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ABSTRACT
We investigate a framework where agents locate high-quality
service providers by using referrals from peer agents. The
performance of providers is measured by the satisfaction ob-
tained by agents from using their services. Provider per-
formance depends upon its intrinsic capability and upon its
current load. We present an algorithm for selecting a service
provider for a given task which includes mechanisms for de-
ciding when and who to ask for a referral. This mechanism
requires learning, over interactions, both the performance
levels of different service providers, as well as the quality
of referrals provided by other agents. We use a satisficing
rather than an optimizing framework, where agents are con-
tent to receive service quality above a threshold. Agents
have to learn the quality of others’ referrals and the quality
of providers to find satisficing providers. We compare the
effectiveness of referral systems with or without deception
with systems without referrals. We identify zones, based on
an observed entropy metric, where using referrals is helpful
in promoting fast convergence to satisficing distributions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence[Coherence and coordination, Multiagent systems,
Intelligent agents]; I.2.6 [Artificial Intelligence]: Learn-
ing—Knowledge acquisition

General Terms
Performance, Experimentation

Keywords
load balancing, referral system, satisficing distribution, sim-
ulated environment
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1. INTRODUCTION
Location of high-quality services and load balancing are

challenging problems in a large number of multiagent sys-
tems. Although both involve location of high-quality pro-
viders, the nature of resources is different in the two cases.
Service location addresses environments where agents need
to identify resources or peers with the required expertise to
answer queries [7, 11, 13, 19, 20]. An often-used approach is
for agents to ask other agents for referrals to services and re-
sources. In a number of service location domains, the cost of
referring is generally assumed to be negligible for a referrer
and the increased load on the corresponding service is not
assumed to lead to a decrease in its performance. While rec-
ommending a web-search engine, for example, a higher rate
of usage, for the most part, does not produce a decrease in
response time, and popularity can be used as an indirect
measure of quality. In other domains, referring others to
one’s preferred service can increase the latter’s revenue and
in turn even increase the performance of the service due to
increased or improved resources financed from the additional
revenue.

On the contrary, problems solved using load balancing
present environments comprising fixed number of resources
whose performances are directly related to their workloads.
An Agent’s choices of a resource affect both its own utility
and that of other agents currently using the chosen resource.
Besides, in this context, referrers, or agents working in a
coalition, may incur a non-negligible cost due to an increase
in load on their preferred resources [16].

We investigate a model presenting similarities with the
latter described kind of environments. The performance of
a provider depends both on its intrinsic characteristics and
the current workload it is handling. There exists a limited
number of service providers in the environments requiring
agents to at least implicitly coordinate their selection of ser-
vice providers. Myopic, self-interested behavior can lead
to poor performance for the individual and system-wide in-
stability. There is thus a need for non-myopic mechanisms
to promote performance and stability of such decentralized
agent systems. In particular, deriving protocols and strate-
gies that lead to equilibrium states where all agents in the
community are satisfied is a challenging and significant re-
search problem.

Referrals from other agents can help agents find more sat-
isfying service providers. But such referrals may cost the re-
ferring agent since the load of the referred provider may in-
crease, with corresponding performance deterioration. This
is particularly true if referral chains exist, i.e., if an agent can
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refer providers it located through referrals to other agents.
Another problem with the use of referrals is that the recip-
ient of a referral can be misled by deceptive referrers who
deliberately provide false information to eliminate competi-
tion for its preferred providers. While referral systems have
been widely studied both in theory and in practical appli-
cations [5] the negative side-effects of referrals have not re-
ceived adequate treatment. We seek to analyze the benefits
and disadvantages of referrals in domains where the cost
of referrals is uncertain. The goal is to identify situations
where an agent should or should not use referrals.

While ideally speaking agents may aspire for optimal sat-
isfaction levels from service providers selected for performing
an assigned task, dynamic, partially known, and open en-
vironments can render the realization of this ideal behavior
improbable. Possible sources of inefficiencies include noisy,
variable feedback about provider performance as the envi-
ronment is at best partially observable which implies all
factors affecting performance are not directly observable.
In a dynamic environment the expected performance of a
provider as referred by another agent may have changed
based on current load and is not necessarily an indication
of the trustworthiness of the referring agent. Besides, an
agent is unable to accurately assess the impact of its own
decisions, including choice of service providers and making
referrals, on its environment.

As such it might not be feasible to seek strategies for op-
timizing performance. Rather, we posit that agents should
concentrate on finding service providers that provide a qual-
ity of service which exceeds an acceptable performance thresh-
old. This formulation is consistent with Simon and others
view of bounded rationality of decision makers within the
context of complex organizations [4, 14]. Approaches from
game theory also use the notion of aspiration levels to sta-
bilize systems and reach equilibrium [2, 15, 17, 18, 3].

In this paper, we provide an approach for trading refer-
rals using which agents can locate high-quality service pro-
viders. Our goal is to develop strategies by which a system
of autonomous agents can quickly reach stable configura-
tions where all agents are satisfied with the choice of their
current service providers. Our proposal involves learning to
rate referrers and use such ratings to adjust future referrals
to identify effective service providers. We formally demon-
strate the convergence to satisfactory service provider selec-
tions for the entire group of peer agents. Through our anal-
ysis we explain when an agent should or should not choose
service providers based on referrals from other agents.

The paper is structured as follows. Section 2 introduces
the environment and algorithms used by our agents. Sec-
tion 3 is an analysis of criteria governing the speed of con-
vergence while our experimental results are presented in Sec-
tion 4. Section 5 briefly states some related works. Section 6
concludes the paper and introduces our future work.

2. FRAMEWORK

2.1 Environment
We present an environment where agents share a set of

service providers to perform daily tasks. When an agent
chooses a provider, it puts an associated load on the provider.
They cannot directly observe or measure the intrinsic qual-
ity of these providers. After choosing a provider on a given
day, they can observe their performance, which is dependent

on the load on that provider on that day, at the end of the
day. Agents are self-interested and are only interested in
their own satisfactions.

We now introduce a formal definition of our environment.
Let E =< A, R, perf , L, S, Γ > where:

• A = {ak}k=1..K is the set of agents

• R = {rn}n=1..N is the set of providers.

• f : R ×
�

+ → [0, 1], provides the intrinsic perfor-
mance of a provider given a load.

• L : A →
�

+ , is the load function for the agents.

• S : A × [0, 1] → [0, 1], is the satisfaction function of
agents.

• Γ = {γ1, . . . , γK}, is the set of satisfaction thresholds,
representing aspiration levels, of agents.

Each day d, agent ak is assigned a load L(ak). At the out-
set, each agent knows the set of providers that can process
its task without the knowledge of their intrinsic capabili-
ties represented by their performance function, f(rn, ·), for
provider rn. The agents are also unaware of the current
load on the providers. We assume that the performance of
a provider on a particular day depends on the total work-
load on that day: agents which use a provider the same
day will obtain identical performances. Any two agents,
however, may have different aspiration levels for the same
quality of performance. We represent the satisfaction of an
agent ak by a subjective function S(ak, ·) which models the
satisfaction obtained based on the quality of service pro-
vided by the chosen provider. To be more precise, if Ad

n

is the set of agents using the provider rn at day d then
the provider’s performance after processing all these orders

is perf = f

�
rn, �

a∈Ad
n

L(a) � . perf is the service quality re-

ceived at the end of the day d by every agents in Ad
n. An

agent ak ∈ A
d
n will evaluate the performance of rn by the

value s = S(ak, perf ). s is the satisfaction obtained by
agent ak using provider rn. This agent will be satisfied if
this performance s is above the threshold γk. This model
allows two agents to have different satisfaction levels for the
same quality of service received.

Agents are interested in obtaining satisfactions above a
threshold rather than maximizing it. Our aim is to design
interaction protocols and behaviors that allow all agents to
find satisfying providers. The following definitions formalize
this idea.

Definition 1 (Distribution of agents over providers).
We call distribution of agents over providers the set
D = {An}n=1..N such that:

• An ⊆ A (An may be empty)

•
N�

n=1

An = A

• n1 6= n2 =⇒ An1 � An2
= ∅

The set of distributions is denoted by D.
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Definition 2 (Γ-acceptable distribution). A distri-
bution D = {An}n=1..N is said to be Γ-acceptable distri-
bution iff

∀n, ak ∈ An =⇒ S � ak, f � rn, �
a∈An

L(a) ��� ≥ γk

. The set of Γ-acceptable distributions is denoted by DΓ.

The concept of distribution represents how agents distribute
themselves over the providers. For example, An is the set
of agents who use the provider rn. A Γ-acceptable distribu-
tion is a distribution where every agents receive a satisfac-
tion above their own satisfaction threshold. A Γ-acceptable
distribution is expected to be a stable distribution since
no agent will have the incentive to change their choice of
provider for the next day as each of them is satisfied. Con-
sequently, it is an equilibrium concept and our goal is to
enable agents to reach such distributions.

2.2 Referral based provider selection
We present alternative strategies for selecting service pro-

viders. We assume that apart from the feedback received
in the form of performance of chosen providers, agents can
receive referrals from other agents stating their satisfaction
with different providers.

The quality of a provider is evaluated by calculating the
mean of satisfactions an agent has obtained from a provider.
This value is the satisfaction an agent may expect to get by
using the provider again.

We believe that improving system stability is necessary
to ensure faster convergence and also helps agents to ob-
tain more accurate information about their environment.
Therefore, we use a “move only when you think you can
do better”-principle for agent strategies. We evaluate three
kinds of agents: agents who find providers on their own
without using information from other agents (No Referral
or NR), agents who use referral to locate providers and are
trustful of the referrals received(Referral (Truthful) or RT),
agents who use referral to locate providers but always de-
ceive while giving referrals (Referral (Deceptive) or RD).
NR: Agent ak finds the provider by using only its own expe-
rience and without referrals. This agent never moves from a
provider if it is satisfied. Otherwise, either it explores, i.e.,
chooses a provider randomly, with a probability α or with a
probability 1 − α, it makes a decision in the following way.
It estimates the expected satisfaction, es, it can get from
every provider. It picks a provider among those for which
es > γ−

k , a constant less than γk. If no such provider exists,
ak does not move.
RT: Agents may help each other by giving referrals. A
referral includes a provider name and an estimation of its
quality. Before asking for referral, the asking agent deter-
mines the set Ah of agents whose expected quality of re-
ferral is greater than γ−

k . It picks one of them, ah, with
probability proportional to qh, the expected quality of re-
ferral from that agent. The referral will be accepted if the
provided estimation is greater than γ−

k . If not, the asking
agent will choose another referrer in Ah. The asking agent
trusts the information given by the referrer and does not try
to correct the estimation. Agents are assumed to be helpful:
they refer only the best providers in their estimate. They
are also assumed to be truthful, providing the true estima-
tion of the provider performance. If a referring agent knows

of no good provider, one is given randomly as referral but
with estimation 0. Agent ak chooses a provider by using
the same protocol as defined in NR except that if it does
not find a satisfying provider using its own information, it
asks for referral from an agent chosen either (a) randomly
with probability αask (exploration) or (b) using estimation
of other agents usefulness with probability 1− αask.
RD: This case is identical to the previous one except the fact
that agents always deceive. They refer the same provider as
RT, but alter the true estimation, es. More precisely, if es

is greater than their satisfaction threshold then they report
an underestimation, otherwise an overestimation.

3. CHARACTERIZING SYSTEM CONVER-
GENCE

In an environment where agents are autonomous and self-
interested, they are expected to choose actions which appear
to be the best ones to them. Such greedy, myopic individual
actions can lead to conflicts that affect system performance
and, in turn, reduces individual satisfaction. The present
case of agents choosing satisfactory service providers is a
clear example of such situations as agent satisfactions can
oscillate with changing loads on satisfactory providers. Such
systems tend to oscillate between good and bad distributions
produced by slow convergence and variable agents satisfac-
tions. We believe this phenomena is appropriately modeled
by analyzing the effect of agent inertia on the system.

3.1 Influence of inertia
We believe that oscillations in our environment will hap-

pen if a system at a distribution close to a Γ-acceptable
distribution will have the tendency to evolve to a worse dis-
tribution and vice versa. Here we assume that the total load
to be applied by all agents in the system is approximately
equal to the total capacity of all service providers to produce
satisfactory performance for all agents if they are properly
distributed. Intuitively, a distribution where almost every-
one is satisfied contains very few under-used or over-used
providers and the rest are occupied by the right number
of agents. Those under-used providers Ru are very attrac-
tive. Consequently, agents will be inclined to move to them,
which leads the system to a distribution where providers in
Ru will be overcrowded. We believe this key, problematic
effect can be mitigated by increasing the inertia in the sys-
tem, where inertia is an inverse function of the number of
agents moving at any given time.

We will now formalize this analysis. In the remainder of
this paper, we assume our agents are identical in the sense
they have the same satisfaction functions (S(ak, ·) = S, ∀k),
the same satisfaction thresholds (γk = γ, ∀k) and the same
daily load (L(ak) = L). Consequently, we can define the
capacity the providers as the maximum number of agents
they satisfy at the same time. A Γ-acceptable distribution
is then a distribution where every providers is used by a
number of agents less than or equal to their capacities. We
measure the goodness of a distribution as the number of
agents who should move to reach a perfectly coordinated
distribution. We now give a formal definition of the measure
we call entropy.

Definition 3 (Entropy). Given an environment where
provider rn has its capacity equal to Cn and agents are iden-
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tical, we represent entropy of a distribution D by

E(D) =
N�

n=1

max
�
0, |An| −Cn � .

We can see that each Γ-acceptable distribution has an en-
tropy equal to 0. The lower the entropy the better the dis-
tribution. Proposition 1 shows how the number of moving
agents influence the entropy of the system.

Proposition 1. If Kd
move is the number of agents which

can move at date d then

E(Dd+1) ∈ [max � 0, E(Dd)−K
d
move � , E(Dd) + K

d
move]

Proposition 1 shows reducing Kmove has a beneficial effect
of the entropy of the system. Indeed, it determines the size
of the range in which the next entropy of the system belongs.
Consequently, we may expect oscillations of the system en-
tropy with low amplitude or no oscillation at all for small
values of Kd

move and high amplitude oscillation for high val-
ues of Kmove. Our agents are autonomous in their decision-
making, no central decision can be taken. Therefore, we
claim that a high inertia implies low Kmove in average. Nev-
ertheless, Kmove is also influenced by the number of agents
which are inclined to move (Kwm). In other words, agents
who are not satisfied by their current providers will seek to
switch. Kmove is positively correlated to Kwm. Proposi-
tion 2 expresses that when the number of agents is fixed,
the size of the range of Kwm is inversely correlated to the
number of providers N . Intuitively, the arrival of a new
agent in provider rn with current load equal to its capacity
Cn makes Cn + 1 agents envisage the possibility to go to
another provider.

Proposition 2. Consider an environment where provid-
ers have a capacity of K/N . Then the number of agents
inclined to move is in the range

Kwm ∈ � S(D) +
K

N
, S(D) · (

K

N
+ 1)� .

Initial experiments showed the existence of an upper bound
K∗

move such that the system is stable if Kmove ≤ K∗
move.

From this observation and Proposition 2 we conclude that
in an environment where providers are identical, and have
capacity K/N , there exists a lower bound N∗ of the number
of providers such that stable systems with satisfactory dis-
tributions are obtained for N ≥ N∗. In other words, we may
expect two zones where the behaviors of our algorithms will
be fundamentally different. In Zone I (defined by N < N∗),
we may expect poor performance of the system: low speed
of convergence and variable received satisfaction for agents.
In Zone II (defined by N ≥ N∗), we expect to obtain ex-
cellent or acceptable performance: reasonable or fast speed
of convergence and consistent satisfactory provider perfor-
mance.

3.2 Exploration
The previous section establishes that the system performs

better when few agents move at any given time. As agents
move less frequently, it is more likely that their decisions
are based on more accurate information. Correspondingly,

more informed decisions will expedite system convergence
to satisfactory distributions. But such convergence also re-
quires learning about provider and referral qualities. Con-
sequently, some systematic exploration of providers and re-
ferrers appear to be necessary. On the other hand, such
exploration decreases the inertia of the system and can im-
pact convergence rate. An environment where agents ex-
plore too much will produce system instability where agents
will hardly have representative estimations of provider per-
formances since loads vary significantly. As a result, agents
will not receive consistent satisfying provider performance,
giving them more incentive to move. In this context, referral
systems seem to be appealing since agents may substitute
their exploration with others’ experience.

A problematic issue that is often ignored in referral sys-
tems is the long-term cost which can be incurred by re-
ferring a service whose quality is inversely proportional to
usage. We can assess this referral cost locally by the loss
of satisfaction for individual agents and globally as the time
needed to reached a Γ-acceptable distribution for the entire
community of agents. In the case of benevolent and truth-
ful referrers, helping agents are directly affected since their
referrals increase the load of their favorite service providers.
It may be also harmful for the other agents who use referred
providers and then for the system since the number of agents
who are predisposed to move may increase, decreasing sys-
tem inertia, and increasing entropy and convergence time.

Sen et al’s [10] explanation of this phenomenon is that
by asking for referral, the amount of information available
to an agent increases, which, in turn, can be detrimental to
system stability in such domains.

4. EXPERIMENTAL RESULTS
We present results from experiments designed to evaluate

the relative merits of using referrals to choose service provid-
ers. All experiments were run with 200 identical agents with
a satisfaction threshold equal to 0.7 (∀k, γk = 0.7), with
∀k, S(ak, x) = 1

1+0.7 x
. We choose f(rn, L) = (δn ·L+1)3−1

as provider performance functions. The parameter δn is
tuned to obtain providers with desired capacities. Each day
an agent is assigned a task whose load is 1 (∀k, L(ak) = 1).

4.1 Uniform provider capacities
In this subsection, we study the influence of the number

of providers available and consequently the total provider
capacity. All providers have the same capacity equal to
K/N such that a Γ-acceptable distribution is a distribution
where each provider is used by exactly K/N agents. Table
1 presents the average number of iterations needed to reach
the convergence over 50 runs. We limited the number of
iterations in each run to 5000. In the table na stands for
“not available” and corresponds to runs where convergence
was not reached within 5000 iterations.

We highlight the following observations:

1. Results confirm our prediction of the existence of the
expected lower bound, N∗ for effective system per-
formance. For any agent type, convergence speed is
optimal when N = N∗. The estimates for the dif-
ferent agents are: N∗(NR) = 40, N∗(RT ) = 100,
N∗(RD) = 100.

2. For any agent type, performance in Zone I, i.e., for
N < N∗ is worse compared to performance in Zone II,
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Figure 1: Examples of evolution of Kd
move and E(Dd) in Zones I (left) and II (right).

N NR RT RD

200 2206.529 1578.863 1867.706
100 624.588 454.510 558.078
40 167.647 3002.059 na

20 3624.647 na na

10 3879.471 na na

Table 1: Average iterations to convergence.

i.e., for N ≥ N∗.

3. When N ≥ N∗ for all strategies, i.e., in the range N ≥
100: RT converges faster than RD, which converges
faster than NR.

4. NR is more robust than other algorithms as it produces
convergence for a much larger range of environments,
e.g., only NR leads to convergence within the iteration
limit for N ≤ 20.

An important observation that builds on the above points is
that: While the use of referrals from truthful agents can
speed up system convergence to satisfactory distributions,
such knowledge sharing can also increase system entropy and
slow down convergence with a relatively small number of pro-
viders in the environment.

To obtain a deeper understanding on the nature of conver-
gence with and without referrals and for different number of
providers, we studied the Kd

move and E(Dd) metrics over the
course of different runs. On inspecting these metrics for dif-
ferent system configurations we find that even though the
system convergence systems worsens when we move away
from N = N∗, there is an interesting, clear difference be-
tween runs corresponding to Zones I and II.

Figure 1 shows the evolution of the entropy and the num-
ber of simultaneous moving agents with 10 providers (corre-
sponding to Zone I) and with 200 providers (corresponding
to Zone II) for NR. We include only the graph for NR as

graphs for RT and RD are similar. In Zone I, the entropy,
E(Dd), keeps on oscillating while Kd

move remains higher than
it. Consequently, the system cannot converge monotonically
as more agents than required move at the same time. This
contrasts with the behavior of the system in Zone II: Kd

move

remains mostly below E(Dd) preventing system instability
and promoting convergence. We can further differentiate
Zone II runs into two parts: (i) in Zone II(a) the system
moves consistently toward almost coordinated distributions,
(ii) in Zone II(b) the system remains in almost coordinated
distributions and a small number of unsatisfied agents keep
moving in search of a satisficing provider. Rustogi & Singh
experimentally show that convergence in similar systems,
but without referrals, can be improved when tolerating im-
precision [8]. Assuming tolerating imprecision is equivalent
to claiming convergence when a distribution with a small
non-zero entropy is obtained, and given the fact that the
system quickly reaches Zone II(b), ‘convergence’ can be sig-
nificantly expedited by ‘tolerating imprecision’.

Though iterations to convergence for NR (see Table 1)
appear roughly equivalent in Zones I and II, e.g., when
N = 200 and N = 10 respectively, the satisfaction levels of
individual agents are fundamentally different. For N = 200,
corresponding to Zone II, almost the entire community is
in a satisficing state, i.e., entropy is low for a significant
portion of the run. Exploration of few agents needing to
improve satisfaction does not destabilize the system. On
the contrary, for N = 10, corresponding to Zone I, most
agents are unsatisfied and their explorations of different ser-
vice providers, to improve their own satisfaction levels, hurt
the entire society, thus delaying convergence.

The reason of the better performances of RT when N∗ ≤
N is because, in Zone II(b), the exploration requirement
of the few unsatisfied agents looking for better providers is
partially reduced to by referrals. As a result, unsatisfied
agents need less time to find satisfactory providers.

It appears that RT and RD face unique convergence for
small number of providers. This is actually a problem of
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Figure 2: Kd
move and S(Dd) for NR (left) and RT (right) for N=40.

scale-up with the number of agents, which is isomorphic to
decreasing the number of providers keeping the number of
agents constant. As illustrated in Figures 2(b) and 2(a),
Kmove is too high for RT whereas NR manages to limit that
number. RT cannot stabilize the system, and this prevents
the system from reaching convergence. We had predicted
that in environments with few providers, agents are more in-
clined to move. Two factors are responsible for less inertia of
RT: the use of referrals and the amount of information avail-
able to a particular agent. Recall our agents do not move if
they do not think they will improve their satisfaction. The
use of referrals augments the probability to move because of
the agents’ trust in the referrer. Besides, by visiting the re-
ferred provider, an agent increases the number of providers
it knows, which makes it more inclined to move in future
iterations. Consequently, in systems with referrals, agents
have more incentive to move leading to more instability.

4.2 Non-uniform provider capacities
We now present, in Table 2, results from experiments

when providers have different capacities. The environment
contains a large number of providers with low capacities
(equal to 2) and few providers with high capacities (equal
to 20). We observe that
• As before, convergence of NR is slower than that of RD
which is slower than that of RT.
• When the number of providers with high capacity is in-
creased, all strategies perform better.

The last observation can be explained by the fact that,
in the beginning, agents have the tendency to spread out
and all providers have almost the same load. Agents need
time to realize that some of them need to move to providers
with high capacity. This exploration time is reduced when
more high-quality providers are present. Besides, with re-
ferral, agents take less time to find high-capacity providers
(shorter size Zone II(b)). Negative side-effect of referrals is
less in this situation as agents using high-capacity providers
can refer them with less risk of their load increasing to the
extent that the referrers satisfaction will drop below their

satisfaction threshold. However, RD performs worse than
RT since agents of the former type mislead each other by
providing wrong estimations of provider quality. Hence, the
resource discovery process (Zone II(b)) is not accelerated
compared to environments where only NR is present.

# providers NR RT RD
with capacity:
20 2

1 90 1059.608 834.137 1028.177
5 50 300.235 229.882 271.725

Table 2: Average number of iterations to reach the
convergence (200 agents).

5. RELATED WORK
Economic approaches often focus on the use of negotiation

to determine acceptable resource trades [1, 6, 9]. Agents
possess sets of resources that they can trade with other
agents. An agent is assumed to use resources it owns. This
contrast with our setting where agents can use any resource
in the system. Negotiation outcomes are evaluated using
two concepts: utilitarianism and egalitarism. The utilitar-
ian concept consists in the maximization of the sum of util-
ities of all agents present in the society. It is regarded as
unfair since it often produces high variability in individual
utilities. In the optimal allocation, an agent may have a high
utility while another one has a very poor one. The egalitar-
ian concept tries to maximize the utility of the agent with
the lowest utility. Our concept of Γ-acceptable distribution
can be related to this latter concept. A state is regarded as
acceptable if every agent is ensured to receive a minimum
acceptable satisfaction.

Referral systems have recently received increasing atten-
tion among multiagent researchers. In [19], Yu and Singh
study a referral system when an agent helps a human user
find relevant expertise and protect him/her from too many

352



irrelevant requests. The agent has to learn both its associ-
ated user’s and others’ expertise. Interactions and chains of
referrals are used to update other’s expertise. When mod-
ifying them the sociability of peer agents is used to favor
reciprocative agents. Sen & Sajja have studied the use of
referrals to locate service providers when an agent first en-
ters a new community with no prior knowledge of the quality
of service providers or the reliability of the referrers [11, 12].
In those previous works, peers have a short term cost of pro-
cessing the referral request, which can be negligible in most
domains. In our setting, referrals have a long term cost as
the asking agents may use the referred provider in the fu-
ture and also refer it to others and hence possibly reduce
the performance of that provider. Thus, chains of referrals
may result in a consistent decrease in the helping agent’s
received satisfactions.

Coordination is a key issue in multiagent systems. Sen,
Arora, and Roychowdhury [10] show that information can
negatively impact agent coordination to find balanced distri-
bution among resources. They allow agents to move to pro-
viders only in the neighborhood (called window) of the one
they are currently using. They achieve perfect coordination
faster when the window size decreases. Using a probabilistic
analysis, they demonstrate agents are much more inclined to
move from an overcrowded provider when the window size
is high and the opposite when the size is low. Besides, an
under-used provider is likely to become over-used at the next
time step when the size window is high. They conclude that
too much information available to agents lead to oscillating
provider loads. This leads to variable provider performances
and low speed of convergence. Rustogi & Singh [8] study the
influence of inertia for system convergence in the same do-
main. Inertia is an agent’s reluctance to move even when it
believes that it can do better with a different resource choice.
They proved that high inertia speeds up convergence when
knowledge increase but low inertia perform better with little
knowledge.

We choose the domain used by both of these papers to
study the merits and de-merits of providing referrals in sys-
tems where referrals have uncertain, long-term costs. We
believe that a more comprehensive understanding of system
behavior can be obtained by studying the number of simul-
taneously moving agents, Kmove. Our approach provides
more detailed characterization of the system, but is consis-
tent with general conclusions from Rustogi & Singh [8] study
as inertia can be used as a parameter controlling Kmove.
Rustogi & Singh [8] also claim that performance is remark-
ably improved when accepting imprecision. Our analysis in
the last section shows that this happens because, in Zone
II, low entropy is reached quickly, whereas a much larger
number of iterations is needed for perfect coordination. By
tolerating imprecision or declaring convergence when only a
small number of agents are unsatisfied, i.e., when entropy is
low, convergence is significantly accelerated.

6. CONCLUSION AND FUTURE WORK
We have investigated the benefit of referrals to locate ser-

vice providers where referrals may have long-term cost to
the referrers by increasing the load and thereby decreasing
performance of their preferred service providers. But refer-
rals also help locate providers that can improve satisfaction
of the recipient agents. The research question is when and
how does this cost-benefit tradeoff improve or harm conver-

gence rates to satisfactory distributions. Interestingly, sys-
tems without referrals appear to be more robust in the sense
they have satisfactory or reasonable performance even for
extremely small number of providers, i.e., for more challeng-
ing environments. Referrals, however, do facilitate conver-
gence when there are a significant number of providers. De-
ceitful referrers, unfortunately, can slow convergence. This
can be remedied if recipients learn the truthfulness of the
referrers.

We present the relation between system entropy and num-
ber of concurrently moving agents as a key characteristic un-
derlying convergence rates. The latter number is governed
both by agent inertia and by the number of providers in envi-
ronments with uniform providers. We identify the existence
of two zones where the agent satisfaction levels are notice-
ably distinct. In one zone, with large number of providers,
convergence speed is acceptable and consistent obtained sat-
isfactions to the entire society even before convergence. In
the other zone, with few providers, slow convergence is ob-
served with highly variable individual satisfactions.

A key observation from our analysis is that agent explo-
ration should be limited to improve convergence rate. We
plan to design an algorithm allowing agents to adjust their
exploration rate given their perception of the stability of
the system. Another area of study will be to make agents
learn faster by not only evaluating the satisfaction they can
get from providers but also the intrinsic capabilities of the
provider.
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