
A Packet Rewriting Core
for Information Centric Networking

Christopher Scherb
University of Basel

Switzerland
Email: christopher.scherb@unibas.ch

Manolis Sifalakis
University of Basel

Switzerland
Email: sifalakis.manos@unibas.ch

Christian Tschudin
University of Basel

Switzerland
Email: christian.tschudin@unibas.ch

Abstract—Although very similar, Information Centric Net-
working implementations like CCNx or NDN have not converged
(yet). Moreover, high-level extensions like named functions and
low-level considerations for IoT or logical link control will lead
to even more variety in formats and experiments, also including
slight (and not well-documented) changes of the ICN protocols’
behavior.

Based on our experience with the multi-protocol implementa-
tion CCN-lite, we have developed a domains-specific intermediate
language ICCL (Information Centric Core Language). Initially,
the purpose of ICCL was to document the common as well
as diverging aspects of the various approaches and to provide
a run-time which can directly execute an ICCL program.
But as it turned out, ICCL became a tool beyond modeling
the behavior of ICN forwarders. For example, by including
appropriate primitives to access local data sources, one can
now seamlessly include in an ICCL program the access to data
repositories or serve on-demand data from sensors. This enables
easy programmability of network functionality and contributes
to “do-it-yourself” networking. We discuss the benefit of this
fusion for the development of ICN functionality and report on
performance measurements for our prototype system.

I. INTRODUCTION

CCN-lite [1] is an independent ICN implementation of
the Named-Data-Networking (NDN) and of PARC’s CCNx
protocol. Over the years, while CCN-lite was tracking the
changes and addendums and refactored its code, it became
clear that a majority of routines could be reused for “compet-
ing” architectures and that a considerable body of functionality
remained rather stable. One example is the debate of the Type-
Length-Value encoding which in CCN-lite boiled down to
a template-like code structure where new encoding variants
could be implemented.

The second observation was that code written for the for-
warder logic often reappeared inside applications i.e., outside
the forwarding layer. An example is the pending interest table
(PIT) data structure which a client also has to implement in
order to track lost packets.

Starting from the first observation we have worked on an
intermediate domain-specific language [2] that we called ICCL
(Information Centric Core Language). The goals of ICCL
were:

• to provide a “spec-like” abstract description language for
CCN, NDN and other variations, documenting common-
alities as well as differences at high level,

• to be executable in order to easily emulate or extend
existing and to experiment with novel ICN architectures,

• to easily create in-network applications such as Web
servers or workflow services (e.g. Named Function Net-
working (NFN) [3]).

With the observation that application programming needs
seem to overlap considerably with those of programming
a forwarder, we then started to extend ICCL to support
applications, mostly by including I/O primitives. The result
is a programming environment for both the application and
the forwarding layer.

Described in a pictorial way, ICCL has become the base
layer for ICN packet rewriting, ideally turning an incoming
Interest request into Content reply. On top of this core, and
placed side-by-side, forwarders (both CCNx and NDN) can be
expressed and executed equally well as a repository serving
static content or a compute server producing data on demand.
Furthermore, ICCL provides primitives to manipulate list data
structures which can be used for batch requests of data like
collecting sensor data on the sensor itself and transferring
all data at once after receiving a request from a controller.
For example, this could be useful for implementing sensor
networks which monitoring water supply and other critical
infrastructure with less programming complexity.

In this paper we demonstrate a simple Web-server like app
written in the ICCL language. While such a service for itself is
not novel at all, we use it to demonstrate the tight integration
of Interest/Content packet handling with issuing SQL code.

The structure of this paper is as follows: First we give an
overview over existing ICNs, next we will show details about
ICCL and two use cases, we already implemented.

II. INFORMATION CENTRIC
NETWORKING FLAVORS

Information Centric Networking (ICN) is an alternative
concept to the traditional connection oriented network system.
Instead of connecting machines, an ICN network connects
content. Each content (data) object can be “addressed” by
using a name (instead of a server) in order to abstract away
the data’s location. When clients request some content, routers
can serve it from any cached copy that might exist in the
network. The binding between a name and its associated data
is secured by a cryptographic signature added by the producer.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

978-1-4673-9292-1/16/$31.00 ©2016 IEEE 74

This permits to validate that the delivered content actually
belongs to the name used to retrieve it.

A. CCNx and NDN

Mandating that each content object has its own name might
lead to giant Forwarding Information Bases (FIB) wherefore
Jacobson [4] proposed that his CCNx architecture uses hierar-
chical names. Requests for content, called Interest messages,
will be forwarded through these FIBs towards the data source.
Each interest message contains the name (identifier) of the
requested content object: It is the clients responsibility to
request each data item independently in a receiver-driven
fashion (while in TCP, it is the server sending the data
according to its own pace).

There are three important data structures in an ICN node:
The Forwarding Information Base (FIB), the Pending Interest
Table (PIT) and Content Store (CS). The FIB stores forwarding
information, the PIT is used for interest deduplication and the
CS is the cache on a router. If an interest message arrives, a
router first checks if it is possible to serve the request by using
the local CS. If not, it checks if there already is a PIT entry
available, which means that the interest was already forwarded.
In this case the request is added to the existing PIT entry.
Otherwise, the node will create a new PIT entry and forwards
the interest by using the FIB.

In the past years, Xerox PARC’s CCNx project forked which
has led to two incompatible ICN architectures. Although at a
very coarse level they offer the same data lookup service, they
now have major differences. The follow-up NDN project [5]
has more or less sticked to the original CCNx profile. But
the “new CCNx” (subsequently labeled CCNx1.0) has opted
for a radical streamlining: Most prominently, the network
will do exact match on hierarchical content names instead
of longest-prefix match; moreover, selectors (for filtering and
namespace exploration) are completely eliminated except for
two “restrictions” called ObjectHash and ProducerID. The
argument of the CCNx1.0 team is that this minimal base
level, which is just a pure named-based forwarding service,
is a sufficiently rich base-line on top of which all previous
features can be implemented. Other incompatibilities relate
to the encoding of the message types. To support domains
with special (packet size) constraints, other ICN flavors like
CCN-IoT were derived from CCNx and NDN, introducing
even more packet formats.

III. ICCL - A DOMAIN SPECIFIC LANGUAGE FOR ICNS

A Domain Specific Language (DSL) is a programming
language designed for a specific usage [2]. The most popular
example for a DSL is HTML and is used to describe how to
render text elements. The domain for which we designed a
language for is the programming of ICN network elements.

Our DSL called “Information Centric Core Language”
(ICCL) is a functional language designed for general pro-
grammability and extendability and has no network specific
functions in its grammar: It is just an extended form of
the λ-calculus. We chose the λ-calculus as basis since there

already exist expendable execution environments (abstract
machines[6]). Moreover, it is free of side effects which
matches well the retransmission logic in case of lost request
and result packets. ICCL permits to invoke “built-in” functions
that are more less the same as the functions defined in a
standard library of a programming language like “C”. Of
course, users can also define their own functions in ICCL. The
main goal of ICCL is to emulate specific ICN architectures,
for example to express different forwarding strategies or name
handling logics, or as a basis for programming network
applications.

The ICCL Execution Model: A specification language that
should capture content-based packet processing logic must
come with a suitable abstract execution model. With ICCL
we chose to describe a node’s behavior through a concur-
rency model over a finite-state description. In this section
we describe this choice and the implementation philosophy
that we applied when we cast existing architectures into our
framework.

The basic operation model is that a node has two handlers:
One for upstream (request) and another for downstream (reply)
packets. Should other packet types be envisaged (e.g. ACK-
/NACK instead of CONTENT) we would provide additional
handlers, but otherwise our scripts all have the same structure
based on a onRequestand a onReply handler, as visualized
in Figure 1.

Each incoming packet induces an independent thread that
executes that handler’s code. The code has access to the node’s
shared data structure, for which we provide a basic (and
sometimes architecture-specific) API. Typically, these shared
data structures would be PIT, FIB, as well as routines to
propagate requests upstream or send back replies downstream.

In all the code examples given below we adopt a request/re-
ply pattern and assign responsibility over a request to the
onRequest thread only. A reply thread will have a short chance
to process the packet but we typically restrict it to signal
the waiting request thread that will continue with the request
processing. The synchronization concept is the one of UNIX
where threads can block on a condition with wait(cond,
TIMEOUT). The opposit primitive
signal(cond) will unblock all waiting threads (and is a
null action should no thread be waiting). If a requesting thread
times out, or is woken up, it checks for results and if existing
then it continues with replying otherwise it simply ends (or
generates a NACK etc).

In our ICCL model, the FIB and PIT tables rely on
special indexes: The entries in the PIT and the FIB, but
also the conditions, will be “named” by attribute sets. These
sets are trivial for CCN and NDN, for example the set of
{contentName="/a/b/c.txt"}, but can be as general
as in [7] where sets of predicates are used.

As a toy example we sketch the code structure for a CC-
N/NDN forwarder. Their (one-time) Interest/Content pattern
naturally maps to the onRequest/onReply mechanics. Note that
“self” refers to the incoming packet:

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

75

..

wait()

wait(cond, MAXTIME)

forwarder

requestPkt

signal(cond)

replyPktrequestPkt

requestPkt

onRequest:

onReply:
onRequest:

replyPkt
FIBPIT

Fig. 1. Request aggregation example: The first request thread is in charge of
retransmissions; the followup thread is reactivated, too, when the reply thread
signals that condition.

1 handler onRequest(name) (// interest pkt
2 checkContentStoreAndReturnIfFound(name,

self) else
3 checkPITandPropageAndWaitThenServeDownstream

(name,self)
4)
5
6 handler onReply(name) (// content pkt
7 checkValidityAndStoreAndWakeup(name, self

)
8)

It is not surprising that this is also the structure chosen in the
original CCNx document which dedicates one paragraph each
about these two handlers.

A. Capturing ICN Functionality in ICCL

In this section we “de-construct” the specific CCN and the
NDN pipeline in terms of ICCL. In a first step, we have
to add some built-in functions for forwarding purpose. The
most important operation is the sending of interest and content
messages to some existing “face” (which is a generalized
interface). Faces are also used in PIT and FIB entry manip-
ulations (see Section II-A) like existsInPIT() and the
like. Similarily, the content store (CS) has its own primitives.
Table I provides a list of these essential (and some more) ICN-
related primitives.

For clarity purposes we differentiate between checking
whether an entry in a data structure is available vs the grabbing
of an actual entry. Finally, in order to forward the entire
packet, we add the command self to refer the packet itself,
while inFace refers to the face where a packet was received.
Having presented these constructs, we can now program a first,
basic forwarding pipeline – and will discuss more complex
tasks like selectors in Section III-B.

In NDN, the forwarding of interests relies on longest
prefix matching. The program in Figure 2 shows this NDN
forwarding behavior. Note that ifelse expects a boolean
expression and two code blocks.

TABLE I
BASIC ICN-RELATED BUILT-IN INSTRUCTIONS OF ICCL

Function Usage
sendInterest name face send an interest message
sendContent send a content message
contentObject face

existsFIBexact name check if there is a FIB entry
available using exact
prefix matching

existsFIBlongest name check if there is a FIB entry
available using longest
prefix matching

grabFIBexact name take an entry from the FIB
using exact prefix matching

grabFIBlongest name take an entry from the FIB
using longest prefix matching

addToFIT name add a new entry into the FIB
existsPIT name check if there is a

PIT entry available
removePIT name remove an entry from the PIT
addToPIT name add a new entry into the PIT

appends if the entry is already
available

refreshPITTimeout name update timeout of a PIT entry
existsCSexact name check if there is a CS entry available

using exact prefix matching
existsCSlongest name check if there is a CS entry available

using longest prefix matching
grabCSexact name take an entry from the CS

using exact prefix matching
grabCSlongest name take an entry from the CS

using longest prefix matching
addToCS name contentObject add a content object into the CS
wait name timeout put computation in the waiting state

wait for a content objects with
a specific name and for a specific
time (in ms)

signal name signal all interests waiting for a
specific name

seq sequence of commands
exit quit a computation

1 ifelse boolExpr
2 block1
3 block2

There are to different entry points to ICCL programs: The
onInterest and the onContent handler.

a) Interest Message Handling: If a interest message is
received, the onInterest handler is called. It first checks
if there already exists a content object in the content store CS
(line 2). If the content object is cached, the node can directly
reply to the data requester (line 3). Otherwise the program
consults the FIB, hopeing to find an upstream node for this
request (line 4). If a FIB entry exists, the handler checks the
PIT (line 6) to see if the same interest message was already
propagated. In this case the PIT entry’s timeout is updated
(line 8) and the thread waits for the content to arrive (line 9).
Line 14 is executed if there was no PIT entry for the given
name. In this case one is created (line 15) and the interest is
propagated using the function interestPropagate.

The function interestPropagate transmit the interest
several times (RETRYCOUNT). First it checks whether it
exhausted all permitted attempts. In this case all other threads
waiting for the same name are notified with a signal
(line 23) and because no content is found they all terminate.
Otherwise, the function searches for a matching FIB entry
(line 27) and forward the interest message (line 27). Next the

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

76

1 handler onInterest(name, inFace) (
2 ifelse existsCSlongest(name)
3 sendContent(grabCSlongest(name), inFace

)
4 ifelse not(existsFIBLongest(name))
5 exit
6 ifelse existsPIT(name)
7 seq(// another thread leads
8 refreshPITtimeout(name)
9 wait(name, -1)

10 ifelse existsCSlongest(name)
11 sendContent(grabCSlongest(name)

, inFace)
12 exit
13)
14 seq(// we are the first thread
15 addToPIT(name)
16 interestPropagate(name,

RETRYCOUNT)
17)
18)
19
20 function interestPropagate(name, count)(
21 ifelse eq(count, 0)
22 seq(// we give up
23 signal(name)
24 removePIT(name)
25)
26 seq(
27 sendInterest(self, grabFIBLongest(

name))
28 wait(name, grabPITtimeoutval(name))
29 ifelse not(existsCSlongest(name))
30 interestPropagate(name, dec(count))
31 seq(// finally the reply arrived
32 sendContent(grabCSlongest(name),

inFace)
33 removePIT(name)
34)
35)
36)
37
38 handler onContent(name)(
39 ifelse existsCSlongest(name)
40 exit // dup
41 ifelse not(existsPIT(name))
42 exit // unsolicited
43 seq(
44 addToCS(name, data)
45 signal(name) // good news, content!
46)
47)

Fig. 2. ICCL implementation of NDN

function waits for a reply. If no reply message was received
during the timeout interval, the function calls itself recursively
with a decremented retransmission credit (line 30). If after
waking up we find a reply in the content store, the thread will
forward it to the requester, and so will the other threads which
were reactived, too.

b) Content Object Handling: If a content object is
received by a node, the onContent handler is called. It

first checks if the content object is already cached (line 39,
duplicate detection). If not, the node will check whether there
is a PIT entry for this name: an unsolicited content object
for which no PIT entry is available will be dropped, too. If,
however, the PIT entry is available, the node will add the
content object to the CS (line 44) and notify all interest threads
which waits on this name (line 45).

Beside NDN it is also possible to express other forwarders
in ICCL. For instance the forwarding pipeline of CCNx v1.0 is
very similar to the NDN forwarding pipeline. In fact the main
difference between both forwarders is that the Interest/Content
matching in NDN is performed with longest prefix matching
and in CCNx exact prefix matching is used. Therefore, we use
the functions checkCSexact and grabCSexact instead
of checkCSlongest and grabCSlongest in Figure 2.
In this scenario we use predefined matching functions. A
reason for this is to increase the performance of the forwarder.
Nevertheless, it would be possible to define the matching
function by using ICCL. Since ICCL is a Turing-complete
complete language, it is possible to define own matching
function. Thus, it is possible to match not only by using the
name, it is also possible to match e.g. on the hash value of a
desired data object.

B. Selectors

NDN as well as CCNx contain features to specify the
requested content more precise than only by using names.
Usually, a selector is an additional condition –beside the name
matching– which either has to be fulfilled (includes) or must
not be fulfilled (excludes). This condition is often defined on
the metadata of the actual content object.

NDN support selectors to specify the request in more
details. A client can impose a certain KeyID value (called
PublisherPublicKey), and the digest of the requested data
object (via an implicit, last name component). Thus, a client
can ensure that it receives only data from a specific publisher.
The other part relates to the exclusions which are useful in
the context of NDN’s longest prefix matching. The exclude
selector specifies name components which a name must not
contain. In ICCL we therefore add a contain(name)
function to invoke such tests. A third kind of selectors in NDN
are the “MinSuffixComponents” and “MaxSuffixComponents”
fields which specify which of the name components should be
matched. With this functionality it is possible to extract single
name components out of a name and compare it with given
component values.

In the following example we show how some of the NDN
selectors could be applied (as we have not yet implemented
all of the selector semantics).

1 function matchContent(name, excludeComp)(
2 ifelse checkCSLongest(name)
3 ifelse contains(name, exludeComp)
4 false
5 true
6 false
7)

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

77

In this example we test for a name and whether a component is
available or not. An interesting aspect of ICCL and selectors
is that it writes down the order in which selection is done.
We expect interesting semantic subtleties when it comes to the
implementation of the leftmost and rightmost selectors.

CCNx restrictions are a very similar feature to NDN Se-
lector. In a CCNx interest message the client can specify the
KeyID of the publisher and/or the hash of the content object
which is requested.

C. A Service Implementation in ICCL

Beside the forwarder inside the network, there are always
data and/or service provider at the edge of the network.
By reusing existing code from the forwarder and providing
a common programming interface, ICCL enables users to
simply create customized network application, without deep
knowledge of the network.

As example we use a data repository with provides data
from a SQL database, but ICCL could provide an arbitrary
service.

In our use case, we assume an ICN service which provides
a document with customized information. These information
are stored in a database. To access the database, ICCL is
extended with a SQL binding and a functions to execute SQL
statements. The important functionalities are listed in Table II.

TABLE II
BASIC SQL RELATED BUILT-IN INSTRUCTIONS OF ICCL

Function Usage
head list first element of a list or name
tail list list or name without the first element
contentObject face

last list last element of a list
sqlexecute database execute a SQL query on a database
sqlqurey args returns a list with all results

getField dbentry field extract a specific field out
of a database entry

createContent name data create a new content object
invokes onContent

The function sqlexecute returns a list of all matching
database entries. By using the head, tail and last func-
tions it is possible to select a specific database entry and
with getField a specific field can be extracted out of a
database entry. To send the requested result over the network,
the function createContent can be used.

A very simple example how to use this functionality is to
create a simple ICN web server. We choose a very simple
example to give an easy introduction and because of the very
early state of our runtime environment. First we assume that
all data on the web server are available under a given name.
In our case this name is /web/server. All data on the
web server have an individual name. This name is used as
primary key in the database. If we want to request the data
object with the name index, we express the interest message
/web/server/index. This interest will be forwarded to
the web server. The web server cuts the first components and
searches in the database for a matching entry. The result will
be stored in a content object and transfers it back to the

requester. The web server will also maintain a CS to avoid
duplicated queries.

In the following (Figure 3) we show how such a web server
could be implemented in ICCL.

1 handler onInterest(name, inFace) (
2 ifelse existsCSexact(name)
3 sendContent(grabCSexact(name), inFace)
4 ifelse eq(head(name), ’web’))
5 ifelse eq(head(tail(name)), ’server’

)
6 sendContent(
7 createContent(
8 name,
9 head(

10 sqlexecute(
11 ’localhost|user1|pw1|

db1’ //db connect
12 ’SELECT * FROM DATA1

WHERE NAME = $1’
13 last(name)
14)
15)
16)
17 inFace
18)
19 exit
20 exit
21
22)
23 handler onContent(name)(
24 ifelse existsCSlongest(name)
25 exit // dup
26 addToCS(name, data)
27)

Fig. 3. ICCL service implementation

First the application checks if the content was already re-
quested. Next it verifies that the name matches. If it matches, a
database query is invoked. The query contains the information
to connect to the database and a SQL query. Since we search
for a unique primary key, we know that only one dataset will
be returned. We put the result in a content file and return it.

The SQL database could be replaced with a MongoDB
database or just with a file system, depending to the appli-
cation requirements. This gives the possibility to implement a
complete webserver in ICCL. Since ICCL is Turing complete,
the language can also be used to develop any kind of “network-
services”.

IV. RESULTS

We have implemented an ICCL runtime environment (in
SCALA) that is able to execute programs as those presented
in this paper. Conceptually, a specific ICN architecture and
forwarding engine are replaced by the generic ICCL layer on
top of which the ICN-specific programs are executed.

In the following we will compare the performance of an
ICCL forwarder with the performance of a CCN-lite forwarder
by using the NDN-repo and the ICCL server (Section III-C).
We measure the number of packets which can travel through
a forwarder when requesting chunked data from the network
by using a very simple topology. The test setup consists of a

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

78

data source, a client and a forwarder. The different nodes are
connected with 1 GBit/s Ethernet. The test setup is visualized
in Figure 4.

Data SourceForwarderClient

InterestInterest

ContentContent

Fig. 4. Evaluation Setup: we measured the chunk rate per second inside of
the forwarder.

As data we use a 45MB file chunked in the NDN format.
We request chunk per chunk and do not use any flow opti-
mization like a sliding window protocol (in receiver driven
networks like current ICNs). One chunk has the size of 4KB.
By measuring the chunk rate inside the forwarder, we can
calculate the bandwidth.

Figure 5 shows the average bandwidth of the file download.
The bandwidth of the native CCN-lite forwarder expected
to be higher than the bandwidth of the ICCL forwarder. In
our scenario the difference is about 40% when using the
NDN repository. The bandwidth of a CCN-lite forwarder was
arround 550kb/s while the bandwidth of the ICCL was arround
340kb/s. The performance of both forwarders becomes very
similar (when we use the ICCL server) since in this case not
only the forwarder but also the data source is limiting the band-
width. Note, that none of the implementations is optimized
for speed. Nevertheless, as a proof of concept we can say that
ICCL add considerable flexibility, extensibility and compute
capabilities with a reasonable loss of performance. For real
world scenarios the performance loss could be critical, but
for big networks it is usually required to use high optimized
implementations or even FPGA or ASIC implementation of the
forwarder, anyway. Especially for testing new ICN concepts,
ICCL provides a way to deploy feature and at the same time
documents their semantics. Since ICCL gives the possibility
to describe forwarding strategies of ICN in a high level, it can
be used to define the behavior of an ICN in a formal way and
to discover subtle interpretation differences.

kb/s
551.2

CCN-Lite
/ NDN

rep
o

338.7

ICCL-fo
rward

er
/ NDN

rep
o

344.2

CCN-Lite
/ ICCL ser

ver

336.1

ICCL-fo
rward

er
/ ICCL ser

ver

Fig. 5. Evaluation Results of our measurement. The graphic shows the average
bandwidth of a CCN-lite and an ICCL forwarder when downloading a 45MB
video file from the NDN repo and the ICCL server.

V. CONCLUSIONS & FUTURE WORK

In this paper we introduced the ICCL programming lan-
guage for the domain of Information Centric Networking. It
aims at extracting from the various ICN proposals a common
core of functionality that all implementers have to provide, and
to identify those additions that each architecture needs specif-
ically. As it turned out, network-level as well as application-
level programming requirements are quite similar wherefore
we suggest that ICCL is used for both tasks.

Our goal with ICCL was to simplify the development of
complex network application. We started with a simple Web
server to prove ICCL’s functionality for network applications
and could create user-specific networks and network applica-
tions on a high level without requiring deep knowledge about
network programming. Our measurements showed almost na-
tive performance which makes us believe that compiled ICCL
programs will be able to match the performance of a CCN-Lite
forwarder.

The next step will be to create a fully functional Web
server that provides customized websites and “WEB 2.0”
functionality like user-created content (requires functionality
similar to HTTP-POST and GET). Furthermore, we plan to
explore how to implement end-to-end security features in
ICCL network application.

A very interesting exercise (at network level) will be to
integrate support for Named Function Networking (NFN) into
the ICCL environment: This would permit to treat NFN as an
independent ICN architecture instead of layering it over NDN
or CCNx.

REFERENCES

[1] “CCN-lite,” 2011-2015. [Online]. Available: http://ccn-lite.net/
[2] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop

domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp. 316–
344, Dec. 2005.

[3] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An information
centric network for computing the distribution of computations,” in 1st
Proc. Int. Conf. on Information-centric Networking, ser. ACM ICN, 2014,
pp. 137–146.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in 5th Proc. Int. Conf.
on Emerging Networking Experiments and Technologies, ser. CoNEXT,
2009, pp. 1–12.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014.

[6] J.-L. Krivine, “A call-by-name lambda-calculus machine,” Higher-Order
and Symbolic Computation, vol. 20, no. 3, pp. 199–207, 2007.

[7] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A routing scheme for
content-based networking,” in INFOCOM (32nd Annual Joint Conference
of the IEEE Computer and Communications Societies), vol. 2. IEEE,
2004, pp. 918–928.

2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

79

