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ABSTRACT

Integrating contributions received from other agents is an
essential activity in multi-agent systems (MASs). Not only
must related contributions be integrated together, but the
confidence in each integrated contribution must be deter-
mined. In this paper we look specifically at the issue of
confidence determination and its effect on developing “prin-
cipled,” highly collaborating MASs. Confidence determi-
nation is often masked by ad hoc contribution-integration
techniques, viewed as being addressed by agent trust and
reputation models, or simply assumed away. We present
a domain-independent analysis model that can be used to
measure the sensitivity of a collaborative problem-solving
system to potentially incorrect confidence-integration as-
sumptions. In analyses performed using our model, we focus
on the typical assumption of independence among contribu-
tions and the effect that unaccounted-for dependencies have
on the expected error in the confidence that the answers
produced by the MAS are correct. We then demonstrate
how the analysis model can be used to determine confidence
bounds on integrated contributions and to identify where ef-
forts to improve contribution-dependency estimates lead to
the greatest improvement in solution-confidence accuracy.
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1. INTRODUCTION
Integrating contributions received from others is an es-

sential activity in multi-agent systems (MASs) [2, 6], black-
board [3, 5] and other collaborating software systems [7,
4] (where problem solving is performed by multiple knowl-
edge sources), and in real life [12]. Not only must related
contributions received from other agents be integrated to-
gether, but the confidence in each integrated contribution
must be determined. The issue of confidence determination
and its effect on developing “principled,” highly collaborat-
ing MASs is the focus of this paper.

Consider a simple “thought experiment” MAS applica-
tion. There are three “observer” agents, each able to ob-
serve a coin toss and report whether it saw a “heads” or a
“tails.” A fourth “integrating” agent receives the observer
reports and combines them to produce an overall answer.
Each observer agent has undergone extensive certification
of its coin-flip acuity and reports the flip correctly 80% of
the time. We wish to improve the accuracy of the four-agent
MAS over that of a single observer agent by having the in-
tegrating agent combine the reports received from the three
observers.

To clarify the issue of confidence determination, we make
the following assumptions in this paper:

• trust [8] is not an issue—agents always do their best
to provide accurate contributions

• agent contributions are not always correct—despite its
best efforts, an agent’s contributions may be wrong

• received contributions can be integrated trivially—
contributions to be integrated have identical semantics

• the probability of an agent’s contributions being accu-
rate is known (0.8 in our thought experiment)

• the “confidence” in a contribution reflects the proba-
bility that the contribution is correct

Suppose the integrating agent receives a heads report
from each observer agent. What confidence should the inte-
grating agent assign to the integrated heads result? Com-
mon approaches used when combining contributions are to:
1) assume independence among the contributions, 2) use ad
hoc heuristics to approximate dependencies, 3) avoid the is-
sue by using only a single (“best”) contribution, or 4) not
determine a confidence for the integrated contribution at all.

Our integrating agent could assume that the contributions
are independent, apply Bayes rule, and assign the integrated
result a confidence of .985 (reflecting the collective corrob-
oration of the three contributions). But what if the contri-
butions are not independent? In this thought experiment,
let’s implement each of our observation agents as a simple

449

978-81-904262-7-5 (RPS) c©2007 IFAAMAS



function that is given the actual (ground truth) value of the
toss and reports that value except for 20% of the time when
it reports the opposite side. The decision of when to report
an incorrect observation is determined by using a pseudo-
random number generator. Our observer accuracy is 80%
(and we’ve saved a lot of coding). If each agent uses a dif-
ferent seed for its random-number generator, the times when
the agents’ reports are incorrect is independent and the in-
tegrating agent’s confidence assignments (based on assumed
independence) are realistic. However, if all observer agents
use the same seed, their pseudo-random numbers will be
identical and they will be mistaken at the same times. If
our integrating agent accounts for this contribution depen-
dency, the confidence in the integrated result should remain
at 0.8 no matter how many observer reports are integrated.
(The reports are fully redundant.)

Of course, real MAS agents are not about random-number
generators and ground-truth cheats, and the interactions
among agents are often significantly more involved than
sending complete results to an integrating agent. A real
agent-based coin-flip detector might consist of a number of
camera agents (each with its own camera), low-level im-
age processing agents (with different processing approaches
and algorithms), feature-detector agents (Eye, Nose, Hair,
Building, Head, etc.), side-assessor agents (again, poten-
tially with different knowledge/strategies), and so on. Yet
this complexity only serves to mask the fundamental issue
of determining the confidence of integrated contributions.
Even if we know the accuracy of individual contributions,
we need to account for the confidence uncertainty inherent
in integrating them together and how that confidence uncer-
tainty propagates over long reasoning chains and agent in-
teractions. A “principled” integration agent in our thought
experiment should represent the confidence in the result as
the interval [0.8..0.985], with any additional knowledge of
the dependency characteristics of observer contributions ap-
plied to reducing this confidence interval.

The remainder of the paper is structured as follows. First,
we introduce a domain-independent analysis model that can
be used to measure the sensitivity of complex, collaborative
problem-solving systems to potentially incorrect confidence-
integration assumptions. We then demonstrate how the
analysis model can be used to determine confidence bounds
on integrated contributions and to identify where efforts
to improve contribution-dependency estimates lead to the
greatest improvement in solution-confidence accuracy. We
conclude with future directions to explore in contribution
integration.

2. THE ANALYSIS MODEL
We have developed a Bayesian network model [9, 10] that

facilitates analysis of confidence integration in an arbitrar-
ily complex collaborative problem-solving system. While
the analysis model is Bayesian, the system being modeled
can have any representation and inference mechanisms. The
model is designed for off-line analysis, so we are not con-
cerned with distributed application of the model.

Accuracy and correlated errors

Let’s begin with a closer look at the independence of our
coin-toss contributions in terms of accuracy and correlated
errors when two agents have different accuracy probabili-
ties. Suppose agent Ai has an accuracy of P (Ai) and agent

Figure 1: Independence of two contributions. The
black bars indicate instances in which the contribution is correct
(corresponding instances are aligned vertically.) The instances
where Ai is correct are arranged together on the left side of each
graph, with instances where Aj is correct also on the left as much
as possible within the Ai ordering. The percentage of black versus
white is the accuracy of the agent. When the agent contributions
are dependent, errors are maximally correlated. Every time the less
accurate agent (Aj) is correct, Ai is also correct (region x). Ev-
ery time the more accurate agent (Ai) is wrong, Aj is also wrong
(region z). The remaining region (y) is where their contributions
disagree. When the contributions from each agent are independent,
Ai and Aj are correlated, but conditionally independent given the
coin flip. Region x̄ represents where both agents are correct, region
z̄ where both are wrong, and region ȳ is where their contributions
disagree.

Aj has an accuracy of P (Aj), where P (Ai) ≥ P (Aj). Fig-
ure 1 shows an intuitive pictorial of this two-agent situa-
tion. Region x in the fully dependent graphic depicts the
probability that both agents are correct (P (Aj)) and re-
gion z depicts the probability that both agents are incorrect
(1 − P (Ai)). Region y is the probability that the contri-
butions disagree (1 − (P (Aj) + (1 − P (Ai)))). When the
agents are fully independent, the probability that they agree
is P (Ai)P (Aj), shown in region x̄, and where they disagree
((1 − P (Ai))(1 − P (Aj))), shown in region z̄. Region ȳ is
the probability that the independent agents disagree. Note
that x ≥ x̄ and z ≥ z̄.

This pictorial helps in visualizing what occurs as the indi-
vidual accuracies and the difference between them change.
As agent accuracies increase, the contributions naturally be-
come more correlated and the difference between the depen-
dent and independent extremes becomes smaller. At 100%
accuracy there is no difference. Therefore, if our agents
are close to perfect, incorrect confidence-integration assump-
tions will have little effect in comparison to mediocre agents
operating in the same system.

Given this view of contribution independence, let’s look
at applying it to integrated contributions.

Concurrent processing model

A set of decisions made by agents is concurrent if the deci-
sions are made without knowledge of any of the other de-
cisions in the set. Figure 2 (a) illustrates the concurrent
decisions of three agents, A1, A2, and A3. These agents are
all making decisions related to node W , which is the state of
the world that the agents are trying to understand. In our
model, W can take on any number of values, though for sim-
plicity we will illustrate it for two values, true and false.
A1, A2 and A3 are all trying to match W ’s value. This
abstraction could represent a coin flip (W = {heads, tails})
and three agents that are processing images of W and trying
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(a) (b)

1A 2A 3A
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1A 2A 3A

1 2D 2 3D

W

1A 2A 3A

W
(c)

1,2 3D

1 2D 2 3D1 3D

Figure 2: The concurrent processing model. (a) shows
nodes representing independent contributions, (b) shows the entire
set of dependencies, and (c) shows the subset of dependencies we
represent in our model.

to figure out if W was heads or tails.
In Figure 2 (a) the contributions made by the three agents

are independent, while in Figure 2(b) we have represented all
potential dependencies between them. The D nodes in Fig-
ure 2(b) explicitly represent the error dependencies among
the A nodes. However, the full-dependency model quickly
becomes unwieldy as the number of agents grows. To keep
the number of dependencies manageable, we simplify the
model to the linear structure shown in Figure 2(c), where
only adjacent nodes are directly dependent on each other
and conditional independence is assumed between all non-
adjacent nodes. This simplification is reasonable because, at
worst, this modeled error will understate the potential error
of assuming full contribution independence. If the error is a
concern in the simplified 2(c) model, it will be even greater
in the full-dependency model.

Use of the D nodes is not necessary, and they could be
marginalized out of the model by placing all the depen-
dency information between Ai and Ai−1 into the link be-
tween them. We include an additional node, Di, for each
Ai node (except the first) in our model, because we feel this
separation makes the model more intuitive. Each Di node
represents whether the errors in Ai and Ai−1 are dependent
or independent. When Di = false then Ai is conditionally
independent of Ai−1 given W , P (Ai|W ) = P (Ai|W, Ai−1).
When Di = true, however, the errors are maximally cor-
related with one another (as in the Dependent graphic in
Figure 1).

In effect, Di breaks P (Ai|Ai−1, W ) down into a mix-
ture of distributions: one distribution for when Ai and
Ai−1 are dependent and one when they are independent,
P (Ai|Ai−1, W ) = P (Di = t)P (Ai|Ai−1, W, Di = t) +
P (Di = f)P (Ai|Ai−1, W, Di = f). The likelihood that
they are dependent is simply the prior probability on Di.
This is similar to the idea of separability [11]. P (Di) cap-
tures the likelihood—not that Ai and Ai−1 will have the
same answer—but that they have the same answer because
they are dependent. We can change this prior to repre-
sent the range of dependency from conditionally indepen-
dent (P (Di = t) = 0) to fully dependent (P (Di = t) = 1).

Table 1 shows what this means in terms of the conditional
probably table (CPT) for node A2. All the parameters used
in our model are defined in Table 2. With this simple de-
pendency, the directionality of the arrow between Ai−1 and
Ai does not matter. However, given three or more nodes
their ordering will make a difference because we are only
representing a subset of the possible dependencies (between
adjacent nodes) and changing the ordering changes which
subset of dependencies we are modeling.

A1 W D2 true

t t t min(B2

B1
, 1.0)

f f t 1 − min(B2

B1
, 1.0)

t f t min( 1−B2

1−B1
, 1.0)

f t t 1 − min( 1−B2

1−B1
, 1.0)

− t f B01

− f f 1 − B01

Table 1: The CPT for A2 showing how the model
parameters are used when there are no parents.

11A

W

21A

(a)

11A

W

21A

(b)

21D

Figure 3: The simplest sequential processing model
with one parent node. The result produced by A11 is used
by A21 in its processing. (a) shows the model without an explicit
dependence. (b) makes the dependency explicit with the node D21.

Sequential processing model

Two decisions are sequential if the output of one decision is
influenced by the output of another decision. While in the
concurrent model the dependency between the contributions
of two agents could range from conditionally independent
to completely dependent, in the sequential model the agents
are inherently dependent from the start. For example, in
the coin-flip MAS, the Hair agent might identify a region in
the image that has hair-like texture, while the Nose agent
hypothesizes a nose. Both of these contributions are sent
to the Head agent which evaluates those contributions and
hypothesizes a region it believes to be someones head on the
coin. Hair and nose are correlated with the obverse side of
the coin, and identification of a head has an even stronger
correlation with the obverse side. The additional processing
that the Head agent performed using the contributions it
received improves the MAS’s confidence in the answer over
just hair and nose. This kind of sequential processing is
represented in Figure 3 for one parent and Figure 4 for two.

Figure 4(a) shows a simple example of sequential process-
ing where contributions of agents A11 and A12 form the in-
put to agent A22. The integrated contribution A22 depends
on the output of its parents as well as whether its parents’
contributions are correct, hence the link from W to A22.
When the parents are both correct there is some chance that
the child will introduce an error (parameter I2

ij in Table 2).
When the parents are both wrong there is some chance that
the child will be able to compensate for the parent errors
and determine the correct answer anyway (parameter C2

ij in
Table 2). When the parents disagree then the child is left
to come up with its own answer (parameter Bij in Table 2).
Clearly this is a simplification of the possible relationships
between parents and children, but it is sufficient for our
analysis model.

A down side to sequential processing comes from detri-
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Parameter Label Description

W prior event Prior probability of event

D dependency Prior probability that the nodes are dependent

Dp parent Probability that child is dependent on its parent instead of its neighbor to the
left, when it is dependent (as given by D)

Bij base correctness Probability that child Aij is correct given no parents or parents who disagree

I1
ij introduce errors Probability that child is incorrect given its one parent is correct

I2
ij introduce errors Probability that child is incorrect given its two parents are correct

C1
ij correct errors Probability that child is correct given its one parent is incorrect

C2
ij correct errors Probability that child is correct given its two parents are incorrect

Table 2: The parameters used in the CPTs in the general analysis model.

11A

W

22A

12A

(a)

11A

W

22A

12A

(b)

22D

Figure 4: The sequential processing model with two
parents. A22 takes as input the output of both A11 and A12.
(a) shows the model without the explicit dependency, (b) shows the
model with the explicit dependency D22.

(a) CPT for A21

A11 W D21 true

t t f 1 − I1
21

f f f I1
21

t f f 1 − C1
21

f t f C1
21

t − t 1.0

f − t 0.0

(b) CPT for A22

A11 A12 W D22 true

t t t f 1 − I2
22

f f f f I2
22

t t f f 1 − C2
22

f f t f C2
22

t f t f B22

f t t f B22

t f f f 1 − B22

f t f f 1 − B22

− t − t 1.0

− f − t 0.0

Table 3: The CPTs for nodes A21 (Figure 3b) and
A22 (Figure 4b) in the sequential model.

mental information cascades [1]. If one agent makes a mis-
take it can mislead the next agent in the sequence, and
this wrong result can cascade, leading the entire sequence
to generate incorrect results. While this phenomenon could
be captured in the existing links between the parent nodes
and the child, we explicitly represent it with a dependency
node, Dij . This is similar to the approach that we used
with concurrent processing to explicitly represent contribu-
tion dependencies (see Figures 3(b) and 4(b)). When Dij is
true, Aij takes the same value as Ai−1,j instead of depend-
ing on both of its parent nodes. Table 3(a) gives the CPT
for the node A21 in the one parent case, and Table 3(b) for
the two parent case. This representation can be extended

11A

21A 22A 24A

12D 13D
14D

22D 23D 24D

W

21D

12A 13A 14A

23A

Figure 5: A combined model.

easily to more than two parents. Again, Table 2 provides a
description of the parameters used.

Combining both models

The concurrent and sequential processing models can be
combined into a general model of an arbitrarily complex
system, such as the grid shaped model shown in Figure 5.
The rows in the grid represent concurrent processing, while
the columns model the sequential processing.

The concurrent and sequential processing models interact
in two ways. First, we merge the dependency node Dij for
Aij from the two models into one node with three values:

• parent—Aij produces the same result as its parent di-
rectly above due to information cascading.

• neighbor—Aij produces the same result as its neighbor
to the left due to dependency.

• false—Aij is not forced to answer a particular way due
to a dependency.

Changing the priors on the Dij nodes allows the levels of
dependence between the nodes to be adjusted easily in or-
der to see how confidence and expected error changes for
different degrees of dependence.

The second change introduced by combining the two pro-
cessing models deals with the accuracy of a node when its
parents are dependent. The basic idea is that when Aij ’s
parents are independent, the rate that it introduces errors
or corrects errors will be different then when its parents are
dependent. For example, suppose a Head agent trying to
locate a head on an image of a coin is provided the image
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Ai, j−1 Ai−1, j−1 Ai−1, j W Di−1, j Dij true

− t t t p/f f 1 − I2
ij

− f f f p/f f I2
ij

− t t f p/f f 1 − C2
ij

− f f t p/f f C2
ij

− t f t p/f f Bij

− f t t p/f f Bij

− t f f p/f f 1 − Bij

− f t f p/f f 1 − Bij

− t t t n f 1 − I1
ij

− f f f n f I1
ij

− t t f n f 1 − C1
ij

− f f t n f C1
ij

− t f t n f Bij

− f t t n f Bij

− t f f n f 1 − Bij

− f t f n f 1 − Bij

t − − t − n min(
Bij

Bi, j−1
, 1.0)

f − − f − n 1 − min(
Bij

Bi, j−1
, 1.0)

t − − f − n min(
1−Bij

1−Bi, j−1
, 1.0)

f − − t − n 1 − min(
1−Bij

1−Bi, j−1
, 1.0)

− − t − − p 1.0

− − f − − p 0.0

Table 4: The CPT for Aij. This illustrates the interaction
between the sequential dependency and the concurrent dependency.
The D nodes have three values: n for neighbor, p for parent,
and f for false.

of the coin and contributions from two Hair agents contain-
ing the regions of the image that they each believes to be
hair. It would be reasonable to expect that if the regions in
the contributions are in agreement, and they were generated
independently, then the Head agent would be less likely to
make a mistake than if the Hair agents agreed simply be-
cause some factor in the environment forced them to agree
(such as excessive wear on the coin).

We handle this by adding a link from the dependency node
of the relevant parent to the child. When that dependency
is parent or false we have the same probabilities as in Ta-
ble 3(b). However, when the dependency is neighbor, we use
different parameters I1

ij and C1

ij instead of I2

ij and C2

ij . See
Table 4 for the entire CPT.

3. ANALYSES USING THE MODEL

The combined model can be used to to measure the sensi-
tivity of complex MASs with both concurrent and sequential
processing to incorrect confidence-integration assumptions.
In this section we demonstrate using the model by analyzing
a family of hypothetical systems in which the model nodes
are arranged in a rectangular grid shape. Many specific sys-
tems would often result in other shape models, based on
their contribution interactions. For example, an hourglass
shape could reveal the effects of confidence-integration in a
system with information bottlenecks. However, by varying
the width, depth, and other parameters of our hypotheti-
cal grid-system family, we can easily explore some general

characteristics of confidence integration.
We make several assumptions about the contribution-

exchange structure of our hypothetical systems. For exam-
ple, there are two parent nodes for the child nodes in each
step of sequential processing while a specific system might
have some nodes with many parents and some with as few
as one. Another assumption is that our agent contributions
are equally likely (P (A = t|W = t) = P (A = f |W = f)).

After the MAS determines its answer, we are interested
in computing the probability that the answer is correct. In
this analysis, we assume that we can identify the system’s
“answer” by observing the values of each Aij in the model.
Since the answer the system gives should be consistent with
the value having the highest probability, we do not need to
explicitly represent it in our model. We assume the system
answer is the value of W that maximizes P (W |A) where A
is the set of all Aij . Our confidence is then maxW P (W |A).
If we were modeling a specific system instance, we might be
more interested in values at one or more specific nodes.

This is how we compute the confidence of a particular
problem instance in our grid systems, but we want to eval-
uate the sensitivity of assuming the nodes are independent,
P (D) = 0, when in fact they are not, P (D) > 0. First we
can measure our expected belief that our answer is correct
by taking a weighted average over all possible instances of
the observed data:

X

A

P (A) · maxW P (W |A)

If agents assume that P (D) = 0, then our expected belief is:
X

A

P (A) · maxW P (W |A, P (D) = 0)

Figure 6(a) illustrates the expected belief for four different
cases, two where the independence assumption is correct and
two where it is incorrect. If we examine the two lines where
P (D) = 100%, the amount of error involved in assuming
that P (D) = 0% is roughly the difference between them.
We compute the actual error as a percentage change in the
belief:

Error(A) =

˛

˛

˛

˛

P (W |A) − P (W |A, P (D) = 0)
P (W |A)

˛

˛

˛

˛

As before, we can compute the expected error by do-
ing a weighted average,

P

A P (A) · Error(A). Figures 6(b)
and 6(c) show the expected percent error for two different
shaped grid models. What we see is that even when the
dependency between the nodes is fairly small, 25%, we see
an expected error in our belief of 10%. As the dependency
grows, the percent error can become huge.

For those applications in which the confidence in the an-
swer is less important than the actual answer, we show in
Figure 7(a) the percentage of the answers that are different
when assuming independence versus dependence. This does
not necessarily mean that the answer is incorrect, just that
if the level of dependence had been correctly modeled then
the best answer would have been different. In 2xn systems
this is trending towards 8% of the time.

We next explore the sensitivity of our family of systems
to significant changes in accuracy of contributions. As one
would expect, as a system becomes more accurate, the room
for independence-assumption error decreases—even when
there is high dependency. The flip side is also true. If the
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Figure 6: Expected belief and percent error for grid models of different width and depth. P (D) is the actual
dependence between the nodes, while As is the assumption made about the level of independence. P (D) = 100% means that the nodes
are completely dependent, and an As = 0% means that agents are assuming that P (D) = 0%. (a) The expected belief that the answer the
system gives is correct, which is also the expected confidence. (b) The expected percent error as depth increases. (c) The expected percent
error as width increases. The parameters used for these charts are W = 0.5, Dp = 0.5, B = 0.6, I1 = 0.2, I2 = 0.1, C1 = 0.4, C2 = 0.3.
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Figure 7: Effect of independence assumption on system answer and expected error sensitivity to agent
accuracy. (a) The percentage of the time that the answer given when assuming independence differs from the answer given if the level of
dependence is correctly modeled. When the dependence is 100%, the answer never changes because the nodes can only either be all true
or all false. (b) The sensitivity of the expected error to the base accuracy (B) of the nodes, when P (D) = 100%. Each line represents a
graph with the same number of nodes, but a different shape. The shape only has an effect when the accuracy of the nodes is near random
(B = 50%). (c) The sensitivity of the expected error to the base accuracy (B) of the nodes, when P (D) = 50%. In this case the shape
of the grid has a small effect on the expected error, but the general trend of each line is the same. The parameters used for these charts are
W = 0.5, Dp = 0.5, B = 0.6, I1 = 0.2, I2 = 0.1, C1 = 0.4, C2 = 0.3.

Sensitivity to Mistake Correction (C-I), P(D)=100%
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Figure 8: The effect of error-correction rates, concurrent and sequential dependencies, and row independence.
(a) The sensitivity of the expected error to the net rate at which mistakes are corrected, C − I . The larger the difference between the rate at
which errors are corrected and the rate at which new errors are introduced the less effect the rate of error introduction has on the expected
error. In general the effect ranges from high expected error, to higher expected error. (b) This graph compares the difference between the
sequential and concurrent dependencies in a 3x3 system. The lines labeled P (D = p) have the probability that the nodes are dependent
on its parents (sequential dependence) range from 0 to 1, while the probability that the nodes are dependent on its neighbors (concurrent
dependence) is always 0. The lines labeled P (D = n) is the opposite. The lines that are uniform mean that the base accuracy of the nodes
B is the same for all of the nodes, B = 0.6, while for the nonuniform lines the base accuracy of the nodes is 0.6 for the first column, 0.65
for the second, and 0.7 for the third. (c) The expected error when all of the nodes are independent except for one row. The system is most
sensitive to having dependency in the last row since there is not any processing after that to correct the mistakes made. The parameters used
for these charts are W = 0.5, Dp = 0.5, B = 0.6, I1 = 0.2, I2 = 0.1, C1 = 0.4, C2 = 0.3.
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Figure 9: The effect of single-row dependencies. (a) The expected percentage of answers that change when there is dependence
only in the given row. (b) The opposite of Figure 8(c) in that each row is completely dependent except for the given row. (c) The expected
percentage of answers that change when there is complete dependence in all rows but the given row. The parameters used for these charts
are W = 0.5, D

p = 0.5, B = 0.6, I
1 = 0.2, I

2 = 0.1, C
1 = 0.4, C

2 = 0.3.

Change in Error With Improved Accuracy,
P(D)=100%, As=0%
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Figure 10: Effect of single-node accuracy. These figures were obtained by taking a 3x3 grid system and changing the base
accuracy B from 0.6 to 0.9 for one node only. The node is specified by the row given by the line and the column given by the x-axis. The
dot labeled base is the value obtained when no node’s accuracy is increased. (a) is the expected percent error. (b) The change in expected
belief for increasing the accuracy of one node when the nodes are independent and agents (correctly) assume that they are independent. (c)
This is the change in expected belief when the nodes are completely dependent and agents (correctly) assume that they are dependent. The
parameters used for these charts are W = 0.5, D

p = 0.5, B = 0.6, I
1 = 0.2, I

2 = 0.1, C
1 = 0.4, C

2 = 0.3.

system’s decisions are mostly random, then even when there
is strong dependence it cannot get much worse by assuming
independence. Figures 7(b) and 7(c) illustrate this by vary-
ing the base accuracy parameter from random, B = 0.5, to
perfect, B = 1.0.

Figure 8(a) shows that the percent error is not very sensi-
tive to the rate that mistakes are corrected versus introduced
in sequential processing. Figure 8(b) shows the difference
effect on percent error between sequential and concurrent
dependencies, and Figure 8(c) shows the effect on percent
error when all nodes are independent except for one selected
row in the grid. As one might expect, later rows in sequen-
tial processing had a greater effect on percent error.

Figure 9(a) explores the effect on changed answers when
all nodes are independent except for one selected row in the
grid. Figure 9(c) shows the opposite case, where only the
given row is independent. The percent error in this case is
shown in Figure 9(b) (the opposite case of the percent error
shown in Figure 8(c)).

The next figures explore the effect of an accuracy change
to one node (agent) in the system. Figure10(a) shows the
resulting change to percent error. The error when all of
the nodes have an accuracy of 0.6 is 57%. Increasing the
accuracy of nodes 2,1 and 3,1 in column 1 of our model ac-
tually increases the percent error value slightly. This is an
edge effect of our modeling simplifications stemming from
the fact that, with one parent, those two nodes in the model
do not include the base correctness B in their CPTs. A

more accurate measure for percent-error effects stemming
from column one can be obtained by using a second model
in which columns are exchanged. Figure 10(b) shows the
change in expected belief for increasing the accuracy of one
node when the nodes are independent and agents (correctly)
assume that they are independent, while Figure 10(c) shows
the change in expected belief when the nodes are completely
dependent and agents (correctly) assume that they are de-
pendent. Figures 11(a) and 11(b) shows the effect of one
node’s accuracy on the change in expected belief under in-
correct dependency assumptions. Figures 12(a) and 12(b)
show the change in system answer.

4. CONCLUSION

In this paper we demonstrated that a domain-independent
model can be used to analyze the effect and propagation
of potentially incorrect confidence-integration assumptions
in a collaborating MAS application. We developed repre-
sentations for both concurrent and sequential contribution
processing and explored the implications of unaccounted-for
dependencies in a hypothetical family of applications (mod-
eled as rectangular grids) operating under a range of accu-
racy and dependency conditions. We showed that, although
incorrectly assuming contribution independence is tolerable
when agents are close to perfect, incorrect independence as-
sumptions can be significant in systems involving mediocre
agents. This can result in inaccurate result confidence values
and changed system answers.
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Figure 11: Single-node accuracy and change in expected belief due to incorrect dependency assumptions.
(a) is the change when the nodes are independent and we incorrectly assume that they are dependent. (b) is the change when the nodes are
dependent and we incorrectly assume that they are independent. The parameters used for these charts are W = 0.5, D

p = 0.5, B = 0.6,
I
1 = 0.2, I

2 = 0.1, C
1 = 0.4, C

2 = 0.3.
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Figure 12: Single-node accuracy and change of answer due to incorrect dependency assumptions. In (a) the
nodes are completely dependent and agents assume they are independent. In (b) the nodes are 50% dependent and agents assume that they
are independent. The parameters used for these charts are W = 0.5, D

p = 0.5, B = 0.6, I
1 = 0.2, I

2 = 0.1, C
1 = 0.4, C

2 = 0.3.

Our modeling approach can be used to help in the de-
sign and improvement of MASs. If contributions are redun-
dant, work by agents to develop them can be eliminated
(unless the redundancy is desired due to possible agent fail-
ures). If additional data or more capabable processing can
improve the accuracy of agent decisions, our model can iden-
tify the agents where decision-accuracy improvement efforts
will produce the most overall system benefit.

An important future direction is to design a domain-
independent mechanism that can be used to efficiently rep-
resent the dependence among contributions so that an inde-
pendence assumption is unnecessary. The challenge is two-
fold. First, the number of potential dependencies to cap-
ture grows exponentially with the number of entities in the
system. Second, multi-agent and blackboard systems are
typically open, and entities can come and go. While it is
reasonable to measure or estimate the accuracy of decisions
made by individual entities, assuming we know all of the
dependencies among them is unrealistic. Entities may be
added later while the system is already running, and some
of them may not even exist when the application is devel-
oped. One possible approach is to characterize the error
probabilities under specific conditions for each entity and
to use these characterizations to estimate tighter bounds
on the situational dependence/independence between entity
contributions.
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