Description Logics

Ulrike Sattler Univ. of Manchester, UK

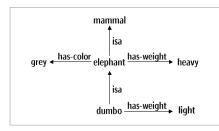
many many slides used here are borrowed from Carsten Lutz, TU Dresden

MANCHESTER

Early Formalisms

How to represent terminological knowledge?

Early days of AI: KR through obscure pictures (semantic networks)



Problems: missing semantics (reasoning!), complex pictures

Remedy: Use a logical formalism for KR rather than pictures

MANCHESTER

Knowledge Representation

General goal of knowledge representation:

"develop formalisms for providing high-level descriptions of the world that can be effectively used to build intelligent applications."

- •"formalisms": syntax + well-defined semantics + reasoning services
- "high-level descriptions": which aspects should be represented, which left out?
- "intelligent applications": are able to infer new knowledge from given knowledge
- "effectively used": reasoning techniques should allow "usable" implementation

MANCHESTER

2

Terminological Knowledge

DLs focus: representation of terminological knowledge

or conceptual knowledge

Goal: • formalize the basic terminology of modeled domain

- store it in an ontology / terminology / TBox for reasoning
- enable reasoning on this knowledge

Domain of Summerschools

- concepts: classes of individuals
 - e.g. Course and Lecturer
- (binary) relations: links between individuals
- e.g. gives-course and attends-course

MANCHESTER

Applications

- Medical informatics
 - e.g. SNOMED, the Systematized Nomenclature of Medicine \sim 450.000 concepts about anatomy, diseases, etc.
- Bioinformatics
 - e.g. the GeneOntology (GO): controlled vocabulary of genes and gene products

 \sim 17.000 concepts

Semantic Web

goal: provide a semantic description of the content of web pages realization: point to concepts defined in an ontology

The Description Logic ALC: Syntax

Atomic types: concept names A, B, \ldots (unary predicates) role names R, S, \ldots

(binary predicates)

Constructors: - $\neg C$ (negation)

> - $C \sqcap D$ (conjunction)

- $C \sqcup D$ (disjunction) (existential restriction) - ∃R.C

- $\forall R.C$ (value restriction)

Abbreviations: - $C \rightarrow D = \neg C \sqcup D$ (implication)

- $C \leftrightarrow D = C \rightarrow D$ (bi-implication) $\sqcap D \to C$

 $-\top = (A \sqcup \neg A)$ (top concept)

 $- \perp = A \sqcap \neg A$ (bottom concept)

MANCHESTER

Defining Concepts with DLs

The core part of any DL is the concept language

Person ☐ ∃enrolled-at.University ☐ ∀attends.UnderGradCourse

- concept names assign a name to groups of objects
- role names assign a name to relations between objects
- constructors allow to relate concept names and role names

Different sets of constructors give rise to different concept languages

Examples

- Person □ Female
- Person □ ∃attends.Course
- Person $\sqcap \forall$ attends.(Course $\rightarrow \neg$ Easy)
- Person □ ∃teaches.(Course □ ∀attended-by.(Nice □ Intelligent))

MANCHESTER

Interpretations

Semantics based on interpretations $(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $-\Delta^{\mathcal{I}}$ is a non-empty set (the domain)
- $\cdot^{\mathcal{I}}$ is the interpretation function mapping each concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ and each role name R to a binary relation $R^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$.

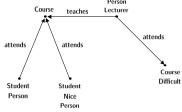
Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure with only unary and binary predicates

MANCHESTEL

Semantics of Complex Concepts

$$\begin{split} (\neg C)^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \quad (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \quad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\exists R.C)^{\mathcal{I}} &= \{d \mid \text{there is an } e \in \Delta^{\mathcal{I}} \text{ with } (d,e) \in R^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}} \} \\ (\forall R.C)^{\mathcal{I}} &= \{d \mid \text{for all } e \in \Delta^{\mathcal{I}}, (d,e) \in R^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}} \} \end{split}$$

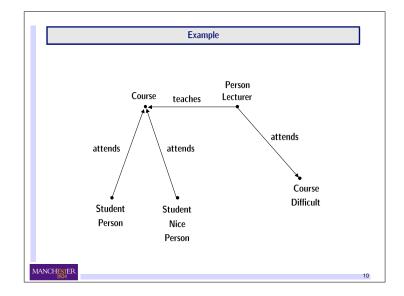


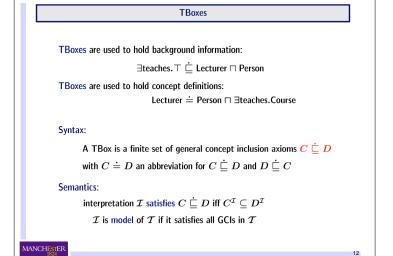
Person

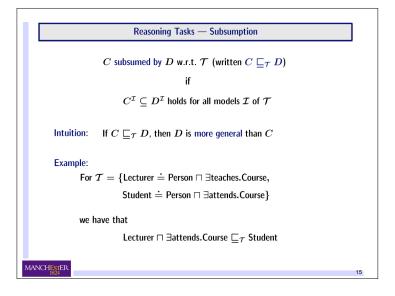
∃attends.Course

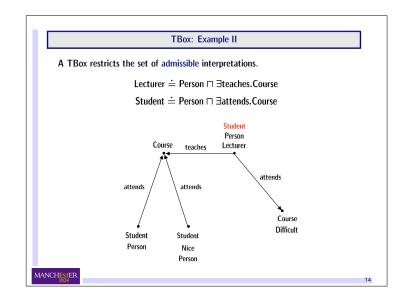
Person $\sqcap \forall$ attends.(\neg Course \sqcup Difficult)

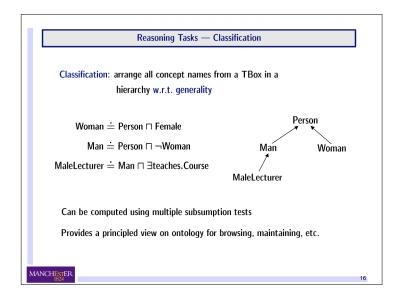
MANCHESTER

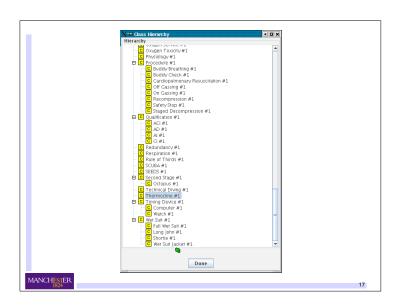


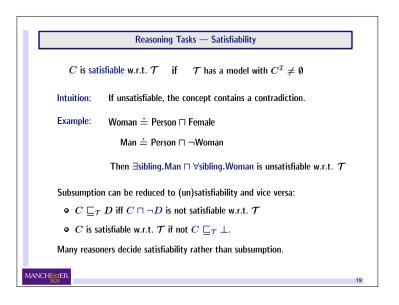


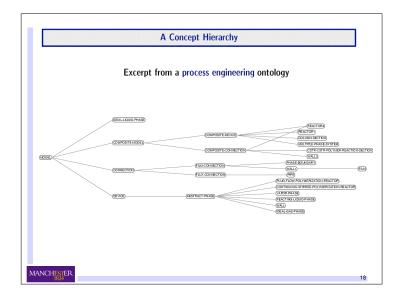


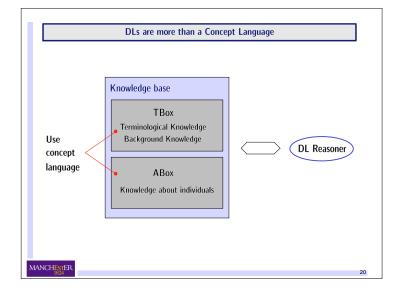












Definitorial TBoxes

A concept name A is defined in $\mathcal T$ if $\mathcal T$ contains exactly 1 GCI of the form $A \doteq C$, all other concept names are primitive in $\mathcal T$

A primitive interpretation for TBox $\mathcal T$ interpretes the primitive concept names in $\mathcal T$ and all role names

A TBox is called definitorial if every primitive interpretation for $\mathcal T$ can be uniquely extended to a model of $\mathcal T$.

i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

 $\mathsf{Person} \doteq \exists \mathsf{parent.Person}$

rson? pare

Non-definitorial TBoxes describe constraints, e.g. from background knowledge

MANCHESTER

21

Acyclic TBoxes II

For reasoning, acyclic TBox can be eliminated:

- ullet to decide $C \sqsubseteq_{\mathcal{T}} D$ with \mathcal{T} acyclic,
- expand ${\mathcal T}$
- replace defined concept names in C, D with their definition
- decide $C \sqsubseteq D$
- analogously for satisfiability

May yield an exponential blow-up:

$$A_0 \doteq \forall r.A_1 \sqcap \forall s.A_1$$

$$A_1 \doteq \forall r. A_2 \sqcap \forall s. A_2$$

.

$$A_{n-1} \doteq \forall r. A_n \sqcap \forall s. A_n$$

MANCHESTER

23

Acyclic TBoxes

TBox ${\mathcal T}$ is acyclic if there are no definitorial cycles:

Expansion of acyclic TBox \mathcal{T} :

exhaustively replace defined concept names with their definition (terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, then set
$$A^{\mathcal{I}} := C^{\mathcal{I}}$$
 for all $A \doteq C \in \mathcal{T}$

MANCHESTER

22

General Concept Inclusions

Recall: our TBoxes are general: finite set of general concept inclusions (GCIs)

$$C \stackrel{.}{\sqsubset} D$$

with both C and D allowed to be complex

e.g. Course

∀attended-by.Sleeping

Boring

e.g. Student $\sqcap \exists$ has-favourite.FootballTeam \doteq Student $\sqcap \exists$ has-favourite.Beer

Recall: $C \doteq D$ is an abbreviation for $C \sqsubseteq D$, $D \sqsubseteq C$

Note: $C \ \dot{\sqsubseteq} \ D$ is equivalent to $\top \ \dot{=} \ C \to D$ is equivalent to $\top \ \dot{\sqsubseteq} \ \neg C \sqcup D$

MANCHESTER

24

ABoxes

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

a:C (a individual name, C concept) (a,b):R (a,b individual names, R role name)

E.g. {peter : Student, (uli, dl-course) : teaches}

Interpretations \mathcal{I} map each individual name a to an element of $\Delta^{\mathcal{I}}$.

 $\mathcal I$ satisfies an assertion

$$egin{aligned} a:C & & ext{if} & & a^{\mathcal{I}} \in C^{\mathcal{I}} \ & (a,b):R & & ext{if} & & (a^{\mathcal{I}},b^{\mathcal{I}}) \in R^{\mathcal{I}} \end{aligned}$$

 ${\mathcal I}$ is a model for an ABox ${\mathcal A}$ if ${\mathcal I}$ satisfies all assertions in ${\mathcal A}$.

MANCHESTER

25

Reasoning with ABoxes

ABox consistency

Given an ABox \mathcal{A} and a TBox \mathcal{T} , do they have a common model?

Instance checking

Given an ABox \mathcal{A} , a TBox \mathcal{T} , an individual name a, and a concept C does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold in all models of \mathcal{A} and \mathcal{T} ?

(written
$$\mathcal{A}, \mathcal{T} \models a : C$$
)

The two tasks are interreducible:

- \bullet \mathcal{A} consistent w.r.t. \mathcal{T} iff $\mathcal{A}, \mathcal{T} \not\models a: \bot$
- $\mathcal{A}, \mathcal{T} \models a : C \text{ iff } \mathcal{A} \cup \{a : \neg C\} \text{ is not consistent }$

MANCHESTER

27

ABoxes II

Note:

- interpretations describe the state if the world in a complete way
- ABoxes describe the state if the world in an incomplete way

(uli, dl-course) : teaches and dl-course : ContainsLogic does not imply

uli : ∀teaches.ContainsLogic

An ABox has many models!

Aspect of the Open world assumption of DLs

An ABox constrains the set of admissible models similar to a TBox: the more assertions/GCIs, the fewer models

MANCHESTER

26

Example for ABox Reasoning

ABox dumbo : Mammal t14 : Trunk

g23 : Darkgrey (dumbo, t14) : bodypart

(dumbo, g23): color

dumbo : ∀color.Lightgrey

TBox Elephant \doteq Mammal \sqcap \exists bodypart.Trunk \sqcap \forall color.Grey

 $Grey \doteq Lightgrey \sqcup Darkgrey$

 $\bot \doteq \mathsf{Lightgrey} \sqcap \mathsf{Darkgrey}$

- 1. ABox is inconsistent w.r.t. TBox.
- 2. dumbo is an instance of Elephant: TBox, ABox |= dumbo : Elephant

MANCHESTER

28

ABox Reasoning vs. Concept Reasoning

Concept reasoning can be reduced to ABox reasoning:

- ullet C satisfiable w.r.t. ${\mathcal T}$ iff a:C is consistent
- \bullet $C \sqsubseteq_{\mathcal{T}} D \text{ iff } \{a:C\}, \mathcal{T} \models a:D$

In \mathcal{ALC} , ABox reasoning can also be reduced to concept reasoning:

To decide whether A is consistent:

1. Precompletion: explicate knowledge in $\ensuremath{\mathcal{A}}$ by applying rules such as:

$$\begin{array}{ccc} a:(C\sqcap D) &\Longrightarrow & a:C \text{ and } a:D\\ a:\forall r.C \text{ and } (a,b):r &\Longrightarrow & b:C \end{array}$$

2. For each of the resulting ABoxes $\mathcal{A}_1,\ldots,\mathcal{A}_k$, and each individual a, check whether the conjunction of $\{C\mid a:C\in\mathcal{A}_i\}$ is satisfiable.

MANCHESTER

Description Logics and First-order Logic

 $\begin{array}{cccc} \text{concept names } A & \iff & \text{unary predicates } P_A \\ \text{role names } R & \iff & \text{binary predicates } P_R \\ \text{concepts} & \iff & \text{formulas with one free variable} \end{array}$

$$\begin{array}{lll} \varphi^x(A) &=& P_A(x) \\ \varphi^x(\neg C) &=& \neg \varphi^x(C) & \varphi^y \text{ symmetric} \\ \varphi^x(C \sqcap D) &=& \varphi^x(C) \wedge \varphi^x(D) & \text{with } x \text{ and } y \text{ exchanged} \\ \varphi^x(C \sqcup D) &=& \varphi^x(C) \vee \varphi^x(D) & \\ \varphi^x(\exists R.C) &=& \exists y. P_R(x,y) \wedge \varphi^y(C) \\ \varphi^x(\forall R.C) &=& \forall y. P_R(x,y) \rightarrow \varphi^y(C) \end{array}$$

Note: not all DLs are purely first-order (transitive closure, etc.)

MANCHESTER

31

Good Morning!

Yesterday:

- · ALC, syntax, semantics
- TBox and ABox
- reasoning problems:
 - subsumption
 - classification
 - instance
 - consistency

Next:

- · DLs, FOL and modal logic
- DLs and OWL
- · reasoning algorithms:
 - tableau-based
 - automata-based
- · computational complexity

MANCHESTER

00

32

Description Logics and First-order Logic II

TBoxes:

Let \mathcal{T} a general TBox.

$$arphi(\mathcal{T}) = orall x. igwedge_{D\sqsubseteq E\in \mathcal{T}} arphi^x(D)
ightarrow arphi^x(E)$$

ABoxes:

individual names $a \iff \mathsf{constants}\ c_a$

$$egin{aligned} arphi(a:C) &=& arphi^x(C)[c_a] \ arphi((a,b):R) &=& P_R(c_a,c_b) \ arphi(\mathcal{A}) &=& igwedge_{eta \in \mathcal{A}} arphi(eta) \end{aligned}$$

MANCHESTER

(

Description Logics and Modal Logic

 $\begin{array}{cccc} \text{concept names } A & \iff & \text{propositional variables } p_A \\ \text{role names } R & \iff & \text{modal parameters } R \\ \text{concepts} & \iff & \text{multi modal formulas} \\ \end{array}$

$$\begin{array}{rcl} \varphi(A) & = & PA \\ \varphi(\neg C) & = & \neg \varphi(C) \\ \varphi(C \sqcap D) & = & \varphi(C) \land \varphi(D) \\ \varphi(C \sqcup D) & = & \varphi(C) \lor \varphi(D) \\ \varphi(\exists R.C) & = & \langle R \rangle \varphi(C) \\ \varphi(\forall R.C) & = & [R]\varphi(C) \end{array}$$

MANCHESTE

- So far, we have seen syntax and semantics of **ALC** Tboxes (also acyclic and general ones)
 - Aboxes
 - · reasoning services and their relationship
 - subsumption and satisfiability of possibly w.r.t. a Tbox
 - Abox consistency and instance checking
 - relationship between ALC and FOL and Modal Logic

Today, we will see

- some more expressive Description Logics
- relationship between DLs and OWL
- tableau algorithms for ALC and its extension
 - with general Tboxes
 - with inverse roles
- · and discuss optimisation techniques for these algorithms

Wednesday: automata-based algorithms Thursday: computational complexity Friday: sub-Boolean DLs and rules

MANCHESTER

35

Description Logics and Modal Logic

TBoxes:

Let ${\mathcal T}$ a general TBox und U the universal modal parameter.

$$arphi(\mathcal{T}) = [U] igwedge_{D \sqsubseteq E \in \mathcal{T}} arphi(D)
ightarrow arphi(E)$$

ABoxes:

individual names $a \iff$ nominals a

$$\varphi(a:C) = @_a \varphi(C)$$

$$\varphi((a,b):R) \ = \ @_a\langle R\rangle b$$

$$\varphi(\mathcal{A}) = \bigwedge_{\beta \in \mathcal{A}} \varphi(\beta)$$

MANCHESTER

Extensions of \mathcal{ALC}

Lecturer \doteq Person \sqcap \exists teaches.Course

Course $\doteq \exists$ has-title. Title $\sqcap \exists$ taught-by. Lecturer

We should want that:

 $(x,y) \in \mathsf{teaches}^\mathcal{I} \mathsf{iff} (y,x) \in \mathsf{taught}\mathsf{-by}^\mathcal{I}$

e.g., so that Lecturer \sqcap Blond \sqcap \forall teaches. \forall taught-by. \neg Blond is unsatisfiable!

Extension of ALC to ALCI:

ullet allow inverse roles r^- in place of role names

ullet semantics ensures that $(r^-)^{\mathcal{I}}$ is converse of $r^{\mathcal{I}}$

Lecturer

Person

∃teaches.Course

MANCHESTER now Lecturer □ Blond □ ∀teaches. ∀teaches □. ¬Blond is unsatisfiable!

(

Extensions of ALC II

In ALC, how to say that

- a small course has at most 10 students
- a shared course is taught by at least two lecturers
- every person has exactly two hands

Extension of \mathcal{ALC} to \mathcal{ALCQ}/of \mathcal{ALCI} to \mathcal{ALCQI} :

- new concept constructors
 - $(\leq n \ R \ C)$ and $(\geq n \ R \ C)$ (qualified number restrictions)
- e.g. SmallCourse \doteq Course \sqcap (\leqslant 10 attended-by Student)
- \bullet sometimes only available in "unqualified", indicated by $\mathcal{N}:$

 $(\leq n \ R \ \top)$ and $(\geq n \ R \ \top)$ (number restrictions)

MANCHESTER

37

Description Logics and Computational Complexity

Numerous complexity results have been established for DLs. In general:

- we are interested in the decidability/worst-case complexity of determining the
- subsumption between two concepts (w.r.t. a general/restricted TBox)
- satisfiability of a concept (w.r.t. a general/restricted TBox)
- consistency of an ABox w.r.t. a TBox
- $-\,\mbox{retrieving}$ instances of a concept from an ABox and TBox
- $-\operatorname{etc.}$
- for DLs, these problems are decidable and anywhere from LogSpace, P, PSpace, ExpTime, and NExpTime-complete
- but people are strongly interested in implementations of decision procedures for these reasoning problems: so "practicable" is important

MANCHESTER

39

Extensions of ALC III

In \mathcal{ALC} , how to model the interaction between

- the relation between has-daughter and has-child
- the part-whole relation, i.e., the one between parts and wholes
- the relation between has-child and has-descendant

Extension of \mathcal{ALC} with transitive roles is called $\mathcal{S},$

transitive roles and role hierarchies is called \mathcal{SH} :

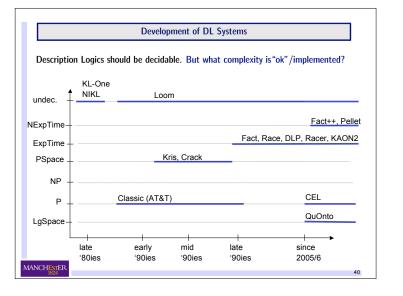
- new inclusions $R \sqsubseteq S$ in TBox (or RBox)
- \bullet new statements Tr(R) in TBox (or RBox)

In \mathcal{ALC} , how to model persons who have seen Mona Lisa? In \mathcal{ALC} , how to model

But: Increasing expressivity may increase computational complexity

⇒ !! tradeoff between expressivity and computational complexity !!

IANCHESTER



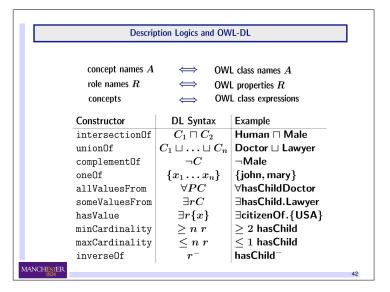
DLs and OWL

- originally, DLs were designed to represent terminological knowledge (TBox) and partial descriptions of the world (ABox)
- they turned out to be useful as ontology languages, and thus they form the logical basis of
- Oil, DAML+Oil
- OWL-light is based in \mathcal{SHIN}
- OWL-DL is based on \mathcal{SHOIN} , and
- OWL 1.1 is based on \mathcal{SROIQ}
- hence ontology designers/users can make use of DL reasoners to check ontologies for consistency/answer queries, etc.
- and ontology editors such as Protégé are now connected to DL reasoners

MANCHESTER

41

Description Logics and OWL-DL				
	Axiom	DL Syntax	Example	
	subClassOf	$C_1 \stackrel{.}{\sqsubseteq} C_2$	Human ⊑ Animal □ Biped	
	equivalentClass	$C_1 \dot{=} C_2$	Man≐Human □ Male	
	subPropertyOf	$P_1 \mathrel{\dot\sqsubseteq} P_2$	$hasDaughter \sqsubseteq hasChild$	
	equivalentProperty	$P_1\dot{=}P_2$	cost≐price	
	disjointWith	$C_1 \ \dot{\sqsubseteq} \ \neg C_2$	Male ⊑ ¬Female	
	sameAs	$\{x_1\}\dot{=}\{x_2\}$	${Pres._Bush} \doteq {G.W.Bush}$	
	differentFrom	$\{x_1\} \stackrel{.}{\sqsubseteq} \neg \{x_2\}$	$\{john\} \sqsubseteq \neg \{peter\}$	
	TransitiveProperty	$\mathtt{Tr}(oldsymbol{P})$	Tr(hasAncestor)	
	FunctionalProperty	$\top \stackrel{.}{\sqsubseteq} \le 1 P$	$\top \sqsubseteq \leq 1$ hasMother	
	InverseFunctionalProperty	$\top \stackrel{.}{\sqsubseteq} \le 1 \; P^-$	$\top \sqsubseteq \leq 1$ isMotherOf $^-$	
	SymmetricProperty	$P\dot{=}P^-$	isSiblingOf≐isSiblingOf ⁻	
		1		
MA	MANCHESTER 824 43			



Overview of the Course Tableau algorithms for Description Logics Automata-based decision procedures for Description Logics Computational complexity of selected Description Logics Sub-Boolean Description Logics and Non-Standard Reasoning