
SYSC-3006 

The Intel 80x86



SYSC-3006 

Getting to Know a Microprocessor.

• Processor is characterized by its :  
– Register Set 

• General purpose registers, 
• addressing registers, 
• control/status registers

– Instruction set
• Includes addressing modes

– Interrupt mechanism    (later!)

• Intel 8086: start of the 80x86 family tree.
– All registers: 16-bit
– 16-bit data and 20-bit address bus
– I/O mapped with 8-bit and 16-bit ports (later)
– Each descendant – right up to the P6– are backward compatible

• Same basic set of registers … but wider
• Same basic instructions … but more
• Same interrupt mechanism



SYSC-3006 

8086 Register Set 

• 16-Bit General Purpose Registers
– can access all 16-bits at once
– can access just high (H) byte, or low (L) byte

AH          AL

BH          BL

CH          CL

DH          DL
8-bit 8-bit

16-bit

only General 
Purpose registers 
allow access as 
8-bit High/Low 
sub-registers

AX

BX

CX

DX

AH          AL



SYSC-3006 

8086 Register Set 

16-Bit Segment Addressing Registers
CS Code Segment
DS Data Segment
SS Stack Segment
ES Extra Segment

16-Bit Offset Addressing Registers
SP Stack Pointer
BP Base Pointer
SI Source Index
DI Destination Index



SYSC-3006 

8086 Register Set 

16-Bit Control/Status Registers
IP Instruction Pointer  (Program Counter for execution control)
FLAGS 16-bit register

• Not a 16-bit value: a collection of 9 bit-flags (six are unused)
• Flag is set when it is equal to 1
• Flag is clear when it is equal to 0

Control Flags
Direction: Used in string instructions for

moving forward/backward through strings
Interrupt: Used to enable/disable interrupts (Later)
Trap: Used to enable/disable single-step trap (Later)



SYSC-3006 

8086 Register Set 

Status Flags 
• Flags set/cleared as “side-effects” of an instruction
• Part of learning an instruction is learning what flags is writes
• There are instructions that “read” a flag and indicate whether or not 

that flag is set or cleared.

Status Flag Name Description

C Carry
A Auxiliary Carry
O Overflow
S Sign
Z Zero



SYSC-3006 

8086 Register Set 

• Other registers internal to the CPU 

– They support the execution of instructions
• Example: IR Instruction Register
• Example: ALU input/output registers are temporary registers 

(scratchpad values)

– They cannot be accessed directly by programmers
– May be larger than 16-bits



SYSC-3006 

Intel Segmented Memory Model for 20-bit Address Space

• How can 16-bit registers and values be used to specify 20-bit 
addresses?

– Want to use 16-bit registers to refer to memory addresses

• Use two registers “side-by-side”

0         X

20 bits 20 bits

16 bits 16 bits 16 bits8 bits

X       X      X       X
X       X      X       X0         0        0     X



SYSC-3006 

Intel Segmented Memory Model for 20-bit Address Space

• Real-Address Mode (8086 and not later family members)
• On top of linear address space (from 0 to 1 Meg-1), overlay 

overlapping “segments”
– Linear address: absolute address (20-bit value)
– Segment defined as sequence of bytes that

• Starts every 16-bytes (starts on absolute address that ends in 0h)
• Length: 64K consecutive bytes (64K = FFFFh)

– Hints : 216 = 64K and all the 8086 registers are 16-bits wide

• Segment 0 starts at absolute address 00000H and goes to 0FFFFh
• Segment 1 starts at absolute address 00010H and goes to 1000Fh
• Segment 2 starts at absolute address 00020H  and goes to 1001FH

1. A particular byte can be located by giving segment number and
offset within segment.

2. A particular byte located within more than one segment

Segment i overlaps 
segment i + 1



SYSC-3006 

Intel Segmented Memory Model for 20-bit Address Space

00000H

00010H

00020H
…
0FFFFh

1000Fh

1001Fh
…
n*00010

n*10H +
0FFFFh

…

Segment 0

Segment 1

Segment n

20-bit
Linear
Or 
Absolute
Address

Segment 2

…



SYSC-3006 

Intel Segmented Memory Model for 20-bit Address Space

• At the hardware level :
– Address put on the Address Bus as a 20-bit linear address

• From the Software (Programmer’s) Perspective:
– Addresses NEVER specified as 20-bit values
– Addresses ALWAYS specified as two 16-bit values: segment:offset

• Who does the conversion ? 
– The CPU (e.g. during the fetch of an instruction)
– As a programmer, you always use segment:offset



SYSC-3006 

Intel Segmented Memory Model for 20-bit Address Space

• How does the CPU convert from segment:offset to absolute ?
– Recall: each segment starts at 16-byte boundary
– Start address of a segment = segment number * 1610

– Hint: shortcut for multiplying by 16 when working in binary(hex) ?

s3 s2 s1 s0

o3 o2 o1 o0

o3 o2 o1 o0

s3 s2 s1 s0 0
20-bit segment 
start address

offset

a4 a3 a2 a1 a0 20-bit address

determined by 
segment number



SYSC-3006 

Intel Segmented Memory Model for 20-bit Address Space

• Example:  Suppose we have segment number  =  6020H and    
offset  =  4267H

segment * 10H   à 60200 H
+ offset      à 4267 H

20-bit address 64467 H 20-bit address



SYSC-3006 

Intel Segmented Memory Model for 20-bit Address Space

• Remember : ugly Side Effect of Segmented Memory
– Each memory byte can be referred to by many different SEG:OFS   

pairs     

• Example: The (unique) byte at address 00300 H can be referred to by:
0 H  : 300 H
1 H  : 2F0 H 
30 H :  0 H

( more too ! )

20-bit address



SYSC-3006 

How is segmented memory managed by the 8086 ?

• 8086 includes four 16-bit SEGMENT registers:
– CS  : Code Segment Register
– DS  : Data Segment Register
– SS  : Stack Segment Register
– ES  : Extra Segment Register

• Segment registers are used by default as the segment values during 
certain memory access operations

– All instruction fetches: CS : IP
– “most” data access: DS : offset

Processor uses contents of DS as 16-bit segment     
value when fetching data => programmer only    

needs to supply 16-bit offset in instructions)
BUT segments must be initialized     

before use (Later!)



SYSC-3006 

Let’s refine the Instruction Execution Cycle …

• Processor executes instruction by repeating:
do{

Fetch instruction:  IR := mem[CS:IP] and adjust IP to point to 
next sequential instruction

Execute instruction in IR

}  until HLT instruction has been executed

some interrupt stuff 
goes here !  more later!

inherently sequential behaviour!

Notation
:= “gets loaded from”



SYSC-3006 

Instruction Execution Cycle

• What is an instruction ?  
– On Intel 8086, an instruction is a sequence of 1..6 bytes

• A simple (incomplete) model of an instruction is as follows :

• Common mistake: do not apply little endian to an instruction.
– Little endian only applies to word operations, not sequences of bytes.

Opcode

Destination Operand, if needed Source if needed

Operand Operand Operand Operand Operand

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Tells what kind of 
instruction,
How many bytes…



SYSC-3006 

Instruction Execution Cycle

00000

13C08
13C09
13C0A
13C0B

13C0E

3 bytes of 
instruction

4 bytes 
of next 
instruction

07 43 A6 12IR

3C08IP

4B
36
FF

FFFFF

Processor

1000CS

“previous” instruction

Before fetch:



SYSC-3006 

Instruction Execution Cycle

After fetch:

00000

4B 36 FFIR

3C0BIP

4B
36
FF

FFFFF

Processor

1000CS

13C08
13C09
13C0A
13C0B

13C0E

3 bytes of 
instruction

4 bytes 
of next 
instruction

“fetched” instruction


