
A Content-Based Traffic Engineering Policy for
Information-Centric Networks

Serhat Nazim Avci, Cedric Westphal
Huawei Innovation Center

{serhat.avci, cedric.westphal}@huawei.com

Abstract—Information-Centric Networks offer an opportunity
to re-think traffic engineering, by allowing to schedule resource
at the granularity of content. We describe an architecture for
performing content-based path selection and resource allocation.
It assigns content objects to paths in the network by considering
the time it will take to deliver the existing objects in the
network and optimizes with respect to this objective. We have
extensively simulated this mechanism to demonstrate significant
gain up to 72% in response time when compared with minimum
backlog policy (MBP), round-robin format (RRF), and the traffic
engineering policy which minimizes the maximum link utilization
(minMLU).

I. INTRODUCTION

New resource allocation mechanisms are required to
achieve high link utilization and to improve network perfor-
mance [14][6]. The current Internet architecture provides a
flow abstraction for traffic engineering that is unfortunately ill
suited for high link utilization. This is due to several reasons:
first, an IP flow matching a filter with a certain source and
destination addresses may encompass many different applica-
tions, especially in the case of NAT’ed clients. Second, an IP
flow is a poor descriptor of the amount of resource to allocate,
as it is difficult to predict the flow length just by looking at the
network layer information in the packet header. Third, there is
no explicit semantics to signal the end of an IP flow, and it is
typically identified by waiting for a timer to elapse after the
last packet of the flow. This leads to resource being allocated
to flows after they are completed.

Typical mechanisms to perform traffic engineering then
rely on historical and probabilistic methods, by considering
the traffic matrix observed during a previous period, and
computing some weights to select paths to efficiently load
balance the traffic over the network; this is probabilistic in
the sense that flows are assigned to paths with the hope that
in the long run, the behavior will converge to the average value
obtained from the traffic matrix.

The flow length distribution in the Internet (and many other
networks) however follows a power law distribution [13].
This means that a few misallocated flows may skew the
performance of the network, as seen for instance in the case of
the data center network [10]. As the traffic demands increase,
making more efficient resource allocation is primordial, but
the current IP architecture comes up short in providing the
proper abstractions to achieve this.

New architectures have been proposed to alleviate some of
the issues of IP. In particular, Information-centric networks

(ICN, [7][5][15]) have been proposed to use content as the net-
work abstraction. Content distribution, and video in particular,
is predicted by Cisco to amount to 90% of the Internet traffic
by 2017. ICNs use a unique content name to identify the data
crossing the network, and some cryptographic mechanisms to
securely bind the name to the data.

This enables two important features: one is that the content
can be stored anywhere in the network, as it is the content that
is authenticated, not the server providing it; and the second is
that the network can identify properties of the content, such
as its size, and associate these to the content name [1]. This is
a profound shift, as allocating resource to a piece of content
with known attributes becomes deterministic.

We argue that ICNs offer the proper abstractions to perform
a finer grained resource allocation than IP, and in this paper,
we investigate how to leverage these abstractions to per-
form content-based traffic engineering1. We design a content-
allocation architecture in ICN which provides the proper func-
tions for content-based resource allocation, and design some
scheduling policies which take advantage of these functions to
achieve a significant gain over current IP resource allocation
procedures.

The contribution of this paper are as follows:
• We define a content-based traffic engineering problem,

inspired by the work of [1][25] and we show that this
problem is NP-Hard;

• We therefore develop a heuristic approach and a resource
allocation policy which reduces the response time of the
network for delivering a piece of content;

• We observe that the control loop for resource allocation
requires knowing the actual rate of data transfer for a flow
after it has been allocated, which in turns require for the
content allocation mechanism to be able to either estimate
the performance of the transport layer, or to learn it;

• We define a resource allocation mechanism which learns
the desired allocation over a training period, then exploit
this policy for a while, before training again and repeating
the cycle;

• We thoroughly evaluate the proposed mechanisms both in
a Java simulator built for this purpose, and using NS-2

1Content-based TE here means that we assign resource to each piece of
content. We respect the network neutrality principle and do not prioritize
any one content over others. Even though some provider may want to give
better performance to content from, say, Disney, we only consider a resource
allocation scheme that is blind to the type and producer of content.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

978-1-4673-9292-1/16/$31.00 ©2016 IEEE 718

simulations; we show significant gains in response time
for a wide range of network conditions in both WAN-like
and Data Center-like topologies.

We believe that fine-grained resource allocation sets ICN
apart from the current IP network architecture. Despite being
a heuristic, the policies we describe in this paper demonstrate
a significant gain over the minMLU algorithm, over the RRF
algorithm, and over the results of MBP algorithm in [25]. In
RRF, every source-destination pair has a set of candidate paths.
These paths are selected in a round-robin format every time a
new flow comes in to the network between these two nodes.
However, these are heuristic policies and they only point in
the direction towards even more gain for the optimal policy.

The paper is organized as follows. We first present some
background and related works in Section II. We next define
the problem statement and the requirements for a content-
based traffic engineering mechanism in Section III and prove
there our problem formulation is NP-Hard. In Section IV,
we propose our network architecture. Section V discusses the
evaluation environment and presents the simulation results. We
discuss these results in Section VI, prior to concluding the
paper in Section VII.

II. RELATED WORK

Information-centric networks [19][7][5][15] have been pro-
posed to securely name data and route based upon the data
name. A lot of work in ICN has been on separating the content
from the server which hosts it, in order to facilitate content
replication and eventually, content delivery.

However, it has quickly become clear that ubiquitous con-
tent caching came up with resource allocation implication, and
TECC [27] for instance considered how to jointly provision
the content placement in the cache with the path selection for
the delivery. TECC solved an optimization problem taking as
input the traffic matrix implied by the users’ demands, and
proposed an off-line content placement and traffic engineering
mechanism, while our focus is on dynamic, fine-grained
resource allocation.

Our work build on that of [1] and [25] which respectively
observed the potential of ICN for traffic engineering and
proposed an initial proof of concept and simple resource
allocation policy. However, [25] offered only a basic heuristic
and the results of this policy vary greatly upon the network
conditions and traffic demands. We propose here a scheduling
policy which performs consistently well over a wide range of
input.

[22] considered the issue of traffic engineering in ICN,
but by splitting the flows into multiple paths and without
taking into account the object size. We on the other hand
consider a single path for an object, but utilize the size
awareness offered by the ICN paradigm. In the Content-aware
Traffic Engineering (CaTE) paper [21], a different framework
is presented where a data can be stored in multiple server
locations. This knowledge is leveraged to find not only the
optimum path but also the optimum source location. There is a
joint source node and path optimization. Therefore, it benefits

both the internet service providers (ISP) and content providers
(CP).

Traffic engineering in IP networks has been well studied,
but most of the work is content agnostic. For instance, [18]
computes OSPF link weights to allocate IP traffic. To include
content-based differentiation, CDN heuristics have been used
as in [11] .[4] considers history-based strategies to perform
joint traffic engineering and content distribution.

Integrating the CDN with the network has been the main
approach to optimize the content-based path selection. [21]
shows that the proper CDN server selection coordinated with
the recommendation of the network operator improves perfor-
mance. Our set-up differs as there is no coordination of the
content location selection with the network operator. Using
game theory, [17] and [3] consider joint traffic engineering
and content selection.

QoS routing is a mature topic to find optimal TE policy on
certain constraints. The main approach is to find the optimal
paths typically in terms of cost, loss probability, available
link bandwidth, link propagation delay, delay jitter, hop count
[29]. Our goal is to minimize total flow completion time. In
addition, QoS routing does not have the fine grained flow
abstractions available in ICN.

The shortcomings of minimizing the maximal link utiliza-
tion of the network (the so-called minMLU traffic engineering
policy) were pointed out in [24]. We believe our paper
answers their call for better TE tools in terms of application
performance. [8] also attempted to replace minMLU to account
for the unpredictability of the traffic. Here, predictability is
improved by working with a content abstraction which can
precisely define the object to allocate in the network.

Our policies are heuristic, and improve the performance. We
hope our paper will instigate some theoretical work on optimal
scheduling policies. In networks of parallel servers, the Join-
Shortest-Queue policy has been studied by, for instance, [9]
or [16]. This analytical framework needs to be extended to the
case of networks of queues, and a theory of resource allocation
in ICN is clearly required.

III. PROBLEM STATEMENT AND REQUIREMENTS

A. Network assumptions

Fine grained resource allocation creates a host of require-
ments on the underlying networks and on the mechanisms used
to provide the allocation. Current networks do not support such
mechanisms, for lack of the proper tools and abstractions.

We consider a network where a flow is initiated by a request
for content from a consumer of the content. The consumer may
be inside the network, or in a different domain. The network
receives the request, and the content will flow back through
the network. We make a somewhat restrictive assumption that
a content object will be mapped to a single flow and that
all chunks composing one content object will be allocated to
the same path through the network. ICNs support delivery of
the chunks from multiple sources, but for this initial proof of
concept, we make the simplifying assumption that all chunks
follow the same path.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

719

We do not assume a strict path symmetry, as in [19], but
we note that if we were to enforce such symmetry, the traffic
allocation decision can be made on the request. Namely, if
a customer sends a CCN/NDN interest for packet, we can
perform the path selection by routing this interest to the
location hosting the data over the desired return path for the
content.

For ease of explanation however, we assume that a content
flow2 enters the network, either from a host directly attached to
the network or from a different domain, and that the network
will make a content-based routing decision to deliver the
content to the requester. The decision is made either by a
control layer as in [1] (for instance, using SDN tools adapted
for content-based routing) or by the strategy layer as in [19].

We assume that a content is uniquely associated with
its identifier (in ICN, its name) and that the content size
can therefore be associated with this name as well. Many
mechanisms can be used to create a mapping of the content
name to its size, and we do not presume any specific one.

More formally, we consider a graph G = (V,E) with V the
set of nodes and E the set of links. Each link e has capacity
ce. Each content (or flow) zs,d entering the network at vertex
s and leaving at vertex d can select a path from a set of
Ks,d distinct paths (P ks,d, k = 1, . . . ,Ks,d), where a path is
an acyclic sequence of links in E going from s to d. If link
e belongs to path P ks,d for some s, d, k, we say that e ∈ P ks,d.
Ks,d is assumed to be relatively low to simplify the allocation
decision and the management complexity. In our evaluations,
Ks,d ranges from 3 to 5. In other words, we assume content
placement is given as input and focus on TE.

According to classical networking models, flows from s to
d are generated according to a Poisson process with rate λs,d.
Since each flow corresponds to a piece of content, and since
the network has access to the content size, we can assume that,
upon arrival of a flow f in the network, the network has access
to the flow size (which we also denote by z). We assume that
the size z is drawn from a known distribution with mean z̄.
In our evaluations, we consider the content size to be Pareto
distributed.

We further assume that the amount of traffic under the
arrival rate λs,d and the distribution for z is stable and can
be allocated to the paths P ks,d in a manner such that the
load allocated to each link is less (on average) than this
link’s capacity. Namely, we assume that there exist coefficients
πks,d, 1, . . . ,Ks,d with 0 ≤ πks,d ≤ 1 and

∑
k π

k
s,d = 1, such

that the link utilization ue of link e satisfies the following
feasibility condition:

∀e ∈ E, ue =
∑

Pk
s,d:e∈P

k
s,d

λs,dπ
k
s,dz̄ < ce (1)

Note that the matrix {z̄ · λs,d}(s,d)∈V×V corresponds to
the traffic matrix in the network, and the πks,d corresponds to
a static traffic engineering decision. For instance, a possible

2We use the term ”flow” interchangeably with content, defined as the
sequence of all chunks belonging to a single data object.

traffic engineering policy could be to randomly split the flows
arriving from s to d with probability πks,d onto the Ks,d

possible paths P ks,d. We denote by minMLU the random
splitting policy where the choice of coefficient πks,d minimizes
maxe∈E ue. This is the typical min-MLU traffic engineering
policy which minimizes the Maximum Link Utilization.

One important aspect is that we only modify the path of
the objects through the network, but not the amount of traffic
that is offered to the network. Therefore, if there is a solution
to Equation 1, the network will be stable (i.e. able to deliver
all the traffic) and the link utilization of all policies which
keep the network stable will be the same. Our goal is not to
improve link utilization, but to reduce the delay to deliver a
flow (or equivalently, by Little’s Theorem, the number of flows
in progress at any given time).

We denote by zi the i-th content to arrive into the network
(and slightly abusing notations, its size as well). zi is asso-
ciated with a source s ∈ S and a destination d ∈ D and we
assume that for each source-destination pair, there is a set of
paths Ps,d that zi can follow. We denote by V that allocation
of the sequence of zi’s to a corresponding path, and definee
TV (zi) to be the completion time of zi under this allocation.

Another key aspect is that of the number of flows being
considered at a given time. For an extremely large amount of
flows, the probabilistic splitting of the flows according to the
πSsd

k will yield a result which converges to Equation 1 by
the central limit theorem. This means that the link utilization
in such case will be close to optimal. Further, for a very
large amount of flows, the resource allocation needs to be
kept simple to keep up with the speed.

However, for smaller scales and with heavy tail flow size
distribution, the probabilistic resource allocation will have
worst results (as we will see in the Evaluation). Therefore,
we restrict ourselves to networks at the edge, and ignore the
core of the network (where minMLU will perform fine).

We define the response time of the network for flow z as
the time between the first arrival of the first chunk of z at the
ingress of the network until the last departure from the last
chunk of flow z at the egress of the network.

The content-based traffic allocation problem is therefore to
find an allocation V : zi → Ps,d which solves:

Content-Based TE Problem: min
V

Σni=1TV (zi) (2)

Theorem 3.1: The Content-Based TE Problem is NP-Hard
Proof: Our problem is a dynamic flow scheduling problem.
A special case of our problem formulation is where each item
is of the same unit size and contains only one packet to go
through the network. This can be mapped in a straightforward
manner to the aircraft routing problem defined in [23], and
shown there to be NP-Hard. Since it is a sub case of our
formulation, our problem is therefore NP-Hard as well

The complexity of finding an optimal solution to the
Content-Based TE problem therefore induces us to look at
heuristic solutions. We now turn to describing the requirements
of a practical solution and to presenting a content-based traffic
allocation mechanism which meets these requirements.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

720

B. TE Requirements
Current networks fall short of enabling this vision. IP flows

are difficult to properly define, since a sequence of packets
matching an IP header filter with no interruption longer than
a given time-out can incorporate multiple distinct content,
applications, or even users. This yields our first requirement.

Requirement 1: Content-based abstraction. In order to
perform a fine grained resource allocation, the network layer
needs to be able to uniquely identifies each flow and to be
able to distinguish different content and users.

The current IP architecture has been evolving towards a
software-based control plane [12] which performs per-flow
decisions. As a new flow enters the network, a rule is applied
that is set by the controller. As we want to achieve a content
specific traffic engineering, we need such mechanisms to apply
to content, as in for instance [1].

Requirement 2: Content-based Control Plane. The con-
trol plane of the network extends to the edge, and is able to
make routing decision once for each (or a subset of the) piece
of content.

The decision can be as simple as assigning a tag (such as
an MPLS label) at the ingress edge, so that the flow follows
a given path through the network fabric until it reaches the
egress edge.

The control plane also needs to be aware of the congestion
in the network fabric to make a proper path selection. For this,
a network monitoring infrastructure is required to keep track
of the amount of traffic allocated to the nodes’ outgoing links.
Namely, when a flow zs,d with size z is allocated to the k-th
path P ks,d, it will add z to the backlog of the edges traversed
by path P ks,d and for the nodes monitoring the congestion, a
description of the flows and remaining backlogs is required.

While this is a strong requirement, we make it to demon-
strate the potential of the mechanism to reduce the response
time of the network. We hope that this requirement can be
relaxed. [25] considered some policies which ignored all flows
below a certain size threshold for resource allocation, and [2]
focused on identifying only elephant flows in the context of
the data center for instance. From the knowledge of the flows
assigned to the paths, the traffic assignment mechanism must
be able to derive some behavior of the forwarding plane.

Requirement 3: Estimation of traffic. The control plane
needs to be aware of the behavior of the forwarding plane
under given flow conditions.

TCP is an end-to-end protocol, which makes the forwarding
behavior inside the network (say, reaction to congestion)
contingent to a policy at the end points. In order to properly
assign resource, the control plane would need to understand
the impact of its decisions on the flows and have a model
of the TCP behavior (either a theoretical model as in [20]
and references therein, or an empirical model based upon
previously observed network conditions).

Requirement 4: Scale. Any resource allocation policy has
to scale up with the size of the network.

We have addressed this requirement earlier: for large scales,
a probabilistic approach will approach the optimal. Therefore

Fig. 1. Architectural View

we suggest two tiers of policy: a probabilistic minMLU
mechanism in the core, and a dynamic allocation from the
edge to the core, to meet this requirement.

IV. MINIMAL RESPONSE TIME POLICY

A. Architectural description

Figure 1 presents the elements of our resource allocation
architecture. We assume an ICN protocol names the object, so
that a content is uniquely identified by its name, taking care of
Requirement 1. We assume a (logically) centralized controller
making content-based decisions at the edge of the network,
which is typically going to be a software switch connected to
the controller.3

The controller handles several functions:
• It can select the path for the content, either by setting a

rule at the switches in the network fabric, or by assigning
a label for a pre-computed path;

• A Content Management function performs the following
tasks: it maps the content to a location, either in a cache
in the network, or to an egress path out of the network;
it also monitors content information, such as identifying
the content size and keeping a database of the mapping
of the content to its size;

• A Network Monitoring function maintains a view of
the conditions inside the network, either by polling the
switches for network conditions, or by estimating the
conditions from the input and the predicted network
evolution, or a combination of both;

• Finally, based upon the input of the Content Manage-
ment and Network Monitoring functions, an allocation
algorithm decides which of the candidate paths for a
(source,destination) pair will provide the best network
performance.

3Some ICN architectures such as CCN/NDN do not specify a controller,
and assume a distributed routing mechanism. However, CCN/NDN includes a
strategy layer that selects how to forward interest packets, and if the upstream
edge router has some knowledge of the downstream network congestion, this
edge router can select the proper path for the data messages, assuming the
function of the (now distributed) controller. For simplicity, we describe only
a centralized controller here.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

721

The controller could select multiple paths and allocate some
amount to each path. However, our goal is to demonstrate
the benefit of the idea in the simple scenario, therefore as
s first step, single path is our focus. This controller can be
extended as an extension of OpenFlow, as in [1]. The mapping
of the content name to its size is straightforward in ICNs. The
Network Monitoring and Allocation Algorithm functions need
to be detailed more, in the following subsections.

B. Allocation Algorithm

Recall zi is the ith content to be transferred in the network,
as well as its size in bytes. To each point-to-point content
transfer from the source s ∈ S to the destination d ∈ D,
we associate a backlog function Bzi(t) to denote the backlog
generated by the content zi from s to d at time t. Letting tzi be
the arrival time of content zi, then Bzi(t) is a non-increasing
function of t for t ∈ [tzi ,+∞): it diminishes from the size of
the content zi down to 0. For instance, if we consider a flow
using the full capacity c of a link, then Bzi(t) can be given
as following:

Bzi(t) = [zi − c(t− tzi)]+. (3)

where [g]+ = max{g, 0}. In general, due to the dynamics
of the flow interactions and of the transport protocol (say,
TCP in IP, or an interest-shaping mechanism in CCN/NDN),
it is easier to compute Bzi(t) at each link by subtracting the
volume of content that has traversed the link from the original
content size. Bzi(t) correspond to the unfinished, remaining
amount for the flow zi. Note that this backlog is not inside the
network, but rather corresponds to the amount of data which
has not transited through the network yet for a specific object.

We are given the bandwidth sharing function which allo-
cates f(zi) units of bandwidth to object zi per unit of time.
For instance, if TCP is the transport protocol, one can view
f(zi) as the rate achieved by the TCP session which carries
zi.

Given f and Bzi(tzn) for all i = 1, . . . , n − 1 (where we
consider the nth arrival to be scheduled), we can estimate the
completion time for all files. It is an iterative process which
looks at the next file to terminate, namely the object j such
that Bzj (tzn)/f(zj) ≤ Bzi(tzn)/f(zi) for all i = 1, . . . , n−1.
Upon completion of zj at time t∗, we have a different set of
objects (all the objects for which Bzi(t

∗) > 0 minus zj . We
can iterate on all the objects such that Bzi(t

∗) > 0 to calculate
the completion time of each object. We denote by TV (zi) the
completion time of zi under the allocation set V describing
the path allocation of the objects z1, . . . , zn−1.

For the arrival zn, there is a subset Ps,d of all the paths
between source s and destination d that we can assign zn to.
Denote by Ks,d the cardinality of the candidate path subset,
and by VPi , i = 1, . . . ,Ks,d the allocation set that describes
the current allocation plus the potential allocation of zn to
the i-th path Pi ∈ Ps,d. For instance, VP1

is the allocation of
z1, . . . , zn−1 to their current path with backlog Bzi(tzn) and
of zn to the first path in Ps,d with backlog (or in this case,
object size) zn.

Algorithm 1 Minimum Response Time Policy
Require: Ps,d for each (s, d) traffic demand pair and Bzi(t)

for every content zi being transferred, i = 1, . . . , n−1 with
Bzi(t) > 0

1) Select one path P ∈ Ps,d, 1 ≤ i ≤ Ks,d from the
candidate paths set and insert it to the allocation set
by V → V + zn ⇒ P .

2) Given the bandwidth function f and remaining back-
logs Bzi(to) at time to, calculate the expected response
time TV (zi) of each flow. Find the checkpoint time
tcheck which is the minimum expected response time
found by tcheck = mini TV (zi). Update the backlogs
of each flow at time tcheck by

Bzi(tcheck) = (Bzi(tcheck)− tcheck × f(zi))
+
.

3) If all flows are completely transmitted then go to next
step. Otherwise, recursively go back to step 2 and
calculate the response time of the non-terminated flows
after the checkpoint. Update the response time of the
flows by

TV (zi) = TV (zi) + tcheck

where TV (zi) is the aggregate response time of flow
zi for candidate allocation V .

4) Calculate the total response time of all flows as TV =∑n
i=1 TVP

(zi).
5) Iteratively go back so step 1 and select the next

candidate path until all candidate paths are selected
in series.

6) Given the total response times of each candidate path
scenario TV ’s, select the one which will give the
minimum total response time. Add this path to the
existing set of paths.

We attempt to find the path P ∈ Ps,d such that:

minimize
P∈Ps,d

n∑
i=1

TVP
(zi) (4)

that is, to find the path with the minimal total completion time
for all objects in the system.

To keep this policy tractable, subsequently in our simula-
tions, we specifically consider Ps,d = {P ks,d, k = 1, . . . ,Ks,d}
as the set of Ks,d shortest paths given by the output of
Yen’s k-shortest path algorithm [28] modified to increase path
diversity.

Our algorithm, denoted by Minimum Response Time Policy
(MRTP), for path selection for incoming content zn, origi-
nated at node s and destined for node d, is summarized in
Algorithm 1.

C. Network Monitoring and Bandwidth Estimation

Algorithm 1 requires to know the backlogs B(zi) and
the bandwidth sharing function f(zi). The backlog can be
monitored at the edge, or can be computed if the function f(zi)
is known at all time. The function f(zi),∀i, can be estimated

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

722

Fig. 2. Computing the MRTP decisions using a Mirror Virtual Network

from a model of the transport layer or from an empirical
measurement of the network conditions. In most systems, it
is quite complex to estimate f(zi) as the dynamics of the
system are very intricate. Therefore, the MRTP policy with
perfect knowledge of f(.) is an idealized policy. We present
now a scheduling policy which can be realized in practice.

The policy functions in two phases: a training phase, where
the network acquires the path decision based upon an off-
line learning; and an exploitation phase, where the policy
discovered in the training phase is implemented. The two
phases alternate periodically, so as to keep the decisions in
the exploitation phase up to date.

The learning phase require knowing the best decision. We
propose the use of a mirror VNet [26] or a network emulation
environment that takes as input the packet arrivals into the
real network, and then computes the completion times of
the existing flow for each possible path selection to learn
the MRTP decision. Therefore, the forwarding happens in
the data plane according to the existing policy (say, the
decisions learned during the previous training phase) while
the resource allocation mechanism acquires the policy for the
next exploitation phase.

We propose an iterative optimal path selection algorithm for
the training period.
1) We start with the first flow f1 with source s and destination
d and add it to the active traffic input set T .
2) We select the first candidate path pi ∈ Ps,d, i = 1 of f1.
Ps,d is the set of candidate paths of flow between s and d.
3) We run the emulator (in our experiments, NS-2) and
calculate the actual total response time of this simulation
RTi, i = 1.
4) We select the next pi in the set Ps,d and go back to step
2).
5) We find the index of the smallest element r1 of the set
{RT1, RT2, RT3} and store it as the optimal path selection of
flow f1. We add the optimal path selection to set PS.
6) We add the next flow to the active traffic input set T .
7) Except for the last element of T , we take the path selections
of the flows from the set PS.
8) We repeat the steps through 2) to 5) and find the optimal
path selection of the last element of set T .
9) Go back to 6) until the size of set T is equal to the

predefined size of the training set.
Once we find the optimal path selection of the flows in the

training set, we use this knowledge to derive the path selection
policy for further flows.
1) For each source-destination pair, extract the path selection
statistics.
2) For a specific source-destination pair, if an index is dom-
inantly popular, set that index for the future flows of that
source-destination pair.
3) For a specific source-destination pair, if more than one index
is closely seen in the training set, make a random selection by
taking the weights of paths as their popularity in the training
set.
4) For a specific source-destination pair, if the sample size is
0, use MTRP for future flows of that kind.

During our simulations, we observed that there is a single
path index in the training set for most of the source-destination
pairs. For the rest, we applied the third and fourth item of the
previous list.

Figure 2 shows the traffic being duplicated to be fed both
to a network emulator which computes the optimal scheduling
decision by exhaustively trying the multiple potential paths and
to the actual network for transmission. The emulator is only
used during the training periods, and is turned off otherwise. In
our evaluations, we compute the optimal weights based upon
the input of 1,000 flows, then apply the learned decisions to
the next 10,000 flows.

V. EVALUATIONS

We developed a Java simulator and an NS-2 simulator to
evaluate the response time performance of the proposed MRTP
against minMLU, MBP, and RRF because we wanted to see
the improvement using existing transport protocols. In a CCN-
based simulator with a proper interest shaping mechanism, we
would observe a higher gain.

A. Methodology

In the Java simulations, the bandwidth sharing function f(.)
used for estimating the response times is the same bandwidth
sharing function used in the simulation itself. Therefore,
idealized MRTP is implemented. For each simulation setup,
we implemented these algorithms on two different networks
and several different traffic models and parameters. The first
network is the Abilene (WAN) network, a backbone network
established by Internet2 group. It has 11 nodes and 14 edges
as depicted on the left of Figure 3. The capacity for each
link is 9920Mbps except the link between the nodes in
Indianapolis and Atlanta where the capacity is 2480Mbps.
In NS-2 simulations, latency of each link is set to 10ms.
Three candidate paths for each source-destination node pair are
computed based on OSPF link weights given by [18] and Yen’s
algorithm [28]. We used different traffic demand matrices to
characterize the traffic inputs. They are uniform, gravity-based
and a realistic model from [30]. The realistic matrix was built
by measuring the end to end traffic for each source-destination
pair in the Abilene network, for a period of 5 minutes. The

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

723

Fig. 3. Abilene Network (left) and Data Center topology (right)

traffic input is created by using Pareto distribution and Poisson
process for the object sizes and arrival times, respectively.
Pareto parameters xm and α and Poisson parameter λ are
varied in different simulations to measure the performance in
various traffic scenarios.

The second network is a data center (DC) network which
is shown on the right of Figure 3. It consists of 8 rack
switches and 3 core switches, which make a combined 11
nodes. The network is fully bipartite connected meaning there
is a link between each rack and core switch. The links have
9920Mbps capacity and 10ms latency for NS-2 considerations.
We assumed a uniform traffic demand matrix between each
rack switch in DC network. There are three disjoint and equal
cost paths between each rack switch pair. Those paths have a
length of two hops going over one of the core switches.

B. WAN

The first Java simulation scenario in the Abilene (WAN)
network is based on the traffic demand taken from [30]. To
create different traffic inputs, we set xm to three different
values 3, 30 and 300. The flow arrival rate (λ) is varied
between 12 and 18 for xm = 300, between 120 and 180
for xm = 30 and between 1200 and 1800 for xm = 3.
The traffic load is calculated using the formula: Traffic load
=λ × xm × α

α−1 , which corresponds to between 60% and
100% link utilization with these specific values. The 100%
link utilization in this network for this traffic matrix is satisfied
with a traffic load of 25084Mbps. The response time results
of MRTP and minMLU are given in Figure 4. Note that the
response time measurements of the cases in which xm = 30
and xm = 3 are scaled by 10 and 100 to fit all three simulation
scenarios into the same graph. According to the results,
minMLU increases the mean response time by approximately
66% compare to MRTP.

The second Java simulation is also setup in the Abilene
network but with a gravity-based traffic demand. Under this
model, it requires a traffic load of 65140Mbps to achieve
100% link utilization. Therefore we updated the arrival rate
parameter λ to achieve link utilization between 60% and 100%
link utilization. λ is set between 3000 and 4800 for xm = 3,

Fig. 4. Mean Response Time Comparison with Abilene Traffic Matrix

Fig. 5. Mean Response Time Comparison with Gravity-Based Traffic

between 300 and 480 for xm = 30 and between 30 and
48 for xm = 300. The response time results of MRTP and
minMLU are given in Figure 5. Note that, as before, the
response time measurements of the cases in which xm = 30
and xm = 3 are scaled by 10 and 100 to fit all three simulation
scenarios into the same graph. The simulation results show an
approximately 42% increase in response time by minMLU
compared to MRTP.

C. Data Center (DC)

In the DC network, we carried out a Java simulation which
had uniform traffic demand matrix. In addition to MRTP and
minMLU, MBP and RRF are also included in the simulation.
As in the WAN simulations, the traffic input parameters are
arranged such that they correspond to between 60% and 100%
link utilization. The DC network requires a traffic load of
229151Mbps to achieve 100% link utilization under uniform
traffic model. For λ = 15, xm is set between 2000 and 3250
and for λ = 1500, xm is set between 20 and 32.5. In Figure 6
and Figure 7, the response time calculations of four different
techniques for the traffic input with λ = 15 and λ = 1500 are
presented. In both graphs, MRTP significantly outperforms the
other techniques. It reduces the response time approximately
40% and 45% compared to minMLU and RRF. MBP policy
performs second best in the low utilization regime but its
performance deteriorates in the high utilization regime.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

724

Fig. 6. Mean Response Time Comparison with Uniform Traffic, λ = 15

Fig. 7. Mean Response Time Comparison with Uniform Traffic, λ = 1500

D. NS-2 simulations

We carried out simulations in NS-2 on the WAN network.
The setup of the NS-2 simulations differ from the setup of Java
simulations in the nature of bandwidth sharing knowledge.
In the NS-2 simulations, we follow the procedure explained
in IV-C. We start with a training period where we have the
perfect knowledge about the bandwidth and the response time
of the flows. After the training period, the derived optimal
path selections for each type of flow are used in the rest of
the simulation. We call this Trained MRTP (T-MRTP). The
trained optimal path selections are updated by new training
periods after a certain time 4. We call this method Recalibrated
TMRTP (RT-MRTP).

The first set of simulations are carried out with gravity-
based traffic input which requires approximately 93% MLU.
We run the simulations with 20,000 flows. There are two
training sets, the first one is the first 1000 flows and the second
one is the flows indexed between 6001 and 6650. In Fig. 8, we
compare the average response time of MRTP with minMLU,
T-MRTP and RT-MRTP for traffic input with incremental sizes.
For the first 1000 flows, minMLU performs approximately
72% worse than MRTP since MRTP has the perfect knowledge
of the bandwidth. These results are consistent with the Java
simulations. T-MRTP and RT-MRTP have a similar gain over

4As a further direction, we plan to carry out online exploitation instead of
relying on periodical training sequences.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0.6

0.8

1

1.2

1.4

1.6

Number of Input Flows

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
)

MRTP
minMLU
TMRTP
RTMRTP

Fig. 8. Response Time Comparison of NS-2 Simulations

Traffic Set TMRTP minMLU Degradation
1-350 0.650s 1.013s 55.8%
1-1000 0.658s 0.949s 44.2%
1-5000 0.710s 0.943s 32.8%

1-10000 0.764s 0.977s 27.8%

TABLE I
AVERAGE RESPONSE TIME: WAN NETWORK/UNIFORM TRAFFIC

minMLU in the beginning of the traffic set and they manage
to preserve this advantage in the rest of the traffic set. The per-
formance degradation due to minMLU is as low as 41%. We
observe that the quality of the trained optimal path selection is
very high after the training set and they gradually drop as more
flows come in to the network. Therefore, we see the benefit
of the re-calibration of these trained path selections between
flows 6001 and 6650. RT-MRTP reduces the average response
time approximately 5% compared to T-MRTP. In addition, it
is seen that the second training set is not as effective as the
first training set because the size of the training set affects
its influence on the overall performance. In addition, the fact
that the second training period starts from a sub-optimal state
might be a reason for the reduction in the effect of the training
set. As a results, we can say the bigger and more fresh training
sets improve the performance. In that case, there is a trade off
between the complexity and the performance.

The second set NS-2 simulations are also carried in WAN
but with uniform traffic input. There are 10,000 flows and the
first 350 of them are training flows. MLU is approximately
90%. The comparative response time results of T-MRTP and
minMLU are presented in Table I.

According to the results, during the training period, min-
MLU induces a higher 55.8% response time compared to T-
MRTP. In that period, T-MRTP is the same as MRTP. The
quality of the path selection parameters of T-MRPT drops from
the level of MRTP as more flows come in. However, there
is still a significant gain for traffic input which is 30 times
bigger than the training period. The fact that the performance
gain in this scenario is not as high as the gravity-based traffic
can be attributed to the smaller size of the training period,
which is a reiteration of the trade off between complexity and
performance.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

725

VI. DISCUSSION

Our results point towards a significant gain in response time,
but at the cost of a greater complexity. We argue that, since
it is mostly software complexity at the controller, it will be
eventually possible to reap the gains of fine grained resource
allocation.

As a future work, the scalability could be improved by
using a threshold to monitor only elephant flows and let short
flows be mis-allocated without significant penalty. That would
reduce the number of scheduling decisions.

The algorithm measures the total response time, but this
could be modified to include other objectives. For instance,
one could normalize the response time by the size of the flow,
so as not to penalize short flows. We can also compute other
performance objectives over the path selection.

We improve the performance significantly over minMLU,
which is not however optimized for response time. However,
load balancing is a proxy for reducing the congestion in the
network and therefore improving the response time. Due to the
current IP flow abstractions, no traffic engineering mechanism
can really optimize for response time. This is where ICN
abstractions offer a significant advantage.

The bandwidth estimation mechanism can be optimized as
well. For a network that operates in a steady state, we take
advantage of the fact that learning methods allow the network
controller to assess the performance of specific flows based
upon previous operations. However, we believe that a proper
resource allocation should also allocate the bandwidth, and
that the transport layer should be evolved to support this.

VII. CONCLUSION

We have presented a traffic engineering architecture and an
allocation algorithm that takes advantage of the abstractions
of Information-Centric Networks to perform a fine grained
resource allocation at the content level. Unlike IP, ICN offer
the proper abstraction to increase the efficiency of the network
resources and to reduce the response time of the network.
We argue that, more than ubiquitous caching, it is the most
significant feature of ICN.

We have seen that a controller can compute an estimated
response time for a set of candidate paths and that even
a relatively small set of such candidate paths can produce
significant gains in response time.

We have presented the MRTP policy which allocates traffic
to paths such that the total response time of the flows in the
network is minimized. This is based upon an estimation of
the bandwidth for each flow, which can either be estimated,
or controlled by the controller. We argue that the latter is the
most efficient way to allocate the resources, and proposed a
bandwidth sharing function that achieved objectives of fairness
and performance.

We have evaluated the MRTP over multiple network topolo-
gies and network conditions, and it significantly improves
the network’s response time for a wide range of network
utilization and for different traffic size distributions. We have

shown reduced delay in all cases, and up to 50% improvement
over min-MLU or RRF in some evaluation scenarios.

REFERENCES

[1] Abhishek Chanda, Cedric Westphal, and Dipankar Raychaudhuri. Con-
tent based traffic engineering in software defined information centric
networks. In Proc. IEEE Infocom NOMEN workshop, April 2013.

[2] A.R. Curtis, Wonho Kim, and P. Yalagandula. Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection.
In INFOCOM, 2011 Proceedings IEEE, pages 1629–1637, April 2011.

[3] D. DiPalantino and R. Johari. Traffic engineering vs. content distribu-
tion: A game theoretic perspective. In IEEE INFOCOM 2009, pages
540–548, April 2009.

[4] A. Sharma et. al. Distributing content simplifies ISP traffic engineering.
SIGMETRICS Perform. Eval. Rev., 41(1):229–242, June 2013.

[5] B. Ahlgren et. al. A survey of information-centric networking. Com-
munications Magazine, IEEE, 50(7):26–36, 2012.

[6] C.-Y. Hong et. al. Achieving high utilization with software-driven wan.
In ACM SIGCOMM’13, pages 15–26, 2013.

[7] G. Xylomenos et. al. A survey of information-centric networking
research. IEEE Communications Surveys & Tutorials, (99):1–26, 2013.

[8] H. Wang et. al. COPE: traffic engineering in dynamic networks.
SIGCOMM Comput. Commun. Rev., 36(4):99–110, August 2006.

[9] J. G. Dai et. al. Stability of join-the-shortest-queue networks. Queueing
Syst. Theory Appl., 57(4):129–145, December 2007.

[10] M. Al-Fares et. al. Hedera: Dynamic flow scheduling for data center
networks. In Usenix NSDI’10, pages 19–19, 2010.

[11] M. Yu et. al. Tradeoffs in CDN designs for throughput oriented traffic.
In ACM CoNEXT’12, pages 145–156, 2012.

[12] N. McKeown et. al. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.

[13] R. Clegg et. al. A critical look at power law modelling of the internet.
Comput. Commun., 33(3):259–268, February 2010.

[14] S. Jain et. al. B4: experience with a globally-deployed software defined
WAN. In ACM SIGCOMM’13, pages 3–14, 2013.

[15] S. Y. Fayazbakhsh et. al. Less pain, most of the gain: incrementally
deployable ICN. In ACM SIGCOMM’13, pages 147–158, 2013.

[16] V. Gupta et. al. Analysis of join-the-shortest-queue routing for web
server farms. Perform. Eval., 64(9-12):1062–1081, October 2007.

[17] W. Jiang et. al. Cooperative content distribution and traffic engineering
in an ISP network. In ACM SIGMETRICS’09, pages 239–250, 2009.

[18] B. Fortz and M. Thorup. Internet traffic engineering by optimizing ospf
weights. In IEEE INFOCOM’00, volume 2, pages 519–528, 2000.

[19] Van et. al. Jacobson. Networking named content. In ACM CoNEXT’09,
pages 1–12, 2009.

[20] Wolfram Lautenschlaeger. A deterministic tcp bandwidth sharing model.
CoRR, abs/1404.4173, 2014.

[21] Ingmar et. al. Poese. Enabling content-aware traffic engineering.
SIGCOMM Comput. Commun. Rev., 42(5), September 2012.

[22] M.J. Reed. Traffic engineering for information-centric networks. In
IEEE International Conference on Communications (ICC), June 2012.

[23] K. Roy and C. J. Tomlin. Solving the aircraft routing problem using
network flow algorithms. In American Control Conference, volume 1B,
pages 1077–1083, 2007.

[24] A. Sharma, A. Mishra, V. Kumar, and A. Venkataramani. Beyond MLU:
An application-centric comparison of traffic engineering schemes. In
INFOCOM, 2011 Proceedings IEEE, pages 721–729. IEEE, April 2011.

[25] Kai Su and Cedric Westphal. On the benefit of information centric
networks for traffic engineering. In IEEE ICC Conference, June 2014.

[26] A. et. al. Wundsam. Network troubleshooting with mirror vnets. In
IEEE GLOBECOM Workshops, pages 283–287, Dec 2010.

[27] Haiyong Xie, Guangyu Shi, and Pengwei Wang. TECC: Towards
collaborative in-network caching guided by traffic engineering. In IEEE
INFOCOM’12, pages 2546–2550. IEEE, March 2012.

[28] Jin Y. Yen. Finding the k-shortest loopless paths in a network.
Management Science, 17(11):712–716, Jul. 1971.

[29] Ossama Younis and Sonia Fahmy. Constraint-based routing in the
internet: Basic principles and recent research. Communications Surveys
& Tutorials, IEEE, 5(1):2–13, third quarter 2003.

[30] Yin Zhang. Abilene traffic matrices,
http://www.cs.utexas.edu/ yzhang/research/AbileneTM/.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

726

