
Hardware Interrupts

Thorne : 21.1, 21.3Thorne : 21.1, 21.3
(Irvine Edition IV : Section 16.4)

SYSC3006 1

The Particular Challenges of I/O ProgrammingThe Particular Challenges of I/O Programming

• Reference : Fundamentals of Embedded Software : Where C
and Assembly Meet, Daniel Lewis. Chapter 6.

• With “memory” programming :• With “memory” programming :
1. Data transfers between memory occur as a result of an

instruction fetch-execute cycle
1. Time to complete is in the order of microseconds

2. A program runs synchronously : Instructions are fetched
then executed.then executed.
• CPU controls the data transfers between memory.

SYSC3006 2

The Particular Challenges of I/O Programming

• With I/O programming
1. Input and output from/to external I/O devices (keypads,

sensors, switches) often involve physical movement
• Response times are determined by physical nature of

device (eg. Bouncing of switches, A/D conversion,
movement of disk head)

• Response times are an order of magnitude slower than
an instruction execution

2. I/O devices operate asynchronously from the processor (and
the program being run)
• Availability of data for input OR device for output is y p p

not under the control of CPU
• To transfer any data, the processor and I/O device must

synchronize or “handshake”

SYSC3006 3

y

Polled Input/OutputWaiting Loops – Busy Waiting

CPU controls the synchronization with I/O device
– Execution is simple : sequential control flow

Example : Lab Switches
while (! (getSwitches() && 1000 0000B)) { }

Is Switch E up?
((g ())) { }

processSwitch()

Example : Hypothetical Simple Keyboard Device :Example : Hypothetical Simple Keyboard Device :
– When key pressed, character is put in data port and bit 0 in

the status port is set to indicate “Key Ready”.
Wh h t i d f d t t t t bit i l d– When character is read from data port, status bit is cleared.

while (status && 0000 0001b == 0) { }
Read Keystroke from Data port Is bit 0 in the status port set?

SYSC3006 4

p

(Hardware) Interrupts : A Device-centric Handshake

• Example : Lewis• Example : Lewis
– You are working at home doing taxes
– The phone rings (an interrupt)
– You stop work on the taxes and answer the phone (You

accept the interrupt)
– A friend wants to know a mechanic’s phone number to

arrange service
– You give the phone number (You process the interrupt

immediately)
– You hang up and go back to your taxes.

• Example : Classroom questions

SYSC3006 5

Example : Interrupt-Driven KeyboardExample : Interrupt-Driven Keyboard

• Simple Keyboard model:
– When key pressed character is put in data port and bit 0 inWhen key pressed, character is put in data port and bit 0 in

the status port is set to indicate “Key Ready” … and an
interrupt is sent to the CPU
Wh h t i d f d t t t t bit i l d– When character is read from data port, status bit is cleared

Keyboard
CPU

Data Port

Status Port

Address Bus

Data Bus
•Hardware Interrupts
require a hardware
signal from the device Status Port

Control Port

g
to the processor.

SYSC3006 6

Hardware Interrupts

• The interrupted processing doesn’t “know” it was interrupted
– The processor just:

1 temporarily suspended current thread of control1.temporarily suspended current thread of control
2.ran Interrupt Service Routine (ISR, later!)
3.resumed suspended thread of control

P lli CPU k h i h l d i h h h i• Polling: CPU asks the peripheral devices whether there is
anything to do now ?
– Programming is sequential : Next instruction is determined

b h f h l d b l fby the fetch-execute cycle and by control transfer
instructions.

• Interrupts: Device tells CPU it is time to do something NOW
– External hardware signals spontaneously cause transfer of

control (cause interruption in default sequential program).
– No busy waiting, no polling.

SYSC3006 7

– Programming now requires an “event-driven” mindset

Learning the Event-Driven Mindset

• We will show two ways to depict the runtime behaviour of an
interrupt-driven programp p g

• Let’s set up an example to demonstrate :

main PROC

here:
MOV AX BX ; m-1

ISR PROC
MOV AX,1 ; i-1
IRET ; i 2MOV AX,BX ; m-1

MOV BX, CX ; m-2
MOV CX, DX ; m-3

IRET ; i-2

ISR ENDP
JMP here ; m-4

main ENDP

SYSC3006 8

Learning the Event Driven Mindset : CPU Utilization
DiDiagram

• Diagram depicts what CPU does as time progresses to the right
• If no interrupts happen (and interrupts don’t have to happen!)

– Main thread of control completely consumes the CPU

• If interrupts happen
time

m-1 m-2 m-3 m-4 m-1 m-2 m-3 m-4 m-1 m-2 m-3 m-4 ….

– CPU is used by ISR whenever the interrupt occurs.

m-1 m-2 i-1 i-2 m-3 m-4 m-1 i-1 i-2 m-2 m-3 m-4 m-1 m-2 m-3 m-4 …

time

m 1 m 2 i 1 i 2 m 3 m 4 m 1 i 1 i 2 m 2 m 3 m 4 m 1 m 2 m 3 m 4 …

Interrupt signal

SYSC3006 9

p g

Learning the Event Driven Mindset : Thread Diagrams

• Diagram depicts the “lifelines” of each thread of control
main ISRTime

1m-1
m-2

i-1
i-2

m-3
m-4
m-1

i 2
Interrupt
signal

m 1

m-2

i-1
i-2

m-3
m-4
m-1

SYSC3006 10

…

The Interrupt Mechanism on the Intel 8086

• The 8086 processor has two hardware interrupt signals
– NMI non-maskable interruptp
– INTR Interrupt request (maskable interrupt)

80868086

NMI INTR

Inside the computer
system

bus

Outside the
computer system

SYSC3006 11

computer system

Interrupt Maskability

• Maskable interrupts can be ignored by the CPU
• Must be enabled before interrupting the CPU• Must be enabled before interrupting the CPU
• 8086 Example : INTR is maskable

k bl i b i d b h• NonMaskable interrupts cannot ever be ignored by the CPU
• 8086 Example : NMI is non-maskable

– Used for catastrophic errors (e.g. RAM failurep (g
Power failure, etc).

An Interrupt request can be pending: the signal is active but it has not
yet servicedy
– For maskable interrupts, it may or may not be serviced

until/if it is enabled

SYSC3006 12

8086 Instructions for Interrupt Masking

Masking of INTR is done with the control flag IF in FLAGS register

CLI - clears IF bit in flags register (IF = 0)CLI clears IF bit in flags register (IF 0)
• disables (masks) interrupts at the processor
• processor does not monitor INTR line while IF = 0

STI - sets IF bit in flags register (IF = 1)
• enables (unmasks) interrupts at the processor
• processor monitors INTR line while IF = 1

� State of IF does not affect NMI software interrupts or dedicated� State of IF does not affect NMI, software interrupts or dedicated
interrupts (0..4)

� Later, we shall say : CLI/STI instructions disable/enable
interrupts at the processor

SYSC3006 13

interrupts at the processor

The Interrupt Mechanism on the Intel 8086

Interrupt signals can occur anytime.
Wh d id i t t i l ?• When does processor consider interrupt signals?

• What ISR does processor execute ? Where is this ISR ?

The complete instruction execution cycle :
1. Fetch instruction & adjust IP
2. Decode instruction2. Decode instruction
3. Execute instruction
4. Check NMI : If NMI asserted, perform “related behaviour”
5 If IF 1 h k INTR5. If IF = 1 check INTR :

If INTR asserted, perform “related behaviour”

SYSC3006 14

8086 Vector Table Just another example of
Array Programming• An array of 256 entries located at

the reserved memory location
0000:0000

Array Programming

– Each entry is “address” of an
interrupt service routine (ISR).

– The address is a FAR Pointer
0 : 0 IP

0 : 2 CS

Address of type 0

(CS:IP pair) (32-bits = 4bytes)
– The array occupies addresses

from 0:0 to 0:3FF (256*4 bytes)

0 : 2 CS

0 : 4 IP

0 : 6 CS

Address of type 1

• Each entry is identified by unique
"interrupt-type" (number), ranging

IP at low
CS at high

0 : 6 CS

p yp (), g g
from 0 to 255
– If interrupt-type = i then the

offset to relevant entry in the

0 : 3FC
0 : 3FD
0 : 3FE
0 : 3FF

Address of type 255
IP

CS

SYSC3006 15

y
vector table = 0000H + 4 * i

0 : 3FF

Interrupt Types : Deciding which ISR to run

• Auto-vectored interrupts : The interrupt-type (the vector) is
predefined as part of the processor design
– For a given hardware signal, the CPU automatically goes to

a particular interrupt-type in the vector table.p p yp
– 8086 Example : NMI is auto-vectored to Interrupt-type 2

• Whenever NMI is asserted, the 8086 always executes
ISR t I t t T 2ISR at Interrupt Type = 2

• The address of the NMI ISR is always at 0000:0008h

SYSC3006 16

Interrupt Types : Deciding which ISR to run

• Vectored interrupts : The interrupt-type (the vector) is
determined during systems design and is provided to the CPU.
– The CPU performs an “interrupt-acknowledge” cycle where p p g y

it reads the interrupt-type from the data bus
• No software is involved (More in 4601)
• Interrupting device must provide (ie write) the interrupt-Interrupting device must provide (ie. write) the interrupt

type

• The address of the ISR is at 0000:type*4

External hardware

• The address of the ISR is at 0000:type*4

• 8086 Example : INTR is a vectored interrupt
VARIABLE

Question : NMI and INTR – Does this mean we can have only 2
interrupt sources ?

SYSC3006 17

Question : Why do we need 256 entries in the vector table ?

Multiple Interrupt Sources with AutoVectored Interrupts

• Multiple devices share the same interrupt line
• CPU must poll status port on each device to determine whichCPU must poll status port on each device to determine which

one generated interrupt.

interrupt signals from devices

8086
Device 1

interrupt signals from devices

processor

NMI Device 2

. . .

NMI

bus

SYSC3006 18

bus

Multiple Interrupt Sources with Vectored Interrupts

Interrupt controller acts as a funnel for multiple device interruptsp p p
– Interrupt controller “handshakes” with CPU (Interrupt

Acknowledge Cycle) on behalf of the device.
Interrupt controller knows which device interrupted– Interrupt controller knows which device interrupted

– Interrupt controller “tells” the CPU by writing a unique
interrupt-type associated with interrupting device on the
data bus

– CPU uses interrupt-type to execute the appropriate ISR
device

8086
processor interrupt

controller

device

. . .

INTR device

SYSC3006 19

bus

Perform “Related Behaviour”

• Review : Execution semantics of CALL
– NEAR CALL target PUSH IP, IP := target
– FAR CALL target PUSH CS, PUSH IP,

CS:IP := target
• Execution semantics of Interrupt

– Push FLAGS register
– Clear IF bit in flags to 0
– Clear TF bit in flags to 0Clear TF bit in flags to 0
– Push CS
– Push IP

F t h CS f 0 *4 + 2
Learn this

– Fetch new CS from 0 : n*4 + 2
– Fetch new IP from 0 : n*4

• From Vector Table in memory!
• n: Interrupt Type!

SYSC3006 20

• Question : What does all this ?

ISR Stack Frame

• The ISR stack frame different from subroutines!
– Return address is always a FAR address CS:IPy
– FLAGs are also pushed.

return IP
return CS

fl

SP Return
Address

flags

SYSC3006 21

Returning from an ISR

• The RET instruction will not work
– Why not ?

SP return IP

• When writing ISRs, you must use IRET.
1. Pops 32-bit return address (CS:IP)

SP return IP
return CS

flagsp ()
2. Pops flags

• Example :

Restores FLAGS value to
what they were before IF
and TF were cleared !

arguments

• Example :
isr PROC FAR

IRET

and TF were cleared !

isr ENDP

SYSC3006 22

Installing an ISR

• Interrupts only work if ISR address has been loaded
previously into correct vector!
– This is called “installing” the ISR in the vector table

SYSC3006 23

Dynamic Installation of an ISR

myint type EQU 40 ; install as vectormyint_type EQU 40 ; install as vector
myvector EQU myint_type * 4
.code

imyisr PROC FAR
IRET

myisr ENDP
ISR

y

main PROC
CLI

IP of ISR
CLI
MOV AX, 0
MOV ES, AX ; ES Æ vector table segment
MOV ES:[myvector] , OFFSET myisr
MOV ES:[myvector+2] , @code
. . .

segment override for
destination segment !

CS of ISR

SYSC3006 24

STI ; NOW, interrupts can happen

Installing the ISR

• When installing an ISR, you are over-writing a previous value
inserted by the O/S during startup
– Example : The entry may have a “useful” DOS value .
– Example : Even “unused” entries have an address of a default

ISR just in case (eg. a simple return)j (g p)

• Whenever installing vectors, first save the existing contents of
the vectorthe vector.
– The saved values should be restored before the program exits
– If save/restore is not done, the OS (eg. DOS) might not run

properlyproperly.
– Sound familiar ? (Hint : SYSC-3006 Subroutine Policies)

SYSC3006 25

Robust Version of ISR Installation

.data
old_vector_offset dw ?
old ector segment d ?old_vector_segment dw ?
.code

…
MOV AX, 0
MOV ES, AX ; ES Æ vector table segment
MOV AX, ES:[myvector]MOV AX, ES:[myvector]
MOV old_vector_offset, AX
MOV AX, ES:[myvector+2]
MOV ld t t AX

Save original vector table!

MOV old_vector_segment, AX
MOV ES:[myvector] , OFFSET myisr
MOV ES:[myvector+2] , @code

SYSC3006 26

. . .

The Intel Programmable Interrupt Controller (PIC)
In 80x86 based PCs interrupt controller is the Intel 8259AIn 80x86 based PCs, interrupt controller is the Intel 8259A

– Complex (ie. configurable / programmable) behaviour
• Example : The specific interrupt-type to be associated

with each interrupting device is often programmablewith each interrupting device is often programmable
– Itself is an I/O device to be read/written.

Interrupting IR0
8259
PIC

Device

. . .

IR0
IR1
IR2
IR3
IR4INTR

Interrupting
Device

IR4
IR5
IR6
IR7

Device

D0..D7 Data bus
Ö 8-bit, 0 to 255 (Interrupt type)

SYSC3006 27

It supports 8 device inputs : IR0 Æ IR7

Daisy-Chaining or Cascading the PIC

• The maximum configuration is 1 master PIC and up to 8 slave
PICs, allowing up to 64 devices to generate interrupts
– Modern PC’s have a master + (at least) one slave

Interrupting Device
Slave

slave PIC’s
INTR signal

CPU Master . . .

Slave
PIC

g

interrupt signals from devices

INTR

PIC

Interrupting Device

bus
value exchanged during interrupt

acknowledge hand-shake

SYSC3006 28

Interrupt type is read from data bus.

The PC configuration of 80x86 and 8259 PIC

(NB The PC is one particular configuration of 8086 and PIC)
TimerIR0 T 08h

8086

8259
PIC

. . .

IR0
IR1
IR2
IR3
IR4

Keyboard

Type-08h

Type-09h
processor

INTR
LPT1
P i t

IR4
IR5
IR6
IR7

Type-09h

Type-0Fh
INTR

bus

Printer

Interrupt type

During power-up, BIOS programs (initialises) the master PIC:

bus

SYSC3006 29

IR0 Æ IR7 mapped to interrupt types 08h Æ 0Fh

PC Example : Keyboard

• Assume interrupts are enabled (assume IF = 1)
• When the keyboard hardware logic asserts IR1 at PIC, the PIC

generates INTR signal to the processorgenerates INTR signal to the processor
– During interrupt acknowledge, PIC identifies interrupt

source as type 9
The CPU executes the INT 9h behaviour

Interrupts
disabled
when ISR – The CPU executes the INT 9h behaviour

• Saves the flags
• Clears IF and TF (Disabling interrupts at processor)

begins
execution

• Saves CS and IP
• Reads the interrupt-type = 9h from the Data bus and

vectors to the ISR pointed to by the double word at
address of 0 : 9h*4 in Vector Table (memory)

• Execution of ISR 9 is caused by hardware interrupt mechanism
– No software involved in the invocation of ISR 9 !

SYSC3006 30

No so twa e vo ved in the invocation o S 9 !

Some (as yet) Unanswered Questions:

1. If two devices generate interrupt signals at the same time,
which ISR should be executed first?

order?
2. If the CPU is executing an ISR, and a second device interrupts,

when should the second ISR be executed?

order?

interrupting an ISR?

not possible unless ISR
re-enables interrupts !

i.e. IF = 1

• When IF=0, no further (maskable) interrupts are accepted.
• NMI is always accepted regardless of IF.

SYSC3006 31

y p g

Interrupt Priority

• Interrupting Devices are assigned priorities
– Higher priority devices take precedence over lower priority

devicesdevices
– Priority is applied whenever interrupts coincide

• When multiple interrupts occur at the same time
h i hil ill i h S f• When new interrupts occur while still processing the ISR of

previous interrupts.
• Typically, interrupt controllers manage priority issues.

– In PC’s
• The devices have pre-configured connections to PIC

– Timer is always IR0 and Keyboard is always IR1Timer is always IR0 and Keyboard is always IR1
• DOS programs the 8259A to assign priority based on the

device connection
– IR0 == highest priority and IR7 == lowest priority

SYSC3006 32

– IR0 == highest priority and IR7 == lowest priority
the lower the number,
the higher the priority

Interrupt Priority Scenarios

1. If two devices generate interrupt signals at the same time,
which ISR should be executed first?

Time

IF=1 IF=0 IF=0 IF=1
IF=1

IF=0 IF=0
IF=1

IF=1

Main INT 8 ISR INT 9 ISR Main INT 9 ISR INT A ISR Main
IRETIRETIRET IRET

IR0 (= 08h)

IR1(= 09h)

IR1 (= 09h)

IR2 (= 0Ah)

SYSC3006 33

Interrupt Priority Scenarios
2 If th CPU i ti ISR d d d i i t t2. If the CPU is executing an ISR, and a second device interrupts,

when should the second ISR be executed?
• If a higher priority interrupt follows a lower priority, the PIC

t th i t tgenerates another interrupt.

With STI in ISRNo STI in ISR

IF 1 IF 0 IF 0 IF 0

Main INT 9 ISR INT 8 ISR Main INT 9 INT 8 ISR Main9 ISR

IF=1 IF=0 IF=0 IF=1
IF=1

IF=1
IF=0

IF=1 IF=1

IRET IRET

IF=1

STI STI STI

IF=0 IF=0

IRET IRET

Th PIC ill t t ll hi h i it i t t t i t t

IR1 IR0 IR1 IR0

IRET IRET IRET IRET

• The PIC will try to allow a higher priority interrupt to interrupt
a lower priority ISR !
– The second interrupt will not be recognized by the

til i t t bl d til IF 1

SYSC3006 34

processor until interrupts are re-enabled …. until IF = 1
When is this ?

Interrupt Priority Scenarios

• If a lower priority interrupt follows a higher priority the PIC• If a lower priority interrupt follows a higher priority, the PIC
maintains the priority .

With STI in ISRNo STI in ISR

Main INT 8 ISR INT 9 ISR Main INT 8 ISR INT 9 ISR

• It “remembers” (latches) the lower priority interrupt until the
high priority ISR is finished … regardless of interrupts being

IR0 IR0IR1 IR1

g p y g p g
enabled/disabled

• When finished, PIC generates another interrupt … on behalf of
the lower priority device.

• Hmmm…. Two More Questions:
1. How many interrupts can the PIC remember?
2 How does the PIC know when the higher priority ISR is

SYSC3006 35

2. How does the PIC know when the higher priority ISR is
finished?

Pending InterruptsPending Interrupts

• Terminology: A “Pending” Interrupt is an interrupt signal that
i l t h d h i th t b t h t t bis latched somewhere in the system, but has not yet been
acknowledged by the processor
– Interrupts can be pending at device and / or at the PIC

• Example : The Intel 8259 has an internal 8-bit register
– one bit per IR inputp p
– When IR is asserted, the associated bit is set
– When the interrupt on IR is acknowledged, the associated bit

is clearedis cleared
– In summary, the PIC has 1-bit memory for each IR

• It can remember up to 1 pending interrupt for each IR

SYSC3006 36

ÖTotal 8 different IRs

End-of-Interrupt (EOI)

• After sending an interrupt to processor, PIC needs to know
when it is safe to generate a lower priority interrupt

the PIC requires feedback from the CPU– the PIC requires feedback from the CPU

• End Of Interrupt (EOI) is a command sent to PIC from the CPU
– It is not part of the INTA cycle; it is not done in hardware
– It is a software command; ie. something your program must

dodo.

SYSC3006 37

PIC Programmer’s Model

Simple version here –
on a need-to-know basis.
Complete details in ELEC 4601PIC Programmer s Model

• The PIC is an I/O Device so it has I/O port addresses

p

The PIC is an I/O Device so it has I/O port addresses
– It appears as two 8-bit ports:

Interrupt Mask Register (Port 21H) read/write
– Allows us to enable/disable individual interrupts at the PIC

bit i = 1 IRi is masked (not recognized by the PIC)– bit i = 1 IRi is masked (not recognized by the PIC)
– bit i = 0 IRi is unmasked (recognized by the PIC)

Command Register (Port 20H) - write-only
W it 20H t i f PIC f d f i t t (EOI)

Beware : mask at PIC Æ bit = 1 mask at processor Æ IF = 0

SYSC3006 38

– Write 20H to inform PIC of end of interrupt (EOI)

PC Keyboard : I/O Programmer’s Model

• The PC keyboard is interrupt driven
– It can’t run in polled mode because there is no status port

It i t d t IR1 f th PIC th h 8255 P ll l– It is connected to IR1 of the PIC, through 8255 Parallel
Peripheral Interface (PPI)

• The 8255 is our programming interface to the keyboard

• There are 2 interrelated 8255 PPI ports:
Data Port (Port PA) : I/O address 60HData Port (Port PA) : I/O address 60H
Control Port (Port PB) : I/O address 61H

SYSC3006 39

PC Keyboard : I/O Programmer’s Model

• The keyboard data port (Port A) has dual functionality :
– Dual = Different values are read from the same port!

Th l d d d th tti f P t B Bit 7!– The value read depends on the setting of Port B, Bit 7!
• Port B, Bit 7 = 0 “Scan Code” is read.

(ie. identify the keystroke)(y y)
• Port B, Bit 7 = 1 “Configuration switch data” is read

• In this course, we never use the configuration data, so why don’t
we just set Port PB, Bit 7 = 0 and leave it there ?

SYSC3006 40

PC Keyboard : Hardware Requirement

• The keyboard will not send the next scan code until the previous
scan code has been “acknowledged”
T k l d d• To acknowledge scan code:
– PB bit 7 must be toggled from 0 Æ 1 and then 1 Æ 0

• CAREFUL! All bits in PB have important values
• To acknowledge:

1. Read Port B : PB value1. Read Port B : PB_value
2. Force bit 7 = 1: PB_value OR 80H
3. Write modified value back to Port B
4 W it i i l l (ith bit 7 0) b k t P t B4. Write original value (with bit 7 = 0) back to Port B

• NB. The keyboard hardware is initialised when DOS boots

SYSC3006 41

PC Keyboard : Scan Codes

• The scan code is a code sent from keyboard whenever its keys
change state

S d NOT ASCII d !!– Scan codes are NOT ASCII codes!!
• The scan codes runs from 0 – 53H

– e.g. “A” key scan code = 1EH
• Scan codes are “make/break coded”

– one code sent when key is pressed (make)
– different code sent when key is released (break)different code sent when key is released (break)
– The only difference is the most-significant bit

• If MSBit = 0Æ key was pressed
If MSBit 1Æ k l d• If MSBit = 1Æ key was released

– Example : Letter A
• Make ‘A’ = 1EH (0001 1110b)

SYSC3006 42

• Break ‘A’ = 9EH (1001 1110b)

Keyy

Scan code

SYSC 3006 43

PC Keyboard : Multiple Key CombinationsPC Keyboard : Multiple Key Combinations

• Multiple key combinations
– <SHIFT> ‘A’
– <CTRL><ALT>

• Software must manage multiple key combinations.
• Left Shift key press, make code = 2AH
• Right Shift key press make code = 36H• Right Shift key press, make code = 36H
• Ctrl key press, make code = 1DH
• Alt key press, make code = 3AH

• Keyboard software must track the state of control keys for
correct interpretation

SYSC3006 44

Example : A Simple Keyboard DriverExample : A Simple Keyboard Driver

• Requirements
– prints uppercase char’s representing keys pressed

ALT SHIFT CTRL k (d f th) t– ALT, SHIFT, CTRL keys (and a few others) are not
managed

– exit the program by resetting
– ISR ignores key released scan codes
– uses lookup table to convert key pressed scan code to

uppercase ASCII representationuppercase ASCII representation

SYSC3006 45

Example : A Simple Keyboard Driver

• Program architecture
Th d ti h b di id d b t th i d– The duties have been divided between the main program and
keyboard ISR

• Keyboard ISR gathers data as user enters keystrokes
• Main prints the keystrokes

– The data is shared between the two threads in a
variable KEYBOARD_CHARACTER (global variable)

• The variable is initialised to 0FFh to represent “no data”
– (0FFh is not an ASCII code for any key)

• The keyboard ISR puts ASCII code in the variableH d The keyboard ISR puts ASCII code in the variable
• Main program polls the variable until valid data is found;
• When main reads ASCII code, it must reset the variable

to “no data” value

How does
it know
when ?

SYSC3006 46

to no data value

Keyboard : Code FragmentsKeyboard : Code Fragments

LF EQU 0AH
CR EQU 0DH

.data shared variable initialized to “no data” value

KEYBOARD_CHARACTER DB 0FFH
SCAN_TABLE ; lookup table

DB 0,0,'1234567890-=',8,0
Use 0 for keys to ignore

DB 'QWERTYUIOP[]',CR,0
DB 'ASDFGHJKL;',0,0,0,0
DB 'ZXCVBNM,./',0,0,0, , , ,
DB ' ',0,0,0,0,0,0,0,0,0,0,0,0,0
DB '789-456+1230'

SYSC3006 47

Keyboard : Code Fragments.code
MAIN PROCMAIN PROC

CLI ; Disable ints while installing ISR
; Install the Keyboard ISR at Interrupt Type = 9
; Enable keyboard interrupts at the PICy p
STI ; Enable interrupts at the processor

FOR_EVER: ; press reset to exit ☺
CALL GET_CHAR ; returns ASCII in AL
PUSH AX ; save char & pass parameterPUSH AX ; save char & pass parameter
CALL DISPLAY_CHAR ; displays char in AL
POP AX ; restore char & clear stack
CMP AL , CR ; check for Enter key
JNZ REPEAT_LOOP
MOV AL , LF ; if Enter – do LF too !
PUSH AX
CALL DISPLAY CHARCALL DISPLAY_CHAR
ADD SP, 2

REPEAT_LOOP:
JMP FOR_EVER

SYSC3006 48

MAIN ENDP

Keyboard ISR : Code Fragments

GET_CHAR PROC NEAR
; poll until char received from ISR; poll until char received from ISR
; check for “no data” value
CMP KEYBOARD_CHARACTER , 0FFH
JZ GET_CHAR Is this a critical region?

Should it be protected?

; get ASCII character
MOV AL , KEYBOARD_CHARACTER ; global variable from KISR
MOV KEYBOARD CHARACTER , 0FFHOV O _C C , 0
RET

GET_CHAR ENDP

SYSC3006 49

Keyboard : Code Fragments
KISR PROC FAR

; Standard ISR Setup (Save registers, including DS)
MOV AX, @data
MOV DS, AX

IN AL , 60H ; AL = scan code

; Acknowledge Keyboard : Toggle PB bit 7
PUSH AX ; save scan code
IN AL , 61H ; read current PB value
OR AL , 80H ; set bit 7(= 1)
OUT 61H , AL ; write value back + bit 7 = 1, ;
AND AL , 7FH ; clear bit 7 (=0) – back to original
OUT 61H , AL ; write original value back
POP AX ; restore scan code

SYSC3006 50

;

Keyboard : Code Fragments

TEST AL , 80H ; ignore break codes
JNZ SEND_EOI
; Convert make code to ASCII; Convert make code to ASCII
LEA BX , SCAN_TABLE
XLAT
CMP AL 0 k i d !CMP AL , 0 ; some keys are ignored !
JZ SEND_EOI
; Put ASCII encoded value in shared variable
MOV KEYBOARD_CHARACTER , AL

SEND_EOI:
MOV AL 20HMOV AL , 20H
OUT 20H , AL
; Standard ISR exit code (restore all registers)
IRET

SYSC3006 51

IRET
KISR ENDP

Example : Polled Timing Loop

• Programs must often manage time (eg. timing constraints)
– Example : In animation, motion is timing dependent

E l Ch i di l ft fi d ti– Example : Changing display after fixed time,
• To clear a dialog box.
• To turn on/off a LED for the floppy disk access light.

• In a program, what is time?
• Various schemes are used to manage time : hardware / software

SYSC3006 52

Software Solution : Polled Timing Loop

• Example : A software-only solution for a timing loop
– Write a loop that simply counts to waste time (busy waiting)p p y (y g)
for (int i = 0; i < 10000; i++)
{
for (int j = 0; j < 10000; j++)for (int j = 0; j < 10000; j++)
{ } // empty body

}
• Advantage: It is simple software; No explicit h/w involved
• Disadvantage:

– Timing is based on the execution speed of the processor.Timing is based on the execution speed of the processor.
– It is not portable because execution speed varies on different

machines
• download old DOS games ??

SYSC3006 53

• download old DOS games ??

Hardware Solution : Hardware-Based Timing

• Requirement : The computer system includes hardware dedicated to
managing time
– We will introduce the timing hardware as a separate I/O device Integration

– Often, there is no external device; it is just internal component but
still with usual programmer’s model of an I/O device

• oscillator signal at

Timer
Component

counts
ticks

known frequency

• Timing Component :
– Input Signal : oscillator circuit generates “ticks” at a known

frequency – e.g. square wave at some frequency
– It “counts” ticks (edge-to-edge) on the input signal

• Since frequency of ticks is known, then counting a fixed
b h f k f i

SYSC3006 54

number represents the passage of a known amount of time

Intel 8253 Programmable Interval Timer (PIT)

• One 8253 component has 3 independent timer components
– Each timer counts ticks on the same master clock inputp
– Each timer generates its own output signal

• Each timer can be programmed for one of 6 modes
(mode 0-5) that determine the shape of the output(mode 0 5) that determine the shape of the output
signal.

8253
i 0

3 independent
output signals

timer 0
16-bit counter

timer 1
Input Clock
(crystal oscillator) 16-bit counter

timer 2
16-bit counter

(crystal oscillator)

SYSC3006 55

16 bit counter

Basic Timing Function of 8253

• Each timer’s counter is a 16-bit unsigned value
Ti d t t ti k th i t l k• Timer decrements counter every tick on the input clock
(typically from crystal oscillator)

• When counter reaches zero, its output signal changes (if 1, now
0 if 0 1)0; if 0, now 1)

• Some “modes” automatically reload counter and start again …
leading to digital patterns.

16-bit Counter (decrements)

16-bit Reload Value

0 or 1

• Hence, the counter value is related to the period of the output
signal

()

SYSC3006 56

signal

Square Wave Generator Mode (Mode 3)

• In mode 3, a 8253 timer component generates a square wave on
its output signal.
– Square wave : approx. 50% duty cycle
– Each time master clock input signal “ticks”, the timer’s

counter is decrementedcou e s dec e e ed
– When the counter reaches half of original value, the output

signals is toggle
Wh t h 0 th t t i l i t l d d th– When counter reaches 0, the output signal is toggled and the
counter is reloaded.

– last value written to counter is used as reload (original) value

16-bit Counter = 4, 3, 2, 1, 0

16-bit Reload Value = 4
4 3 2 1 0 4 3 2 1 0

SYSC3006 57

, , , ,
¼ of input frequency

Square Wave Generator Mode (Mode 3)Square Wave Generator Mode (Mode 3)

• In Mode 3, the timer’s output is a scaled down version of the
input clock
– There is one output cycle for every n input cycles where n is

called the “scaling factor”

output freq. = input freq. ÷ scaling factor

• Usually, we need to find the scaling factor to program the timer
component

Need to determine the initial counter value that will generate– Need to determine the initial counter value that will generate
a desired output frequency

scaling factor = input freq. ÷ output freq.

SYSC3006 58

8253 PIT Programmer’s Model8253 PIT Programmer s Model

• The PIT is an I/O device with four 8-bit ports (registers)
– On the PC: port addresses are 40H Æ 43H

• There are three 8-bit Data Registersg
Timer 0 Counter Register 40H
Timer 1 Counter Register 41H
Timer 2 Counter Register 42HTimer 2 Counter Register 42H

• Question : How can 8-bit data registers be used to initialise 16-
bit internal counters ?

SYSC3006 59

8253 PIT Programmer’s Model8253 PIT Programmer s Model

Control Register (43H) write-only

SC1 SC0 RL1 RL0 M2 M1 M0 BCD

7

0

timer
l t

read/load mode

SC1 SC0 timer select
0 0 select timer 0

select sequence

0 0 select timer 0
0 1 select timer 1
1 0 select timer 2

SYSC3006 60

8253 PIT Programmer’s Model8253 PIT Programmer s Model

RL1 RL0 read/load sequence
0 1 read/load LSB only
1 0 read/load MSB only
1 1 read/load LSB first then MSB1 1 read/load LSB first, then MSB

M2 M1 M0 mode (6 modes)
1 1 d 3 h d ’x 1 1 mode 3 square wave generator where x = don’t care

(other modes in ELEC-4601)

BCD (binary coded decimal)
0 16 bit binary count
1 BCD count (4 decimal digits)

SYSC3006 61

C cou (dec d g s)

8253 Hardware Configuration and Limits on the PC

• On a PC, the 8253 is wired such that
– master input signal = 1.19318 MHz Generate timer interrupts!

– output from timer 0 connected to IR0 on PIC

• The scaling factor is an unsigned number from 0 FFFFhThe scaling factor is an unsigned number from 0 … FFFFh
(65,535) but …0000H = 65,536 (i.e. 10000H, with implied MS
bit)

• Question : What is the maximum frequency ?
• Question : What is the minimum frequency ?

min output = input ÷ max scaling factor
= 1.19318 MHz ÷ 65,535

SYSC3006 62

= 18.2 Hz

Hardware Timing Example : DOS Time-of-Day

• The DOS maintains the time-of-day feature HH : MM : SS
– > date
– Provide file timestamps– Provide file timestamps.

• DOS uses Timer 0 to provide a real-time clock interrupting at a
frequency of 18 2 Hzfrequency of 18.2 Hz.
– When DOS boots, Timer 0 is programmed for Mode 3

(square wave) and an “initial time” is loaded
Th Ti 0 ISR “ k ” (18 2 H)– The Timer 0 ISR counts “ticks” (at 18.2 Hz)

– “initial time + ticks ” is used to calculate “current” the time-
of-day

SYSC3006 63

Hardware Timing Example : 20Hz Real-Time Clock

• Example : Devise a program that provides replaces the DOS
time-of-day to provide a “ticksCount” = number of 20Hz ticks

Program timer to interrupt at 20 Hz– Program timer to interrupt at 20 Hz
– Timer ISR keeps running tick count of 20 Hz ticks
– Main program can use tick count to provide timing

information

SYSC3006 64

20Hz Real-Time Clock : Before Programming20Hz Real Time Clock : Before Programming

1. Develop the Program Architecture
– Two software components - main program and timerISR –

will share a 32-bit unsigned count variable
– timerISR increments count every “tick” Why 32-bit ?y
– Main program reads count whenever it needs to

• Will encapsulate in a subroutine : double getTicks()

Main Program
Initialize system
do work (usually a loop)
{

timerISR

count++count

{
current= getTicks()

}
exit

SYSC3006 65

exit

20Hz Real-Time Clock : Before programming

2. Determine values for programming the 8253 Timer 0:
a) Write to the timer’s control register: (at 43H)

SC1 SC0 00 (l t ti 0)SC1 SC0 = 00 (select timer 0)
RL1 RL0 = 11 (LS byte then MS byte)
M2 M1 M0 = 011 (square wave): mode 3

– could also use M2 M1 M0 = 111
BCD = 0 (16 bit binary count)

Control Register : 00 11 011 0 Æ 36H

select load mode BCD

SYSC3006 66

20H R l Ti Cl k B f i20Hz Real-Time Clock : Before programming

b) Determine the initial (reload) counter value:
scaling factor = input freq. ÷ output freq.
= 1.19318 MHz ÷ 20 Hz
= 59,659 (decimal) = 0E90BH

• After writing to control register, write timer 0 counter value:
(at 40H)
– First write LSB: 0BH
– Then write MSB: E9H

SYSC3006 67

20Hz Real-Time Clock : Code Fragments20Hz Real-Time Clock : Code Fragments

; Symbolic Definitions

; PIC registers and constants
PIC COMMAND REG equ 20H ; Command registerPIC_COMMAND_REG equ 20H ; Command register
PIC_IMR_REG equ 21H ; Interrupt mask register
EOI equ 20H ; EOI to port 20h (Command Register)

;Timer registers and constants
TIMER_0_REG equ 40H ; Timer 0 counter data register
TIMER_CTRL_REG equ 43H ; Control register
TIMER_0_MODE equ 36H ; = 0011 0110b

SYSC3006 68

20Hz Real-Time Clock : Code Fragments

.data
; Program modifies state of system; need variables to save

t t t ll t i f t t it; state to allow restoring of state upon exit
old_pic_imr db ?
old int8 vector offset dw ?_ _ _
old_int8_vector_segment dw ?

; 32-bit count: shared by ISR and main program
count_low dw ?
count high dw ?

SYSC3006 69

count_high dw ?

20Hz Real-Time Clock : Code Fragments
.code
MAIN PROC
; Initialize data structures used by ISR

SUB AX , AX ; trick! AX = 0 !, ;
MOV count_low , AX ; tick count = 0
MOV count_high , AX

CLI ; Disable interrupts while installing and setting up timer. Why ?CLI ; Disable interrupts while installing and setting up timer. Why ?
; Install Timer ISR at interrupt type = 8 (As before)
; Program timer 0 to interrupt at 20 Hz

MOV AL TIMER 0 MODE ; Control RegisterMOV AL , TIMER_0_MODE ; Control Register
MOV DX , TIMER_CTRL_REG
OUT DX , AL
MOV AL 0BH ; scaling factor = E90BHMOV AL , 0BH ; scaling factor = E90BH
MOV DX , TIMER_0_REG
OUT DX , AL ; write low byte
MOV AL 0E9H

SYSC3006 70

MOV AL , 0E9H
OUT DX , AL ; write high byte

20Hz Real-Time Clock : Code Fragments

; Enable TIMER interrupts at the PIC (As before)
MOV DX , PIC_IMR_REG
IN AL DXIN AL , DX
MOV old_pic_imr, AL ; for later restore

AND AL , 0FEH ; clear bit 0 of IMR
OUT DX , AL

; Enable interrupts at the processor
STISTI

forever: …. ; Main loop of program
CALL get_ticks ; Returns tick count in dx:ax

U l d d; Use value as needed
JNE forever

exit : ; Restore state before returning to DOS (not shown)

SYSC3006 71

timerisr PROC FAR
STI ; Re-enable ints

Event-driven thinking !

PUSH DS ; Save EVERY register used by ISR
PUSH DX
PUSH AX What are implications of this?

Is it really needed?MOV AX , @data
MOV DS , AX
ADD count_low,1
JNC t1

Is it really needed?

event-
d iJNC t1

INC count_high
t1: CLI ; Lock out all ints until IRET

MOV AL EOI ; Send EOI to PIC

driven
thinking !

MOV AL , EOI ; Send EOI to PIC
MOV DX , PIC_COMMAND_REG
OUT DX , AL
POP AX ; Restore registers
POP DX
POP DS
IRET

i i ENDP

SYSC3006 72

timerisr ENDP How do interrupts get re-enabled? STI?

20H R l Ti Cl k C d F t20Hz Real-Time Clock : Code Fragments

get ticks PROC NEARget_ticks PROC NEAR
CLI ; Lock out ints while accessing shared data

; (ensure mutual exclusion)

MOV DX , count_high ; Return 32 bit count
MOV AX count low

event-
driven
thinking ! MOV AX , count_low

STI ; Re-enable ints
RET

get_ticks ENDP

SYSC3006 73

20Hz Real-Time Clock : A Timing Analysis

• CPU Utilization Diagram

main init timerISR main timerISR main timerISR main …

time

Timer 0 tick Timer 0 tick Timer 0 tick

Wh t i thi l ?What is this value ?

SYSC3006 74

20Hz Real-Time Clock : A Timing Analysis

• Thread Diagram
main ISRTime

i iTi 0 init
main work

count++

Timer0
signal

count++
What is this value ?

What does count
represent ?

SYSC3006 75

Event-Driven Thinking : An Interference Scenario

• Suppose CLI / STI protection not there , and:
count_high = 0010H
count_low = FFFFH

• Suppose main program was executing getTicks() with the

What’s special about this value ?

pp p g g g ()
following:

MOV DX , count_high
MOV AX , count lowMOV AX , count_low

• Suppose Timer interrupt occurs during /after MOV DX ,
count highcount_high
– At this point, DX = 0010H
– For count to be correct, AX = FFFFH

SYSC3006 76

• BUT . . .

Event-Driven Thinking : An Interference ScenarioEvent-Driven Thinking : An Interference Scenario

• In response to the interrupt, timerISR increments count, to
become:

count_high = 0011H
count low = 0000H_

• When main program resumes, it executes MOV AX, count_low
(DX = 0010h, from before interrupt)
AX = 0000H (from after interrupt)AX = 0000H (from after interrupt)

• The value returned from get_ticks() is:
– count_high before Timer interrupt DX = 0010H
– count_low after Timer interrupt AX = 0000H

SYSC3006 77

I/O Program MetricsI/O Program Metrics

• Definition : Transfer Rate
– Number of bytes per second transferred between CPU and

device
Maximum transfer rate characterizes the capability of the I/O– Maximum transfer rate characterizes the capability of the I/O
program

• Definition : Latency (Response time)
– Delay from the time the device is ready until the first data

byte is exchanged.

SYSC3006 78

Polled Input/OutputPolled Input/Output

• CPU controls the synchronization with devicey
– Execution is simple : sequential control flow

• Polled transfer rates are usually reasonable
i f i h i h h k (– Maximum transfer rate is the time to execute the check (once

the device is ready) and then transfer
• Polled latency is usually unpredictabley y p

– Depends on the “other works” being done between checks
– … unless CPU works only on polling, in which case CPU is

dedicated to I/O and cannot perform any other workdedicated to I/O and cannot perform any other work.
• What if other interesting events happen on other devices ?

SYSC3006 79

Interrupt-Driven Input/Output

• Device signals CPU of a new I/O event
– Event-driven programming

• In general, interrupts improve the latency of a system
– Interrupt latency is deterministic

• Interrupt transfer rates includes interrupt overheadInterrupt transfer rates includes interrupt overhead
– Can be slower than polled
– Depends …. If amount of data transferred per interrupt

exceeds the overhead of switching tasksexceeds the overhead of switching tasks
• Advantage : CPU can be doing other work whenever there is no

I/O event.
S ft t t i l d t k i t d– Software structure remains clean and task-oriented.

– Although the time to complete the other work is marginally
increased, depending on the number of interrupts.

SYSC3006 80

