AL
OUT DX, AX

Destination looks like immediate!

SYSC-3006

I/O Example

• We have a display device for ASCII characters
• Programmer’s model: one write-only data port at I/O

Address = 04E9H
– Display “cursor driven”: ASCII character written to data port

displayed at current cursor position
– Cursor position maintained by the display device
– When a character is written, cursor position is “advanced”

• Advancement handles new lines and scrolling too.

• Write a code fragment showing the display of the character ‘A’

SYSC-3006

I/O Example
Solution : Write a code fragment showing the display of the

character ‘A’

MOV DX, 04E9H
MOV AL, 41h
OUT DX, AL
….

Question :
…
IN AL, DX

This port address is 16 bits.
Must load it into DX first
(Immediate only for 8-bit port
addresses)

A character is a byte

Will AL contain 41H ?

SYSC-3006

Lab PC’s LED/Switch Box

• Labs: I/O Box attached to PCs
– 5 LEDs (Light Emitting Diodes) – each either ON or OFF
– 5 switches – each either ON or OFF

• LEDs connected to bits of an 8-bit output parallel port
– Each LED driven by a particular bit in the port

LED

value of biti
determines whether
LED is ON or OFF

biti

8-bit
port

SYSC-3006

Programmer’s Model for the Lab LEDs

• LED data port address: 378 H
• Bit configuration: LEDS are labelled 1 .. 5

– [bit 7 = most significant ; bit 0 = least significant]
•

bit 7 6 5 4 3 2 1 0
LED x x x 5 4 3 2 1
– 1 through 5 indicate bits for LEDs 1 through 5
– x indicates unused (don’t care what value is written)

• To turn LED ON: set bit associated with the LED
– i.e.: write 8-bit value to port; bit associated with LED = 1

• To turn LED OFF: clear bit associated with LED

SYSC-3006

Programming the LEDs

• LED’s interface: 8-bit port.
– If we want to set/clear a particular bit, we must write an

entire byte to the LED port.
– Writing any value to the LED port affects all LEDs !
– Modify the state of one LED: must know state of all LEDs, but
…

• Reading port is meaningless (write-only port)
– We cannot read LED port to get the current state of all LEDs.

SYSC-3006

Programming the LEDs

• To manipulate LEDs individually, program must keep state of
LEDs as a variable

– updated each time a value is written to the LED port

LED_State DB ? ; current state of LEDs
; To turn on LED x

; set appropriate bit in LED_State
; write LED_State to LED port

; To turn off LED x
; Clear the appropriate bit in LED_State
; Write LED_State to the LED port

SYSC-3006

Lab Switches

• 5 switches on the I/O box connected to 5 bits of 8-bit input parallel port
– One bit (in port) per switch
– Read-only port used to get current setting of all switches

• A write to the port has no effect
– Switch is ON, its bit is set (i.e. "1")
– Switch is OFF, its bit is clear (i.e. "0")
– Switches labelled "A" through "E"

• Switch data port address: 379 H
Bit config: [bit 7 = most signif ; bit 0 = least signif]

bit 7 6 5 4 3 2 1 0
Switch E D C B A x x x

• x indicates unused (undefined)

SYSC-3006

• Switch: mechanical device
– Moving switch position: opens/closes circuit
– Switches: metal contacts completing circuit when joined

• Switches in the lab: spring-loaded to hold open/closed
position

– When position change, contacts can bounce
• Program reading switch port, “value” of switch output will

oscillate (open/closed) until bouncing stops
– Program must filter out oscillations so that program only

“sees” one switch state change per position change.
This is called de-bouncing.

Switch de-bouncing

SYSC-3006

Simple De-Bouncing

• Write a loop that polls the switch until first change is seen
• Waste “enough” time (do-nothing-loop) until sure switch

stopped bouncing
• Questions :

– How much is “enough” time?
– What if the program waits longer than necessary?
– What if the program does not wait long enough ?

SYSC-3006

Adaptive De-Bouncing

In a loop, poll the switch until first change is seen
Set a loop counter to an init_value
Repeat {

Poll switch
If (switch has changed state again) {

loop counter = init_value
} else {

decrement loop counter

}
} until loop counter == 0

Explain why this approach
is “adaptive” ?

Remaining Issue : Decide
on the init_value

