2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

Dynamic Cache Optimization for DASH Clients in
Content Delivery Networks

Antti Heikkinen, Tiia Ojanperd and Janne Vehkaperd
VTT Technical Research Centre of Finland Ltd.
Kaitovéyld 1, Oulu, Finland
Email: {firstname.lastname@vtt.fi}

Abstract—Content Delivery Networks (CDN) play a key role
in multimedia distribution in today’s Internet in order to achieve
more efficient bandwidth management, reliability, and Quality of
Service (QoS). This paper proposes an advanced CDN solution
for enhancing the delivery and caching of adaptive HTTP-based
video streaming that dominates consumer video service distri-
bution today. The paper also presents a testbed implementation
of the proposed system, utilizing open source components and a
standardized MPEG-DASH based video streaming solution. The
proposed CDN management features and the associated signaling
are inspired by the upcoming MPEG standard for Server and
Network assisted DASH (SAND). The paper also presents selected
results obtained from an experimental evaluation. The results
attest the benefits of the proposed solution in enhancing MPEG-
DASH delivery in CDNs for the selected test cases.

Keywords—Network-assisted video streaming, MPEG-DASH,
SAND, CDN, testbed.

I. INTRODUCTION

Traffic growth in the Internet [1] is already causing diffi-
culties for ISPs in maintaining high availability, reliability, and
Quality of Service (QoS) for their customers. The situation is
aggravated by the fact that the Internet traffic growth is increas-
ingly dominated by bandwidth-consuming and QoS-sensitive
video services [1]. End-users are also demanding all the time
better Quality of Experience (QoE) for video services.Yet,
the revenues of network operators are not increasing at the
same pace, causing the available network bandwidth to lag
behind the demand and resulting in poor QoE for the users.
This unsustainable situation has forced network operators and
service providers to look for cost-efficient means for managing
the increasing traffic loads in networks in order to ensure
customer satisfaction.

Content Delivery Networks (CDN) [2] are vastly used for
improving the speed, accuracy, and availability of network-
delivered content in the Internet. Nowadays, CDNs play a key
role also in video service provisioning, as HTTP has become a
de-facto standard in delivering Internet-based video. The pop-
ularity of video services and the need for service providers to
ensure high-quality services for their customers are reflecting
on the demand for CDNs, which is rapidly increasing [1].
Nevertheless, supporting video services efficiently and reliably
in CDNs leaves places for optimization. Internet-based video
today is largely of streaming type. Due to the heterogeneous
nature of networks, varying network conditions, and diversity
of end-user devices, many services implement adaptive video
streaming technologies in order to provide good QoE for the
end-users. Adaptive HTTP video streaming in particular causes

978-1-4673-9292-1/16/$31.00 ©2016 |IEEE 987

CDNs to maintain multiple representations of the same video
content which may easily create storage problems in caches. In
addition, without any knowledge of the CDN and cache status,
a video client’s adaptation algorithm may perform inefficiently
and even cause QoE degradations for the user [3]. Furthermore,
CDNs need mechanisms for recovering from server failures as
well as supporting dynamic scaling of resources in virtualized
environments.

This paper presents a solution and testbed implementa-
tion for optimizing CDN operation for adaptive HTTP video
streaming services in terms of caching and network resource
usage as well as response time. This is accomplished by the
advanced CDN and cache management features and associ-
ated signalling proposed in the paper for a video streaming
system. The proposed solution utilizes the Dynamic Adaptive
Streaming over HTTP (DASH) standard [4], and follows the
specifications outlined by MPEG for the currently unfinished
DASH-amendment titled Server and Network Assisted DASH
(SAND) [5], while extending them in places. The rest of
the paper is organized as follows. Section II presents the
advanced CDN architecture. Section III introduces the testbed
implementation and its experimental evaluation. Section IV
concludes the paper.

II. ADVANCED CDN ARCHITECTURE

The advanced CDN architecture proposed in this paper for
video delivery is presented in Fig. 1. The main improvements
compared to a traditional CDN are the content- and service-
aware network elements and the content-aware caching mech-
anism. The architecture follows the upcoming MPEG standard
for Server and Network assisted DASH (SAND) [5]. SAND
introduces messages between DASH clients and (various) net-
work elements that could improve content delivery in networks
in terms of more accurate adaptation and reaction time. The
network-side elements participating in the message exchange
are called DASH assisting network elements (DANE). DANEs
have at least a minimum intelligence about DASH but may
also perform more complex operations that influence DASH
content delivery. The advanced CDN architecture consists of
the following components:

1) Origin server: is the source of the content. The video
content is in MPEG-DASH format and it is delivered from the
origin server to edge servers on a request.

2) Routing server: is responsible for the initial routing by
directing clients to an edge server (ES) at the beginning of the
session. The routing server recognizes the clients’ IP addresses
and returns the address of the ES which is closest to the client.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

3) Edge servers (ES): are located near the end-users and
are in charge of receiving and handling the client requests.
When a client requests data from the CDN, the selected ES
distributes data to the client. If the requested data is not
available in the ES, it requests the data from the origin server.
The ES stores the requested data for a certain time. In the
proposed architecture, ESs may contain content-aware network
element and DANE (referred to as ES-DANE). A content-
aware network element has at least minimum knowledge about
the content it is processing or delivering.

4) Monitoring and management server (MMS): contains
a DANE and collects data related to ESs, for instance, cache
status, congestion or failure in the CDN. It is a SAND signaling
and control point between the connected DASH clients and
ESs. Based on the information received from the clients and
ESs, MMS makes decisions regarding CDN optimization (e.g.
dynamically redirects clients to the optimal ES). Depending
on the CDN structure, the management may be realized
hierarchically but this is not considered in detail in this paper.

5) DASH clients: may be either SAND-capable when it can
receive optimized service from the CDN or a normal DASH
client without any additional network-side support.

The advanced CDN architecture includes regular network
elements and content- or service-aware network elements.
The regular network elements deliver video services without
any knowledge of the content. The content aware network
elements have at least some knowledge about the content. The
management signaling in the proposed architecture is depicted
in Fig. 2. SAND or SAND-like signaling mechanism is used
for communicating the Parameters Enhancing Delivery (PED),
Parameters Enhancing Reception (PER), and Metrics messages
between DANE:s as well as DANEs and SAND-capable DASH
clients. We adopt the main principles of SAND in our proposed
solution in addition to using the same terminology. However,
the paper also defines new messages in respect of the current
SAND specification [5] in order to support the envisioned CDN
optimizations. Devising a fully standard-compliant solution is
left for future work once the SAND standardization is finalized.

A SAND-capable DASH client initiates the signaling by
sending a Metrics message to the DANE running in the Mon-
itoring and management server (MMS). MMS communicates
with edge servers (ES) by sending PED messages based on the
client’s Metrics message. The MMS can, for instance, inquiry
the cache status from an ES or the status of the ES, including
for example its congestion, failure or network conditions. In
addition, MMS can request pre-fetching of segments into the
ES’s cache based on the client requests and prevailing cache
status. By using a single control point in the CDN, the ESs
can be dynamically added or removed in the CDN without the
need to update media presentation description (MPD) files.
The DANE component in the ES executes the requested tasks
based on the received control messages and sends a response to
MMS. The ES’s DANE has knowledge of the cache status of
the corresponding ES and it can pre-fetch and delete segments
in the cache depending on whether they are needed or not.
MMS can make decisions based on the ESs’ feedback and send
PER messages to the SAND-capable DASH client(s), when
needed.

988

Content aware
network element

9 DANE

Monitoriﬁg &
Management

Monitoring &
Management

ig o

Fig. 1. The advanced CDN architecture.
—p Media ——p Metrics message
——p PER message ——p PED message
Internet CDN
& Monitoring & management (MMS) “

Services Client

CDN \
(] management | . DANE
(] algorithms
O
~ .
0

Origin
Server

Edge server | Edge server Edge server ||

DANE DANE DANE

DASH
Cache Cache J Cache client
M w

Signaling in the advanced CDN architecture.

Fig. 2.

III. EXPERIMENTAL EVALUATION

The proposed advanced CDN architecture is validated
with an experimental evaluation conducted with a testbed
implementation in this paper. This section describes the testbed
implementation as well as the test cases considered in the
evaluation. In addition selected results are presented.

A. Advanced CDN Testbed

We have built an advanced CDN testbed, by using off-
the-shelf servers and open source software. All the servers
run Ubuntu 14.04 OS. The origin and the two edge servers
(ES1, ES2) run Nginx as the HTTP server. In the ESs, Nginx
is configured to cache MPEG-DASH content from the origin
server. In the single file case, where segments are distinguished
by byte range in DASH, the ES caches each byte range into a
single file. And in the case where a video file is partitioned into
multiple files, each file is cached into a single file in the ES.
Both ESs contain DANE component. The initial routing done

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

at the Routing server is based on DNS redirection. We have
geo-aware DNS with BIND9 and GeolP database. In addition
we have dedicated MMS which includes DANE functionalities.
All the servers are connected to a laboratory network and the
ESs also to the Internet.

The communication is based on SAND-like messages and
the WebSocket protocol. For the purposes of the implemen-
tation and testing, we have defined a generic format for the
messages, that is, each message contains a Message ID, Sender,
Receiver, and Payload fields. The Message ID is used for
identifying different messages, Sender describes the message
sender, Receiver describes the message receiver and Payload
contains the actual information. The messages supported in
the current testbed are listed in Table I. The WebSocket server
address of the MMS is configured into the DASH clients.

The proposed content-aware features were implemented
into ESs. The ESs can parse the MPD file format and are aware
of which representations and segments belong to a video file.
The ESs’ DANE component contains a WebSocket server and
it can receive messages from the MMS. By using information
parsed from the MPD file, an ES can seek defined segments in
the cache and pre-fetch segments from the origin server at the
MMS’s request. The MMS can also inquiry cache or server
status from the ESs.

For testing the client-side operation, we implemented an
application which simulates a DASH client (DashSimu). Dash-
Simu does not decode or play the video but otherwise includes
the same functionality as a normal DASH client. DashSimu
contains a two-phase buffering and an adaptation algorithm.
DashSimu supports the defined SAND-like messaging and
runs a WebSocket client for sending Metrics messages to the
MMS. MMS receives the Metrics message, and depending
on the message, sends PED messages to the ES(s). The ES
executes certain tasks based on the received message and sends
a response to the MMS. The MMS includes a management
algorithm which makes decisions based on the ES responses.
The MMS sends PER message to DashSimu, if necessary.
DashSimu reacts to the messages, for instance, by taking a
new baseURL into use.

B. Test Cases

In order to demonstrate the different usages of the advanced
CDN architecture and validate the testbed, we selected three
test case for evaluation. For the tests, we used the “Tears of
Steel” video sequence (12 min 14 s) in the MPEG-DASH
format. The stream was encoded using the HEVC format into
4 different representations at 2, 4, 6, and 8 Mbps. All the
representations were divided into 10 s segments. In the tests,
we used the DashSimu application as a client where the initial
buffer size was 10 s and total buffer 60 s. During the tests, we
measured the network traffic on the CDN using Zabbix, which
is an open source monitoring tool for networks and servers.

1) Test Case “Optimal ES Selection”: focuses on directing
DASH clients dynamically to the most optimal cache based
on the prevailing cache contents. 20 new users want to start
watching a video stream from the CDN. The CDN has 4
different bitrate representations (R) of the video available, and
their availability at the ES caches depend on the client requests.
When a new DASH client requests for the desired video URL,

989

Network Trafficon CDN

Throughput (Mbps)
g

0 1 2 3 a s 6 7 8 9 10 1 12 13 14
Time (min)

Fig. 3. Network traffic of 20 users on the CDN in the test case 1.

the request is directed to the ES1 by the routing server. The
client then receives a MPD from ES1. The client sends a
SAND Metrics message (SegmentRequest) informing that it
will be using all the representations R1-R4 to MMS. MMS
checks edge servers cache status by sending CacheStatusRe-
quest to ES1 and ES2. ESs responds (CacheResponse) that the
ES1 cache contains only half of the segments (percentage in
CacheResponse message is 50), whereas ES2 contains the seg-
ments for all the representations (percentage in CacheResponse
message is 100). MMS sends NewBaseURL messages to the
client. The new baseURL indicates a location in ES2, from
where client starts ordering segments. Fig. 3 shows the average
incoming and outgoing traffic for each server on the CDN. We
can see that some of the clients start ordering segments from
ES1 before they receive a new baseURL. After one minute, all
the clients order segments from ES2. We measured the network
traffic on the CDN when the optimal edge server selection
was disabled. Traffic between the origin server and ESs was
only 0.09 Mbps with the optimal ES selection and 6 Mbps
without it. Optimal ES selection thus improves cache hit ratio
and reduces network traffic between origin and ES.

2) Test Case “Server Failure Recovery”: 20 users is watch-
ing a video stream in R4 from ES1. After 5 minutes, ES1
experiences a severe network failure making it impossible for
the DASH clients to retrieve any further segments from it.
When a client notices a problem in the video streaming, it
sends a ServerFailure message to MMS. MMS checks the
status of each available ES by sending ServerStatusRequests
to ES1 and ES2. MMS notices that ES1 is not responding
whereas ES2 is in operation. After a timeout, the MMS
concludes that ES1 is not OK and sends a NewBaseURL
message to the clients, which start ordering segments from
ES2 instead of ES1. We can see from Fig. 4 that the clients
start ordering segments from ES1. When ES1 faces a severe
failure, the amount of outgoing traffic drops. Almost at the
same time, the clients start ordering segments from ES2 and
all the clients take the new baseURL into use and change to
ES2. After the change we can see a traffic peak caused by
rebuffering. All the clients manage to take the new baseURL
into use before their buffers are empty and they recover from
the server failure without stalls in the video playout. Without
the dynamic baseURL change capability, the clients would
have stopped playing after the buffers run out.

3) Test Case “Next Segment Signaling”: studies how a
CDN can optimize the delivery of DASH content by pre-

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

TABLE 1. SAND-LIKE CONTROL MESSAGES USED IN THE ADVANCED CDN TESTBED
Type Name Sender Receiver Payload Description
Metrics SegmentRequest DashClient MMS mpdURL, repIDs, segmentRange The list of segments the client would need
Metrics ServerFailure DashClient MMS mpdURL A notification about detected server problems
PED CacheStatusRequest MMS EdgeServer mpdURL, repIDs, segmentRange A query if the segments are in the cache
PED CacheUpdateRequest MMS EdgeServer mpdURL, repIDs, segmentRange A request to pre-fetch segments into the cache
PED ServerStatusRequest MMS EdgeServer - A query about a server’s status
PED CacheResponse EdgeServer MMS mpdURL, repIDs, segmentRange, percentage The percentage of the segments in the cache
PED ServerStatusResponse | EdgeServer MMS status The server’s status, e.g. in operation, congestion
PER NewBaseURL MMS DashClient baseURL The new baseURL for ordering segments

fetching segments into caches. 40 users start watching a video
from the CDN. For 10 clients, adaptation is enabled and
they are using all the 4 representations. 10 other clients use
only R1, 10 only R2, and the remaining 10 clients only R3.
When a DASH client requests for the desired video URL,
the request is directed to the ES1 from where it receives the
MPD. The client sends SegmentRequest message stating that
it plans to requests for R1-R4 for the first n segments (n=12)
to MMS. MMS checks edge servers cache status by sending
CacheStatusRequest to ES1 and ES2. Both the ESs seek the
segments in their cache without a match and respond with a
CacheReponse where the percentage is 0. The MMS sends a
CacheUpdateRequest to ES1 which pre-fetches the requested
segments from the origin server and responds by sending
CacheResponse where percentage is 100. Because the client is
using ES1, the MMS does not have to send the NewBaseURL
message to the client. When the second client sends the
SegmentRequest listing 12 segments for R1-R4, the MMS
sends a CacheStatusRequest with the same payload to ES1 and
ES2. Now ES1 sends CacheReponse where percentage is 100.
Hence, the MMS does not send CacheUpdateRequest to ES1 or
a NewBaseURL message to the client. At n segment intervals,
the clients send SegmentRequests listing the representations
they might use for the n next segments. In Fig. 5 we can
see a traffic peak from origin to ES1 when the pre-fetching
occurs every two minutes. All the segments are available in
ES1 when the clients request them and there is no cache miss.
This minimizes the delay in transmission, and thus reduces any
possible delay-induced oscillations in the bitrate adaptation.

IV. CONCLUSIONS

The paper presents a solution for optimizing CDN opera-
tion for adaptive HTTP video streaming services in terms of

Network Trafficon CDN

—origh outgoing

—£51 outgoing
€52 outgoing

—&st incoming

50 ——E52 incoming

00

Throughput (Mbps)

Time (min)

Fig. 4. Network traffic of 20 users on the CDN in the test case 2.

990

caching and network resource usage as well as response time.
The paper also introduces a testbed implementation of the pro-
posed advanced CDN solution. The testbed includes content-
and service-aware network elements and utilizes SAND-like
signaling. The paper includes preliminary experimental results
obtained using the testbed, and the results attest the benefits
of the proposed solution. The future work includes further
development of the testbed implementation in order to sup-
port new use cases utilizing content-, service-, and network-
aware decision-making in CDN and adaptive video streaming
management. In addition, virtualization approaches for the
CDN will be studied and developed in order to dynamically
create and delete cache instances based on demand for further
flexibility and optimization of the system.

ACKNOWLEDGMENT

The presented study was carried out in CELTIC-Plus
NOTTS and H2B2VS projects and was partially funded by
the Finnish Funding Agency of Technology and Innovation
(Tekes). The authors would like to thank for the support.

REFERENCES

[1]1 Cisco, Visual Networking Index: Forecast and Methodology, 2014-2019,
2015.

[2] A. Vakali and G. Pallis, Content Delivery Networks: Status and Trends,
IEEE Internet Computing, 7(6), pp. 68-74, 2003

[3] D.H. Lee, C. Dovrolis and A.C. Begen, Caching in HTTP Adaptive
Streaming: Friend or Foe?, NOSSDAV’ 14, Singapore, 2014.

[4] ISO/IEC 23009-1:2014, Information technology - Dynamic adaptive
streaming over HTTP (DASH) Part 1: Media presentation description
and segment formats, 2014.

[5S] ISO/IEC CD 23009-5:2015, Information Technology Dynamic adaptive
streaming over HTTP (DASH) - Part 5: Server and network assisted
DASH (SAND), 2015.

Network Trafficon CDN

20 = Origin outgoing

——Es1 outgoing

Origin incoming
——ES1 incoming

&

Throughput (Mbps)

Time (min)

Fig. 5. Network traffic of 40 users on the CDN in the test case 3.

