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ABSTRACT  

 

In closed angled Glaucoma, fluid pressure in the eye increases because of inadequate fluid flow 

between the iris and the cornea. One important technique to assess patients at risk of glaucoma is 

to analyze ultrasound images of the eye to detect the structural changes. We propose an 

algorithm to automatically identify important features in the ultrasound images. Tests were 

performed by comparison of results with eighty images of glaucoma patients against the 

landmarks identified by a technologist. A success rate of 97% was achieved. This work will help 

improving the efficiency of clinical interpretation of ultrasound images of the eye. 
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I. INTRODUCTION 
 

Glaucoma is one of the leading causes of blindness. In closed angled Glaucoma, fluid 

pressure in the eye increases because of inadequate fluid flow between the iris and the cornea. 

The pressure causes damage and eventually death of nerve fibers responsible for vision (Deepak 

[1]). One important technique to assess patients at risk of glaucoma is to analyze ultrasound 

images of the eye to detect the structural changes that reduce the flow of fluids out of the eye 

(Pavlin et al [2]). Usually, sequences of ultrasound images of the eye are analyzed manually; a 

trained technologist determines anatomical feature locations and measures the relevant clinical 

parameters. The main features within the eye of clinical interest are: the sclera, a dense, fibrous 

opaque white outer coat enclosing the eyeball except the part covered by the cornea; the scleral 

spur, a small triangular region in a meridional section of the sclera tissue with its base along the 

inner surface of the sclera; the anterior chamber, the region bounded by the posterior surface of 

the cornea and the central part of the lens; and, the trabecular-iris recess, the apex point between 

the sclera region and the iris.  Manual analysis of eye images is fairly time consuming, and the 

accuracy of parameter measurements varies between experts. For this reason, we were motivated 

to develop an algorithm to automatically analyze eye ultrasound images. We anticipate that this 

algorithm will reduce the processing time currently taken by the technologist to analyze patient 

images and extract the clinical parameters of interest. The difficulties in measuring these 

parameters are associated with noise, poor contrast, poor resolution, and weak edge (boundary) 

delineation inherently present in ultrasound images (Pathak [3]).  

This paper describes a new method to detect features in ultrasound images, which shows good 

performance in detection of difficult features. The paper is organized as follows; Section II 
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presents an overview of the image processing techniques used for feature identification. Section 

III describes the automated algorithm for feature detection and extraction, including speckle 

reduction methods, non-linear contrast and edge enhancement, template correlation, region 

segmentation and classification, and computation of clinical parameters. Section IV presents 

experimental results obtained from testing the algorithm. Section V presents a discussion of 

previous work done in this field. Finally, Section VI concludes the paper.  

II. BACKGROUND  

We have found the non-linear “Log-Ratio” framework of Deng et al [4,5] to be a powerful 

collection of tools to sharpen edges and reduce noise in ultrasound images. This technique 

permits simultaneous edge and contrast enhancement while avoiding noise amplification, unlike 

classic techniques such as Unsharp Masking (Lim et al [6], Polesel et al [7]). We consider the 

image gray level digital representation in the [0,M) range, where M =256 for an 8-bit image. In 

order to avoid loss of information caused by intentional truncations on the processed images, 

arithmetic operations on image pixel values are defined in a logarithmically mapped space where 

the forward mapping function between the image pixel space (F) and the real number space (�) 

is: 
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Deng et al [4,5] used the symbols ⊗,⊕ and Θ to represent multiplication, addition and 

subtraction, respectively, in the log space. Based on this “Log-Ratio” framework, a multiscale 

iterative enhancement and noise reduction filter is defined as shown in Fig.1. The number of 

iterations depends on the high spatial frequency content of the image, as illustrated in Fig. 2. 
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After a certain number of iterations, the difference between two successive smoothed images will 

become very small or negligible. The enhanced image computed by the algorithm is a quasi-

binary image, which facilitates the selection of a threshold at the binarization process. This 

multiscale algorithm is designed to suppress the noise in the processed image while enhancing 

edges. This is achieved through selecting of the scaling parameters s. si is set to a value <1 for 

the first stages to smooth high frequency noise. At the stages where the noise is sufficiently 

reduced, si is set to a value >1 to amplify edges and contours. Fig. 3 shows representative images 

of the effect of values of s. For example, Fig. 3a) illustrates an inadequate selection of the 

parameters (all si>1) resulting in significant noise amplification, while Fig. 3b) shows the output 

of the parameter values chosen in section 1.2 of this paper.  

 

III. ALGORITHM DESIGN 

This section develops an algorithm to automate the measurement of the location of 

clinically relevant features in ultrasound images of the eye. The proposed algorithm is designed 

to calculate two clinical parameters, the open-angle and AOD 500, as shown in Fig. 4 and 

defined in Nishijima et al [8], and Pavlin et al [2]. In performing this calculation, it must 

delineate the sclera, and locate the scleral spur, the trabecular-iris recess, and the anterior 

chamber. The algorithm is structured into three steps, shown in Fig. 10: steps 1 and 2 are 

executed independently and the result merged into step 3 to complete the feature extraction and 

resultant calculations.  
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A. STEP 1 

 

The goal of this section is to extract from the image the anterior chamber region.  The 

sequences of operations are described in the flowchart (Fig. 10 a). All image operations are 

based on rectangular pixels of 19.5 �m × 19.5 �m. 

 

1.1 Image thresholding: An intensity threshold, THR, is selected based on a subset of images of 

the anterior chamber region cropped manually. THR is selected at the tail of the histogram for 

the anterior chamber region (Fig. 5). Once obtained, THR is fixed for all scanned images. Pixels 

with intensity above THR are set to 255; otherwise, the value is unchanged. The thresholded 

image is denoted as fth1. 

 

1.2 Non-Linear Edge & Contrast Enhancement:  fth1 is low pass filtered with a 9x9 Gaussian 

filter with N=8 iterations, using the non-linear edge and contrast enhancement algorithm 

described in section II.A.  The output of this system results in a coarsely enhanced image fenh1 

with reduced noise and high-frequencies content. 

1.3 Image Binarization: Using the grayscale threshold, THR, the quasi-binary enhanced image 

(fenh1) pixels are binarized (Fig. 6). 

1.4 Image erosion: Erosion is applied on the binary image to remove spurious features. A 5x5 

square-shaped structuring element is used for the erosion process. The resultant image is denoted 

by “fer1”. 
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1.5 Hole Filling: Small openings (holes) in the trabecular meshwork and the iris are detected and 

filled. The filled image ‘ffill1’ is later used for correlation with a template image of the anterior 

chamber (section 1.6).  

1.6 Template Correlation: The anterior chamber is a large and roughly triangular feature, and 

can thus be identified using correlation with an appropriate template. In order to compensate for 

variability in the shape of this region, 3 template regions were chosen from representative image 

(Fig. 7) of subjects with different degrees of glaucoma.  The enhanced image is then correlated 

with each template and the average correlation point (xc,yc) computed from the mean of all 

maximum correlation points. 

1.7 Anterior Chamber Classification and Segmentation: Each closed region in “ffill1” is analyzed 

to identify the most likely to be the anterior chamber. Classification is based on the geometrical 

properties: object area, centroid, and major-axis and minor-axis length (using an elliptical 

model). The following parameters are computed for segmentation of each closed region: 

(a) Center: Defined as the center coordinate of a region 

(b) Distance from maximum correlation point (xc,yc): Defined as the distance between the 

calculated center in (a) and the average correlation point (xc,yc) computed in section 1.6.  

(c) Area: Defined as the total number of pixels characterizing a closed region. 

 

The regions that meet the following requirements are to be considered as candidates in the 

segmentation process. 

(i) Area > 50 pixels; otherwise, the region is considered to be noise. 
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(ii) The distance between the center of the closed region and (xc,yc) must be minimum; 

ideally zero. 

 

If more than one region has the same minimum distance, then the selection is based on the 

maximum area.  Once the anterior chamber is segmented, the upper and lower edge coordinates 

are extracted. Also, the apex point (xapex, yapex) is defined by locating the black pixel that is the 

most to the left of the anterior chamber as shown in Fig. 4.  If no regions are detected, the 

algorithm terminates since the coordinates of the anterior chamber cannot be calculated. 

B. STEP 2 

The goal of this section of the algorithm is to identify the sclera region. The algorithm is 

shown in Fig. 10 b). 

2.1 Histogram magnification: A histogram magnification (Fig. 8) is applied to enhance the 

texture of interest. Threshold values are calculated corresponding to 15% and 85% of the total 

number of pixels in the histogram. 

2.2 Wiener Filtering:  The image is filtered using an adaptive Wiener filter (Lim et al [6], Polesel 

et al [7]) with a 9x9 pixel neighborhood. The Wiener filter parameters are estimated from the 

local mean, variance and noise variance in an N by M neighborhood χ around each pixel. 
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The image noise variance 2
Nσ  is defined to be the average variance for all neighborhoods. 
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The filter is implemented as follows: 
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where H(x,y), f(x,y) are the output and input pixels, respectively. This filter adapts to the local 

variance as 2σ is calculated for each neighborhood. Thus, if the variance is large, the filter 

performs little smoothing in order to preserve high frequencies or edges. 

2.3 Non-linear Edge & Contrast Enhancement:  Using the same iterative process with identical 

parameters as in Section 1.2. 

2.4 Image Binarization: Using the same process and threshold as Section 1.3, to obtain a finely 

enhanced binary image (Fig. 9). 

2.5 Image Erosion: iterative erosion is repeated for n=4 times to remove artifacts in the enhanced 

binary images. The classic 3x3 erosion operator is modified in order to preserve weak edges, as 

follows: the center pixel (located at (0,0)) is set to background if and only if both adjacent 

(horizontal or vertical) pixels are background. The resultant image is denoted by “fer2”. 

 

2.6 Region expansion: “ffill1” is dilated with a circular-shaped structuring element of size 5. This 

enlarges all regions in the image denoted by “fexp1”, which is used for the subtraction process 

described in the section 2.7. 
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2.7 Region subtraction: The expanded image (coarsely enhanced) “fexp1” is subtracted from the 

eroded image (finely enhanced) “fer2”.  This procedure removes all large regions in the image 

and keeps only the fine details of interest. 

 

2.8 Sclera region classification and segmentation: For segmentation of the sclera region, the 

following parameters are computed: 

 

(a) Boundary pixels coordinate: the pixel that is furthest to the right and is located within 

each of the closed regions (xright, yright) 

(b) Distance from the apex point (xapex,yapex) of the anterior chamber to (xright, yright) of each 

classified region 

(c) Area in pixels of each region 

(d) Major axis length of the closed regions

 

In order to segment the sclera from all possible regions in the enhanced image, each closed 

region is analyzed independently. By first scanning through the processed image, any region 

with an area less than 50 pixels is rejected since it is considered to be speckle noise or too small 

to be a proper sclera region candidate. Afterwards, the distance between (xright, yright) and (xapex, 

yapex) is calculated for the remaining regions with area greater than 50 and the region that has the 

smallest distance is considered to be the sclera. 
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If multiple regions have the same minimum distance, then the selection is based on the area and 

the major-axis length, based on observed ultrasound images of the eye. Once the sclera is 

segmented, its center (xscleral,yscleral)  as well as its upper edge coordinates are extracted. 

 

C. STEP 3 

 

The goal of this section is to improve the robustness of the detection by applying extra 

fine enhancement to the original image and re-extracting a new sclera region.  If the newly 

extracted scleral spur coordinates correlates with the one previously calculated, then the 

remaining clinical parameters can be computed; otherwise, the sclera region cannot be 

segmented, and the algorithm terminates. 

 

3.1 Non-Linear Edge & Contrast Enhancement: The enhancement algorithm (section 2.3) is 

applied to feq2 computed in section 2.1. In order to achieve fine enhancement, fewer iterations 

(i.e. n=5) are used, resulting in a significant reduction of the blur. The enhanced image is denoted 

as “fenh3”.  

 

3.2 Image Binarization: Same as in Section 1.3. 

 

3.3 Sclera region Classification and Segmentation: The approach of section 2.8 is used except an 

additional parameter is used to account for the distance (dc-sc) between the center of each 

detected candidate region and (xscleral,yscleral). A region is classified as the best sclera candidate if 

it passes all the requirements of section 2.8 and has the smallest dc-sc. 
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3.4 Sclera Contour Mapping: Once the sclera has been identified (Fig. 11a), the scleral spur is 

located based on signal processing on the outline of the top boundary of the extracted sclera 

region.  This outline is determined by scanning the image vertically and determining the 

uppermost location of the pixels on the sclera image (Fig.11b).    

 

3.5 Sclera Contour Smoothing Filter Design: A non-recursive 4th order Butterworth smoothing 

filter, with normalized cutoff frequency (wc) of 0.45, is used to remove outliers and abrupt 

variations (fluctuations) in the outline that may result from poor resolution and image noise 

(Fig.12). The filtered data set is defined as Ffilt(x). The value of the normalized cutoff frequency 

was manually tuned to provide a compromise in terms shape fidelity to the shape and rejection of 

unwanted saddle points.  Since we know that scleral spur is located to the right of the sclera 

region, only the right-half side of the data points on the sclera contour is searched. This 

truncation of the size of the detected outline reduces the search time. This new array of data is 

denoted as “Ftrunc(x)”. 

 

3.6 Scleral Spur Detection: The scleral spur is detected by first applying a gradient operator on 

Ftrunc(x) (Fig. 11b) and then computing all minima coordinates as well as the points along the 

descendent edge prior to each local minimum. If no minima are detected, all points with zero 

gradients are located and defined as saddle edges. 

 

Identification/detection of the scleral spur is completed when one of the following occurs: 
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If one local minimum is found, then this point becomes the scleral spur coordinate. If 

multiple minima are located on Ftrunc(x), then all points along the descendant edges are used in 

order to calculate the magnitude of each edge (∆edge) prior to a minimum. For each descendent 

edge found within the outline Ftrunc(x), ∆edge is computed as the difference between the maximum 

pixel value and the minimum pixel value along that edge. The descendant edge with the largest 

(∆edge) symbolizing the deepest dip is chosen as the scleral spur coordinate. On the other hand, if 

no minima are found along the contour, then saddle edges are used since they represent possible 

locations of the scleral spur on the sclera contour. Knowing a priori that the scleral spur occurs to 

the right side of the contour, the saddle edge located most to the right of the 1-D outline is 

selected as the scleral spur coordinate. The scleral spur coordinate is denoted as (xs,ys). 

 

3.7 Determination of Measured Parameters for Glaucoma: This section describes calculation of: 

(1) open-angle; and (2) angle-open distance (AOD), as shown in Fig. 4.   These parameters 

require the location of the apex point previously computed in section 1.7.  This location will be 

used to define the angle. 

 

 AOD 500 & Open-Angle Calculation:  The AOD 500 is measured along an orthogonal 

projection from the trabecular meshwork to the iris (Nishijima et al [8], Pavlin et al [2]), as 

illustrated in Fig. 4.  Its calculation requires the computation of:  

 

1) The contour along the upper half of the anterior chamber from the scleral spur to the upper 

vertex. 
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2) The contour from the scleral spur along the iris on the lower anterior chamber to the lower 

vertex. The lower contour on the processed (enhanced) image is shifted from its original location 

due to the blur introduced by the multiscale processing. To correct the offset imposed by the 

blur, we recalculate a new contour using the original image. Starting at the offset pixel position 

(black pixel within the anterior chamber), scan vertically in the downward direction for the first 

pixel that is different from black. This is shown in Fig. 13. 

 

3) The location 500 µm from the scleral spur along the contour on the trabecular meshwork is 

computed using Fig. 14, as follows: 

                              �
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where minxxh s −= and syyd −= min  

The measured contours provide data for the orthogonal projection calculation between the two 

segments of the eye.  By calculating the inner product between the vectors defined as:  

)}(),{( 5005001 apexapex yyxxv −−=                                                 (9) 

)})((),)({()( 5005002 ynyxnxnv lowerlower −−=                                   (10) 

we can find the orthogonal projection coordinate along the lower iris trace. n represents the 

sample points of the lower iris contour. Denoting this location as (xlow_mid, ylow_mid) and 

computing the vector  
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)}(),{( __3 apexmidlowapexmidlow yyxxv −−=                                     (11) 

leads to the calculation of both the AOD 500 and the open-angle.  The calculation of the AOD 

500 length, in µm, is given by: 

2
_500

2
_500500 )()( midlowmidlowconvAOD yyxxd −+−= η                           (12) 

where ηconv = 19.5 µm/pixel  is the resolution of the ultrasound system used. 

If the 500 µm coordinate location appears to the left of the (xapex, yapex) point, then the open-angle 

is 0o. Otherwise, an open-angle, in radians, is calculated as: 
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IV. RESULTS 

Ultrasound images were obtained from patients at the University of Ottawa Eye Institute 

using the Ultrasound Biomicroscopy (UBM) System Model 840 (Zeiss-Humphrey), using the 

protocol described in Daneshvar et al [9]. The data used within the study was taken from patients 

who had been diagnosed with glaucoma. The data was used initially in the study of 

pseudoexfoliation syndrome (Damji et al [10]).  The patient’s data was then used later for this 

study.  Patient selection was based on: 1) diagnosis of glaucoma in the patient, or 2) genetic 

susceptibility to the disease as indicated by its presence in their family.  In total, 80 patients were 

enrolled in previous study. For this present work, one image was taken for each patient (in order 

to ensure statistical independence of results) resulting in 80 images to be analyzed.  Each patient 
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was placed on a reclining chair with a headrest and an apparatus was placed surrounding the eye 

allowing a transducer to be placed on the ocular region.  The transducer is scanned in distinct 

directions in order to extract the appropriate ultrasound image on the screen visible to the 

operator.  The images are then stored on the local hard disk in PCX format. As described in 

Deepak [1], UBM measurements are performed with patient in a supine position with the eye 

open. The technologist manually identifies the location of the clinical features on the screen.  

The AOD 500 is then calculated and the open-angle is measured with a protractor centered at the 

apex point of the anterior chamber.  

Using the algorithm described here, 80 images were processed on a 2.4 GHz Intel Pentium III 

processor with 512 MB of SDRAM.  The algorithm was implemented in Matlab and the 

execution time for one image is 32 seconds. 

In section 1.1, a threshold (THR) of 50 was used. In section 1.2, the s-parameters were set to 

s1,2,3,4=0.1 and s5,6,7,8 = 20 for 8 iterations. In section 2.1, the lower and upper thresholds are 

selected as 85 and 220, respectively. Fig. 4 illustrates all calculated clinical features of interest 

using this algorithm. By treating the technologist-identified parameters as gold standards, we 

estimated the detection position (offset) error of the algorithm. The offset error histograms are 

shown in Fig. 15. Overall, the offset error was smaller in the vertical direction compared to the 

horizontal direction. In the horizontal direction, the mean error is 2 pixels (39.5 mm) toward the 

eye center and standard deviation is calculated to 6.7 pixels (130.65 mm). In the vertical 

direction, the mean error is 1.42 pixels (27.69 mm) toward the back of the eye with a standard 

deviation of 2.71 pixels (52.8mm). 
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Three possible outcomes can be generated by the developed algorithm. If the algorithm fails to 

segment the regions of interest or cannot process a specific image, the clinical parameters are not 

computed (outcome 1). Otherwise, clinical parameters are computed. If the calculated parameters 

differ from those measured by the technologist within 97.5 um (5 pixels), the output is 

considered a success (outcome 2). Otherwise, the offset error is greater than 97.5 um (5 pixels) in 

both direction, and the algorithm output is a failure (outcome 3).  

Based on the outcomes described above, in 5% of cases, the algorithm could not analyze the 

images (outcome 1). In the remaining cases where clinical parameters are computed, features 

were correctly identified in 97% of images (outcome 2). Thus, 3% of images presented 

inaccurate estimates (outcome 3) of the clinical parameters, with 351 um (18 pixels) offset error 

average. Fig. 16 shows an ultrasound image of the eye with all clinical parameters computed 

successfully (outcome 2). 

 

V. DISCUSSION 

This paper has developed an algorithm to automatically identify features in ultrasound 

images of the eye and compute the clinical parameters of interest to the technologist. Many 

algorithms have been proposed in order to enhance and detect features in ultrasound images. The 

algorithms chosen in this work were those found experimentally to give good results. In 

developing this work, several different approaches were tested in order to select the approach 

presented in section III. Based on the results obtained from testing the developed method on 
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sample images, we believe that the accuracy of the algorithm can be further improved by 

adjusting the saddle and minima locator technique described in section 3.6. 

Because of the large body of work on ultrasound image processing algorithms, we feel that it is 

valuable to provide briefly review and comment on the applicability of these algorithms to the 

problem considered in this paper. 

Recently, there has been active research on image denoising and speckle reduction in ultrasound 

and Synthetic Aperture Radar (SAR) images. In Xie et al [11] a spatially adaptive noise 

reduction algorithm is constructed for image denoising using a combination of wavelet Bayesian 

methods and a Markov random fields image regularization technique. In Ulfarsson et al [12] a 

speckle-reduction algorithm is proposed in the Curvelet domain where a threshold is applied on 

the coefficients for the denoising process.  In Saevarsson et al [13] a fusion of the undecimated 

discrete wavelet transforms (UDWT) and a time invariant discrete curvelet transform (TIDCT) is 

used for speckle-reduction in SAR images. These methods perform well for image denoising but 

to achieve proper texture segmentation in ultrasound images, additional edge enhancement 

techniques should be applied. 

Many other techniques exist for ultrasound image denoising. For example (Xie et al [11], 

Ulfarsson et al [12], Saevarsson et al [13]) are based on processing in wavelet domain where the 

selection of a wavelet mother basis depends on the application. These techniques focused 

uniquely on speckle reduction. In Zong et al [14], a speckle reduction and contrast enhancement 

in the wavelet domain was proposed. The noise reduction was obtained by soft thresholding the 

wavelet coefficients and feature enhancement was accomplished via nonlinear stretching 

followed by hard thresholding of wavelet coefficients within selected spatial-frequency levels. 
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The technique showed good results for visual image improvement, but feature identification and 

segmentation were not explored. Also, wavelet coefficients thresholding leads to the appearance 

of parasitic oscillations in the vicinity of edges.  In Bezvesilniy et al [15], a wavelet-based image 

processing, edge detection and noise reduction technique is proposed. This method overcomes 

the oscillation problem by using a first derivative of the cubic B-spline as the analyzing wavelet. 

This led to well-behaved edge representation in the wavelet domain where edges are sharp and 

well localized and do not have oscillations. This approach also allows edge classification and 

processing based on edge height. However, this approach may not be stable in the presence of 

ultrasound speckle noise. This is because texture analysis in ultrasound images is difficult, 

especially in an application such as this, due to the poor boundary delineation near the sclera 

tissue. 

Other existing methods that combine denoising, enhancement and feature detection of ultrasound 

images include the use of Gabor filter texture segmentation (Xie et al [17]) and diffusion filter 

and sticks (Pathak et al [3]). In Mohamed et al [16], the spatial parameters of the Gabor filter are 

tuned and applied to Trans-rectal ultrasound images of the prostate (TRUS) such that the filter 

output magnitude matches the desired texture.  The outline of a cancerous region is then 

segmented by providing the algorithm some texture information.  In order to capture all texture 

areas, large filter banks are required to analyze the image. In Xie et al [17], a method for kidney 

segmentation based on texture analysis by applying a bank of Gabor filters was developed to 

process the ultrasound image, based on proper modeling of shape priors for segmentation. In this 

technique, the initial segmenting curves were positioned manually requiring the input of trained 

users for each image.  
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Another approach in ultrasound defines line segments called sticks (Pathak et al [3]) in different 

angular orientations as templates that model false edges while reducing speckle.  The technique 

allows contrast enhancement only at the edges, while noise is decreased.  An anisotropic 

diffusion filter is used to further smooth the image and reduces noise to allow for Canny edge 

detection.  The method allows a technician to overlay the detected edges on the original image to 

assist manual delineation of the prostate.  The methods reviewed can be generally used to 

process the ultrasound images. However, fully automated techniques were not developed to 

detect and extract the areas of interest, which was our main objective in this paper. 

 

VI. CONCLUSION 

This paper proposes an algorithm to automatically identify clinical features in ultrasound 

images of the eye. The algorithm computes the AOD 500 and the open-angle parameters used to 

measure the presence and severity of glaucoma. Overall, the algorithm predictions are very 

similar to the trained technologist’s observation with a small (±0.1mm) pixel offset error in both 

the horizontal and vertical directions. In the processed images, features were correctly identified 

in 97% of the cases. 3% of images presented inaccurate approximation of the clinical parameters, 

with 351 um error average. The difficulties encountered in measuring clinical parameters are 

associated with the speckle noise, poor contrast, poor resolution, and weak edge delineation 

present in the processed ultrasound images.  These issues introduced inaccuracy in locating the 

scleral spur and variability in the measurement of the clinical parameters. The algorithm was 

designed with a goal of robustness through the use of two-stage (coarse and fine) level 

enhancement on the original image, and by validation of the proper segmentation of the sclera at 
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each step. Overall, the benefit of this work is the ability of algorithm to reduce the processing 

time and improve processing consistency for each patient’s ultrasound image, leading hopefully 

to an increase in efficiency and a reduction of cost.  
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