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Abstract

The complexity of current software applications is over-
whelming users. The need exists for intelligent in-
terface agents to address the problems of increasing
taskload that is overwhelming the human user. Inter-
face agents could help alleviate user taskload by ex-
tracting and analyzing relevant information, and pro-
viding information abstractions of that information,
and providing timely, beneficial assistance to users.
Central to providing assistance to a user is the issue
of correctly determining the user’s intent. The Clavin
project is to build an intelligent natural language query
information management system. Clavin must main-
tain a dynamic user model of the relevant concepts
in the user inquiries as they relate to the information
sources. The primary goal of Clavin is to autonomously
react to changes in user intent as well as the informa-
tion sources, by dynamically constructing the appro-
priate queries relative to the changes identified. In this
paper, we discuss the problems and issues that arise in
achieving user-intent ascription through dynamic user
model construction with Bayesian networks.

Introduction

The goal of interface or “personal assistant” agents is to
reduce information overload by collaborating with the
user and performing tasks on the users’ behalf (Maes
1994). Examples of interface agents include office assis-
tance agents, such as e-mail, scheduling, and financial
portfolio management agents (Maes 1994; Sycara et al.
1996; Boone 1998); tutor and coach agents (Chin 1991;
Conati et al. 1997); and character-based assistants for
word processors, spreadsheets, and presentation soft-
ware (Horvitz 1997; Horvitz et al. 1998). Unfortu-
nately, most of these agents have either been pedagog-
ical or narrowly focused.

Reducing user task load involves providing intelligent
assistance to the user. Providing intelligent assistance
and performing tasks on the user’s behalf requires an
understanding of the goals the user is performing, the
motivation for pursuing those goals, and the actions
that can be taken to achieve those goals. The term
user intent denotes the actions a user intends to per-
form in pursuit of his/her goal(s). The term user intent
ascription is the attribution of actions to the goal(s) a

user will pursue. That is, user intent ascription is the
process of determining which actions are attributable to
a specific goal or goals. Therefore, for an interface agent
to be able to assist the user in pursuing those goals, the
agent must be capable of ascribing user intent to offer
timely, beneficial assistance. An accurate user model
is considered necessary for effective ascription of user
intent.

User modeling is concerned with how to represent
the user’s knowledge and interaction within a system to
adapt the system to the needs of the user. The benefit
of utilizing a dynamic user model within a system is to
allow that system to adapt over time to a specific user’s
preferences, work flow, goals, disabilities, etc. To realize
this benefit, the user model must effectively represent
the user’s knowledge and intent within the system to
accurately predict how to adapt the system.

The Clavin project is to build an intelligent natu-
ral language query information management system.
Clavin must maintain a dynamic user model of the rele-
vant concepts in the user inquiries as they relate to the
information sources. The primary goal of Clavin is to
autonomously react to changes in user intent as well as
the information sources, by dynamically constructing
the appropriate queries relative to the changes identi-
fied. In this paper, we discuss the problems and issues
that arise in achieving user-intent ascription through
dynamic user model construction with Bayesian net-
works.

User Intent Ascription — From Goals
to Actions

To ascribe user intent, interface agent designers must
identify the salient characteristics of a domain environ-
ment and specifically determine goals a user is trying
to achieve, the reason and/or cause for pursuing those
goals, and the actions to achieve those goals (Brown et
al. 1998a). This approach is based on the belief that
what a user intends to do in an environment is the re-
sult of environmental events and/or stimuli occurring
in the environment and by the goals they are trying to
obtain as a reaction to the events and stimuli. That
is, the reason why users perform actions is to achieve



goals they pursue as a result of environmental stimuli

(Pestello & Pestello 1991).

The terms task or intentional level describe the com-
ponent of a user model containing knowledge about the
user’s goals (Benyon & Murray 1993). The task level
knowledge is used to infer the goals the user is pursu-
ing. The “failure to recognize the intentions underlying
some user action will result in less satisfactory interac-
tion” is the result of failing to recognize the pursuit of
one goal versus another.

To achieve a goal a user must perform certain ac-
tions. Goals can be composed of multiple actions with
many pre- and post-conditions. Pre-conditions are di-
rectly observable events in the environment. These pre-
conditions cause a user to pursue a goal and/or affect
the goal a user will pursue. Additionally, other factors
affect the goals a user pursues as well as the actions
the user will take to achieve the goal. In particular,
human factors (e.g., skill, work load, expertise, etc.) all
affect the user’s decision to pursue goals and perform
actions in pursuit of goals. Typically, these factors are
not directly observable but they are measurable, either
a priori, such as skill or expertise, or dynamically as the
user interacts with the environment, e.g., work load.

A directed acyclic AND/OR graph shows causality
between the pre-conditions, goals, and actions. For
AND goals, all the actions must be performed to achieve
the goal. For OR goals, only one action is needed to
achieve the goal. Similarly, pre-conditions for a goal
may all have to be present (AND), or one or more may
need to be present (OR). Other possible relationships
can exist. For example, an XOR relationship would rep-
resent the case where only one pre-condition or action
can be “active” for a goal.

There are several advantages to representing users’
intentions in a goal hierarchy, as represented by a di-
rected acyclic AND/OR graph, such as the following:
e Goal abstraction allows one to design and detect

higher level goals, in pursuit of lower level goals.

e Keyhole plan recognition is made easier by explic-
itly enumerating pre- and post-conditions and atomic
actions composing goals (Albrecht et al. 1997;
Waern 1996).

e Natural language explanations of actions based on
prediction of goals can be easily generated from the
structure.

Core Interface Agent Architecture

The Core Interface Agent (CIA) architecture is a multi-
agent system composed of an interface agent and a
collection of correction adaptation agents. The pur-
pose of the architecture is to provide assistance to the
user which is accomplished by maintaining an accurate
model of the user’s interaction with the target system
environment. The user model is used to ascribe the
user’s intent. The task of ascribing user intent is dele-
gated to the interface agent component of the architec-
ture, while continual adaptation of the interface agent’s

user model is a task shared by the interface agent and
the collection of correction adaptation agents.

A user interacts with a target system, typically a
direct manipulation interface. This interaction — the
menus chosen, the buttons pressed, the text typed — as
well as other target system environment stimuli (e.g., a
spelling error, the arrival of a new e-mail message) are
communicated to the CIA architecture as observations.
These observations are used by the interface agent to
infer what a user is doing within the environment and
to ascribe the user’s intent. A keyhole plan recognition
approach is used, where the human is unaware of or
indifferent to the user intent ascription process. Based
on the knowledge of the environment that the interface
agent possesses and the user’s interaction with the en-
vironment, the interface agent determines the goal with
the highest expected utility and offers a suggestion to
the user via the target system. If the interface agent
determines its user model is inaccurate, it begins a bid-
ding process with the correction adaptation agents. The
correction adaptation agents offer “bids” to modify the
interface agent’s user model. The interface agent allows
the correction adaptation agent offering the best bid to
modify the user model.

Each target system observation (environmental stim-
uli or user action) is communicated to the agents via
the KQML message passing API (Mayfield, Labrou, &
Finin 1996). Every observation is stored by the agents’
evaluator in a history stack (i.e., most recent observa-
tion is on the top of the stack). These observations
are used by the agents as evidence in the Bayesian
network-based user model. Evidence may “fade” over
time, essentially allowing the interface agent to “forget”
past observations. The architecture supports (possibly)
unique fading functions for each observation. The types
of fading functions supported include a time-based fad-
ing function (evidence is relevant for a specified time)
and a queue-based fading function (only the N newest
observation are relevant).

The user model is composed of three components:
the Bayesian network user model, a utility model, and
a user profile. The Bayesian network user model cap-
tures the uncertain, causal relationship between the
pre-conditions, goals, and actions. The utility model
contains the utility functions for the attributes (i.e.,
human factors) and the additive multi-attribute util-
ity function combining the other utility functions. The
utility functions capture a user’s utility for having the
interface agent perform an action on the user’s behalf
to achieve a goal. The user profile captures knowl-
edge about the user including background, interests,
and general knowledge about the user that is typi-
cally static. Two user defined thresholds, one for offer-
ing (collaborative) assistance and one for autonomously
performing actions on the user’s behalf to obtain a
user’s goal, determine how/if the interface agent will
offer assistance. This approach is the same as the
one presented by (Maes 1994), except she based her
thresholds on statistical probabilities and the ones in



this research are based on the expected utility func-
tion. The user profile also contains the values of any
static human factors (e.g., skill, spatial memory). The
normalized values of these human factors can be de-
termined off-line and do not change as the user inter-
acts with the target system. Detailed description of
the CIA can be found in (Brown et al. 1998b; 1998a;
Brown, Santos Jr., & Banks 1998).

Clavin

Clavin responds to users’ natural language inquiries by
forming intelligent queries to a database of potentially
dynamic, heterogeneous information sources. Clavin
maintains a dynamic user model of the relevant con-
cepts in the user inquiries as they relate to the informa-
tion sources. The user model allows Clavin to determine
the relevancy of the various concepts in the domain, in
order to properly address user inquiries. Clavin should
be capable of proactively retrieving relevant informa-
tion for the user based on the current inquiries and the
user’s previous history of inquiries.

The Clavin System architecture is shown in Fig-
ure 0.1. The system consists of four main components.
The human language interface (HLI) component is com-
posed of a commercial off-the-shelf voice recognition
system and a natural language (English) parser. The
voice recognition system is responsible for transform-
ing a spoken utterance by the user into a natural lan-
guage sentence. The natural language sentence is then
parsed into an S-expression predicate logic representa-
tion (well-formed formulas) of the user queries by the
natural language parser (NLP) component. The well-
formed formula (wff) query is then passed to the inter-
face agent. (An example of an uttered query, its wif
representation, and the resulting representation in the
user model is shown in Figure 0.2.) Once the interface
agent processes the query (see the discussion below),
the query is passed to the retrieval engine. The engine
parses the query wif and transforms it into a database
query. Heterogeneous, possibly dynamic information
sources are then queried by the retrieval engine. These
information sources are presented to the user as one ho-
mogeneous information source. Results are then passed
back to the interface agent for data visualization of the
resulting query. If no results are returned, the interface
agent can request the HLI to produce another possi-
ble parse (i.e., re-tag the parts of speech and generate
alternative wffs) for the uttered query.

The CIA architecture is responsible for two key func-
tions within the Clavin system: information filtering
and proactive querying. The first occurs as a result of
adding context to the spoken queries. The second oc-
curs as a result of combining various relevant pieces of
previous queries. For example, if the user asks “What
causes Lyme disease?”! the system returns informa-

! As one of our knowledge sources, we currently use the
Unified Medical Language System (UMLS), a library of
widely available medical-related knowledge sources actively
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Fi1G. 0.1. The Clavin System Architecture.

tion about deer tick bites; then the user’s next query
asks “What treats Lyme disease?”, to which the system
replies with information concerning a new Lyme disease
vaccine. At this point, the user model contains infor-
mation about the concepts “Lyme disease,” “tick bite,”
“Lyme disease vaccine,” “causes,” and “treats.” If the
user then makes a inquiry about “what causes cancer?”
the interface agent component can use the CIA architec-
ture to not only retrieve information about the causa-
tion of cancer, but also proactively query the database
about possible treatments for cancer. The proactive
construction of queries is discussed in the next section.

Clavin User Model Construction

To ascribe user intent, interface agent designers must
identify the salient characteristics of a domain environ-
ment and specifically determine goals a user is trying
to achieve, the reason and/or cause for pursuing those
goals, and the actions to achieve those goals. As Fig-
ure 0.2 shows, the user’s inquiry, as represented by the
wif, has a hierarchical structure representation within
the Bayesian user model. The leaves of the graph are
actions and the rest of the nodes are sub-goals, except
for the query node, which is a goal node.

To construct proactive queries based on relevant con-
cepts within the user model, the interface agent uses
the rank ordering feature of the decision-theoretic CTA
architecture. Internally, at each time slice (i.e., obser-
vation), the CIA architecture ranks every node in the
user model. When the user utters a new inquiry, the in-
terface agent and correction adaptation agents receive
notification that a new query has been added to the
user model by the wrapper agent. For the Clavin sys-
tem, a domain-dependent correction adaptation agent
was designed to proactively generate new queries based
on the user’s current inquiry and past inquiries and
concepts seen. Taking the rank ordering of the nodes

compiled by the National Institute of Health.



Fi1G. 0.2. A User Model Representation of the Spoken Query “What causes Lyme Disease?”. The utterance
is transformed to the wff (exists x)(exists y)(isA x Lyme Disease)(isA y Entity)((action causes)(actor y)

(target x)).

for the most recent time slice, this correction adapta-
tion agent performs a traversal over previous queries to
determine which might be candidates for a proactive
query. The agent only selects queries with an expected
utility greater than the user’s autonomous threshold,
and which guarantees that resulting proactive query
will have an expected utility greater than the user’s
autonomous threshold. This approach insures the in-
terface agent will make this query autonomously. After
candidate queries have been selected, the children of
these queries are considered for inclusion in the proac-
tive query. The chosen children are then further pro-
cessed to determine which of their children are pro-
cessed. There are several considerations when gener-
ating the proactive query. If a parent was selected for
the proactive query, at least one child will be, since the
expected utilities are added and normalized for AND
nodes and the maximum expected utility child is se-
lected for OR nodes.

Discussion

In our development and early prototyping of Clavin, a
number of issues have arisen while some predicted issues
never occurred. Here are some of the most relevant
issues to Clavin and interface agents in general:

1. “On-the-Fly” User Model Construction: The
CIA architecture’s decision-theoretic approach offers
a framework with which to determine which sub-
queries are relevant and can be combined to make
proactive queries on behalf of the user. By using

the expected utilities of the various sub-query con-
cepts (e.g., isA(x, dog), color(y, red), action(hit(john,
ball))), the interface agent can combine those sub-
queries with high expected utility. This approach al-
lows the agent to combine concepts in a methodical
fashion. Especially in situations where information is
highly specific (few variables), this procedural-based
user model construction method allows the CIA ar-
chitecture to begin with no domain knowledge and
incrementally construct the user model as the user
interacts with Clavin. This unanticipated side bene-
fit allows designers to mitigate the classic knowledge
acquisition bottleneck problem.

. Feedback: While feedback from the user must be an

integral part of the system for user intent modeling,
the current approach of positing alternative queries
and results to the user seems cumbersome. Is there
a theory or model to better capture the users de-
sires without a potentially lengthy trial and error ap-
proach?

. Agent Autonomy: Since Clavin interacts with

many heterogeneous information sources, some of
them dynamic (e.g., news streams), the interface
agent component of Clavin should be free to au-
tonomously fetch new information, reason over it,
and present updated results to the user. The issue
becomes the following: how much autonomy should
the agent have?

. Dynamic Information Sources Unlike the current

approaches, Clavin is presented with dynamic, possi-
bly massive information sources. Therefore a declar-



ative approach to user model construction is not fea-
sible. The sub-query relevance approach taken in
Clavin offers a useful alternative to the declarative
approach as well as data-centric, statistical learning
approaches.

In conclusion, the Clavin system has attempted to
construct an intelligent natural language query infor-
mation management system. It must deal with the is-
sues of dynamic user modeling and accurate user intent
ascription. Our approach has been to look at the larger
overall information process in order to better appreci-
ate the bigger role interface agents will play in future
information intensive systems.
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