
IET Wireless Sensor Systems
Review Article
Investigation of data forwarding schemes for
network resiliency in POX software defined
networking controller
IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016
ISSN 2043-6386
Received on 30th September 2014
Revised on 7th January 2015
Accepted on 2nd February 2015
doi: 10.1049/iet-wss.2014.0107
www.ietdl.org
Raviraj Vaghani, Chung-Horng Lung ✉

Department of Systems and Computer Engineering, Carleton University, Ottawa K1S 5B6, Canada

✉ E-mail: chlung@sce.carleton.ca

Abstract: Software defined networking (SDN) is an emerging networking architectural framework which aims to provide
the complete separation of data forwarding plane and control plane. The two main benefits of SDN are lower cost and
improved management. OpenFlow is a well-known architecture that facilitates SDN. The core idea of OpenFlow is to
control the switches or routers through programming from the centralised controller. The connection reliability is a
major concern for network service providers to meet quality of service requirements. Hence, an investigation of
network resiliency is required for this new paradigm. The resiliency is the network’s ability to survive against attacks
and other component failures. This study investigates and compares different data forwarding algorithms currently
supported by the POX OpenFlow controller standards for network protection and restoration. A thorough investigation
of existing approaches or standards in SDN not only is essential for the research community to better understand the
topic, but also plays a crucial role in realising or improving network resiliency or protection and restoration in practice.
The authors also provide the extension of one of the components in POX for improvement. The restoration scheme in
the current POX components as well as in the modified component is evaluated and compared.
1 Introduction

Separating the control plane and data forwarding plane allows
network administrators to manage networks easily. This approach
is referred to as software defined networking (SDN) [1]. In the
traditional networks, both of these planes are integrated within the
same network device In SDN, the controller manages the entire
network state from a central vantage point or controller, which
hosts features for the entire network, such as routing protocols,
access control, network virtualisation, energy management and
new prototype features [1]. The controller is logically centralised.
However, the controller could possibly be distributed physically
[2]. In SDN, the southbound application program interface (API)
makes the controller able to connect with switches in the network.
The well-known southbound API is the OpenFlow protocol, which
was released by ONF (open network foundation). This protocol
enables the administrator to control the routing table remotely.

The controller is the strategic control point in SDN which controls
the switches or routers by relaying the information using the
OpenFlow protocol. The controller manages the flow control to
enable intelligent networking. Since the controller is centralised,
SDN provides better management and security. Some critical
features of SDN are summarised as follows [1]:

† It simplifies the hardware of network devices (switches or routers)
and reduces the hardware and operational cost.
† It facilitates better traffic engineering and quality of service (QoS)
for improved management.
† It is programmable and can be used for continuous network
monitoring and quick network-wide or individual devices
adjustments.

1.1 Resiliency in software defined networks

Several approaches have been proposed for protection and
restoration in SDN. In [3], the proposed architecture relies on
preplanned backup paths to ensure that, in case of a failure,
recovery is performed by affected switch locally. This scheme can
minimise the restoration time. To support the proposed scheme,
several enhancements to the OpenFlow architecture have been
proposed in this paper. However, switches cannot make intelligent
decisions in SDN, as their primary operation is limited to
forwarding of packets only. In case of a failure, if a switch directly
forwards the traffic via the backup path, then the controller is
bypassed and some other paths may be affected without going
through the controller. The nature of network traffic is dynamic,
hence while calculating the backup path, we must consider the
current traffic situation and, in the context of SDN, control
decision should be made in the controller and switches should be
limited to data forwarding only.

When a failure occurs, the first action required is detecting the
failure. The mechanism can be used here is bi-directional
forwarding (BFD) mechanism [4] session to notify the failure.
BFD is a network protocol used to detect the failure between the
source and the destination. It facilitates low-overhead detection of
failure on physical media, such as Ethernet, virtual circuit and
tunnels. In SDN, data and control planes are working separately.

Data plane restoration can be performed in two possible ways [5].
One is to support the recovery mechanism provided by a protocol by
implementing it with the OpenFlow. Another approach is to
implement the protection or restoration mechanism in OpenFlow
itself. Data plane restoration can be achieved by immediately
calculating the new flow values for affected switches. Protection
scheme can be implemented by pre-emptively calculating the
back-up path for all the pairs and storing them in the controller.

The control plane is responsible for entire network’s control and
management functionalities. The control plane can be implemented
in two ways. The first is in-band control in which data and control
planes share the same channel for transmissions. The network
resiliency scheme for in-band control is explained in [6]. The
second is out-of-band control in which data and control planes are
using separate communication channels. In this case, if the control
plane channel fails, we can use data plane channel for restoration.

The controller failure can cause the complete service disruption in
the network. For this reason, controller placement and physical
1



distribution of multiple controllers is crucial [2]. For controller
failure, several approaches for distributed controllers or a primary
and a backup model have been proposed and evaluated. The latest
OpenFlow protocol [7] supports the distributed controllers
approach. However, higher workload will occur [8, 9] to replicate
data and to ensure consistency between controllers.
Fig. 1 Functional view of L2_Learning
1.2 Research objective

The main objective of this paper is to explore the area of protection
and restoration in SDN, as it is a crucial functionality in practice for
traffic engineering and QoS, and the topic is still at the research
stage. In this work, we have investigated existing forwarding
algorithms in the POX controller. Various restoration approaches
based on OpenFlow standards using the POX controller have been
compared and evaluated. We have conducted a detailed analysis of
the design and implementation of those approaches. Understanding
existing forwarding approaches in POX plays a crucial role as fast
restoration is essential for carrier grade services. The evaluation
can help researchers better understand existing approaches in POX.
In addition, we propose some modifications to one of the
algorithms to improve recovery performance. This paper is an
extension of our preliminary comparison of different forwarding
algorithms for SDN network resilience [10]. The extension
includes more detailed descriptions and discussions for various
algorithms, and experiments and results with an extra performance
metric and a larger network topology. In addition, this paper also
presents a comparison between SDN used for wired networks and
potentially for wireless sensor networks (WSNs) with an emphasis
on the resilience perspective.

The rest of the paper is organised as follows: Section 2 presents
existing POX forwarding algorithms. Section 3 describes the
evaluation of various forwarding algorithms from the protection
and restoration perspective. Section 5 depicts the conclusion and
some future directions.
2 POX forwarding approaches

This section presents an overview of the main components of the
forwarding functionality used in the current POX [11]. The
reasons for choosing POX include POX was the first open source
SDN emulator and was robust and commonly used for
experiments than, and it also has an easy-to-use Python interface,
which is more effective than NOX OpenFlow controller [11] at the
time we conducted our experiments. Moreover, POX has the
ability to run anywhere by bundling with the PyPy runtime
environment. A survey of existing forwarding functionality in
SDN is crucial in understanding the current standards and devising
an efficient protection and restoration mechanism. Sections 2.1–2.5
explain the forwarding algorithms present in the current POX
version. Section 2.6 describes our proposed modifications to the
L2_Multi component to support the fast restoration. Sections 2.7
and 2.8 discuss two major components of OpenFlow in POX that
are crucial to failure identification Discovery and Spanning tree,
respectively.
Fig. 2 Functional view of L2_Pairs
2.1 L2_Learning

The L2_Learning component in POX acts as a layer 2 switch. It
learns the different sources based on their media access control
(MAC) addresses and maps them to their corresponding incoming
port. In POX any component is invoked by the Launch function.
The learning switch takes the appropriate action based on the
incoming packet. It checks the parameters and destination address
and forwards the packet accordingly.

Here as we can see from Fig. 1, the Learning_switch function will
parse the packet and take the appropriate action based on the packet
type. This is very straight forward switch which will eventually learn
all the destinations.
2

2.2 L3_Learning

L3_Learning acts the same as L2_Learning for forwarding, except
L3_learning component in POX acts as a layer 3 device. L3_Learning
has some functionality to reply address resolution protocol (ARP)
requests [11]. L3_Learning keeps a table that maps IP to MAC and
corresponding ports. When a switch receives an ARP query, it will
check the table for this entry. If the entry is found then it will answer
the ARP query; otherwise, it will flood it.
2.3 L2_Pairs

L2_Pairs algorithm performs almost the same functionality as
L2_Learning [11]. This is just another method to create the
learning switch. L2_Pairs function is associated with
Handle_Connection_Up event and it fetches the packet associated
with the event (incoming packet). If the packet is in a flow table
then it will just forward it through listed port; otherwise, it will
flood the packet to all the ports except the incoming port.

As described in Fig. 2, whenever a packet comes into the switch it
will search the flow table for the destination. If there is a matching
entry for the destination then it will fetch the outgoing port and
forward the packet. At the same time it will also install the rule for
such packet. If there is no matching entry then it will simply flood
the packet to all other ports except the incoming port.
IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016



2.4 L2_Multi

This is used for the layer 2 switch that learns Ethernet addresses
across the entire network and selects shortest path(s) between them
[11]. It imports the Discovery module in POX and the adjacency
list identified in the Discovery module. L2_Multi defines the class
for switch as well as the path map between two switches with
intermediate nodes and distance.

Calculate_path function is responsible for calculating the shortest
path for a given set of nodes. Here this component uses the Floyd–
Warshall algorithm to calculate the shortest paths between all pairs of
nodes. When this function is called, it will first clear all the paths in
path_map. It then calculates the shortest path for all the switches in
the adjacency list. To calculate the shortest path, this function will
identify the nodes that are directly connected. As a second step it will
try to find the nodes that are one hop away from the origin. This
process continues until all the nodes in the network are identified by
the shortest distance. It finds the intermediate nodes such that the
distance between all the source–destination pairs is minimised.

The limitation of this approach is that whenever a link event
occurs, it wipes out the entire stored paths (path_map) and starts
the process of calculating paths again. Here if we add a
mechanism that only updates the path map with the affected path
then there will be less computation overhead compared to the
entire path map calculation adopted by the current L2_Multi.
2.5 L2_Flowvisor

L2_Flowvisor installs the flow entry the same way as L2_Pairs does
[11]. This component uses the calc_spanning_tree function of the
spanning_tree component in order to find and update the spanning
tree. It does not set the no_flood; instead, it simply conducts
flooding for the selected ports from the spanning tree. This
component imports the Discovery component in POX and catches
the link status events fired by the Discovery module. The core
functionality is depicted in Fig. 3.

Every time a packet arrives, a switch checks the packet type and
takes the appropriate action. If the packet is multicast, then it will
forward the packet to the specific group with the ports listed in the
Fig. 3 Functional view of L2_Flowvisor

IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016
spanning_tree. If the packet is unicast and there is no match in the
flow table, then the switch will flood this packet to all other ports.
2.6 L2_LR (layer 2 link restoration)

This section describes proposed modifications to the L2_Multi
switch component to support local link restoration. As we can see
from Fig. 4, there is a solid line between S1 and S2 which
represents the primary path link. In case of a link failure, the
added mechanism for L2_LR finds the backup path between these
switches. If there is a secondary link available between these two
switches, then L2_LR will select this link as the restoration link.
As depicted in Fig. 3, there is a direct secondary link which is
shown by the top dotted line.

If there is no secondary link between these two end switches, then
L2_LR will find a common switch(es) in the adjacency list of both
end switches. Here both S1 and S2 have common directly
connected switches S3 and S4. In this case, either S3 or S4 is
selected and then the traffic is routed through the selected node. If
there is no common switch, then L2_LR will find a pair of
switches such that each end switch (S1 or S2) is connected to one
switch from this identified pair and the switches present in the pair
are directly connected to each other. As shown in Fig. 3, S5 and
S6 are the two switches that satisfy the above condition, e.g. S5 is
directed to S1 and S6 is directly connected to S6, and S5 and S6
are directly connected.

This is a temporary restoration mechanism that can reduce packet
losses until the new discovery cycle is initiated and the shortest path
is established. The restoration time will be similar to L2_Multi as this
method highly depends on the discovery cycle for network recovery.
The benefit is the quick response to find a temporary backup link or
path to reduce packet losses. Section 3 presents an experiment and
results for the forwarding schemes. A possible extension of this
solution is to consider other parameters while selecting the local
node as a backup path. For instance, we can consider current
traffic patterns as well as the cost associated with each node.
2.7 Discovery component in POX

The Discovery component is a key module that is used to identify the
connectivity between OpenFlow switches by sending periodically
link layer discovery protocol (LLDP) packets [11]. The Discovery
component sends out LLDP packets, and monitors the arrival of
the returned LLDP packets from other switches. It maintains the
adjacency list which has the information about nodes and their
connections with their neighbour nodes. The component also
triggers the link events when the link state is changed. However,
as per the current version of POX, the Discovery component takes
too much time (around 4–5 s) to update the failed link status,
which causes the high recovery time and does not meet the
carrier-grade requirements. There is a need of a mechanism that
can immediately notify the failure and recover from it.

An essential component that is responsible for sending and
receiving LLDP packets from the controller is called LLDPSender.
The functionality is explained in Fig. 5. The following describes
the main functionalities of LLDPSender:
Fig. 4 Example for L2_LR

3



Fig. 5 Detailed functional view of LLDPSender
† The process of LLDPSender class is explained in Fig. 2.
LLDPSender is responsible for periodically sending LLDP packets
to all the switches it is connected to. LLDPSender defines this
cycle list and the next cycle list that keeps track of packets to be
sent in this cycle and already have been sent in this cycle,
respectively.
† LLDPSender listens to the port event. If a new port is added then it
will generate a packet out message for this port and append it to the
next cycle list. If the port is removed, then it will remove the port
from both the cycle lists.
† LLDPSender also listens to the connection up and connection down
events when a switch connects or disconnects. When a switch is newly
connected, the ports in this switch are added to this cycle list and the
switch is deleted for a particular timestamp. Timer handler is
responsible for starting a new cycle list after this cycle list is empty.
2.8 Spanning tree component in POX

The Discovery component is also used by the Spanning Tree [11]
component to build the network topology. L2_Flowvisor (see
Section 2.5) uses a calc_spanning_tree function to build a
4

spanning tree. This component creates the spanning tree for all the
nodes and then disables flooding on unused ports.

The calc_spanning_tree function calculates the tree for each node
present in the network. The algorithm to calculate the tree is
presented in the following steps:

(i) Get adjacency list from Discovery.
(ii) Define a set of links and switches that are present in the network.
(iii) Put switches in list and sort them by datapath identifier (dpid).
(iv) Start with the first switch in list as a root.
(v) Find all the adjacent switches and add them to the tree.
(vi) Find the switches that are connected to the root via one

intermediate switch and add them to the tree with intermediate node.
(vii) Repeat the procedure until all the switches are in the tree.
(viii) Choose the next switch in list as a root and go to step v.
(ix) Finally, the entire tree set contains the spanning tree for all the

switches.

In summary, Table 1 presents a comparison of the main features of
the abovementioned forwarding algorithms that are available in
POX.
IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016



Table 1 Summary of main features for forwarding algorithms

Feature L2_Learning L3_Learning L2_Pairs L2_Flowvisor L2_Multi L2_LR

failure detection √ √ √ √ √ √
failure recovery × × × × √ √
initial configuration computation × × × √ √ √
shortest path calculation × × × × √ √
We have considered all the existing algorithms except L2_Multi
which is launched with the Discovery and Spanning Tree
components in POX. Failure detection is facilitated by the
Discovery component as it triggers the link events.

However, as far as the recovery is concerned, the first four
algorithms in Table 1, e.g. L2_Learning, L3_Learning, L2_Pairs
and L2_Flowvisor, do not react against the failure. They simply
repeat its procedure and eventually establish the new flow, but no
immediate action is performed. On the other hand, both L2_Multi
and L2_LR immediately react to the failure. Whenever they are
notified with the link event, they initiate the path calculation
process for changed link status and establish the new route from
source to destination. Complex configuration computation is
initially performed using approaches L2_Flowvisor, L2_Multi and
L2_LR. L2_Flowvisor simulates the flooding according to the
spanning tree so tree calculation is required initially. L2_Multi and
L2_LR pre-calculate the path for all the sources and destinations.
This is the reason why they require initial computation. The
shortest path calculation is performed by L2_Multi and L2_LR only.
3 Evaluation of POX forwarding approaches

This section presents performance evaluation and comparison of
different forwarding algorithms depicted in Section 2. We have
adopted several evaluation criteria for the comparison. First, we
investigated the paths selected by different forwarding algorithms,
which helps understand different algorithms and the overhead and
cost associated with different paths. The next two criteria are
related to CPU usage for various algorithms, which is also related
to scalability if the network size increases, as the controller has to
perform many other tasks. Higher CPU demands may affect
response time, throughput, or other performance metrics. The last
criterion is packet losses due to a link failure. Packet losses have
direct impact on QoS which becomes vital for today’s network
services and applications.

We have conducted experiments using Mininet 2.1.0 on POX.
The network topology used for experiments is depicted in Fig. 6.
Fig. 6 Network topology

IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016
The topology is an extension of network size compared to our
previous study in [10]. The computing machine used for this
experiment is Intel core i7 processor with 3.2 GHz clock speed.
For virtualisation purpose, Virtual Box 4.2.18 is used. There
are 26 switches (S1–S26) and a controller residing on S1 in the
hybrid mesh network. There is a host connected to each switch
(e.g. hosts H1–H26 are connected to switches S1–S26,
respectively). The hosts are not shown in Fig. 6 for brevity. All
the 43 links have 10 Mbps of bandwidth. For larger network sizes,
the results will be similar, because all the switches have a direct
control plane connection with the controller based on the
SDN principle. When a failure is detected, any switch can
communicate directly with the controller, which is independent of
the network size.

All the forwarding algorithms presented in Section 2 have been
evaluated with the Discovery and Spanning_tree components,
except the L2_Flowvisor. The L2_Flowvisor is not compatible
with the Spanning Tree component, hence it is directly launched
with the Discovery module.
3.1 Path selection

In the experiments, hosts H1 and H26 are considered as the source
and destination and they are connected to S1 and S26,
respectively. The paths identified by different forwarding
algorithms are illustrated in Fig. 6 and listed in Table 2 when the
ping messages were sent from H1 to H26. As we can see in
Table 2, L2_Multi and L2_LR select the path with the least
number of intermediate nodes, because both of them are based on
the shortest path algorithm. The first three algorithms in the table
randomly select the path from H1 to H26. Specifically, this path
selection is based on the first entry made in the flow table as well
as the port status changed by the Spanning Tree component.
L2_Flowvisor, on the other hand, simply forwards the packet to
the ports, which allows it to find an optimal path. However, this is
not always the case, because it highly depends on the tree
calculation procedure.
5



Table 2 Path selected by different forwarding algorithms

L2_Learning S1→S2→S5→S8→S7→S10→S16→S17→S23→S22→S26
L3_Learning S1→S2→S5→S8→S11→S12→S17→S23→S22→S26
L2_Pairs S1→S3→S9→S8→S10→S16→S17→S23→S22→S26
L2_Flowvisor S1→S4→S13→S19→S18→S22→S26
L2_Multi S1→S4→S13→S20→S21→S26
L2_LR S1→S4→S13→S20→S21→S26
3.2 CPU usage of forwarding algorithms

The aggregated CPU usage is measured using Linux top command
for the entire forwarding algorithm to find the computational
overhead of different algorithms. Computational overhead is an
important factor to consider for scalability, as the SDN controller
may need to perform various functionalities for many switches. As
we can see in Fig. 7, L2_Flowviso, L2_Multi and L2_LR have
slightly higher overhead than that of the other three algorithms.
This deviation is caused by route calculation in these algorithms.
When each of these algorithms is initially launched, it has higher
overhead due to more initial operations. After the process of flow
establishment is finished, they have neutral overhead of around 3%.
3.3 CPU usage for flow setup

When a switch receives a packet from any source for the first time it
will install the flow entry in the flow table. When a switch learns all
the nodes from the network, the complete flow establishment has
taken place. The pingall command in Mininet is used to check the
connectivity of the entire network. The pingall command is sent
from every host to all other hosts. The CPU usage is measured for
this initial flow establishment. Fig. 8 shows that L2_Learning,
L2_Multi and L3_Learning have higher CPU usage than the other
three algorithms.

The main reason is that L2_Multi, L2_Flowvisor and L2_LR
calculate the paths once the links and nodes are identified. When
the pingall command is fired these three algorithms require less
number of packets to be flooded into the network and that is the
reason for low CPU usage.
Fig. 7 CPU usage of different forwarding algorithms

Fig. 8 CPU usage for pingall operations (flow setup)

6

3.4 Packet loss in presence of failure

To evaluate the effect of the failure on different forwarding
algorithms, packet losses per 100 packets have been measured. In
spite of the failure, the round trip time results for different
algorithms are almost the same (0.027 ms), thus we present only
the packet losses. After running the traffic with a specified
forwarding algorithm, we failed one of the links along the primary
path to generate the link failure and packet loss scenario. The
failed links for the algorithms were different according to the path
chosen by different algorithms, as the path generated for each
algorithm may be different, see Fig. 6 or Table 2 for the path for
each algorithm. The failed link was chosen arbitrarily and the
selection of the failed link does not make any difference, as each
link is directly connected to the controller and the same
mechanism is used for each switch and the controller for each
forwarding scheme.

To measure the packet loss, 100 ping messages were sent. The
results are shown in Fig. 9. In case of first three algorithms
(L2_learning, L3_learning and L2_Paris), if we fail the link from
the primary path while traffic is running, then each of them will
start flooding again and try to find the appropriate port that leads
the packet to the destination. Another reason for high packet losses
for the first three algorithms is that they do not store the entire
path from the source to the destination, whereas the last two
algorithms (L2_Multi and L2_LR) store the entire path as well as
whenever the link failure is detected they invalidate all the flows
and try to find the optimum path using the Discovery module.
There is only a minor difference between the L2_Multi and L2_LR
algorithms based on the experiment, because they both depend
upon the discovery cycle adopted in POX. However, as the traffic
rate increases, the difference of packet losses is expected to
become larger between L2_Multi and L2_LR, because L2_LR
transmits traffic over a tentative link/path before the Discovery
module recalculated the shortest path.
4 Conclusions and future work

SDN is an emerging research topic and it has drawn a great deal of
attention. On the other hand, network resiliency is a critical
IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016



Fig. 9 Packet loss in case of link failure
requirement for network services these days. It is crucial to
understand how existing SDN approaches measure up against the
reliability and QoS requirements [2]. The paper presented a
detailed comparison of existing forwarding approaches on POX
for SDN resiliency. The comparison helps better understanding of
the crucial topic and for future improvement.

We conducted experiments using available forwarding schemes
on POX and also proposed L2_LR for improvement. Experimental
results showed that L2_Multi and L2_LR require less time for
recovery from the failure in comparison to other forwarding
schemes. L2_LR also generates less packet losses than that of
L2_Multi, as using L2_LR traffic can be forwarded via a backup
link/path identified temporarily before the Discovery module starts.
The experimental results are consistent with that obtained from a
smaller network [10]. For larger network sizes, the results will be
similar, because all the switches have a direct connection with the
controller based on the SDN principle. When a failure is detected,
the corresponding switches can communicate directly with the
controller, which is independent of the network size.

Our experience with this investigation has pointed to two major
research areas of future research:
4.1 Improving network resilience for reliability and QoS
requirements

The restoration time for the existing POX is high due to the long
discovery cycle. Reducing the discovery cycle to a very small
value would generate a high volume of traffic and may not be able
to meet the 50 ms recovery time of network reliability
requirement. If an SDN is deployed in a geographically large
network, the delay will become even higher due to longer
propagation delay for messages transmitted between switches and
the controller. The high restoration time needs to be reduced to
meet the network reliability requirements and ever increasingly
essential services and applications.

In other words, there is a need of a protection scheme for fast
recovery which does not require controller-switch communications
when a failure occurs. Different potential modifications to the
POX design can be considered to increase network resilience
efficiency. Protection mechanisms that pre-establish backup paths
are more efficient and have been used in today’s high-speed
networks, e.g. Multiprotocol Label Switching (MPLS) fast reroute
[12]. For SDN, if a backup entry has been pre-established and
stored in a flow table when a failure is detected, the backup entry
can be used immediately. Protection can be divided into path
protection and link protection. For path protection, the following
steps warrant further research for validation:

(i) After the discovery procedure of links and switches is
completed, the controller can find primary as well as backup paths
for all possible source and destination pairs. If we consider the
L2_Multi algorithm, then there will be two path_map lists, one for
the primary paths and the second for backup paths. These
calculations should be updated periodically because of dynamic
traffic conditions and to avoid the congestion.
IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016
(ii) Installing two paths for the same destination which can be
achieved by two ways. First, flow table entries can be stored with
different priority levels. The second option is to reserve a buffer in
switches, which allows switches to store and retrieve additional
control information. In this buffer, we can store the backup path.
(iii) If a component fails, then the nodes that are using this
component for their primary path are notified to alter their path
entries to the backup path. The nodes that are using this
component for their backup path are also notified to calculate their
backup path again. The controller will re-calculate and
pre-establish the new backup path and send it to node to update its
buffer.

The possible link protection solution based on OpenFlow could be

(i) The controller will calculate the backup path set for all the links
in the network.
(ii) Flow tables in the switches are installed with primary and
secondary forwarding ports. The assumption is that the secondary
forwarding port is pre-calculated such that it will lead to the
destination from the point of failure.

4.2 Network resiliency for software-defined WSNs

Although SDN was not originally proposed for WSNs, many WSNs
share a similarity with the concept of SDN – a centralised base
station or sink for WSNs and a centralised controller for SDN. In
WSNs, though, the sink(s) may only be used for data collection
and aggregation instead of for managing or controlling of the
traffic of sensor nodes.

With the advancement of sensor and microcontroller technologies,
WSNs have drawn a great deal of attention and there are more
applications using WSNs. Typically, WSNs are specific to
applications and environments. However, there are some general
problems for WSNs, as described in [13]. Some of the problems
are (i) counter-productivity: different vendors develop WSNs in
isolation without considering common features; (ii) inflexible to
policy changes: changes in business need are difficult to handle
algorithmically; and (iii) difficult to manage: development of a
network management system for distributed WSNs is non-trivial
and difficult to deal with as technologies advance quickly.

A tremendous amount of efforts has been spent on various
performance-related issues for WSNs, including clustering of
sensor nodes for data aggregation and network lifetime
prolongment [14, 15], routing calculation for energy harvesting
[16], sensor node localisation [17] and so on. Although the
performance issues, e.g. network lifetime, are crucial to WSNs,
other issues, such as the aforementioned problems described in
[13] may outweigh some of the performance issues for specific
applications in the long run. In addition, the cost issue may
become prevailing for some applications, as many research efforts
on WSNs are based on fully fledged sensor nodes with
functionalities of all layers, e.g. from physical layer to application
layer, which increases both the capital expenditures and
operational expenditures.
7



Luo et al. [13] proposed an approach to enabling software-defined
WSNs to address the aforementioned problems existing in existing
WSNs. With SDN technologies, sensor nodes could focus on
simplified data sensing and forwarding tasks without carrying
extra overhead of different functionalities. The management of
sensor nodes also becomes simpler, since updates mostly can be
performed at the controller(s) or sink(s) as opposed to all the
sensor nodes in a WSN.

From the network resilience perspective, node or link failures
typically can happen more frequently in WSNs than in wired
networks. With POX, if a failure is detected due to a loss of
connectivity, a switch will react by notifying the controller. The
controller will then take an action: either using a pre-established
path or re-calculating a new path.

For WSNs, pre-established protection schemes may generate a lot
of control traffic, which consumes a large amount of energy. Further,
pre-established paths may not be reliable, as more frequent node or
link failures in a WSNmay affect the protected paths. In other words,
the protected paths may not guarantee connectivity, especially for
sensor nodes that are deployed in a harsh environment. As a
result, a reactive approach to restoration may still be needed or
appropriate for WSNs after a failure is detected, unless the sensor
nodes and connections are reliable. The existing POX OpenFlow
approach to restoration is based on the reactive method, which
could be investigated further for adaptation and improvement for
WSNs.

There is another evident difference between the wired SDN and
software-defined WSNs: the control traffic for WSNs will typically
be realised with an in-band channel, whereas the Mininet or SDN
uses a separate control channel for control plane by default. Most
sensor nodes are equipped with only one communication channel.
If multiple channels are available or a dedicated control channel is
used for a WSN, the cost will be high for many applications and
the lifetime will also be affected. For some applications, some
sensor nodes may be far away from the sink (a potential
controller). In this case, multi-hop communications may be needed
[11] using an in-band channel for restoration, which could cause
high delay and energy consumption.

Protection and restoration for WSNs is still an open area. WSNs
share some similarity with SDN. More research needs to be
conducted for this area. In addition, a tradeoff evaluation should
8

be considered in combination with other factors, such as
performance, energy consumption, management and cost.
5 References

1 Bob, L., Heller, B., McKeown, N.: ‘A network in a laptop: rapid prototyping for
software-defined networks’. Proc. Ninth ACM SIGCOMM Workshop on Hot
Topics in Networks, 2010

2 Ros, F.J., Ruiz, P.M.: ‘Five nines of southbound reliability in software-defined
networks’. Proc. Third Workshop on Hot Topics in Software Defined
Networking (HotSDN), August 2014, pp. 31–36

3 Sgambelluri, A., Giorgetti, A., Cugini, F., et al.: ‘OpenFlow-based segment
protection in Ethernet networks’, IEEE/OSA J. Opt. Commun. Netw., 2013, 5,
(9), pp. 1066–1075

4 Katz, D., Ward, D.: ‘Bidirectional forwarding detection’, IETF RFC 5881, 2010
5 Staessens, D., Sharma, S., Colle, D., et al.: ‘Software defined networking: meeting

carrier grade requirements’. Proc. 18th IEEE Workshop on Local & Metropolitan
Area Networks (LANMAN), 2011

6 Sachin, S., Staessens, D., Colle, D., et al.: ‘Fast failure recovery for in-band
OpenFlow networks’. Proc. of Ninth IEEE Int. Conf. on Design of Reliable
Communication Networks (DRCN), 2013

7 Openflow Switch Specification: Version 1.3.3. Open Networking Foundation.
June 2012

8 Koponen, T., Casado, M., Gude, N., et al.: ‘Onix: a distributed control platform for
large-scale production networks’. In OSDI, 2010, vol. 10, pp. 1–6

9 Cai, Z., Cox, A.L., Ng, T.S.E.: ‘Maestro: a system for scalable OpenFlow control’.
Technical Report TR10-08, Rice University, 2010

10 Vaghani, R., Lung, C.-H.: ‘A comparison of data forwarding schemes for network
resiliency in software defined networking’. Proc. of Int. Workshop on Software
Defined Networks for a New Generation of Applications and Services
(SDN-NGAS), August 2014

11 NOX and POX, http://www.noxrepo.org/
12 Pan, P., Swallow, G., Atlas, A.: ‘Fast reroute extensions to RSVP-TE for LSP

tunnels’. Internet Engineering Task Force (IETF) Request for Comments (RFC)
4090, May 2005

13 Luo, T., Tan, H.-P., Quek, T.Q.S.: ‘Sensor OpenFlow: enabling software-defined
wireless sensor networks’, IEEE Commun. Lett., 2012, 16, (11), pp. 1896–1899

14 Hu, S., Han, J.: ‘Power control strategy for clustering wireless sensor networks
based on multi-packet reception’, IET Wirel. Sens. Syst., 2014, 4, (3), pp. 122–129

15 Kumar, D.: ‘Performance analysis of energy efficient clustering protocols for
maximising lifetime of wireless sensor networks’, IET Wirel. Sens. Syst., 2014,
4, (1), pp. 9–16

16 Wu, Y., Liu, W.: ‘Routing protocol based on generic algorithm for energy
harvesting-wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 3, (2),
pp. 112–118

17 Wang, G., Yang, K.: ‘A new approach to sensor node localization using RSS
measurements in wireless sensor networks’, IEEE Trans. Wirel. Commun., 2011,
10, (5), pp. 1389–1395
IET Wirel. Sens. Syst., pp. 1–8
& The Institution of Engineering and Technology 2016


	1 Introduction
	2 POX forwarding approaches
	3 Evaluation of POX forwarding approaches
	4 Conclusions and future work
	5 References

