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Chapter 5 

Introducing SDN Control in 

MPLS Networks 

MPLS networks have evolved over the last 10-15 years and have become critically 

important for ISPs. MPLS is primarily used in two ways: to perform traffic engineering 

in IP networks, providing greater determinism and more efficient usage of network 

resources; and for enabling MPLS based L2 or L3 enterprise Virtual Private Network 

(VPN)  services, which continues to be one of more profitable services offered by ISPs. 

MPLS is the preferred solution for such services, mainly because plain-vanilla IP 

networks are incapable of providing the same services; and older ways of providing these 

services using ATM or Frame-Relay networks are no longer used.  

As carriers deploy MPLS they find that (a) even though the MPLS data plane was 

meant to be simple, vendors support MPLS as an additional feature on complex, energy 

hogging, expensive core routers; † and (b) the IP/MPLS control plane has become 

exceedingly complex with a wide variety of protocols tightly intertwined with the 

associated data-plane mechanisms.  

We make the observation that in any MPLS network, there are simple data-plane 

mechanisms of pushing-on, swapping, and popping-off MPLS labels in a label-switched-

path. These mechanisms are controlled by a number of control-plane protocols that help 

†  eg. Cisco's CRS-1 and Juniper's T-640 
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provide the features and services (Fig, 5.1a). However, as we have shown in Chapter 3, 

any change to these services or the creation of a new service, in-most-cases, involves 

changes to these protocols or the creation of an entirely new protocol, which are lengthy, 

time-consuming processes. Yet, the data plane mechanisms remain the same simple push, 

swap, and pop operations.  

And so in this work, we take a different approach to MPLS networks (Fig. 5.1b). We 

use the standard MPLS data-plane together with a simple and extensible control-plane 

based on OpenFlow and SDN. We find that the MPLS data-plane has similarities to the 

flow-abstraction. But the MPLS control-plane does not make use of the map-abstraction. 

Thus we retain the standard MPLS data-plane, and introduce the map-abstraction for the 

control plane.  

There are significant advantages to doing so. The control-plane is greatly simplified 

and is de-coupled from a simple data-plane. We can still provide all the services that 

MPLS networks provide today; but more importantly, we can go beyond what MPLS 

provides today. We can globally optimize the services; make them more dynamic; or 

create new services by simply programming networking applications on top of the map 

abstraction. New capabilities are no longer tied to layers of protocols (which are 

eliminated). And the switch-API (OpenFlow) doesn’t need to change either for all it gives 

is control over the simple push/swap/pop data-plane operations, which remain the same. 

 

 

 

 

 

 

 

 

      
Fig. 5.1 (a) Today’s IP/MPLS networks (b) MPLS with the Map-abstraction 

Many layers of protocols complexity tightly linked 
to a variety of data-plane mechanisms, replicated 
in each and every switch in the network 
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In this chapter, we first discuss MPLS in relation to the flow and map abstractions. 

We show how flows in MPLS are close to the description of the flow-abstraction in the 

SDN context. And we also show how maps in MPLS networks are not quite the same as 

maps in SDN. But more importantly, we discuss how the map-abstraction is missing in 

MPLS. Accordingly all the benefits of the map-abstraction in terms of simplicity, 

extensibility and global-optimization are also missing in MPLS networks. We give 

examples of the benefits of introducing the map abstraction in MPLS networks.  

To demonstrate that our approach can replicate services provided by MPLS today, we 

discuss a prototype implementation of MPLS based traffic engineering (MPLS-TE). 

There are two goals of this prototype: First, we show the simplicity of our approach 

compared to the existing MPLS control plane, by implementing nearly all the features 

that are part of MPLS-TE in just 4500 lines of code, compared with an estimated 

100,000+ lines of code from a more traditional approach; and second, we show how the 

implementation of features can be made different from the traditional implementation in 

ways that either, greatly simplifies the feature, or provides a feature that MPLS-TE 

cannot provide.  

Finally, we discuss how introducing the map-abstraction in MPLS networks fits well 

with our unified-control architecture for packet and circuit networks; a fact that makes 

our control architecture ideal for multi-layer networks. 

 

5.1   MPLS Usage Models 

There are two basic usage-models for MPLS, which correspond to the two services that 

MPLS provides – VPNs and TE. VPNs use what can best be described as a datagram 

model, similar to IP datagram forwarding. On the other hand, TE uses a flow-based 

model. Both models can and do exist simultaneously in today’s networks. In this section, 

we briefly discuss these models. Note that the terminology used for naming the models is 
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not industry-standard. In fact the industry does not have terminology for the usage 

models. We introduce the terminology to best reflect the mechanisms involved.                                                 

5.1.1   MPLS Datagram Model 

The datagram-like usage of MPLS is very similar to plain-vanilla IP routing. In this case: 

•     Label distribution happens in an unsolicited way [106], where every router sends out 

label-bindings for IGP-learned prefixes to each of its neighbors without being asked 

for it. For example, in Fig. 5.2, once the IGP (like OSPF or IS-IS) converges, every 

router learns of the router-addresses for all other routers in the IGP’s domain. Each 

router creates label-bindings for these addresses, and then distributes these bindings 

to their neighbors (actually to their LDP neighbors). For example, in the figure, R6 

receives label-bindings for R3’s router-address from each of its neighbors R2, R4 and 

R5. Each binding implies that if R6 wants to reach R3 via a neighbor, it should use 

the associated binding advertized by the neighbor. R6 needs to use label 67 to go 

through R2; label 10024 through R4, and so on. 

 
Fig. 5.2 Unsolicited Label Distribution 

•     The packets that match an FEC† at a router are then forwarded to the next-hop by 

inserting the label advertized by the next-hop. But the selection of the next-hop is still 

based on an SPF calculation from IP routing at each router. In other words paths for 

LSPs through the network are chosen by IP routing and thus are the same as IP 

shortest paths. 

†  FEC stands for Forwarding Equivalence Class – basically all packets that match an FEC (rule) are forwarded the 
same way (equivalently). The most common FEC is the IP-destination address. 
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And so, just like IP routing, each router makes an independent decision on what to do 

with incoming packets. In Fig. 5.3, R1 chooses to have two different flow definitions or 

FECs – one considers both IP src and dst addresses; the other defines the FEC to be all 

web traffic (TCP port 80) destined to an IP dst address range. Let’s assume that both 

flows need to reach R3 to get forwarded to their ultimate destination. In this type of 

MPLS network, R1 cannot define different paths (or LSPs) for the two FECs from R1 to 

R3. The path that gets selected for the LSP is the IP-shortest path (say R1-R5-R4-R2-R3). 

 
Fig. 5.3 MPLS Datagram Model  

This is because the FEC definitions are not propagated to every router in the network. 

So when packets for the two different flows arrive at R5, the latter is unaware of how R1 

defined the FECs. It simply considers the only FEC that every router considers for every 

packet – IP destination prefixes. R5 finds that both 200.10.0.0/16 and 201.23.0.0/ 16 need 

to go through R3; and that R4 is the next-hop (instead of R6) on the shortest IGP path to 

R3; finds the label-binding that R4 advertized for R3, swaps it on to the packet and sends 

it to R4. This procedure is repeated at R4 and R2. In other words it makes no sense to 

have different flow definitions in R1†, because the flows differentiation is lost to the rest 

of the network, which treats them as the same. In other words, in this usage-model, an 

LSP is not actually set-up. The label-switched path develops ‘on-its-own’, and no router 

in the network has any control over the path the LSP takes through the network. 

†  Unless it is used for access-control into the network (accept, deny, rate-control ). Again this is only at the 
edge of the network. 
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In essence, this usage model is simply IP-routing-with-labels, and is a holdover from 

the days when it was faster to do a lookup on a fixed 20-bit label than a variable length IP 

addresses. Today, it has found use in MPLS-VPNs, where the MPLS label-stack is used 

to deliver full mesh connectivity with address-space isolation. The outer label identifies 

the destination-router (PE) and the inner label identifies the VPN VRF instance. The path 

to the PE router is determined via IP routing, and forwarding is performed using the 

outer-label. We will discuss this MPLS use-case in the SDN context in Sec. 5.4. 

5.1.2   MPLS Flow Model 

In the flow-based usage-model, LSPs are actually set-up in the network by head-end 

routers (also called Label Edge Routers). Packets are classified into FECs. All packets in 

the same FEC are forwarded equivalently via an LSP whose path can be determined 

independent from regular IP routing (Fig. 5.4). Path calculation is done dynamically by 

the head-end router or offline by a management system. And it is typically signaled 

explicitly from the head-end to all other routers (LSRs) along the path using a signaling 

protocol like RSVP.  Label distribution is therefore typically downstream-on-demand and 

ordered [106]. Importantly in this usage model LSRs do not make independent routing/ 

forwarding decisions on packets. Once an LSP is set-up and the LER has mapped an FEC 

to an LSP, packets are forwarded as part of flows (FEC+LSP). 

 Fig. 5.4 MPLS Flow Model 

(a) (b) 
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The MPLS flow-model is used to provide MLPS based Traffic Engineering. Carriers 

widely use MPLS-TE today to achieve a) more deterministic behavior in IP networks; 

and b) greater efficiency in the utilization of network resources. In MPLS-TE the LSPs 

are more commonly known as TE-LSPs or tunnels. Traffic engineering is accomplished 

by routing the tunnels over under-utilized links in the network, and then routing IP traffic 

through those tunnels. MPLS-TE provides admission-control for TE-LSPs (tunnels) via 

bandwidth-reservation and constrained SPF routing. Additionally, there are a number of 

‘features’ that MPLS-TE provides to ease the management, operation, and utility of 

tunnels. Such features include: Auto-Route, Auto-Bandwidth, tunnel-priorities, DS-TE, 

load-balancing, explicit-routes, re-optimization timers and so on. We will discuss this 

use-case in the SDN context in more detail in this chapter. 

 

 5.2   MPLS and Abstractions 

The primary objective of this section is to show how MPLS compares to our control 

architecture. We show that while the MPLS definition of flows is not exactly the same as 

our definition, it is close enough to be applicable. But while MPLS retains and makes use 

of a map, it completely misses out on the map-abstraction. We discuss a few examples of 

what the map-abstraction brings to MPLS networks. 

5.2.1   MPLS and the Flow-Abstraction 

We mentioned before that MPLS has the concept of flows. In the following discussion 

we compare MPLS based-flows to the SDN based flow-abstraction from Sec 2.1.1. We 

conclude that MPLS based flows (FEC+LSP) are not as generic and flexible as the SDN 

flow-abstraction in terms of the ‘match’-definitions and forwarding-actions. Neither do 

they support vendor-neutral switch-APIs.† But nonetheless, flows exist in MPLS based 

WANs. 

†  For example, the API into the FEC table is called Policy Based Routing (PBR) in Cisco routers, and Filter 
Based Forwarding in Juniper routers. Naturally the CLI commands are different. 
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•     Logical Association: 

o    SDN: A packet-flow is a logical association between packets that are part of the 

same communication and are given the same treatment in the network (within a 

switch and from switch-to-switch) 

o   MPLS: MPLS has the concept of FECs (Forwarding Equivalence Classes) 

whereby packets are classified into FECs and forwarded equivalently in the 

switch and in the network via Label Switched Paths (LSPs). FECs therefore 

embody the logical association between packets in the same flow. 

•  Data Abstraction:  

o   SDN: The data-abstraction is the representation of packet-switches as flow-tables, 

ports and queues. The flow is defined in tables which have the ability to identify 

the flow generically from multiple parts of the packet header in each switch. 

o   MPLS: The data-abstraction differs from switch to switch in MPLS. In a Label 

Edge Router (LER) where the FEC is established, packets can be generically 

classified from multiple parts of the packet header. Such classification can be 

performed by techniques such as Policy Based Routing (PBR) working on a data-

abstraction of a routing/forwarding table (RIB/FIB).† Once packets have been 

classified, a label is pushed on to the packet. Thereafter in all other switches along 

the flow’s path, the Label Switch Routers (LSRs) have a data-abstraction of a 

label-table (LIB/LFIB) i.e. they only match on the MPLS label to identify the 

flow. 

This distinction between the data-abstractions in LERs and LSRs can be useful; Using 

simpler exact-match forwarding on a label takes less space in forwarding tables than 

matching on packets generically. But it is also more restrictive – only MPLS labels 

can be matched with this data-abstraction. If however, a generic table abstraction is 

used in every switch along the flow’s path, a) nothing prevents us from dividing 

things up like MPLS does by inserting an MPLS label; but b) if we wish we could do 

the same with other labels like VLAN tags; or c) in other cases, continue identifying 
†  Actually, PBR does not alter the routing tables. ASICs are implemented such that PBR policies supersede the 
forwarding decision in the routing table. Nevertheless, for the sake of comparison, we assume that the data-
abstraction of the routing table in LERs is altered by an API such as PBR. 
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flows generically from multiple parts of the packet header, while changing the 

definition of the flow as we go along a path [54]. Thus our definition of the switch’s 

data-abstraction is more flexible, which when coupled with the map-abstraction, 

makes networks more programmable. 

•  Treatment within a switch:  

o    SDN: Packets that match a flow are treated the same way within a switch, where 

the flow-table applies the same set of actions on the packets. 

o   MPLS: All packets that are part of the same FEC are certainly treated the same 

way within a switch. But again the set of actions that can be applied are more 

restrictive – pushing, swapping and popping off an MPLS label. 

•  Treatment from switch to switch:  

o   SDN: Each switch through which the flow traverses does not make an 

independent isolated decision on the treatment to the same flow. 

o   MPLS: This holds true when LSPs are established by head-end LERs. 

•    Accounting & Resource Management: 

o   SDN: The flow-definition serves as a common-handle with which accounting and 

resource management can be performed at the flow-level in the network. 

o   MPLS: This holds true for MPLS when using LSPs for traffic engineering. 

•    Layer-independent Switch-API: 

o   SDN: The data-abstractions in all switches are manipulated by a layer-

independent switch-API (like OpenFlow). 

o   MPLS: Manipulation of the FEC in LERs may be exposed through the CLI by 

features like Policy Based Routing (PBR). Or it may be restrictive and hidden by 

features like MPLS AutoRoute [92]. In LSRs, the API is completely hidden and 

only operated on by label-distribution protocols like LDP and RSVP. 

 It is also worth pointing out that we compared the SDN flow-abstraction to the flow-

based usage of MPLS (Sec. 5.1.2) where: multiple FEC definitions are possible; head-end 
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routers make decisions on LSP paths; label-distribution is downstream on-demand and 

ordered; and resource management can be performed on the basis of LSPs [92]. MPLS 

based flows are more restrictive than the SDN flow-abstraction; but it is fair to say that 

flow-abstraction exists in some form in MPLS networks.  

We do not compare the SDN flow-abstraction to the MPLS datagram-based usage-

model (Sec. 5.1.1) for the following reasons: In the datagram-model, the only logical 

association (or FEC or flow-definition) that matters network-wide is the IP-destination 

address; forwarding decisions are still made independently router to router; and one 

cannot perform resource management at the flow level. However, even though the SDN 

flow-abstraction cannot (and should not) be compared to the MPLS datagram usage-

model; the former can still provide the service the latter enables – VPNs. We discuss this 

point in more detail in Sec. 5.4. 

5.2.2   MPLS and the Map-Abstraction 

When comparing MPLS network control with our control-architecture, it is important to 

distinguish between the map and the map-abstraction. We discuss them individually. 

                                            
Fig. 5.5 Network Maps in a) IP networks b) MPLS-TE networks c) SDN 

Maps: A map by our definition is an annotated graph of the network topology. First 

let’s see how the maps themselves differ in different networks. In plain-vanilla IP 

networks, distributed routing protocols like OSPF and IS-IS distribute link state to each 
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router in the network. This allows each router in the network to build a map (Fig. 5.5a) of 

their own that is consistent with maps built by other routers. The map includes topology 

information like nodes and links, as well as the ‘cost’ of each link for use in an SPF 

calculation. The only other link-‘state’ that is distributed by the routing protocol is 

whether the link is up-or-down. This is a very limited map, which allows the basic 

network-functions of SPF routing and re-routing around failures, and not much more. 

In MPLS-TE networks, the same distributed routing protocols are used, but this time 

with TE extensions that enable it to carry more link-state. Such state includes maximum 

reservable bandwidth on a link, un-reserved bandwidth per priority level, link attributes 

and administrative weights [92]. And so, the map that gets constructed in each router 

(Fig. 5.5b) has node and link information as before, but now with additional link-state. 

This allows a router to perform more sophisticated path calculations that take into 

account bandwidth and other constraints on links when calculating TE-LSP paths. 

An SDN map has all the information about the topology and link-state discussed so 

far. But in addition, it has a lot more information about the network-node internals like 

switch flow-tables, queues, ports and their state and statistics. It also has global 

information on not just link-state but also switch-state, and if needed TE-tunnel and 

packet-flow state (Fig. 5.5c, Fig. 1.10 & Sec. 2.2.1). The net result is that the map can be 

used to support not just traffic-engineering based features, but a host of other network-

applications. Such applications may include access-control, mobility management, VPNs, 

bandwidth-on-demand, QoS, datacenter backup/migration, and more. In short, the map in 

SDNs, together with the flexible flow abstraction, makes networks more programmable. 

Map-Abstraction: So far we have compared and discussed the differences in the 

maps themselves. Now let’s consider the map abstraction. The map-abstraction helps 

centralize decision-making. It allows control-programs to be written in a centralized way 

with full, global visibility into the network, without worrying about how that global 

visibility (the map) is created, supported (perhaps with multiple physical controllers) and 

kept up to date. MPLS networks lack such a map-abstraction. We have discussed the 
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benefits of the map-abstraction before (Sec. 1.4.2).  Here we focus on the benefits in the 

context of MPLS networks. 

Simplicity: The map abstraction helps simplify the implementation of control 

programs for the simple reason that they are no longer implemented as distributed 

applications. When control programs are centralized and decoupled from the process of 

state collection and dissemination, they do not have to contend with subtle interactions 

with the state distribution mechanisms; which can be complex and is often the source of 

many errors. 

Take the simple case of a network-function like IP based traffic-engineering on top of 

plain-vanilla IP routing. Each router is a decision-maker and shortest-path decisions are 

made on the basis of costs assigned to links. In most cases routing-protocols assign link 

costs taking the bandwidth of a link into account. But network operators have the ability 

to configure and change the cost of any link, and often do so, to avail of some 

rudimentary IP traffic-engineering benefits (without invoking MPLS-TE and its complex 

control plane). 

While changing link costs is simple, the effect it can have is far from trivial. 

Changing the cost of a link in one part of the network, potentially changes a lot of 

shortest-paths that can in-turn affect traffic in a completely different part of the network. 

In principle it can be disruptive to many (or all) traffic flows.  Worse, while the routing-

protocol converges, loops may get formed and packets may be lost. Thus changing link-

costs is considered just as disruptive as link-failures. But when decision making is 

centralized and decoupled from the state-distribution mechanism, such a network-

function can be a lot simpler. When link-costs change, the controller can simply be 

programmed to not re-route existing flows in the network, and use new shortest-paths 

only for new flows. Or it could selectively re-route existing flows. The choice lies with 

the application-programmer (network-operator). 

As a more concrete example, in Sec. 5.3, we will show that centralization of control-

functions results in simpler code. We have implemented nearly all the features of MPLS 
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traffic engineering in fewer than 5000 lines of code [107], which is at least a couple of 

orders of magnitude smaller than distributed implementations of the same.  

Reducing Protocol Load: The current IP/MPLS control plane uses a number of 

distributed-protocols that result in considerable computational load in router CPUs. 

Routers need to have all the intelligence necessary for aggregating and disseminating 

routing information, using distributed IP routing protocols like OSPF or IS-IS. In MPLS-

TE networks, these routing protocols are extended to advertize extra information about 

links, and TE gives more reasons to generate control traffic as link-state changes more 

often†. Furthermore, another layer of complexity is added with the need for distributed 

signaling /label distribution mechanisms like RSVP-TE and LDP.  And within a domain, 

an IP/MPLS network may additionally support a host of other protocols such as I-BGP, 

RIP, SNMP and MP-BGP, together with many more protocols for multicast and IPv6. All 

of these protocols contribute to control plane load, increased fragility and increased cost. 

Some of these protocols are exceedingly complex due to multiple rounds of 

extensions over the years. RSVP is a good example. It was originally intended as an 

IntServ mechanism for hosts to request QoS from the network [112]. Intserv and RSVP 

were never used. But RSVP got extended to RSVP-TE to serve as a LSP signaling 

protocol. It is a poor choice for TE signaling; classic RSVP has many features (baggage) 

not intended for TE. For example, soft-state and frequent state-refresh messages were 

mechanisms for multicast-group support in classic-RSVP.  But TE-LSPs don’t involve 

hosts and are not one-to-many in practice. Further, RSVP runs directly over IP (instead of 

TCP); and so it needs its own reliable delivery mechanism. And it maintains multiple 

sessions per LSP. All of these ‘features’ result in lots of control plane messages and 

corresponding CPU load. Additionally, RSVP has been overburdened with many more 

features such as  hierarchical LSP setup, point-to-multipoint LSP setup, LSP stitching, 

FRR setup, and GMPLS extensions, making an already complex protocol more bloated. 

State-of-the-art routers come equipped with high-performance CPUs that can handle 

the computational load created by all these protocols. However carrier networks are not 
†  In our talks with Orange Telecom, we found that concern for “too many control messages” led them to turn 
off TE extensions on protocols like OSPF and IS-IS. They still use MPLS-TE but in a very static way. 
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all upgraded at the same time. Most often there is a mix of older and newer equipment. 

And from our talks with carriers†, it is a real concern that the older ones cannot keep up. 

Consider this cycle –the carrier would have a need for new network functionality; they 

would approach router vendors to come-up with a solution; router-vendors would 

upgrade router-software (and sometimes change the protocols); upgraded software would 

in-turn increase CPU load; older routers/CPU cards would find it difficult to keep up; 

ultimately requiring an upgrade in router hardware. 

SDN reduces switch CPU load by eliminating the need for many of these protocols. 

All current-distributed-protocol functionally can be replaced by a combination of 

network-applications, global-view and switch-API (OpenFlow). Furthermore, a 

Controller built on multiple-commodity servers can have much more CPU computational 

power that any one router. And in an SDN based network, when a carrier has a need for 

new network functionality, it need not result in upgrading switch-software or changing 

the switch-API. Our implementation of traffic-engineering functionality (in Sec. 5.3) is 

the perfect example of introducing new network functionality, simply by changing/ 

creating network-applications on top of the map-abstraction. 

Extensibility: The map-abstraction not only makes writing control-applications 

simpler, it also makes it easier to introduce new functionality into the network. Such new 

functionality could mean new applications or changes to existing applications. 

Importantly, it does not involve changes to the state-distribution mechanisms. The latter 

is solved once, and abstracted away from the control programs.  

This is obviously not the case in today’s IP/MPLS networks, where network functions 

are implemented as distributed applications, and each-function ends up using its own 

state-distribution mechanism (Fig. 5.6). Consider the path for introducing new 

functionality in the network today: First the carrier would have a need; then it would have 

to ask vendors to implement a solution; vendors would take considerable time to come up 

with pre-standard solutions that don’t interoperate; then they would debate in the 

standards bodies to come up with an interoperable solution; the vendors then may or may 
†  Google and Global-Crossing. 
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not implement the entire standard; then there are carrier lab trials, limited field trials and 

finally, if all goes well, deployment. This is a 5-10 year process. At any time during this 

innovation cycle, the original needs of the carrier may change, and thus extensions are 

born and outdated baggage is carried cycle after cycle.  

 
Fig. 5.6 Network Functions in Today’s IP/MPLS Networks 

SDN helps shorten the innovation cycle by making the network more extensible. It 

does so by un-chaining network functions/features/services from a) the creation of a new 

protocol; or b) the extension of an existing one; and c) requiring its implementation and 

deployment in each switch in the network 

Global-View: One of the greatest benefits of the map-abstraction is the global-view it 

affords of all network-state. Such views allow the implementation of network-functions 

that globally-optimize network performance according to design or service needs. 

Without global-view, MPLS routers today can at best perform local-optimizations; which 

when coupled with the distribution-mechanisms, can lead to undesirable churn in the 

network. Consider an example from MPLS-TE.    

Better utilization of network resources is one of the primary goals of traffic-

engineering. MPLS performs traffic-engineering by forcing traffic through tunnels which 

are themselves routed over under-utilized parts of the network. The route that a tunnel 

takes depends on the bandwidth-reservation of the tunnel and the available un-reserved 

bandwidth on network links. As more tunnels get routed over a link (and therefore 

reserve bandwidth on it), the un-reserved bandwidth on the link diminishes, forcing 

newer tunnels to find routes over other links.  
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However the tunnel’s reserved bandwidth is usually an estimate of the potential usage 

of the tunnel, made by the network-operator. The estimate is based on the source and 

destination routers and the average traffic between them. But traffic-matrices vary over 

time in un-predictable ways. And so a given tunnel’s reservation could be very different 

from its actual usage at a given time, leading to an un-optimized network. Router vendors 

get around this problem by performing a local-optimization called Auto-Bandwidth. 

With Auto-Bandwidth, a router at the head-end of a tunnel periodically checks the 

bandwidth usage of the tunnel, and alters that bandwidth-reservation to match the usage. 

But changes in reservation result in changes of link-state, as the links over which the 

tunnel is routed see a change in un-reserved bandwidth. Naturally such link-state has to 

be propagated to all routers in the network (depending on flooding-thresholds). But to 

further complicate matters, un-reserved bandwidth can be accounted for at eight priority 

levels; and tunnels can be assigned priorities whereby a higher-priority tunnel can 

preempt a lower-priority one by forcing the latter to re-route over a different path. This 

means that, as Auto-Bandwidth changes a tunnel’s bandwidth reservation, the tunnel may 

force lower-priority tunnels to re-route, or the tunnel itself may get re-routed. In turn, re-

routed tunnels further change link-state; causing greater flooding of link-state-update 

messages; and possibly even-more preemption of lower-priority tunnels. This cumulative 

effect is known as network-churn, as router CPUs have to deal with a lot of change in 

network state, especially in large carrier networks with tens of thousands of LSPs†. It is 

easy to see that churn is disruptive and undesirable from a network operator’s view-point.  

But churn is a direct result of local optimizations (like Auto-Bandwidth) performed 

by multiple decision makers (tunnel head-ends). Each router is only aware of the tunnels 

that it originates, and to some extent, the tunnels that pass-through it. For all other tunnels 

the router is only aware of the aggregate bandwidth reserved by these tunnels on links. In 

other words, even thought the router builds a map giving global TE-link state, it only has 

a local-view of tunnel-state (or TE-LSP state). In SDN, the map-abstraction gives global-

view of network-state, including all tunnel-routes and their current-reservations and 
†  Talks with Tier-1 ISPs suggest the use of 50k to 100k LSPs . 
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usages. And so an application can perform global-optimization of the tunnels while 

minimizing (even eliminating) network-churn.  

Thus we find that IP/MPLS networks can benefit from the introduction of the map-

abstraction in its control-plane. Existing control-functions and services can be simpler to 

implement and globally-optimize, while new functionality can be added more easily to 

the network. In the next section we show how traffic-engineering functionality can be 

added to a network supporting the standard MPLS data-plane and an SDN based control 

plane, without using any of the existing IP/MPLS control plane protocols. 

 

5.3   MPLS-TE Features & Prototype  

In this section we show how we can reproduce services existing in IP/MPLS networks 

today, and improve upon them in meaningful ways. We use the example of MPLS Traffic 

Engineering (MPLS-TE) and the wide-variety of TE ‘features’ that come with it.  

For each feature that we have implemented in our prototype, we describe the way it is 

implemented in today’s networks; how that differs from the way we have implemented it 

our SDN-based network; and finally how our approach enables some capabilities (within 

TE) that are not possible with the traditional approach. Importantly, our prototype serves 

as a validation of our architectural claims of simplicity and extensibility.  

It also exemplifies the benefits of implementing networking-applications in a 

centralized way with a global-view, which comes from the introduction of the map-

abstraction in MPLS networks. 

5.3.1   MPLS-TE Features 

We describe the following features: LSP Admission-Control; Auto-Route; Load-

Balancing; DiffServ-Aware-TE; Auto-Bandwidth and LSP Priorities;  
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Admission-Control: The MPLS control-plane performs traffic-engineering 

primarily via an admission-control mechanism for LSPs. It is in principle similar to call-

admission-control in telephony networks. The basic process is as follows: 

•     In the control plane, all IP links are assigned a maximum reservable bandwidth. TE-

LSPs (tunnels) reserve part of the bandwidth on the links over which they are routed.  

•     The route (or path) that an LSP takes can be determined dynamically by the head-end 

router by running a Constrained-SPF algorithm. For example, given the source and 

destination routers for a tunnel (TE-LSP), together with its bandwidth-reservation 

(and priority, affinity etc.), CSPF can determine a path through the network that 

satisfies all the constraints – for example, a path over links that can meet the desired 

bandwidth reservation. If multiple such paths exist, the shortest one is selected. 

•     If a path that meets all the constraints cannot be found, the tunnel is rejected 

(admission-control). More importantly, tunnels tend to get routed (engineered) over 

links that are less used.  If few pre-existing tunnels are routed over a link; the greater 

the chance that the link can satisfy bandwidth constraints for a new tunnel. And so 

network-resources are better utilized, and traffic in the tunnels may encounter less 

congested links (both TE goals). 

•     Once a path has been determined by a head-end router, it is signaled to all LSRs along 

the chosen route. Because there are multiple decision-makers (multiple head-ends) 

contention for resources may happen. For example, a head-end could setup a tunnel, 

but information on the resources used up by that tunnel may not propagate in-time to 

all other head-ends in the network (due to flooding-thresholds). In the mean time, 

another head-end tries to reserve a tunnel that contends for the same resources along 

links that overlap with the first tunnel. Because the path-decision for the second 

tunnel may have been made with stale information, every router along the way checks 

to see if the bandwidth-reservation is possible on the adjacent downstream link. If it is 

not, then the second LSP is rejected (again admission-control), and the (second) head-
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end router is forced to re-route the tunnel, hopefully by this time with updated link-

state (disseminated by the routing protocol). Ultimately it is a tradeoff – contention 

for resources can be reduced, if TE link information is always rapidly disseminated 

and head-ends calculate paths with up-to-date state; but it also ends up causing a lot 

more control-plane messages and CPU load.  

•     It is important to note that bandwidth reservations and LSP admission-control are 

purely control plane concepts. MPLS-TE does not require enforcement of tunnel 

bandwidths in the data plane [92], because the primary objective is to steer traffic, not 

to police or shape it in the data-plane. The latter techniques can be used in addition to 

MPLS-TE if desired.   

SDN based Admission Control: Our SDN based implementation takes advantage of 

the fact that admission-control of LSPs are handled purely in the control plane. The TE 

application written above the map-abstraction:  allocates reservable-bandwidth to each IP 

link; performs CSPF routing of tunnels; sets-up the tunnels in the data-plane by using 

OpenFlow to distribute labels to switches along the LSP path; and updates the map with 

LSP-path information and un-reserved bandwidth information for each link along the 

path. Importantly, since the Controller (more correctly the TE application) is the only 

decision-maker, contention for resources does not happen in this scenario. The Controller 

maintains the network-map and keeps it up-to-date with all tunnels and link reservations. 

So when a new tunnel is requested by the network-operator or by another application, the 

Controller is completely aware of all network-state, and can perform admission-control 

and LSP-setup without any contention. The data-plane switches are blissfully unaware of 

any bandwidth reservations for the LSPs. As a result, the data-plane switches themselves 

do not perform any admission-checks.   

Auto-Route: Once tunnels are up in the data-plane, traffic needs to be redirected 

from IP links into the tunnels by LERs. Auto-Route is an effective way to do this without 

incurring the scaling problems of exposing tunnels to distributed-routing-protocols.  
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This latter point can best be explained with Fig. 5.7. Assume packet-flows from R1 to 

R3 are routed via R5R6R2. When the TE tunnel is created between R5 and R2, the 

flows need to be re-directed through the tunnel, as the tunnel is now a single-hop path 

between R5 and R2 (as opposed to a minimum of 2 hops for every other path†). Note that 

Fig. 5.7a shows the tunnel ‘conceptually’ as a single-hop between R5 and R2. But 

physically the tunnel is routed over the IP links in the network. For example, Fig. 5.9b 

shows one possible path the LSP takes in the IP network. Despite the number of hops in 

the physical tunnel path, from the perspective of routing packets in the IP network, the 

tunnel is still a single hop. 

  
Fig. 5.7 Auto-Route: re-routing packets into a TE-LSP (tunnel). Tunnel is shown:  
(a) conceptually (b) physically routed over the IP links. 

However this perspective does not materialize directly in the map over which packets 

are routed. The tunnels are not exposed to the distributed routing protocol i.e. routing 

adjacencies are not created across the tunnels. And so the map that the routing protocol 

creates in each router does not include the tunnels. The primary reason for not exposing 

tunnels to OSPF or IS-IS is the same O(N2) scaling issue discussed in the IP-over-ATM 

context in the previous chapter*. If the routing-protocol were exposed to the tunnels, then 

they would have to treat them as links and carry state for them, which is a scaling 

problem – as the number of links increases, more state needs to be disseminated; and 

when failures happen lots of control messages are generated, which in-turn increases 

router-CPU processing loads and could cause routing protocol instability. 

†  Assuming all links have the same IGP cost and the tunnel cost is that of a single-hop. 
* See Sec. 4.2.1 under SDN based Unified Control Plane 

(a) (b) 
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But if tunnels are not allowed to show up in the IP-routing map, then how can packets 

be routed into them? This is where mechanisms like static-routes, PBR/FBF and Auto-

Route play a role. Consider Fig. 5.8(a). MPLS-TE networks maintain two maps; one is 

used for regular SPF routing of IP packets; the other for CSPF routing of TE tunnels. All 

the mechanisms mentioned above can change the routing-decision made by SPF. 

  

 

Fig. 5.8 (a) Need for Auto-Route (b) Effect of Auto-Route on Routing tables 

Auto-Route, as the name suggests, re-routes packets into tunnels automatically [92]. 

It works by replacing routing decisions during SPF calculations. Consider the partial 

routing table shown in Fig. 5.10b calculated by R5 for the network shown in the upper 

part of Fig. 5.8b. It shows two equal-cost routes to R2 that have different next hops, R4 

and R6; which R5 reaches via out-going interfaces 12 and 9 respectively. But invisible to 

SPF, R5 also has a tunnel to R2. Here is where Auto-Route kicks in (shown in the lower 

table in Fig. 5.8b) to reflect the effect of the tunnel. Both entries in the upper table are 

replaced with an entry where the next hop to R2 is the tunnel T1. The tunnel-interface is a 

logical (virtual) interface which is manifested behind-the-scenes by the physical interface 

(and label) on which the tunnel starts. 

While Auto-Route is automated, it is also inflexible. It works very well for SPF 

routing based just on the destination-IP prefix. But it makes it hard to take a different 

(automated) approach to routing. For example, routing different types of traffic or 

 

 (a) (b) 
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different customer’s traffic differently is not possible with Auto-Route. If a different 

approach is required, then the network-operator has to fall back on static-routes and PBR, 

to supersede the decisions taken by SPF and Auto-Route. But while such mechanisms are 

flexible, they are not automated. They require human-intervention typically through the 

CLI in multiple routers along a path for each packet-flow that the operator may wish to 

route differently. 

SDN approach to Auto-Route: SDN allows both flexibility and automation in its 

approach to routing. Together these attributes present a programmatic solution. 

In contrast to Fig. 5.8a, with SDN we take the approach shown in Fig. 5.9. The 

network-map allows full visibility to node and link state. To this state (which comes from 

the switches), we add the link-state attributes we need for traffic engineering such as 

max-reservable-bandwidth, unreserved-bandwidth, priorities and other operator-defined 

attributes. TE routing of LSPs (tunnels) can be performed by an application on this map, 

and the resulting tunnels are introduced as unidirectional links in another map. 

 
                                         Fig. 5.9 Auto-Route in SDN 

This latter map is used for routing packet-flows. We can simultaneously route 

different kinds of packet-flows differently – for example, traffic can be routed on the 

basis of the type of end-user application it supports (voip, web, video etc.); or it can be 

routed differently for different customers or services; all other traffic can use default IP 
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SPF routing. And the usage for each routing mechanism is programmatic, automated and 

dynamic.  

 We can take this approach because SDN does not use distributed link-state routing 

protocols to disseminate state; and so it is not limited by scalability issues of the same. In 

our implementation of Auto-Route (presented in the next section) the maps are updated 

by the Network-OS and switch-API (OpenFlow) which replace all the functionality of 

distributed routing protocols. 

Load-Sharing: One of the direct consequences of Auto-Route is that it becomes 

harder to perform load-balancing in IP/MPLS networks. Especially for flows destined to 

the tail-end of a tunnel. Consider Fig. 5.7a. There are essentially three equal-cost routes 

from R5 to R2 - two that go via IP links and transit through R4 and R6, and the third is 

the tunnel from R5 to R2. Even assuming that the tunnel is routed on one of those paths 

(say R5R6R2), it still leaves us with two paths for load-balancing – the tunnel and 

the other path (R5R4R2). But due to Auto-Route (see lower table in 5.8b), only one 

of the paths – the tunnel – is used. In fact, due to the nature of Auto-Route, it is simply 

not possible to load-share traffic to a TE tunnel-tail between an IGP path (from SPF) and 

a TE tunnel-path [92]. The general solution to this problem is to create multiple tunnels to 

the same tunnel-tail and then load-share traffic between them. But the obvious drawback 

is that there are more TE-tunnels to create and manage. 

SDN based Load-Sharing: Since we have more control over routing, and we represent 

tunnels as unidirectional links in the topology map, our approach to load-balancing is 

simple. In the above example, we simply route (and therefore load-share) traffic-flows 

over two paths – one that goes over the virtual-link that represents the tunnel, and the 

other over the IP links R5 R4R2. In our implementation we perform load-balancing 

on a flow-level (for example by matching on the TCP/IP 5-tuple) in the control plane. But 

this can easily be performed in the data-plane with the ‘select’ group-construct, which is 

part of version 1.1 of the OpenFlow specification. Here the controller can add the 

physical port on R5 that leads to R4, as well as the physical port and label that represents 
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the start of the tunnel, to the same select-group to ensure load-sharing. Importantly we do 

not need two tunnels for load-sharing, and it does not matter if the two paths have the 

same cost or not.   

DiffServ-Aware Traffic Engineering (DS-TE): DS-TE is a complicated 

marriage of two mechanisms: a) QoS based on the Differentiated Services architecture 

[115] that controls the per-hop behavior (PHB) of various traffic classes defined by the 

DiffServ Code Points (DSCP) bits; and b) MPSL-TE that controls the hop-to-hop (or 

path-level) behavior for IP traffic.  

It is worth noting that on-their-own neither can guarantee QoS [92] on an end-to-end 

basis (within a network domain). For example, while DiffServ mechanisms can prioritize, 

shape and police traffic in class-based queues within a switch; it has no control over the 

path the traffic takes in the network domain. And so, congestion in a downstream node 

can cause traffic in some classes to suffer even with PHB control, as the congestion 

information is localized and not propagated back to upstream nodes. In this case, TE can 

help by trying to avoid congestion a-priori by steering traffic away via tunnels that 

reserve link-bandwidth and are admission-controlled. 

However tunnel admission control is agnostic to the type (or class) of traffic that is 

being carried in the tunnel. And so traffic for a certain class of traffic cannot be steered 

away with regular TE. Therefore the purpose of DS-TE is to enable tunnel admission-

control on a per-QoS class basis.  

Consider Fig. 5.10a. It shows the queues that feed an outgoing port on which two 

(regular) MPLS-TE tunnels are routed. The TE tunnels reserve bandwidth on the link 

without taking into consideration the data-rates supported by the queues. Since the 

tunnels are unaware of the queues, they carry traffic for all class-types. Note that the 

highest-priority traffic in both tunnels comes out of the same queue. During times of 

congestion, it is possible that the min-rate guaranteed by the high-priority queue may not 

by enough to sustain all the high-priority traffic arriving at the queue. 
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Fig. 5.10 (a) DiffServ with regular MPLS-TE (b) DS-TE  

DS-TE tries to solve this problem by trying to steer away traffic for such a traffic-

class (Fig. 5.10b). It does so by allowing tunnels to reserve bandwidth only for a certain 

class-of-traffic; out of a sub-pool of link-bandwidth that matches the queue-bandwidth 

for that class. For example, if the queue for the highest-priority traffic supports 100 

Mbps, then tunnels for that class can only reserve link-bandwidth from the sub-pool of 

100 Mbps, even if the max-reservable bandwidth may be 1 Gbps. This way if one tunnel 

for this class reserves 100 Mbps from the sub-pool, then other tunnels are not admitted on 

this link and thus forced to steer away from it.  

SDN-based DS-TE: Diffserv-aware TE uses the same mechanisms as regular MPLS-

TE; the subset of link-bandwidth advertized per-class, as well as per-class tunnel 

reservation and admission-control are all still purely control plane concepts. And so with 

SDN we can perform all of these tasks in the Controller. But the SDN based 

implementation has two distinct advantages: 

•     The process of forwarding class-specific traffic down a DS-TE tunnel is not trivial 

and hard to automate in networks that use DS-TE today. Auto-Route cannot help as 

the mechanism does not distinguish between traffic-classes. The only choice is the 

use of Policy Based Routing (PBR) [92], which requires configuration via manual-

intervention and is not very programmatic. This is essentially the same issue as 

pointed out in the section on Auto-Route. With SDN and the use of OpenFlow, 

(a) (b) 



197 
 

forwarding traffic-type (or class) specific packet-flows down a tunnel is flexible, 

automated and therefore programmatic.  

•     DS-TE currently allows the advertisement of only one subset (called sub-pool) of 

link-bandwidth, and so can be used for only one traffic-class [116]. Herein lies the 

power of SDN. If operators tomorrow wanted the ability to create traffic-type specific 

tunnels for not one but two or more classes of traffic, it would require a change to the 

distributed routing protocol to carry the advertisement of more bandwidth sub-pools 

(plus the associated upgrades to router-software). In SDN, no protocols would 

change. Only the CSPF and related applications in the controller need to be changed.  

Auto-Bandwidth: In the previous section we discussed the Auto-Bandwidth 

feature and associated problems with local-optimizations and network-churn. Here we 

would like to focus on its implementation. Auto-Bandwidth is implemented in the routers 

at the head-end of TE tunnels on a per-tunnel basis. Periodically the router collects 

information on the actual bandwidth-usage of the tunnel (eg. every 5 mins). At a different 

periodicity, it alters the bandwidth-reservation for the tunnel based on the observed 

usage. The change in the reservation for the tunnel is signaled to all other routers in the 

LSP; it also changes link-state which is then disseminated to all other routers in the 

network by the routing-protocol.  

SDN-based Auto-Bandwidth: In our implementation, since all tunnel reservations, 

link-state and admission-control is maintained and performed in the Controller; Auto-

Bandwidth is performed as an application in the Controller as well. The only thing we 

need from the switches is information on the usage of the tunnel. OpenFlow defines an 

LSP simply as another flow (instead of a virtual-port). Thus we can obtain flow-statistics 

(like transmitted-bytes) from the switch via OpenFlow, to guage LSP usage. The 

application-programmer can set intervals for polling switches and adjusting the 

bandwidth-reservation. Changes in bandwidth-reservation are not signaled to the data-

plane as the latter is unaware of any bandwidth reservations for the LSPs. Furthermore, 
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changes to link-state that come about from the change in the tunnel reservation, requires 

only updating the annotated topology-map and not the switches. The only time that Auto-

Bandwidth induced change needs to be propagated down to the data plane is when it 

causes one or more tunnels to re-route. In such cases, the Controller processes the change 

by removing flow-state for the old tunnel route and replacing it with the new tunnel-route 

in the affected LSRs. As we have mentioned before, this can cause significant churn in a 

large network with many tens-of-thousands of LSPs. But with SDN, the effect-of-churn is 

minimized as routers no longer have to deal with RSVP or OSPF state-update messages. 

They only need to process/generate OpenFlow messages that change flow (LSP) routes. 

In Sec. 5.4, we’ll discuss a way in which Auto-Bandwidth can be eliminated altogether 

with SDN. 

LSP-Priorities: One final MPLS-TE feature we cover is LSP priorities. TE-LSPs 

can reserve bandwidth at eight different priority levels (with 0 being the highest priority 

and 7 the lowest). Accordingly links advertize un-reserved bandwidth at each of the 

priority levels, for both the global pool and the solitary DS-TE sub-pool. LSP priorities 

are used for preemption – a higher priority LSP can force a lower priority LSP to re-route 

if there isn’t enough un-reserved bandwidth available for both of them on a link they both 

share. For example, if a link has maximum reservable bandwidth of 900 Mbps; of which 

500 Mbps has been reserved by a Priority-0 tunnel; and 300 Mbps by a Priority-1 tunnel; 

then 400Mbps of unreserved bandwidth is available at Priority-0, and only 100Mbps is 

available at Priorities 1-7. But if a new Priority-0 tunnel comes along reserving 200Mbps; 

then all three tunnels cannot co-exist on the link as their cumulative reservations exceed 

the maximum reservable bandwidth on the link. The lower priority-1 tunnel is forced to 

re-route – the head-end for this tunnel periodically tries to find a new path which satisfies 

all its constraints. 

SDN based LSP-Priorities: As with all other LSP attributes, the LSP-priority is just a 

number maintained in the annotated topology map within the Controller. The data-plane 

switches have no information on LSP priorities. We maintain tunnel priorities in the 
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controller, as well as link-state for reservable bandwidth at eight priority levels. CSPF is 

performed in the Controller; tunnel-priorities are taken into consideration; and any 

resultant pre-emption is achieved using OpenFlow messages to add, delete or modify 

flow-entries in LSRs corresponding to TE tunnels. 

5.3.2   MPLS-TE Prototype 

In this section we discuss a prototype implementation of MPLS Traffic-Engineering in an 

SDN based network (MPLS-TE). There are two goals of this implementation: First, we 

demonstrate that our approach is capable of reproducing existing services offered by 

MPLS network today, while validating the simplicity of our approach compared to the 

existing IP/MPLS control plane; and second, as described in the previous section, we 

show how the implementation of the  features can be made different from the traditional 

implementation in ways that either, greatly simplifies the feature or provides a feature 

that MPLS-TE cannot provide.  

Data-Plane:  At the time this work was done (late 2010), handling of MPLS labels 

was just being introduced into the OpenFlow protocol (version 1.1[117]). As a result, 

there weren’t any OpenFlow enabled switches (or controllers) that supported MPLS data-

plane capabilities via OpenFlow.  

We added MPLS data-plane capabilities to a software switch called Open vSwitch 

(OVS[118]) that fully supported version 1.0 of the OpenFlow protocol. We also had to 

change the OpenFlow protocol (v1.0) to add the capability of controlling an MPLS data-

plane. To accomplish the latter, we borrowed the MPLS related features from v1.1 of the 

protocol and added it to v1.0†.  

†  We chose not to implement the entire v1.1 spec as it includes a number of other features like groups and 
multiple-tables, which were not essential to this experiment.  
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Fig. 5.11 (a) Open vSwitch Software Architecture [119] (b) OFTest Framework [120] 

Fig. 5.11a shows the OVS software architecture. Details can be found in [119]. Here 

we focus on the parts we changed to add MPLS data-plane capabilities. OVS can be used 

purely as an OpenFlow switch, or it can be used with added functionality that is part of 

OVS. We chose to use it as an OpenFlow switch using the ovs-openflowd program 

instead of the ovs-vswitchd program. The former does not require communication with 

an ovsdb-server. Next in the stack shown in Fig. 5.11a, the ofproto module communicates 

with an external Controller. We changed this module to work with our additions to 

version 1.0 of the OpenFlow protocol borrowed from version 1.1 (for MPLS support). 

The ofproto module communicates with the switch using the ofproto-dpif interface. 

The OVS switch datapath can be in kernel space (as shown in the figure) or in 

userspace. We chose the userspace datapath implemented in the dpif-netdev module, 

which also instantiates the datapath-interface (dpif) provider class. We added support for 

the MPLS data plane in the dpif-netdev module [120]. This included the ability to match 

on the outermost MPLS label (id and traffic-class bits) and perform the actions of 

pushing, changing and popping off multiple labels from packets together with TTL 

manipulations. Since our software switch was hosted in Linux, we used the built-in 

(a) (b) 
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netdev-linux module that abstracts interaction between ofproto and Linux network-

devices (like Ethernet ports). 

We tested our implementation of the MPLS data-plane using the OFTest framework 

[121,122] shown in Fig.5.11b. OFTest includes a data-plane interface that allows sending 

and receiving packets to a switch-under-test (OVS in this case). It also includes a control-

plane interface that implements a light-weight OpenFlow controller that can be used to 

interact with the switch-under-test using the OpenFlow protocol. In our case this 

controller communicates with the ofproto module in OVS. We used OFTest to write test-

scripts that verified the correct functionality of the MPLS data plane.  

Control-Plane: The control-plane was hosted in a server running NOX [15]. NOX 

was modified to include our changes to version 1.0 of the OpenFlow protocol, thereby 

enabling control of an MPLS data-plane [123].  

 
Fig. 5.12 MPLS-TE NOX Software Architecture 

The software architecture is shown in Fig. 5.12. We use NOX’s basic event engine 

and connection-handlers to the switches that are collectively referred to as nox-core. We 

also use NOX’s link discovery module to discover IP links and construct the annotated 

topology-map. And we include several data-bases for packet-flows, tunnels and MPLS-
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label information. Together with the switch and network-APIs, these modules present 

applications with a map-abstraction.  

The first set of network-applications involves TE functionality.  The TE-LSP 

configuration module is responsible for reading tunnel configuration files or alternately 

responding to config-messages from a GUI. Tunnels are configured by specifying the 

head-end and tail-end routers; the desired bandwidth and tunnel priority; the type of 

traffic the tunnel is designated for; and whether Auto-Bandwidth is enabled on the tunnel 

or not. With this information the config module uses the TE-LSP routing module to find a 

path between head-end and tail-end routers that satisfy all the constraints (bandwidth, 

priority, traffic-class). Once a path is found, the config module uses the network-API to 

establish the tunnel in the data-plane by inserting flow-entries for the LSP which includes 

label information. If Auto-Bandwidth has been configured on the tunnel, it also activates 

the polling process for LSP usage information in the TE-LSP statistics module. This 

information is used by the Auto-Bandwidth module to periodically change the tunnel 

reservation and update the TE-LSP database. But before such an update happens, the 

Auto-Bandwidth module checks the CSPF module to make sure that the new-bandwidth 

reservation is possible along the existing tunnel path.  If it is possible but requires re-

routing lower priority tunnels or re-routing the tunnel itself, it processes such change by 

invoking methods in the network-API. 

Together the TE applications create, manage, re-route, and tear-down TE-LSPs 

(tunnels) in the data-plane. As explained in the previous section, our map-abstraction 

allows us to create another map above the TE applications (see Fig. 5.9). This latter map 

represents the TE tunnels as unidirectional links, on which packet-flow routing can be 

performed in an automated and programmatic way. We create three routing-modules for 

packet-flow routing. The default SPF routing-module uses NOX’s built-in all pairs 

shortest-path routing module. The only difference is that instead of using this module 

directly on the IP topology, we use it on the topology that includes the IP links as well as 

the tunnels represented as unidirectional links. The default routing module is used for all 
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packet-flow routing. The other two modules are plugins into the default routing modules. 

The traffic-type aware routing module ensures that only those flows of a certain traffic-

type (voice, video, web) are allowed into tunnels meant for the traffic-type (DS-TE). 

Essentially we use traffic-type to emulate traffic-classes (without actually setting or using 

the DSCP bits).  And the load-balancing module ensures that traffic-flows can be load-

shared between regular IP-links and links representing tunnels, to the tunnel-tail.  

Experimental Setup: Our network of software switches is created in the 

Mininet environment [124]. Mininet is an open-source tool that creates a network of 

interconnected software switches on a single PC for emulating networks. It uses Linux 

process–based virtualization to run many hosts and switches on a single Linux kernel 

[125]. We use Mininet to emulate a wide-area IP/MPLS network. Our prototype system 

runs 15 instances of OVS (modified) to form the IP/MPLS network (Fig. 5.13).  

  
Fig. 5.13 MPLS-TE (a) Prototype (b) GUI view showing Emulated IP/MPLS WAN 

Fig. 5.13b shows the GUI view for our emulated-WAN. The GUI shows network-

state re-created in real-time via communications with the Controller. The emulated-

network has nodes in 15 cities spanning the continental US. In the San Francisco (SFO) 

and New York (NYC) clouds, San Jose and New Jersey connect to the wide-area via the 

routers in SFO and NYC respectively. In Fig. 5.13b the GUI shows wide-area IP links 

between the cities. Unidirectional TE-tunnels are routed on these bi-directional IP links 

(a) (b) 
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by reserving bandwidth on the links in the direction of the tunnel (from head-end to tail-

end). The GUI displays reserved-bandwidth information for each link in both directions. 

Each link is assumed to be a GE link, with a maximum reservable bandwidth of 90% of 

the link-bandwidth (i.e 900 Mbps). Finally, Fig. 5.13 also shows traffic-flows for three 

different traffic types (voice, video and web traffic) originating from traffic-generators 

(not shown) in San Jose and New Jersey.   

Experiments: In the previous section we discussed several features related to 

MPLS-TE. The primary goal of this experiment is to achieve the basic functionality of 

traffic-engineering itself. Secondary goals include the ability to show TE related features 

such as Auto-Bandwidth and DS-TE. 

Tunnel-Routing and Packet-Flow Routing: Traffic Engineering in MPLS is a two-step 

process: a) admission-control of bandwidth-reserved TE-LSPs (or tunnels) performed 

during a CSPF routing process for the TE-LSP; and b) (Re-) Routing packet-flows 

through a newly created TE-LSP. In Fig. 5.13b, we see the operation of a network 

without traffic-engineering. Traffic  flows from the SFO and NY areas, destined to 

Kansas, Phoenix, Houston and NY, all follow the shortest path in the network; potentially 

congesting the SFO  DEN  KANNY links. 

 
Fig. 5.14 Tunnel Routes, Bandwidth-Reservations & Auto-Route 
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In Fig. 5.14 we show two tunnels that were configured by the network-operator, 

routed by the CSPF module, and established in the data-path using OpenFlow, to enter 

flow-entries in the OVS flow-tables. The tunnels originate in SFO (head-end) and 

terminate in Houston and NYC (tail-ends). 

The panels show information for each tunnel. It is worth noting here that Fig. 5.14 

shows the tunnels from a conceptual standpoint (similar to Fig. 5.7a). But the tunnels are 

actually routed over the IP links. For example, the SFONYC tunnel is routed along the 

SFODENKANNYC links, reserving 123 Mbps of bandwidth on each link in the 

eastward direction. Similarly, the SFOHOU tunnel is routed via 

SFODENKANHOU links reserving 700Mbps of bandwidth along the path. But 

another way to think about this is that this is also the annotated-topology-view presented 

to the packet-flow routing applications in Fig. 5.9 or Fig. 5.12. The tunnels are, from a 

packet-flow routing standpoint, uni-directional links which form the shortest (1-hop) path 

between routers. And so the routing-modules perform Auto-Route, as described in the 

previous section, by re-routing packet-flows into the tunnels.  

For example, flows from SFONYC which previously traveled over the IP links 

now get re-routed (or Auto-Routed) via the 1-hop tunnel. It so happens that the tunnel is 

also routed along those same links. But this does not matter – the packets get imposed 

with labels in SFO and get label-switched in the DEN and KAN routers, which no longer 

have visibility into the IP packet. The flow-entries in DEN and KAN which previously 

matched on the IP-information in the packet-header, subsequently idle timeout, as they no 

longer match on the labeled-packets. We also use penultimate hop popping (PHP) of the 

label at the KAN LSR so that the NYC LSR receives the unlabeled IP packet; and so it 

only has to do a single lookup to forward the packet. 

Another aspect of our design worth pointing out is that for the packet-routing 

applications to treat the tunnels as unidirectional links, they need to have the concept of a 

virtual-port. For example, the SFONYC tunnel is represented as a unidirectional link 

connecting a virtual-port of the SFO router to a virtual-port on the NYC router. But the 
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packet-flow routing modules are un-aware that the ports are virtual-ports. They simply 

decide to forward traffic out of these ports (eg. in SFO) and match on traffic incoming 

from these ports (eg. in NYC). But these virtual ports do-not-exist in the switches, as an 

OpenFlow switch treats LSPs like any other flow, instead of treating it as virtual ports 

(tunnel-interfaces). And so the TE- applications translate decisions made by the packet-

routing applications from a virtual-port to the corresponding physical-port and label. 

Admission-Control: We mentioned that tunnels SFONYC and SFOHOU 

reserved 123 Mbps and 700 Mbps of bandwidth on all links that are part of their route. 

Note that in Fig. 5.14 we show these reservations circled in the eastward direction – for 

example, the KANNYC link shows a reservation of 123 Mbps (due to the SFoNYC 

tunnel) and the DENKAN link shows a reservation of 823 Mbps (due to both tunnels 

being routed over the SFODENKAN links).  

 
Fig. 5.15 MPLS-TE Admission-Control 

Also note that the maximum reservable bandwidth on any link is 900 Mbps. Thus 

only 77 Mbps of bandwidth is un-reserved on the SFODENKAN links. Thus when 

the SFOKAN tunnel highlighted in Fig. 5.15, requests 235 Mbps of bandwidth, it 

exceeds the unreserved bandwidth on the shortest path; and so the SFOKAN tunnel is 
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forced to route along a less-utilized path of the network – the SFOSEACHIKAN 

links. This is an example of admission-control. Without it, the SFOKAN tunnel would 

be routed along the same SFODENKAN links as the other two tunnels; and if the 

tunnels actually used the all the bandwidth they reserved (123+700+235 = 1058 Mbps) it 

would have congested the links. 

Auto-Bandwidth and Priorities: Our next experiment involved the TE features of 

Auto-Bandwidth and tunnel-priorities and their interaction. Fig. 5.16 highlights two 

tunnels that originate from NYC: one with a tail-end in Houston (HOU) and the other 

with a tail-end in Phoenix (PHX). 

Note from the panel for the NYCHOU tunnel, Auto-Bw is turned on (unlike any of 

the other tunnels in Figs.5.14-15). Accordingly the bandwidth reservation for this tunnel 

tracks the actual usage of the tunnel. Although the tunnel was created (configured) with a 

bandwidth-reservation of 10 Mbps, the reservation increases as we channel more traffic 

through the tunnel (by turning on more traffic-generators); first up to 19 Mbps and then 

to 39 Mbps (the latter shown in Fig. 5.16). 

                                                              
Fig. 5.16 Interaction of Auto-Bandwidth and Tunnel Priorities 

But another effect happens along the way. Note that the route taken by the 

NYCHOU tunnel includes the KANHOU link and reserves (first 10Mbps and then) 

 

(a) (b) 
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19 Mbps on it. Additionally the SFOHOU tunnel also reserves 700 Mbps on the same 

link. The initial route taken by the NYCPHX tunnel goes via the NYCKAN 

HOU PHX links as it is the shortest path (in hop-counts) that satisfies the bandwidth 

required by the tunnel. Accordingly it too reserves 177 Mbps on the KANHOU link (as 

shown in Fig. 5.16a). This adds up to a total of 896 Mbps reserved on the KANHOU 

link which is very close to the maximum reservable amount of 900 Mbps. And so if we 

further increase the traffic going through the NYCHOU tunnel to 39Mbps; then since 

Auto-Bandwidth is configured ON for this tunnel, it changes the reservation to 39 Mbps 

(as shown in Fig. 5.16b; which in-turn tries to increase the total reservation on the 

KANHOU link to 916 Mbps, which is not allowed. At this point some tunnel has to 

find another path. 

Note that the NYCHOU tunnel has priority-0 (highest priority) while the 

NYCPHX tunnel has priority-1. Thus it is the lower priority tunnel that is forced to re-

route and find another path that can meet its constraints. In Fig. 5.16b, we show that the 

tunnel has re-routed via the longer NYCATLMIAHOUPHX path. This is an 

example of the dynamic interaction between Auto-Bandwidth and tunnel Priorities, 

which in a larger network with lots of tunnels, can cause significant network churn. 

Class-Based Routing and Load-Balancing:  Finally in Fig. 5.17 we show two 

examples of routing where we deviate from shortest-path routing. Note that Fig. 5.17 is a 

GUI snapshot that shows all five tunnels we have instantiated so far. 

In the first example we implement routing based on traffic-classes. As discussed in 

the section on DS-TE, tunnels can be created for a traffic-class (identified by the DSCP 

bits in the IP header) by reserving bandwidth from a sub-pool of link-bandwidth 

resources. This way per-class admission control can be performed for tunnels designated 

for a class. The second part of DS-TE is to actually route traffic for that class into the 

specific tunnel, which today uses cumbersome, non-programmatic techniques. With 

OpenFlow, routing a traffic-class becomes easy and programmatic. In Fig. 5.17, we show 

the SFOKAN tunnel designated to carry only video traffic, while the SFONYC 
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tunnel carries both video and VoIP traffic. In the SFO router, we simply use OpenFlow to 

enter rules that match on both destination IP address and the L4 transport-ports to 

indentify the tunnel and the traffic-type respectively; and then insert the appropriate label 

(as an ‘action’ on matching packets) for the tunnel the packets needs to enter. We can 

also use the IPv4 DSCP bits to match on a traffic-class (if for example the San Jose router 

marks the bits). 

 
Fig. 5.17 GUI Snapshot: Routing of Traffic-Classes and Load Sharing  

In this experiment, we do not perform per-class admission control as we did not 

reserve bandwidth from class specific sub-pools of link bandwidth. But this is a simple 

change to our CSPF algorithm (and nothing else). More importantly we can create 

multiple sub-pools each for a different traffic-class; to match with tunnels created for 

multiple traffic-classes (as shown); which is something that MPLS-TE cannot provide 

today without changing the routing protocol. 

The second example of deviation from shortest-path routing shows load-balancing. In 

Fig. 5.17, traffic between SFO and KAN takes two routes: Video flows go through a 
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tunnel from SFOKAN, which is actually routed via the Seattle and Chicago routers; 

and all other flows take the IP links between SFODENKAN. This is an example of 

load-sharing to a tunnel-tail, between a tunnel-path and an IP-link-path; a feature that 

MPLS-TE cannot provide today due to the nature of Auto-Route in MPLS-TE (as 

discussed in the previous section). 

Conclusions: To summarize, we draw the following conclusions from our SDN 

based MPLS network prototype: 

•     We achieved the initial goal of verifying our architectural ideas of introducing the 

map-abstraction in MPLS networks. We showed that we can not only perform the 

basic operations of creating and maintaining LSPs in an OpenFlow enabled MPLS 

data-plane; but we can also provide higher-level services such as MPLS-TE by 

writing applications above a map-abstraction purely in the control-plane.  
•    We validated the simplicity of our approach when compared to more traditional 

approaches seen today. Our implementation of the traffic-engineering application 

together with all the features described in Sec. 5.2.1, took only 4500 lines-of-code. To 

accomplish the same in today’s network would require implementations of OSPF-TE 

and RSVP-TE (together ~ 80k LOC) and implementations of all the features. At the 

time of this writing we could not find an open-source implementation of MPLS-TE 

features; and so we can only estimate, based on experience that each feature could 

take at a minimum 5-10k lines-of-code, pushing the total LOC well above 100k. It is 

easy to see that our SDN based implementation is much simpler given the two-orders 

of magnitude difference in the lines-of-code required. While our implementations is 

not production-ready, two orders of magnitude difference gives plenty of room to 

grow; giving us confidence that even production-ready code will be simpler to 

implement with the map-abstraction. 
•     Finally, we achieved our second goal of demonstrating that using SDN and the map-

abstraction, we can implement the TE features in ways that a) either greatly simplify 

the feature; or b) provide a feature that MPLS-TE cannot provide. Examples of the 
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former include (i) our implementation of Auto-Route in a more flexible and 

programmatic way; and (ii) contention-free LSP establishment; while examples of the 

latter include (i) load-sharing traffic to a tunnel-tail, on a tunnel and an IGP path; and 

(ii) performing per-class admission control for more than one class of traffic. 

5.4   Other Applications of SDN based MPLS  

The map-abstraction brings the benefits of a simpler, more-extensible control plane to 

IP/MPLS networks, and provides network-applications with a global-view of network 

state. Together with the flow-abstraction in the MPLS data-plane and a switch-API like 

OpenFlow, MPLS networks based on SDN could potentially solve problems seen in 

today’s networks. In our talks with Tier-1 ISPs, we are beginning to understand issues 

that carriers face in MPLS networks and how the SDN approach could help meet those 

challenges. Briefly, we cover a few of these issues in this section. 

MPLS-VPNs: VPNs in MPLS come in two main flavors – L3VPNs and L2VPNs 

(there are variations of the latter). While both services use an MPLS backbone, LSPs in 

the former carry IP packets, and in the latter, Ethernet frames. Nevertheless, in either 

case, the primary objective of the MPLS backbone is to provide routing/switching 

information dissemination and isolation.  

Building on our TE work, we recently demonstrated MPLS L3-VPNs [109]. We 

interactively created multiple isolated L3-VPNs, with overlapping client private-IP 

address spaces (customer-routes). The controller maintains VRFs for each VPN that a 

Provider-Edge router is part of. The VPNs also have customer specified topologies, and 

are supported by TE tunnels in the backbone. 

We are beginning to understand the scaling implications of L3-VPNs. Today one of 

the main problems in L3-VPNs is that the  service provider has to carry/propagate 

millions of customer IP addresses using protocols like MP-BGP. The SDN approach can 
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provide relief in this regard as it can reduce routing burden, by eliminating the need for 

protocols such as LDP, IS-IS and MP-BGP in the backbone.  

Eliminating Auto-Bandwidth: In the previous section we explained how 

Auto-Bandwidth is a local-optimization technique [110], which together with LSP-

priorities, can produce significant network churn. But operators have other options – 

notably the use of ‘offline’ (not on the routers) modeling tools, that have global-view of 

the network and can optimally route LSP paths. However the use of offline-tools 

introduces a different problem. Once the tools calculate LSP paths for tens-of-thousands 

of LSPs, the LSPs themselves have to be established or re-routed in a live-network. This 

process involves ‘locking’ head-end routers one-by-one and feeding it configuration files 

for LSPs that it needs to originate (via signaling between routers). The compilation of the 

configuration takes time, and the order in which tunnels are ‘brought-up’ has to be 

carefully coordinated. And all of this has to be done in a network carrying live-traffic. 

But with SDN, operators have the ability to take an ‘offline’ optimization tool 

‘online’. The map-abstraction offers the full-visibility required by optimization-tools 

(which can run as applications). But more importantly, the Controller can access the 

results of the optimization tool and use OpenFlow to directly manipulate the forwarding 

tables of all LSRs. In other words, OpenFlow acts as a switch-API that dynamically 

updates flow-table state, and therefore LSP state. And it can do so in parallel, for multiple 

LSPs, originating from multiple head-ends, while minimizing network-churn. 

Improving Fast Re-Route Performance: From our talks with network-

engineers at Tier-1 ISPs, we find the MPLS Fast Re-Route (FRRs) techniques perform 

poorly in operation. In FRR, backup LSPs are created to ‘locally-repair’ primary-LSPs 

[111]. The backup LSPs are pre-computed and signaled prior to any failure. Local-repair 

refers to re-directing traffic as close as possible to the failure. Two techniques exist for 

performing FRR: one-to-one backup and facility backup. But irrespective of the 

technique used, the problem with FRR is that, in a large ISP network, a) there are far too 

many nodes and links to backup; and b) because the number of backup tunnels is high, 
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these backup tunnels usually do not reserve-bandwidth on the links. And so it is an 

intractable problem to have any intelligent way for optimally routing backup-paths while 

backing up everything in the network. Although FRR is fast (< 50ms recovery), it is 

effectively a blunt protection mechanism. It is entirely possible that the result of an FRR 

re-route can cause congestion over a backup-path. 

The key with SDN and OpenFlow is that it is dynamic - so when a failure happens, 

one can use FRR as it is today to do what it does today (as meta-stable state),  just to give 

the Controller enough time to optimize around the specific failure. Note that this 

optimization is no longer an intractable problem, as the Controller knows exactly what 

failed. And so it does not have to plan for every possible failure, and then it can use 

OpenFlow to update the LSP-state dynamically once it has optimized around the failure. 

The net effect is that FRR can perform better by maintaining the speed that comes from 

local-protection, but availing of optimally routed backup paths that are dynamically 

updated in LSR flow-table state. 

MPLS-TP/Multi-layer Control: Finally we consider applications of MPLS 

beyond the IP network. MPLS has been favored for establishing a packet-based data-

plane technology for the transport network; Hence the name MPLS-Transport Profile 

(MPLS-TP) [113]. The basic idea is that there is a need for transport networks that are 

packet-switched†, but such packet-networks should retain/reproduce the capabilities of 

traditional circuit-based transport networking, especially in providing equivalent OAM 

capabilities. OAM is provided using Generic Associated Channel packets in MPLS LSPs, 

or pseudowires [114]. Importantly, [113] points out that MPLS-TP should not depend on 

IP networks nor require dynamic control-planes for operation. 

However, in our talks with industry, we find that a simple, dynamic control plane like 

an SDN based control-plane can offer value to an MPLS-TP network. Transport network 

operators, traditionally against the use of complex control-planes like those in IP/MPLS 

networks*, may find simpler OpenFlow based control more to their liking. And its value 

increases when considered in multi-layer scenarios. Transport network operators 

†  The Related Works section in Ch. 6 discusses MPLS-TP in more detail. 
* See Challenge #2 in Sec. 3.4 
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frequently run multiple networks based on different technology layers simultaneously– 

ROADMs (Layer 0), SONET/SDH (Layer 1), OTN (Layer 1), to which they seek to add 

MPLS-TP (Layer2). And so instead of doing everything manually, or requiring separate 

control planes for each layer, a single OpenFlow/SDN based control plane for all layers 

can be an attractive option. 

We believe that we have only started to scratch the surface for SDN applications in 

MPLS networks. In the next section, we show how we implement one such application. 

 

5.5   Synergies with Packet-Circuit Control   

In this section we take a brief look at the synergies between SDN based control of IP 

networks with MPLS in the data-plane and control of IP networks with Dynamic Circuit 

Switching. In Fig. 5.18 we show the use of the map-abstraction for control in both cases.  

      
Fig. 5.18 Control of (a) IP and MPLS (b) IP and Dynamic Circuits 

In an IP/MPLS network (Fig. 5.18a), the map-abstraction presents an annotated-

topology map of the IP network, on top of which we perform TE-LSP routing based on 

TE-link attributes (like reservable-bandwidth, weight etc.) that we assign to the IP links. 

The routing uses a CSPF algorithm to determine tunnel routes. When IP is used with 

dynamic-circuits, in one construction (Fig. 5.18b), the map-abstraction presents an 

(a) (b) 



215 
 

annotated fiber topology, on which circuits are routed using CSPF and attributes we 

assign to the fiber/WDM-link. The net result of using CSPF in both cases is an MPLS-

tunnel or a TDM/wavelength-circuit.  

But in both cases they are represented as unidirectional or bidirectional links in the IP 

network, which is just another annotated-topology map in the SDN controller (the upper 

ones in Fig. 5.18). In other words circuits and TE-tunnels are represented in similar ways, 

and both can be dynamic with varying bandwidths and routes. And mapping packet-flows 

to circuit-flows is really the same as mapping packet-flows to TE tunnels, both of which 

we have demonstrated in similar ways with voice/video/web packet-flows in Chapters 3 

and 5. In both cases, the mapping in the control-plane happens via a virtual-port 

abstraction†. The only difference is that the virtual-port is a purely control plane construct 

in the MPLS case; while in the circuit-case it represents the data-plane translation from 

packet-frames (like Ethernet) to framing used in circuit networks. 

It is important to note that neither scenario shown in Fig. 5.18 is used today. TE 

tunnels are not represented as links in the IP network; the IP network does not treat 

packets as flows; and dynamic-circuits are not used in concert with IP network to 

dynamically create/modify/delete IP links. Yet the use of the map-abstraction together 

with the treatment of packets, tunnels and circuits as flows, enables a network-operator or 

service-provider to have a simple consistent view of their network.  

 

5.6   Summary 

The goal of this chapter was to introduce the map-abstraction in MPLS networks, argue 

for its benefits, and validate our architectural constructs and claims. Our motivation for 

doing so comes from discussions with service-providers who run large IP/MPLS 

backbones. In general they feel that while MPLS has delivered on new services like TE 

and VPNs, it has failed to live up to its promise of a simpler, cost-effective data-plane, 

†  See the sub-section titled ‘Tunnel Routing and Packet-Flow Routing’ in Section 5.2.2; and the sub-section 
titled ‘Mapping Packet-flows to Circuit-flows’ in Sec. 2.1.2. 
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due in large part to the burden of bearing a tightly-intertwined distributed control plane of 

ever-increasing complexity. 

We showed that the MPLS data-plane is simple and useful in its label-stacking and 

push/swap/pop operations. And while it is less-flexible than the full flow-abstraction that 

is inherent in the definition of the OpenFlow protocol, the MPLS use of FECs+LSPs 

qualifies as ‘flows’. But it is the absence of the map-abstraction in the IP/MPLS control 

plane that makes it complex. So much so that in most cases the only flow-definition (or 

FEC) actually used is the ‘destination- IP address’. 

We discussed the benefits of the map-abstraction in the context of MPLS networks. 

The benefits include simplifying the IP/MPLS control-plane which in-turn reduces 

protocol load in router CPUs (a real concern in carrier networks where not all hardware is 

upgraded at the same time). Another benefit of the map-abstraction is that it makes the 

control-plane more extensible, by not only providing the services that MPLS provides 

today (TE/VPNs); but also by making it easier to change or introduce new functionality 

into the network – a fact that can lead to its use as a control plane for MPLS-TP and 

multi-layer networks. And finally, a key-benefit of the map-abstraction is that it presents 

a global-view to network-applications which can then globally optimize the network-

function or service (as opposed to the local-optimizations possible today). Such global 

optimizations can help reduce churn (due to Auto-bandwidth) or help MPLS based 

recovery (FRR) function more efficiently.  

We built a network-prototype to verify our architectural constructs and validate our 

simplicity and extensibility claims. The data-plane switches used the standard MPLS 

data-plane mechanisms, and the control-plane was based on OpenFlow; on map-

abstractions created by a network OS; and network-applications we implemented to 

replace the functionality of the distributed IP/MPLS control plane. We implemented 

nearly all the features of MPLS traffic-engineering including TE-LSP admission control, 

bandwidth reservations, tunnel-priorities, Auto-Route, Auto-Bandwidth, class-based TE, 

and load-sharing.  And we did so in less than 5k lines-of-code, which is nearly two orders 
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of magnitude fewer than implementations using a traditional distributed approach 

(thereby validating our simplicity claim). Furthermore, we showed that implementing TE 

features with our design choices can either greatly simplify the feature or provide a 

capability that the current MPLS-TE control plane cannot provide (thereby validating our 

extensibility claim). Finally, we discussed how introducing the map-abstraction in MPLS 

networks fits well with the discussion in the previous chapters on packet-circuit unified 

network control, in that treating packets, tunnels and circuits as flows, enables a network-

operator to benefit from a simple consistent view of their network.   
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