## An Efficient Approach to Per-Flow State Tracking for High-Speed Networks

Brad Whitehead, Chung-Horng Lung Dept. of Systems and Computer Eng. Carleton University, Ottawa, Canada Peter Rabinovitch Alcatel-Lucent Ottawa, Canada

## Outline

- Motivation
- Background
- Two main existing approaches:
  - BDFT Binned Duration Flow Tracking
  - Fingerprint-Compressed Filter Approximate Concurrent State Machine (FCF ACSM)
- Proposed BDFT Hybrid
- Computational Analysis
- Experimental Analysis
- Conclusions

## Motivation

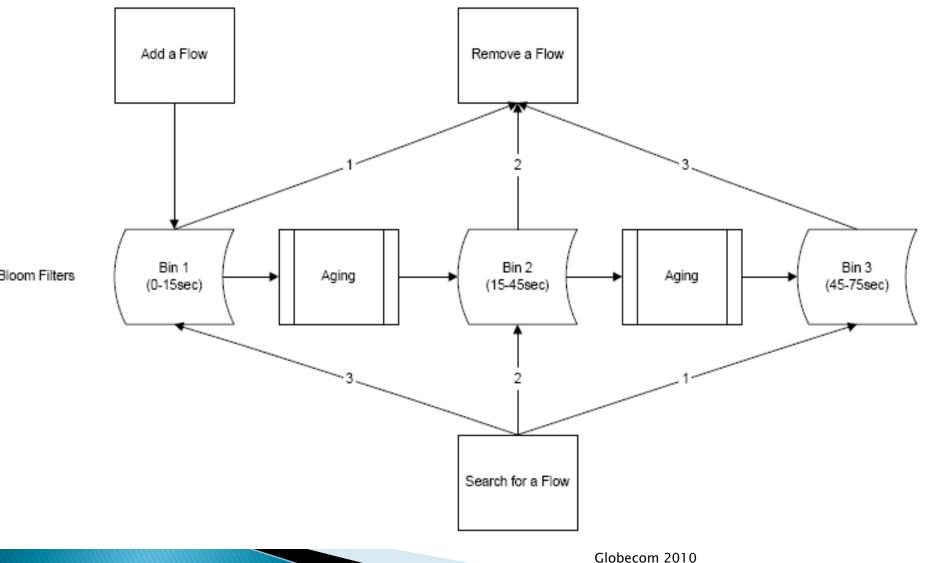
- Network monitoring is crucial.
- Obtaining per-flow information, e.g., flow state, has become increasingly important.
- High-speed routers have limited CPU and memory resources.
- Packet sampling, e.g., 1 in 20 sampling, normally has low accuracy.
- BDFT is CPU–efficient; FCF ACSM is memory– efficient.
- Need a time and space efficient method of tracking per-flow state.

## Background

- Not much work on tracking per-flow state.
- NetFlow is popular, but has scalability issue.
- Bloom filters or its variants are common in network monitoring due to the efficiency.
  - Space-code Bloom filters
  - Time-decaying Bloom filters
  - Shown to be able to scale to OC-192 speeds.
- Whitehead, et al.
  - Binned Duration Flow Tracking (BDFT)
    - CPU-efficient but requires larger memory space
- Bonomi, et al.
  - Fingerprint-Compressed Filter Approximate Concurrent State Machine (FCF ACSM)
    - Memory-efficient but has higher computational cost
- SCD (Symmetric Connection Detection) is adopted for this paper to filter out unsuccessful flows.

## **Tracking State with Bins**

- Challenges of flow tracking in practice:
  - Every packet
  - Arbitrary state transitions
- Observations:
  - Many flows share a common state
  - State transitions happen for many flows at the same time
- Idea of grouping flows into "bins": a group of flows sharing the same state -> duration of flows
  - Much simpler state updates and smaller number of states

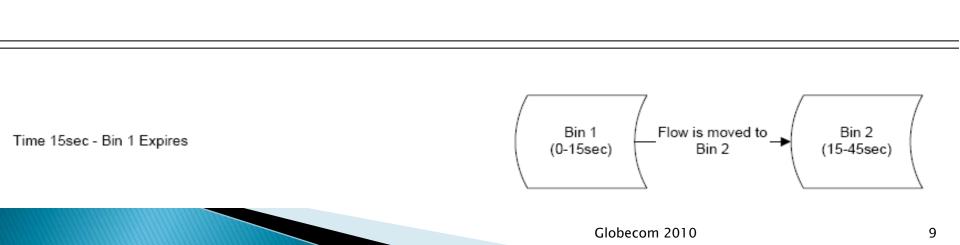

### BDFT - Binned Duration Flow Tracking

- BDFT is designed to track the approximate duration of all TCP flows seen on a highspeed router.
- Bins are the only data storage component of BDFT.
- Counting Bloom filters are adopted instead of just binary Bloom filters:
  - Replacing the flow ID information with hashes
  - Hashes are used to index counters in an array, incrementing them on insert (TCP SYN), and decrementing them on delete (TCP FIN or RST).

## **BDFT - Main Components**

- Add a flow
  - Add to Bin #1 ( at 2<sup>nd</sup> step of TCP 3-way handshake).
  - Unestablished flows are not added using SCD
  - k hashes are created from flow ID; increment counters
- Remove a flow
  - When the TCP FIN or RST flag is set, the flows are removed
  - Search the flow (from the shortest-duration bin)
  - Decrement counters
- Aging: a key step
  - Moving all flows in a shorter-duration (configurable time range) bin to the next longer-duration bin
  - No flow-specific info, e.g.. Flow start time, is stored
- Search for a flow
  - Based on requests
  - Starting with the oldest bin first and moving to younger bins sequentially to reduce chances of false positive

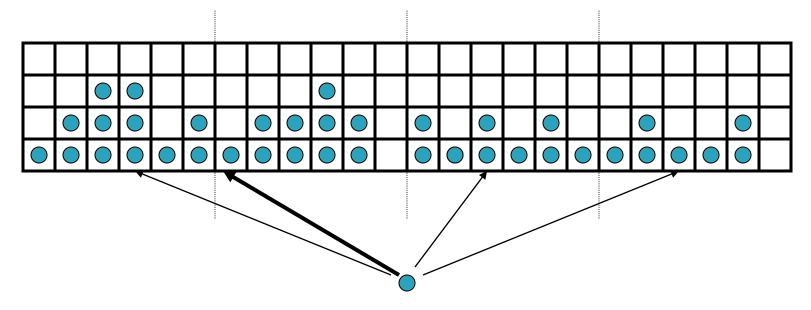
## **BDFT Operations**




## **BDFT – Aging Process**

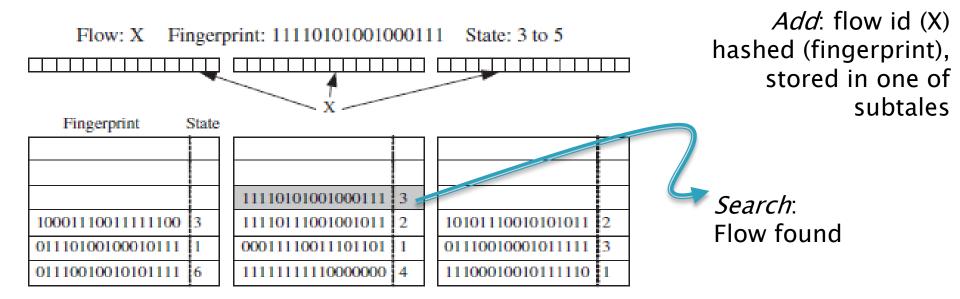
Time 0 - Bins Expire - Bin 1 contains no flows




Time 10sec - New Flow arrives and is added to Bin 1 Bin 1 (0-15sec)



## FCF ACSM


- Bonomi, et al. present 3 methods of tracking per-flow state
- FCF-ACSM is the most efficient
  - Employ d–left hashing
    - Accurate and good memory efficiency
    - Near perfect hash, even distribution of items in the buckets
    - Higher computational requirement

### Multiple Choices: *d*-left Hashing

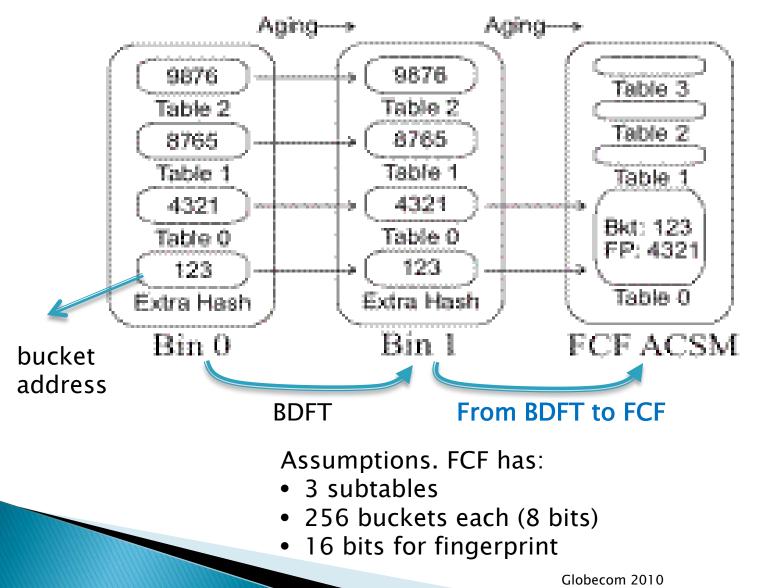


- Split hash table into *d* equal subtables.
- To insert, choose a bucket uniformly for each subtable.
- Place item in a cell in the least loaded bucket, breaking ties to the left.

## FCF ACSM – d–left



- Number of subtables or hash functions *d*;
- Number of buckets **b** of each subblock of the hash table
- The height **h** of each bucket
- The size **f** of the fingerprint in bits. x additional bits for each flow (to represent the state)
- Total space is dbh(f + x) bits for the hash table


### BDFT Hybrid - Bloom and D-left

 Objective is to take advantages of best features of BDFT (speed) and FCF ACSM (space)

#### Idea: replace older bins in BDFT with a single FCF ACSM

- BDFT: Short-lived flows in first few bins require frequent maintenance (add and remove operations)
   FCF-ACSM: long-lived but seldom changing flows
- Issue: aging of flows from BDFT to FCF ACSM

### **BDFT-H Example**



14

## **Computational Analysis**

| Name        | Operation                      | Mem. Reads               | Mem. Writes     | Branche      | s Total          |
|-------------|--------------------------------|--------------------------|-----------------|--------------|------------------|
| BDFT        | Insert                         | 3                        | 3               | 3            | 9                |
| FCF<br>BDFT | Insert<br><mark>Removal</mark> | 24<br>6                  | 3               | 29<br>6      | 54<br>15         |
| FCF<br>BDFT | Removal<br>Search (rai         | re) 21                   | 1<br>0          | 12<br>21     | 25<br>42         |
| FCF         | Search (ra                     | re) 12                   | 0               | 12           | 24               |
| BDFT<br>FCF |                                | iodic) 2000              | 1000<br>500     | 1000<br>2000 | 4000<br>4500     |
|             | H Aging (per<br>H Aging (to ɗ  | iodic) 1<br>d–left) 3250 | 1+memset<br>150 | 0<br>3000    | 2+memset<br>6400 |

• Insert + Removal (frequent operations): FCF 3.5 times more

- Search: FCF is faster
- BDFT-H: fast insert-remove of short lived flows and quick search for long-duration flows

Assumptions:

- 3 hash functions
- 6 cells/bucket
- Bloom filter size: 1000

Globecom 2010

## **Experimental Analysis**

#### Two traces

- CAIDA (C\_04): "dirty" traffic due to port scanning or DoS attacks
  NLANR (N\_12): clean traffic
- Characteristics for TCP control packets

| N 12 | As a % | of total | C 04 | As a % | of total |
|------|--------|----------|------|--------|----------|
|------|--------|----------|------|--------|----------|

#### Total established

| flows                        | 274,473 | 77.88% | 555,927   | 4.96% |
|------------------------------|---------|--------|-----------|-------|
| • Ave. active flows          | 11,284  |        | 901,245   |       |
| Timed out flows              | 430     | 0.16%  | 4376      | 0.78% |
| <ul><li>Unique IPs</li></ul> | 97,036  |        | 2,681,172 | 1     |

## **Experimental Setup**

- Distribution of flow durations BDFT
  - Estimation of the size of bins and total memory
  - In literature, 40% 70% of flows last < 2 seconds</li>
  - N\_12: 75% established flows < 2 seconds</li>
  - C\_04: 50% established flows < 2 seconds</li>
- Unsuccessful connections filtered out with Symmetric connection detection (SCD)
- Flows after 2 minutes with no activity are removed
- Tracking success: estimated flow duration result within 50% of the actual flow duration if > 30 sec
- 3 hash functions are used
- Filter size: 1000 for1<sup>st</sup> and 2<sup>nd</sup> filters

#### Experimental Results – BDFT Memory Usage vs. Accuracy

| Trace | <b>Memory</b><br>Usage<br>(bytes) | Accuracy                               |
|-------|-----------------------------------|----------------------------------------|
| C_04  | 90112                             | 95.46%                                 |
| C_04  | 180224                            | 99.19%                                 |
| C_04  | 360448                            | 99.87% <                               |
| C_04  | 720896                            | 99.97%                                 |
| N_12  | 2816                              | 96.85%                                 |
| N_12  | 5632                              | 99.79% <                               |
| N_12  | 11264                             | 99.98% 0.257 bits/flow 0.128 bits/flow |

#### Experimental Results – FCF ACSM Performance

| Trace | d-left<br>(d/b/h/f) | Memory<br>Usage | Accuracy                                          |
|-------|---------------------|-----------------|---------------------------------------------------|
| C_04  | 4/1024/6/16         | 67584           | 93.19%                                            |
| C_04  | 4/1024/9/16         | 101376          | 99.54%                                            |
| C_04  | 4/2048/6/16         | 135168          | $99.95\% \longrightarrow 0.096 \text{ bits/flow}$ |
| C_04  | 4/4096/6/18         | 294912          | 99.98%                                            |
| N_12  | 4/64/4/12           | 2304            | 97.84%                                            |
| N_12  | 4/64/4/16           | 2816            | $99.90\% \longrightarrow 0.064 \text{ bits/flow}$ |
| N_12  | 4/128/4/16          | 5632            | 99.98%                                            |

#### Experimental Results – BDFT–H Performance

| ► Tr | ace | <b>BDFT Mem.</b> | d-left             | Total Mem. | Accuracy        |                    |
|------|-----|------------------|--------------------|------------|-----------------|--------------------|
|      |     |                  | ( <b>d/b/h/f</b> ) |            |                 |                    |
| ► C_ | _04 | 65536            | 4/512/9/14         | 174336     | 99.75%          |                    |
| ► C_ | _04 | 131072           | 4/512/9/15         | 299520     | 99.94% →        | 0.214              |
| ► C_ | _04 | 262144           | 4/512/9/16         | 547584     | 99.97%          | bits/flow          |
| ► C_ | _04 | 524288           | 4/512/9/16         | 645888     | 99.97%          |                    |
| ► N_ | _12 | 2048             | 4/16/4/15          | 7840       | 98.93%          |                    |
| ► N_ | _12 | 4096             | 4/32/4/15          | 12608      | 99.86% <b>→</b> | 0.286<br>bits/flow |
| ▶ N_ | _12 | 8192             | 4/32/4/15          | 23104      | 99.98%          | DILS/HOW           |

## Conclusions

- Proposed BDFT Hybrid approach for highspeed networks
- Analysis of BDFT Hybrid:
  - Speed: faster FCF ACSM for frequent operations
  - Space: lower BDFT generally
  - Accuracy: higher than BFDT and FCF ACSM
  - Simulations with 2 real traffic traces

# Thanks!

## BDFT Steps – An Example

- The new flow arrives; its hashes are calculated based on IP Src/Dst, Port Src/Dst, and protocol type
- The flow is added to Bin 1 (0–15 sec) by incrementing the counters corresponding to the hashes
- After 15 seconds Bin 1 expires and its flows are moved to Bin 2 (15-30 sec)
- After an additional 30 seconds Bin 2 expires and its flows are moved to Bin 3 (45-75 sec)
- After 55 seconds from the flow start, a TCP FIN is received for the flow, and the removal process begins
- > The flow's hashes are calculated as above
- The Bins are searched for the flow's hashes starting with Bin 1
- The flow is found in Bin 3, so the counters corresponding to the hashes are decremented in Bin 3