CARLETON UNIVERSITY

Department of Systems and Computer Engineering

SYSC 4600 – Digital Communications – Fall 2009

Assignment #3

Posted on Wednesday, November 4th, 2009

Due on Friday, November 13th at 4 pm in the assignment box.

Marking Scheme: Q1[25%], Q2[25%], Q3[50% + 5% bonus for constellation (e)].

Question 1

A communication system uses two signals $s_1(t) = a\phi(t)$ and $s_2(t) = (a+1)\phi(t)$ to transmit binary one and zero bits respectively, each equally likely, where a is a real number, and $\phi(t)$ is a bandpass signal with energy 1. The communication is corrupted by AWGN with PSD $N_0/2$ and received via a coherent receiver with filter matched to $\phi(t)$.

- 1. Assuming ASK transmission:
 - (a) Find a.
 - (b) What is the average energy per bit \mathcal{E}_{b} ?
 - (c) What is the probability of bit error $P_{\rm e}$ as a function of $\mathcal{E}_{\rm b}/N_0$? You may use formulas from class.
- 2. Answer the same questions for PSK transmission.
- 3. Now for any *a*:
 - (a) Find $P_{\rm e}$ as a function of $\mathcal{E}_{\rm b}/N_0$ and a.
 - (b) What is the choice of a that gives the smallest $P_{\rm e}$ for a given $\mathcal{E}_{\rm b}/N_0$? (Proof required)

Question 2

Consider a 4FSK system which uses four frequencies $f_1 = 1$ GHz, $f_2 = 1.02$ GHz, $f_3 = 1.05$ GHz, $f_4 = 1.09$ GHz. The four symbols are therefore $s_i(t) = A \cos(2\pi f_i t)$, $0 \le t \le T_{\rm S}$. Assume A = 1.

1. Assuming $T_{\rm S} = 25$ ns, are the four signals orthogonal?

2. Find the lowest $T_{\rm S}$ that ensures all four signals are orthogonal. What is the corresponding transmission bit rate?

Hint: For both questions, it is best to find $\langle s_i, s_j \rangle$ for general f_i, f_j .

Question 3

Consider the 6 following signal constellations, with each division representing one unit:

(Note: you may get full marks if you ignore constellation (e), which is worth bonus marks)

- 1. For each of the 5(6) constellations, find:
 - (a) The average energy per symbol \mathcal{E}_{S} and the average energy per bit \mathcal{E}_{b} .
 - (b) Assuming that the probability of error is dominated by errors between the nearest points in the constellation, find d_{\min} the smallest distance between two points. Then find the probability that a given symbol is received with error, using the approximation

$$P_{\rm e}({\rm symbol}) \approx \frac{1}{2} \operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_0}}\right)$$

to find $P_{\rm e}(\text{symbol})$ in the form $\frac{1}{2} \operatorname{erfc} \left(\alpha \sqrt{\frac{\mathcal{E}_{\rm b}}{N_0}} \right)$ (basically, you must find the constant α for every constellation).

- 2. If we want to achieve a particular $P_{\rm e}({\rm symbol})$, sort the constellations from most energy-efficient to least. Justify your answer.
- 3. Now assume that the symbols are grey–coded, meaning that (practically) every symbol error results in one bit error only. For each of the 5(6) constellations:
 - (a) Find the (approximate) probability $P_{\rm e}({\rm bit})$ that a given received bit is in error, as a function of $\mathcal{E}_{\rm b}/N_0$.
 - (b) Assuming $\mathcal{E}_{\rm b}/N_0 = 13 \,\mathrm{dB}$, find the numeric value of $P_{\rm e}({\rm bit})$ (hint: use the *MATLAB* function *erfc*).
- 4. When $\mathcal{E}_{\rm b}/N_0 = 13$ dB, sort the constellations from lowest $P_{\rm e}({\rm bit})$ to highest.