Hierarchical Agent Control: A Framework For Defining
Agent Behavior

Marc S. Atkin
University of Massachusetts
140 Governor’s Lane
Amherst, MA 01003

atkin@cs.umass.edu

ABSTRACT

The Hierarchical Agent Control Architecture (HAC) is a
general toolkit for specifying an agent’s behavior. HAC
supports action abstraction, resource management, sensor
integration, and is well suited to controlling large numbers
of agents in dynamic environments. It relies on three hier-
archies: action, sensor, and context. The action hierarchy
controls the agent’s behavior. It is organized around tasks
to be accomplished, not the agents themselves. This facil-
itates the integration of multi-agent actions and planning
into the architecture. The sensor hierarchy provides a prin-
cipled means for structuring the complexity of reading and
transforming sensor information. Each level of the hierarchy
integrates the data coming in from the environment into con-
ceptual chunks appropriate for use by actions at this level.
Actions and sensors are written using the same formalism.
The context hierarchy is a hierarchy of goals. In addition
to their primary goals, most actions are operating within a
set of implicit assumptions. These assumptions are made
explicit through the context hierarchy. We have developed
a planner, GRASP, implemented within HAC, which is ca-
pable of resolving multiple goals in real time.

HAC was intended to have wide applicability. It has been
used to control agents in commercial computer games and
physical robots. Our primary application domain is a sim-
ulator of land-based military engagements called “Capture
the Flag.” HAC’s simulation substrate models physics at an
abstract level. HAC supports any domain in which behav-
iors can be reduced to a small set of primitive effectors such
as MOVE and APPLY-FORCE. At this time defining agent
behavior requires Lisp programming skills; we are moving
towards more graphical programming languages.

1. INTRODUCTION

Regardless of the domain, agent designers must face the
same kinds of problems: processing sensor information, re-
acting to a changing environment in a timely manner, inte-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

AGENTS 01, May 28-June 1, 2001, Montréal, Quebec, Canada.

Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

Gary W. King
University of Massachusetts
140 Governor’s Lane
Amherst, MA 01003

gwking@cs.umass.edu

425

David L. Westbrook
University of Massachusetts
140 Governor’s Lane
Amherst, MA 01003

westy @ cs.umass.edu

o

COA-3-4-5CENARI

Figure 1: The Capture the Flag domain (CtF).
There are two teams; each has a number of mov-
able units and flags to protect. They operate on a
map which has different types of terrain. Terrain
influences movement speed and forms barriers; ter-
rain also affects unit visibility. A team wins when it
captures all its opponent’s flags.

grating reactive and cognitive processes to achieve abstract
goals, interleaving planning and execution, distributed con-
trol, allowing code reuse within and across domains, and
using computational resources efficiently. We have been de-
veloping an agent architecture that lets us address these
problems, called Hierarchical Agent Control (HAC).

HAC can be viewed as a set of language constructs and
support mechanisms for describing agent behavior. HAC
takes care of the mechanics of executing the code that con-
trols an agent, passing messages between actions, coordinat-

ing multiple agents, arbitrating resource conflicts between
agents, and updating sensor values. Although our primary
application has been a military simulation system called
“Capture the Flag” [2] (see Figure 1 and Appendix A.1),
HAC has also been applied to such domains as commercial
games, multi-agent simulations, and actual physical robots.
Many of the domains HAC has been used with were modeled
using a simulation substrate we have created, the Abstract
Force Simulator (AFS).

In this paper, we will describe the major features of HAC
and AFS, using the Capture the Flag (CtF) domain for il-
lustration. Having done this, we also discuss the lessons we
learned developing HAC, and future plans for the architec-
ture. The appendix to the paper lists the online movies,
which highlight key features of the HAC application.

2. AFS. THEABSTRACT FORCE SIMULA-
TOR

The purpose of AFS is to allow us to simulate a variety of
domains that can be characterized by agents moving and ap-
plying force. AFS represents agents abstractly, as “blobs,”
which have a small set of physical features, including mass,
velocity, friction, radius, attack strength, and so on. Blobs
can either be modeled as spheres with uniform mass density,
or we can use a particle-spring model to represent arbitrary
shapes which can deform and redistribute their mass (see
also Appendix A.2).

A blob is an abstract unit; it could be an army, a sol-
dier, or a political entity. Every blob has a small set of
primitive actions it can perform, PRIMITIVE-MOVE, APPLY-
FORCE, and CHANGE-SHAPE. All other behaviors are built
from these primitives. We can transform AFS from a bil-
liard ball simulator into a division level military engagement
simulator simply by changing the underlying physics. This
would involve changing how mass is affected by collisions,
what the friction is for a blob moving over terrain, and so
on.

AFS is a simulator of physical processes. It is tick-based,
but the ticks are small enough to accurately model the phys-
ical interactions between blobs. Although blobs themselves
move continuously in 2D space, the properties of this space,
such as terrain attributes, are represented as a discrete grid
of rectangular cells for reasons of efficiency. Such a grid of
cells is also used internally to bin spatially proximal blobs,
making the time complexity of collision detection and blob
sensor modeling no greater than linear in the number of
blobs in the simulator.

3. HAC: HIERARCHICAL AGENT CON-
TROL

An important aspect of any agent architecture is how it
manages the flow of information between agents and parts
of agents. In HAC, we distinguish between three kinds of
information: control information, sensor information, and
context. Each type of information corresponds to a separate
hierarchy in HAC. We will now discuss each in turn.

3.1 TheControl Hierarchy

HAC organizes the agent’s actions in a hierarchy (see Fig-
ure 2). The very lowest levels are the agent’s effectors. The
set of effectors will depend on the agent and the domain, but
typically include being able to move the agent, turn it, or use

426

Domain-

specific A Mobile Offense
actions ¢
Harass
8 +—
g g
Physcd £ [§ Follow
schemes g | |3 Attack
ol g)
o| |8 Move-to-Point
Primitive
Actions A Move Move Apply-Force

Figure 2: Actions form a hierarchy; control informa-
tion is passed down, messages are passed up. The
lowest level are agent effectors; the middle layer con-
sists of more complex, yet domain-general actions
called physical schemas [3]. Above this level we have
domain-specific actions.

a special ability such as firing a weapon. More complex ac-
tions are built from these primitive ones. An ATTACK action,
for example, may move to a target’s location and fire at it.
As one goes up the hierarchy, actions become increasingly
abstract. They solve more difficult problems, such as path
planning, and can react to a wide range of eventualities.

HAC executes actions by scheduling them on a queue.
The queue is sorted by the time at which the action will
execute. Actions get taken off the queue and executed until
there are no more actions that are scheduled to run at this
time step. Actions can reschedule themselves, but in most
cases, they will be rescheduled when woken up by messages
from their children. An action is executed by calling its
realize method. The realize method does not generally
complete the action on its first invocation; it just does what
needs to be done on this tick. In most cases, an action’s
realize method will be called many times before the action
terminates.

HAC is a supervenient architecture [18]. It abides by the
principle that higher levels should provide goals and context
for the lower levels, and lower levels provide sensory reports
and messages to the higher levels (“goals down, knowledge
up”). A higher level cannot overrule the sensory informa-
tion provided by a lower level, nor can a lower level inter-
fere with the control of a higher level. Supervenience struc-
tures the abstraction process; it allows us to build mod-
ular, reusable actions. HAC simplifies this process further
by enforcing that every action’s implementation (its realize
method) take the following form:

1. React to messages coming in from children.
2. Update state.

3. Schedule new child actions if necessary.

4. Send messages up to parent.

Figure 2 shows a small part of an action hierarchy. The
FOLLOW action, for example, relies on a MOVE-TO-POINT ac-
tion to reach a specified location. MOVE-TO-POINT will send
status reports to FOLLOW if necessary; at the very least a
completion message (failure or success). The only responsi-
bility of the FOLLOW action is to issue a new target location

(defclass* swarm (level-n-action)

(area ;swarm area
(agents nil) ;agents involved in swarm
;; storage

(first-call t)))

(defmethod handle-message ((game-state game-state) (action swarm) (message completion))
(redirect game-state action (agent (from message))))

(defmethod handle-message ((game-state game-state) (action swarm) (message afs-movement-message))

(interrupt-action game-state (from message))

(redirect game-state action (agent (from message))))

(defmethod redirect ((game-state game-state) (action swarm) agent)

(start-new-child action game-state ’move-to-point
:agent agent

:destination-geom (make-destination-geom (random-location-in-geom (area action)))
:messages-to-generate ’(completion contact no-progress-in-movement)

:speed nil
:terminal-velocity nil))

(defmethod check-and-generate-message ((game-state game-state) (action swarm) (type (eql ’completion)))

(values nil)) ;never completes

(defmethod realize ((game-state game-state) (action swarm))

(when (first-call action)
(setf (first-call action) nil)
(loop for agent in (agents action) do
(redirect game-state action agent))))

Figure 3: Implementation of a multi-agent “swarm” behavior in HAC.

if the agent being followed moves. HAC is an architecture;
other than enforcing a general form, it does not place any
constraints on how actions are implemented. Every action
can choose what messages it will respond to. Although ac-
tions lower in the hierarchy will tend to be more reactive,
whereas those higher up tend to be more deliberative, the
transition between them is smooth and completely up to
the designer. Unlike other architectures [13, 5], we do not
prescribe a preset number of behavioral levels. Parents can
run in parallel with their children or only when the child
completes.

3.2 An Example Action Definition

This section will elucidate the action-writing process using
a concrete example. HAC provides a number of methods to
make the process of writing actions easier. Across actions we
must perform the same sorts of tasks: generating messages
for the parent, executing the action, etc. In HAC, actions
are classes; each action defines a set of methods that address
these tasks.

Figure 3 shows the implementation of a multi-agent ac-
tion, SWARM. It is a simple action that causes a number
of agents to move around randomly within a circular re-
gion. We use the simpler action MOVE-TO-POINT to imple-
ment this; it is invoked with the construct start-new-child.
When the agents bump or get stuck, they change direction.
First, we define the SWARM action to be a level-n-action.
This means it is non-primitive and must handle messages
from below as well as pass messages up. We define how
we will react to messages from children using the handle-
message methods. Message handlers specialize on the type
of message that a child might send. In the example, we redi-
rect an agent to a new location when the MOVE-TO-POINT ac-
tion controlling it completes. If the MOVE-TO-POINT reports

427

any kind of error (all errors relating to movement are sub-
classes of afs-movement-message), such as contact with
another agent, we simply interrupt it and redirect the agent
somewhere else.

These handle-message methods are invoked whenever a
message of the specified type is sent to SWARM. When this
happens, the realize method is also called. In our exam-
ple, the realize method is only used for initialization: the
first time it is called, it sends all the agents off to random
locations.

The set of check-and-generate methods define the set of
messages that this action can send up to its parents. When
the realize message is called, the check-and-generate
methods are invoked. The swarm example never completes,
and it does not report on its status, so it generates no mes-
sages.

3.3 The Sensor Hierarchy

The sensor hierarchy provides a principled means of struc-
turing the complexity of reading and transforming sensor
information in AFS. Its function is analogous to how the
HAC action hierarchy ameliorates the complexity of con-
trolling agents. The sensor hierarchy is grounded by the low
level primitives available from the physics simulation: the
location of terrain features, the current speed and location
of agents on the map and so forth.

Each level in the hierarchy integrates and extends the level
below it by compiling the available information and provid-
ing additional structure. We call these higher levels abstract
sensors, because they do not sense anything directly from
the world. For example, enemy location information can be
combined into a sensor that specifies overall enemy presence;
terrain information can be combined into a sensor that spec-
ifies passes and movement corridors. Furthermore, these two

A vulnerable
Abstract position
Sensors
c / \
=
5% \
B8O | enemy (other
D& | presence congtriction ~ factors)
EE
=d
85 \ /
55
Primitive . .
Sensors positions velocities

Figure 4: Raw sensor data is transformed into more
complex concepts via the abstract sensor hierarchy.

sensors can be combined to show enemy vulnerability: ar-
eas where enemy units are concentrated and cannot move
quickly (see Figure 4).

The sensor hierarchy shares the control hierarchy’s syntax
and structure. Each sensor is analogous to a HAC action.
It sends and receives messages and performs sensor compu-
tation during its realize method. One advantage of this
is that the same principles learned in building actions carry
over directly when building sensors. This linkage also makes
it easy for actions to use sensors as part of their control
mechanism. An action can react to a sensor using handle-
message methods, the same way it reacts to child actions.
Each sensor is associated with the set of actions that request
it and completes when this set becomes empty.

Like actions, sensors also abide by the principle of super-
venience. Higher level sensors integrate and interpret lower
level ones but they do not change the lower level information.
Lower level sensors provide information to the higher level
ones but they do not tell them what to say. One advantage
of this is that each level of the hierarchy can be viewed in-
dependently without worrying about the levels coming into
it or the levels that are using it.

Abstract sensors also play important and complimentary
roles in extensions to AFS. For example, in CtF, we have
incorporated a model of defeat that simulates psychological
factors such as morale and courage [14]. These factors are
significantly affected by perception. If a battalion believes it
is isolated, its morale will decrease and probability of surren-
der will increase. Instead of creating a perceptual system, we
use abstract sensors to acquire perceived information of our
enemy. This melds well with the military intelligence view
of abstract sensors. Furthermore, since abstract sensors do
not necessarily provide perfect information, the behavior of
our defeat model is more believable.

3.4 The Context Hierarchy and Planner

Even if it is not explicitly expressed, every action is trying
to achieve a goal. The MOVE-TO-POINT action is trying to
satisfy the goal of getting an agent to a specified position on
the map, the ATTACK action is trying to satisfy the goal of
damaging another unit. Having actions focus only on their
primary goal can sometimes lead to unintelligent behavior.
For example, an action that blocks the approach route to a
flag is trying to achieve the goal “let no-one pass.” If the
enemy is able to sneak around some other way, this BLOCK

428

Higheve Stay alive
goals
. / N l t \M4 g
. even antan
% Avoid traps massloss supply
Checl_<for Check
Specific enemies terrain
goals v

Figure 5: A goal tree for the high-level goal “stay
alive.” Many such goals exist; each expands into a
tree of subgoals. The set of sub-goals appropriate to
an action define the context under which the action
operates.

action no longer makes sense. Another example is the MOVE-
TO-POINT action. If an agent is moving to a destination and
is attacked, it will continue to move, even it would be totally
destroyed by doing so.

The problem can be rectified by introducing a notion of
context to the action. Part of the context of the BLOCK
action is the absence of enemies in the area one is trying
to protect, part of the context of MOVE-TO-POINT is not
to be destroyed. Instead of adding numerous conditional
statements to every action that specify all the exceptions to
normal behavior, we handle context by having agents satisfy
not single, but sets of goals.

When actions are initiated, a set of goals can be speci-
fied for the agent (or group of agents) executing the action.
This goal set defines the context for the action. The set can
be viewed as the set of common sense or implicit assump-
tions an agent should always be considering when trying to
achieve the task at hand.

Like actions and sensors, goals are part of a hierarchy.
The high-level goal of “staying alive” can be decomposed
into more specific goals, depending on the situation (see Fig-
ure 5). A hierarchy exists for every such high-level goal. In
the general case, agents will be attempting to satisfy goals
from several goal hierarchies simultaneously. This interlock-
ing network of goals and actions is what we refer to as the
context hierarchy.

A mechanism is required to resolve multiple—and possibly
conflicting—goals. We have developed a planner, GRASP
(General Reasoning using AbStract Physics), that does just
that (see [3] for details). GRASP is a least-commitment par-
tial hierarchical planner [12]. Such planners are particularly
well suited to continuous and unpredictable domains such as
CtF, where the plan space branching factor can be very high.
Partial hierarchical planners rely on a library of plan skele-
tons. Plan skeletons are plans that are not fully elaborated:
they may contain unbound variables or subgoals which are
not filled in until run-time. Plan skeletons are implemented
as actions in HAC. GRASP extends the traditional partial
hierarchical planning framework by allowing multiple goals
to be associated with a resource or set of resources. These
are not simply conjunctive goals; instead, goals are priori-
tized.

GRASP is invoked whenever multiple goals have to be
achieved by one resource, or when many actions (plans)

could be used to achieve one goal. Every goal has a priority
associated with it; higher priority goals will always be con-
sidered first. Plans are retrieved to achieve each goal in the
goal set, ordered by priority. Primarily using the heuristic of
minimizing resource use, a small set of plan combinations is
generated. The plans are evaluated by simulating them and
the one resulting in the most favorable future world state is
chosen [1]. If problems arise during a plan’s execution (be-
cause a resource was destroyed and the plan using it cannot
succeed without it, for example), an error message is sent
to the plan initiator using the HAC messaging mechanism,
possibly causing resources to be re-assigned or a complete
replan to take place.

Not all goals will be applicable in a given situation (“stay-
ing alive” is only relevant when a threat to the agent exists).
These latent goals are only added to an agent’s goal set when
their triggering condition is met, simplifying the planning
process. A replan is triggered whenever an agent’s goals
change. If a latent goal should be achieved at any cost, even
to the exclusion of other goals, the latent goal’s priority can
be set to a value higher than that of any other goal.

4. THE HAC APPLICATION

HACQC’s core simulator and planner were developed using
ANSI Common Lisp [20]; the graphical user interface uses
Lisp extensions specific to Macintosh Common Lisp (MCL).
The system runs under MacOS 8.x or 9.x and requires a G3
or better Macintosh with at least 64 Megabytes of RAM.
Map displays and visualizations require displays with thou-
sands or millions of colors at a resolution of at least 1024
x 768. HAC supports a text based network socket interface
that can be used both for network play and to control other
simulators that support the same interface.

AF'S is appropriate for any agent-based simulation of the
physical world that can be modeled abstractly using primi-
tives such as MOVE and APPLY-FORCE. HAC is appropriate
for any application where you want to define intelligent be-
havior for an agent in a hierarchical manner. In particular,
we have used the same framework to model a military ad-
versarial planner, a Pioneer 1 robot simulator and to control
and plan in commercial games such as Battlezone and Dark
Reign. HAC is very lean; we estimate that in our “Capture
the Flag” application, HAC itself (which does not include
the actions the designer has written, only the architecture
overhead) uses less than 1% of the CPU time and memory.

HACQC’s interface to a domain consists of a set of low-level
sensors and effectors for every agent. From these basic el-
ements, the action writer can build up arbitrarily complex
behavior. Currently writing actions requires programming
skills, but one of our goals is to explore how simple we can
make this process.

5. LESSONSLEARNED

The development of HAC is an ongoing process. This
section summarizes the lessons we learned while developing
HAC and some of our plans for future work.

o Action Idioms. Over the course of HAC’s devel-
opment, we have written many actions. These ac-
tions have been improved and updated as the appli-
cation domain changed. Actions share many com-
mon elements, and in the interest of streamlining
the action design process, we have made more and

429

more of these action idioms part of the HAC sup-
port mechanisms. For example, every action checks
for messages from its children and generates mes-
sages to its parents. These functions are performed
by the methods handle-message and check-and-
generate-message, respectively, which are special-
ized on the type of event to be processed. Eventually,
we would like writing actions in HAC to be like putting
together a structure from building blocks. Ideally, this
would be done using a graphical user interface, making
the process more accessible to a non-programmer.

e Modular actions and sensors. Designing modular ac-
tions requires a certain degree of discipline on the part
of the action designer. HAC helps by adhering to the
principle of supervenience and by giving common ac-
tion idioms to the designer. Being able to offload ac-
tion contingencies to the planner through the multiple
goal resolution mechanism also facilitates modularity.

o Flexibility in action tmplementation. This principle
manifests itself in many places. One example is that
although HAC does enforce an action hierarchy, it
places very few other constraints on the design of ac-
tions. Most any control scheme could be implemented
in HAC. For example, we have used HAC to implement
a subsumption architecture in our AFS-based robot
simulator.

e The action, not the agent, is central. By having our
control hierarchy be one of tasks that have to be ac-
complished, it was very easy to incorporate multi-agent
actions and planning into our architecture.

o Resources are first class objects. The issue of resource
management quickly became paramount in the design
of intelligent actions. Some resources can only be
used by one agent at a time, some are consumed, and
some emerge only in the process of performing an ac-
tion. Initially overlooking the importance of resource
management was probably one of the main lessons we
learned. Since our hierarchy is organized around ac-
tions, resources are the agents performing the actions.
There are now many mechanisms in HAC to pass re-
sources to children, to select certain kinds of resources,
and to react to resources becoming unavailable. In
fact, even sensor data can be viewed as a resource:
abstract sensors manipulate data resources, whereas
plans and actions manipulate agents.

e Three separate hierarchies. We found that separating
sensing from control conceptually, while still using the
same uniform language to implement the sensors, sim-
plified our code enormously. Abstract sensors became
a very general tool for organizing data and for solv-
ing any problem that involved having to react to some
event in the world. Dealing with multiple goals at the
agent level was a natural extension of having to achieve
multiple simultaneous goals in the domain.

One of the more exciting directions we are moving in with
HAC is generalizing it so it can be used to control physi-
cal robots. We would like to model resources at the level
of agent effectors, allowing us to assign parts of agents to
different tasks. It is interesting that robotics and modern
real-time simulators place similar demands on an architec-
ture. The current HAC engine uses a centralized queue and

imposes no constraints on the CPU time used by an action.
Future engines will be operating in a real-time, decentral-
ized environment, and will need to deal with widely varying
time scales, from microseconds to days. The currently used,
centralized action queue will be replaced by a more general
mechanism that simply forwards events to the appropriate
action, whether it is a local action running on the same piece
of hardware or an action running remotely.

6. SUMMARY AND RELATED WORK

This paper has introduced HAC as a domain-general agent
design tool. These are the issues we believe HAC addresses
well:

e Agent control, action execution, planning, and sensing
are all part of the same framework.

e Resources are explicitly modeled.

e Actions are not monolithic entities that always run to
completion. Actions send messages about their sta-
tus, completion (either successful or unsuccessful), or
problems. They can be and often are interrupted or
rescheduled.

e HAC is a modular system; supervenience enables us
build re-usable action modules.

e Latent goals allow unforeseen events to be exploited.

e HAC is organized around tasks that have to be ac-
complished. Resources then become the agents that
implement actions.

Peer-to-peer communication can be implemented in HAC
using the messaging mechanism, but we have seldom found a
need to do this. HAC does not include built-in mechanisms
for agents to advertise their goals or for negotiating teams
(as opposed to other architectures, where this is one of the
primary foci, for example [21]). Our philosophy is that even
peer-to-peer communication requires some kind of context,
at the very least an agreement on the communication proto-
cols involved. In HAC, parent actions provide this context
explicitly. Parents are primarily responsible for coordinat-
ing their children. In the absence of a pre-established action
hierarchy, one could imagine a mechanism that creates par-
ents on the fly for agents that want to cooperate.

The GRASP planner integrates a number of new and old
ideas to deal with continuous and adversarial domains in
real-time. It builds upon the established notion of a control
hierarchy, used in many agent architectures and hierarchical
task network planners (e.g., [22, 6]). The idea of reasoning
using procedural knowledge has also been used in a num-
ber of other systems, including PRS [11], PRS-Lite [17], RE-
SUN [4], PHOENIX [5], the data analysis system AIDE [19], and
in languages for reactive control such as RAP [7], XFRM [16]
and PROPEL [15]. The APEX architecture also attempts to
manage multiple tasks in complex, uncertain environments,
placing particular emphasis on the problem of resolving re-
sources conflicts [10].

Although many systems reason about multiple concurrent
goals, GRASP is unique among partial hierarchical planners
in that it places much of the burden of resolving these goals
on the planner, using the availability of resources as its pri-
mary heuristic. Unlike PRS and RAP, for example, GRASP
does not require the designer of actions (tasks) to anticipate

430

every possible event interaction. Plans that react to unfore-
seen events can be kept conceptually separate from those
that are implementing longer term goals.

Like PRS, HAC allows for the specification of blocking and
non-blocking children (child actions that run in sequence
with their parents or in parallel), and like later versions of
RAP [8], success and failure are treated like any other mes-
sage, and do not implicitly determine the flow of control
between actions.

HAC and GRASP use the same representation for actions
at all levels of the hierarchy, and also for plans and sen-
sors. Contrast this with the majority of current agent con-
trol architectures, e.g. CYPRESS [23] and RAP [9], which
distinguish between procedural low-level “skills” or “behav-
iors” and higher level symbolic reasoning. Different systems
are often used to implement each level (CYPRESS combines
SIPE-2 and PRS, for example). HAC does not conceptually
differentiate between discrete actions and continuous pro-
cesses, nor does it limit the the language used to describe
them. Although we provide macros and functions to stream-
line the behavior writing process, all the power of the Lisp
programming language can be used in any action or plan.

Acknowledgments

This research is supported by DARPA/USAF/ISO under
contract numbers F30602-99-C-0061 and F30602-97-1-0289.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding
any copyright notation hereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements either expressed or implied, of the Defense Ad-
vanced Research Projects Agency/Air Force Materiel Com-
mand or the U.S. Government.

7. ADDITIONAL AUTHORS

Additional authors: Brent Heeringa (University of
Massachusetts, email: heeringa@cs.umass.edu), An-
drew Hannon (University of Massachusetts, email:
hannon@cs.umass.edu), and Paul R. Cohen (University of
Massachusetts, email: cohen@cs.umass.edu).

8. REFERENCES

[1] M. S. Atkin and P. R. Cohen. Using simulation and
critical points to define states in continuous search
spaces. In Proceedings of the 2000 Winter Simulation
Conference, pages 464-470, 2000.
M. S. Atkin, D. L. Westbrook, and P. R. Cohen.
Capture the Flag: Military simulation meets computer
games. In Proceedings of AAAI Spring Symposium
Series on AI and Computer Games, pages 1-5, 1999.
M. S. Atkin, D. L. Westbrook, and P. R. Cohen.
Domain-general simulation and planning with physical
schemas. In Proceedings of the 2000 Winter
Simulation Conference, pages 1730-1738, 2000.
N. Carver and V. Lesser. A planner for the control of
problem solving systems. IEEE Transactions on
Systems, Man, and Cybernetics, special issue on
Planning, Scheduling, and Control, 23(6):1519-1536,
November 1993.
P. R. Cohen, M. L. Greenberg, D. M. Hart, and A. E.
Howe. Trial by fire: Understanding the design

(8]

[16]

[17]

[20]

[21]

requirements for agents in complex environments. Al
Magazine, 10(3):32-48, Fall 1989. also Technical
Report, COINS Dept, University of Massachusetts.
K. Currie and A. Tate. O-Plan: The open planning
architecture. Artificial Intelligence, 52:49-86, 1991.
R. J. Firby. An investigation into reactive planning in
complex domains. In Proceedings of the Sizth National
Conference on Artificial Intelligence, pages 202-206,
Seattle, Washington, 1987.

R. J. Firby. Task networks for controlling continuous
processes. In Proceedings of the Second International
Conference on Artificial Intelligence Planning
Systems, pages 49-54, 1994.

R. J. Firby. Modularity issues in reactive planning. In
Proceedings of the Third International Conference on
Artificial Intelligence Planning Systems, pages 78-85,
1996.

M. Freed. Managing multiple tasks in complex,
dynamic environments. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages
921-927, Madison, WI, 1998.

M. P. Georgeff and F. F. Ingrand. Decision-making in
an embedded reasoning system. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, pages 972-978, Detroit, Michigan, 1989.
AAAT Press, Menlo Park, CA.

M. P. Georgeff and A. L. Lansky. Procedural
knowledge. Proceedings of the IEEFE Special Issue on
Knowledge Representation, 74(10):1383-1398, 1986.
M. P. Georgeff and A. L. Lansky. Reactive reasoning
and planning. In Proceedings of the Sizth National
Conference on Artificial Intelligence, pages 677—682.
MIT Press, 1987.

B. Heeringa and P. R. Cohen. An underlying model
for defeat mechanisms. In Proceedings of the 2000
Winter Simulation Conference, page 933, 2000.

R. Levinson. A general programming language for
unified planning and control. Artificial Intelligence,
76(1-2):319-375, 1995.

D. McDermott. Transformational planning of robot
behavior. Technical Report YALEU/CSD/RR #941,
Yale University, New Haven, CT, Dec. 1992.

K. L. Myers. A procedural knowledge approach to
task-level control. In Proceedings of the Third
International Conference on Artificial Intelligence
Planning Systems, pages 158-165, 1996.

L. Spector and J. Hendler. The use of supervenience
in dynamic-world planning. In K. Hammond, editor,
Proceedings of The Second International Conference
on Artificial Intelligence Planning Systems, pages
158-163, 1994.

R. St. Amant. A Mized-Initiative Planning Approach
to Exploratory Data Analysis. PhD thesis, University
of Massachusetts, Amherst, 1996. Also available as
technical report CMPSCI-96-33.

G. L. Steele Jr. Common Lisp: The Language. Digital
Press, second edition, 1990.

M. Tambe, J. Adabi, Y. Al-Onaizan, A. Erden, G. A.
Kaminka, S. C. Marsella, and I. Muslea. Building
agent teams using an explicit teamwork model and
learning. Artificial Intelligence, 110(2):215-239, 1999.

431

[22] D. E. Wilkins. Practical Planning: Eztending the
Classical AI Planning Paradigm. Morgan Kaufmann,
1988.

[23] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.
Wesley. Planning and reacting in uncertain and
dynamic environments. Journal of Ezperimental and
Theoretical AI 7(1):197-227, 1995.

APPENDIX
A. ONLINE DEMOS

We have prepared five short movies showcasing various
aspects of HAC and AFS, running in the Capture the Flag
domain. These movies are available on the World Wide Web
at http://eksl.cs.umass.edu/research/ctf/. A short descrip-
tion of each follows.

A.l1 The'CapturetheFlag’ Interface

War games in Capture the Flag are played in a virtual
world of “nearly three dimensions”: In addition to latitude
and longitude we have elevation, although all hills are the
same height. Opposing land and air units attempt to cap-
ture each other’s flags. They can exploit or be hindered by
terrain features such as hills, rivers, and terrain types such
as forest and swamp. The dynamics of engagements are in-
fluenced by models of psychological factors—fear, morale,
fatigue and the like.

Opposing units can be controlled by humans or by the
GRASP planner, and a common configuration is for humans
to play against GRASP. A natural interface allows human
players to direct their units on the battlefield, and the units
themselves are capable of intelligent reactive behavior to
carry out directives without constant supervision (e.g., one
can direct a unit to attack another and it will figure out
how best to get there, which formations to adopt, and so
on). Actions available to units include: move to a location,
occupy (defend) a location, retain a flag, block, follow and
assume, follow and support, forward passage of line, direct
attack, indirect attack (e.g., by artillery).

Capture the Flag provides land and air combat units of
the following types: Tank, Mechanized Infantry, Light In-
fantry, Cavalry, Artillery, and Aviation. The smallest units
in Capture the Flag are battalions, the largest are divisions.
Units have limited sensors, and limited knowledge of the
battlefield. Terrain influences visibility.

A.1.1 Game Control

The Capture the Flag game is controlled via a palette of
standard commands. These include commands to move the
simulation forward one tick at a time, to let the simulator
run continuously, and to stop the simulator. There are also
controls that allow the player to save the state of the game
at any time and then return to a previously saved state.
Furthermore, there are several menu commands for viewing
visualizations and controlling network play.

A.1.2 Agent Control

In interactive mode, Capture the Flag lets the player con-
trol her units via a simple interface resembling those used
in computer games. To tell an agent to do something, the
user first clicks on the agent and then clicks again some-
where else on the board. Capture the Flag automatically
chooses the most typical action depending on the agent be-

Defeat
Attrit
Delay

Fix

Fia netrate
Move

Figure 6: Context sensitive menus

ing given the command and what is under the mouse on
the second click. For example, if the player clicks on open
terrain, the unit will move to it; if the player clicks on an
enemy unit, the unit will attack it; and if the player clicks on
a friendly unit, the unit will provide it with support. If the
player holds down the control key while clicking, Capture
the Flag will display a menu with all of the available actions
(Figure 6). This convention allows for both simple and so-
phisticated play using the same general interface. Lastly,
multiple units can be given a command simultaneously by
selecting the first unit and then holding down the shift key
while selecting the others.

A.2 Particle-Spring Model for Blobs

This clip illustrates our particle-spring model for non-
uniform blobs. Four features of the model are demonstrated.
The first feature is the ability to change a blob’s shape by
reconnecting springs. The blobs start out in the delta forma-
tion, and form new shapes just by altering the configuration
of their springs. Notice that the original particles move to
the closest spot in the new formation and then the mass is
distributed evenly among all the particles in the blob.

The second feature is the effect terrain has on blobs. You
will notice a large blob in the circle formation pass through
a small opening, distorting and slowing down in the process.

The next demonstration is of force application between
blobs. Notice the two blobs are in delta formations, and
that they lose mass at the point of overlap. As the mass
is lost in the two particles, mass is redistributed from the
other particles in the respective blobs to compensate.

432

Finally, blobs are split and then merge back together.
Once again, mass distribution is the key to accomplishing
these two tasks. Merging is much like applying force, but
instead of losing mass when two particles overlap, one parti-
cle adds its mass to the other particle, and mass flows from
the remainder of the blob to the point of overlap.

A.3 Abstract Sensors

The Abstract Sensor hierarchy provides a principled
means of structuring the complexity of reading and trans-
forming sensor information in AFS. Abstract sensors can
realistically and effectively play the role of military intel-
ligence. Depicted is a scenario where knowledge of en-
emy location leads to a successful defense of a friendly flag.
Specifically, an artillery unit uses information provided by
a friendly scout unit, through abstract sensors, to destroy
three attacking infantry battalions.

A.4 Reactive and Deliberative Behavior

HAC blurs the distinction between deliberative planning
and reactive action. This movie shows the FOLLOW action
using planning to move towards and then engage a red en-
emy unit. While moving, FOLLOW must continually react to
changes in the red unit’s position and its own progress. HAC
allows the control to flow easily between movement, path
planning, and reaction to the external environment with-
out requiring the architecture to have a preset number of
cognitive levels.

A.5 Planning

In the Capture the Flag domain, winning involves coordi-
nating multiple subgoals: protecting your own flags, thwart-
ing enemy offensives, choosing the most vulnerable enemy
flag for a counter-attack, and so on. Each requires resources
(units) to be accomplished. Sometimes one resource can be
used to achieve several tasks. For instance, if two flags are
close together, one unit might protect both. Or advancing
towards an opponent’s flag might also force the opponent to
retreat, thus relieving some pressure on one’s own flags.

GRASP is a partial hierarchical planner, extended to han-
dle multiple simultaneous goals. GRASP generates an ap-
proximate plan quickly, filling in details as it is executed.
Partial hierarchical planners typically decide between plans
based on heuristic criteria. GRASP instead performs a qual-
itative simulation on each candidate plan (or plan set). Po-
tential plans are simulated forward, then a static evaluation
function is applied to select the best plan. The static evalu-
ation function incorporates such factors as relative strength
and the number of captured and threatened flags of both
teams to describe how desirable the resulting world state is.
During plan evaluation, the opponent’s actions (and plan-
ning process) is also simulated, resulting in minimax search
for the best plan.

