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ABSTRACT
Agents in a team must be in agreement. Unfortunately, they may
come to disagree due to sensing uncertainty, communication fail-
ures, etc. Once a disagreement occurs we should detect the dis-
agreement and diagnose it. Unfortunately, current diagnosis tech-
niques do not scale well with the number of agents, as they have
high communication and computation complexity. We suggest three
techniques to reduce this complexity: (i) reducing the amount of
diagnostic reasoning by sending targeted queries; (ii) using light-
weight behavior recognition to recognize which beliefs of the agents
might be in conflict; and (iii) grouping the agents according to their
role and behavior and then diagnosing the groups based on repre-
sentative agents. We examine these techniques in large-scale teams,
in two domains, and show that combining the techniques produces
a diagnosis process which is highly scalable in both communication
and computation.

1. INTRODUCTION
Agents in a team must be in agreement as to their goals, plans and
at least some of their beliefs [2, 6, 12]. Unfortunately, they may
come to disagree due to sensing differences, ambiguity in sensing,
communication failures, etc. When this occurs, and given that it is
unknown who is correct, a process of diagnosis is needed to deter-
mine the sub-set of beliefs that are at the root of the disagreement.

A diagnosis process monitors the agents in order to identify which
agents are in disagreement and about what they disagree, so that
they can negotiate and argue, to resolve the disagreements [6, 10].
We refer to this kind of diagnosis associal diagnosis, since it fo-
cuses on finding causes forinter-agent failures, i.e., failures to
maintain relationships between agents in a team. Social diagno-
sis stands in contrast tointra-agentdiagnosis, which focuses on
determining the causes for component failures within agents.

Unfortunately, previous social diagnosis methods do not address
large-scale teams, in which both communications and runtime must
be tightly managed. Some reduce communication, at the expense
of exponential run-times [8]. Others rely on fault models and ex-
ceptions (e.g., [7]), which explode combinatorially as the number
of agent relations grow). Previous work on large-scale systems did
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not address social diagnosis, instead focusing on fault detection [9],
non-social diagnosis [5, 11], or coordination [4].

We seek to enable social diagnosis in large-scale teams of behavior-
based agents. We first develop techniques which use communica-
tions earlier in the diagnosis process (compared to previous work),
in an attempt to stave off both the run-time associated with gen-
eration of diagnostic hypotheses, as well as later communications.
These techniques include: (i) using initial queries to alleviate diag-
nostic reasoning(behavior querying); (ii) using communications in
light-weight behavior recognition to focus on relevant beliefs

These “communicate early” techniques enable a third method
(grouping) in which the diagnosed agents are divided into groups
based on their selected behavior and their role, such that all mem-
bers of a group are in agreement, and at least one disagreement
exists between any two groups. Then, only representative agents of
each group are diagnosed, and the results used for others in their
group.

We empirically examine these techniques in two domains through
hundreds of tests, measuring number of messages, and reasoning
runtime. We find that behavior querying reduces both runtime and
communications. However, the shared beliefs technique does not
scale well. Moreover, when combined, these techniques do not
reduce communications nor runtime. Surprisingly, however, the
grouping method (which is enabled by this disappointing combina-
tion), results in a diagnosis process which is highly scalable in both
communication and computation.

2. RELATED WORK
Frohlich et al. [5] and Roos et al. [11] present diagnosis methods
in distributed systems, in which a spatially distributed system is
divided into regions, each under the responsibility of a diagnosing
agent. However, neither work has addressed social diagnosis, nor
disagreements.

Horling [7] uses a causal graph-based model of pre-defined fail-
ures and diagnoses to detect and respond to multi-agent failures.
When a fault is detected, it causes activation of diagnosis results
as appropriate. This approach may face difficulties in large teams,
since the number of possible social faults can grow combinatorially
large.

Kalech and Kaminka [8] focus on diagnosis of disagreements
between agents. They show that one can reduce communications
by centralizing the diagnosis, so all the agents may send their infor-
mation to a single pre-defined agent who compares between these
beliefs. Moreover, they show that further reductions in communica-
tions, based on using inference of other agents beliefs, is exponen-
tial in run time. However, in teams where the number of agents is
scaled-up, such computation and communication is unacceptable.

A related area of work deals with failure detection, rather than
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diagnosis. Kaminka and Bowling [9] address large-scale teams,
and their detection capabilities can complement ours, by triggering
the diagnosis methods we present below once a failure has been
detected. They show that only specific key agents in a team must be
monitored to detect failures, similarly to our use of representative
agents for diagnosis (in the grouping method).

3. SOCIAL DIAGNOSIS BASICS
We focus on teams of behavior-based agents, since the control pro-
cess of such agents is relatively simple to model, and we can there-
fore focus on the core communications and computational require-
ments of the diagnosis. A behavior is a software module that con-
trols the actions of the agent. The behavior has preconditions and
termination conditions, represented as logical predicates. Once the
preconditions are satisfied by the agent, the agent may select the be-
havior for execution. Once the termination conditions are satisfied,
execution stops.

Each agent has a decomposition hierarchy of behaviors, arranged
from a general behavior at the top level to specific behaviors at
the lower levels. The agent is controlled by a root-to-leaf path of
behaviors (hereinafterbehavior path). Figure 1 shows a hierarchy.
Each letter represents a behavior. An agent will select the behavior
path (A,B,C) if their preconditions are satisfied.

 
C F 

B 

A 

E D 

Figure 1: Behavior hierarchy of a single agent

The designer of the agents marks behaviors whose execution
should be coordinated, i.e. all the agents should select these be-
haviors at the same time. We refer to these behaviors as ”team
behaviors” (the boxed behaviors in Figure 1). For instance, for a
team of soccer-playing robots, the designer may declare the team
behaviors to beattackanddefend, where a precondition of attack
is that one of the robots in the team gets the ball. Ideally, all the
robots select the ”attack” team behavior at the same time. This
is typically achieved through a teamwork engine such as STEAM
[12]. Each agent may select individually between non-team behav-
iors (not boxed in Figure 1).

Disagreement between team-members is manifested by selection
of different team behaviors by different agents at the same time, for
example due to sensor faults. In Figure 1 a disagreement will occur
if agentX selects behavior path(A, B, C) while agentY selects
(A, E, C), since they differ in team behaviors (B andE). This can
happen, for instance, if a precondition forB has been sensed as
true by one agent, but not true by the other, e.g., due to physical
differences in the location of the agents.

When a disagreement occurs, it is not immediately known which
agent is correct, and thus it is impossible to use a standard model-
based diagnosis approach [3] and compare each agent to a model
known as correct. Instead, the social diagnosis process identifies
the disagreeing agents by comparing their team behaviors, and iden-
tifies the causes for their different selections (where the cause is a
differences in their beliefs). There are two phases [8]: (i) selecting
who will carry out the diagnosis; and (ii) having the selected agents
generate and disambiguate diagnosis hypotheses. It was previously
shown in [8] that centralizing the diagnosis process is better than

distributing it in terms of communication. So, in this paper a single
diagnosing agent will be selected.

To carry out the diagnosis the agent must identify the beliefs of
the team members, and then determine conflicting beliefs which
account for the disagreement. Previous work discussed two algo-
rithms [8]: (i) reporting and (ii) querying. In thereporting algo-
rithm all teammates communicate their beliefs to the diagnosing
agent who compares them and finds the contradictions. This algo-
rithm requires runtime that is polynomial in the number of agents.
In order to reduce communications, the diagnosing agent may use
thequerying algorithm to infer teammates’ beliefs with fewer re-
quired communications. Querying proceeds in three stages (Fig-
ure 2). First, the diagnoser observes its peers and uses a behavior
recognition process (see below) to identify their possibly-selected
behavior paths, based on their observed actions. Then, based on the
hypothesized behavior paths it further hypothesizes the beliefs held
by the teammates (which led them to select these behavior paths, by
enabling sets of preconditions and termination conditions). Finally,
it queries the diagnosed agents as needed to disambiguate between
these belief hypotheses. Once it knows about the relevant beliefs of
each agent, it compares these beliefs to detect contradictory beliefs
which explain the disagreement in behavior selection. This process
reduces communications, but can suffer from exponential runtime.

The querying algorithm serves as the basis for our work, and so
we describe it in detail. The first phase of querying begins withbe-
havior recognition. The diagnosing agent finds the behaviors that
are associated with the observed actions of the diagnosed agents (a
process with linear complexity in the number of behaviors, for each
agent). This is done by maintaining behavior hierarchies for the
other agents, and tagging all the behavior-paths that contain behav-
iors associated with observed actions. These tagged behavior-paths
are used as hypotheses for the behavior-path actually selected by
the observed agent.

For each one of the behavior-path hypotheses, the diagnosing
agent then hypothesizes about the beliefs that may account for it,
a process known asbelief recognition. These beliefs are those
associated with the selection of the behavior over others (e.g., the
behavior’s preconditions and others’ termination conditions). This
process is exponential in the number of beliefs since we compute
all the combinations of the possible belief values. For instance, if
a pre-condition of an hypothesized behavior isp ∨ q, three belief
hypotheses exist: (i)p∧q (ii)p∧¬q (iii) ¬p∧q. Although techniques
such as OBDD [1] can alleviate the computation, it would still be
exponential in the worst case.

Once the belief hypotheses are known, the agent can send tar-
geted queries to specific agents in order to disambiguate the belief
hypotheses. The same process is executed for each one of the ob-
served agents.

 

Observation 

Behavior hypotheses 

Disambiguate by queries 

Belief hypotheses 

Behavior recognition 
O(#behaviors) 

Belief recognition 

O(2
#beliefs

) 

Querying 
O(#beliefs) 

Comparison between agents’ beliefs O(#agents2) 

Figure 2: Querying process for a single agent
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The querying algorithm is ill-suited for large-scale teams, mainly
due to the exponential nature of its belief recognition component.
In addition, the complexity of the belief comparison process (in
both reporting and querying) is polynomial in the number of agents
and beliefs, and is therefore problematic in large-scale teams. Fi-
nally, although querying may reduce the communications (com-
pared to reporting), in the worst case, the communication complex-
ity of both algorithms is equal.

4. SCALING DIAGNOSIS METHODS
We suggest three methods that tackle the runtime and communica-
tion complexities of querying. Each method tackles the complexity
of a particular factor in the complexity of querying: the number
of behaviors, the number of beliefs, and the number of agents: (i)
behavior querying eliminates the behavior recognition process by
querying about the selected behavior path; (ii)shared beliefslimits
the belief recognition process by inferring only the propositions of
the beliefs, not their value; and (iii)grouping reduces the number
of diagnosed agents by grouping together agents along disagree-
ment lines, and selecting representative agents for diagnosis.

4.1 Behavior Querying
Generally a behavior is associated with several beliefs through its
preconditions and termination conditions. Thus, each behavior path
hypothesis may generate several belief hypotheses as previously
described. Therefore, we expect the number of belief hypotheses
to be greater than the number of behavior path hypotheses.

We can eliminate the uncertainty in the behavior recognition pro-
cess by disambiguating the observed agent’s behavior path using
communication, instead of inferring all its behavior path hypothe-
ses. This goal is achieved by committing early in the diagnosis pro-
cess to using communications, querying the observed agent about
its behavior path. Once the diagnosing agent knows the behavior
path of the monitored agent, it continues to build the belief hy-
potheses that are associated only with that behavior path. The ad-
vantage of this method is that by a single query about the behavior
path of the observed agent, it eliminates all the queries about the
belief hypotheses associated with other (incorrect) behavior path
hypotheses.

We predict an improvement in term of communications, since
we now expect to see only one message from each observed agent
independently of the number of behavior path hypotheses. Also,
we predict an improvement in terms of runtime since the behavior
querying method eliminates the belief hypotheses computation of
all the behavior path hypotheses except for the correct one. So in-
stead of the linear complexity of behavior recognition (in the num-
ber of behaviors in the behavior hierarchy), the number of behav-
iors has no effect at all, and the resulting complexity isO(1).

4.2 Shared Beliefs
The main factor that causes a high runtime of the querying algo-
rithm is the use of belief recognition process. For each diagnosed
agent, runtime for this process growsexponentiallyin the num-
ber of beliefs associated with hypothesized recognized behavior
paths. Even if the number of behavior path hypotheses is one, be-
lief recognition will typically have multiple beliefs associated with
it, and thus result in an exponential number of belief hypotheses.

We present a light-weight belief recognition technique whose
complexity growslinearly with the number of beliefs. The key
to this technique is to infer only the propositions associated with a
belief, without hypothesizing about its value. In other words, the
key is to infer that an agent has beliefs aboutp, without inferring
what these beliefs are (p or ¬p). The diagnosing agent uses this

technique to infer, for each agent, what propositions it holds. Then,
for each pair of agents it queries for the values of propositions that
are shared by the agent, and may thus be in conflict.

For instance, assume the beliefs of agentA consider proposi-
tions p andq while those of agentB considerp andr. p is the
only proposition shared by agentA and agentB. To determine
whetherA andB disagree, the diagnosing agent need only send
queries about the value ofp to agentsA andB, since it is the only
proposition relevant to both. For instance, a possible diagnosis is
that agentA believesp while agentB believes¬p.

Using this method, we expect that communications will grow
with the number of agents, relative to the querying algorithm since
in teams we expect that most of the beliefs will be shared beliefs, so
most of them are suspected. But, we expect to reduce the runtime
complexity significantly, since instead of inferring all the exponen-
tial number of belief hypotheses, we use a process that is linear in
the number of beliefs.

4.3 Grouping
Regardless of how knowledge of the beliefs of teammates is in-
ferred, the diagnosing agent must compare between the beliefs of
the teammates after inferring those beliefs. This comparison is
polynomial in the number of agents and in the number of beliefs.
However, in a large-scale team, runtime may be too high in prac-
tice.

The grouping method abstracts the observed agents, grouping to-
gether agents that are in a similar state. It then uses a single agent
from each group as a representative for all agents in its group. To
determine the diagnosis, it only compares the beliefs of these rep-
resentative agents, thus significantly reducing the number of com-
parisons.

The process is based on the assumption that two or more agents
that have both the same role in the team and the same behavior path
will have the same beliefs, at least with respect to their selection of
role and behavior path. Based on this assumption only representa-
tive agents of each role and behavior path must be diagnosed.

The grouping method thus relies on behavior querying (Section
4.1) and shared beliefs (Section 4.2). To determine the different
role/behavior path combinations, the diagnosing agent first disam-
biguates the behavior path of each monitored agent using the be-
havior querying process. It then divides the team to groups based
on their roles and behavior paths. This essentially divides the team
along disagreement lines. It continues with the diagnosis process
only for representative agents of each group (hereinafter:repre-
sentative agents), either by querying algorithm or by shared belief
methods. Finally, it uses the results of the diagnosis for the remain-
ing members of the groups.

We predict that this process will reduce both the number of mes-
sages as well as the runtime. The diagnosis process would involve
a significantly lower number of agents, as only the representative
agents of the groups (see the next section for an analysis of the
maximum number of groups possible given a set of roles and be-
haviors). Communications will still grow in the number of agents,
but slowly, since the diagnosing agent has to disambiguate the be-
havior path of the agents bybehavior queryingin order to divide
the team to groups.

A potential disadvantage of this method lies with its assumption
that agents in the same group will have the same beliefs, an as-
sumption which may not always be correct. For instance, if the
termination conditions of behaviorZ are:p ∨ q then agentA may
terminate this behavior because it believes thatp is true (q is false),
while agentB which has the same role asA, may terminate the
same behavior because it believes thatq is true (andp is false). So,
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both of the agents terminate the same behavior and may select the
same behavior although their beliefs are not the same. However,
we believe that this case is very rare.

5. EVALUATION AND DISCUSSION
This section evaluates the scaling techniques we presented and draws
lessons about their effects on computation and communication com-
plexity. We compare several methods:

1. behavior: The diagnosing agent uses only behavior query-
ing (Section 4.1). Once the behavior path of each monitored
agent is known, the diagnosing agent continues to diagnose
using the remaining phases of the querying algorithm.

2. belief: The diagnosing agent uses the shared beliefs method
(Section 4.2) to generate belief hypotheses.

3. behavior+belief: This method combines the above methods.
The diagnosing agent uses behavior querying to determine
the behavior path of the observed agent, and then contin-
ues to diagnose the disagreements using the shared beliefs
method.

4. grouping: The last method adds the grouping technique (Sec-
tion 4.3) to the behavior+belief combination. Once the be-
havior path of each monitored agent is known using behav-
ior querying, it divides the team to groups according to their
role and behavior path, and continues using shared beliefs
method against the representative agents of the groups.

We compare these methods to the original querying algorithm and
to the reporting method, which relies on complete communication
with no inference other than for the comparison step.

5.1 A Real-World Domain
It would be useful to evaluate the techniques on a real-world large-
scale multi-agent system, in order to determine their potential im-
pact on realistic problems. The domain we chose was ModSAF, a
virtual battlefield environment containing teams of synthetic heli-
copter pilots (described and used in prior work on social diagnosis
[8]). We recreated the agents’ behavior hierarchy in this domain,
and determined their behavior in large-scale settings by simulating
disagreements in teams much larger than originally described.

We performed experiments in which we varied the number of
synthetic pilots from 2 to 150 (in jumps of 4). For each team size
(n agents), we varied the selected behavior path of each agent, and
the role of the agents (two roles,scoutsandattackers). We ran three
sets tests: (1) one attacker andn − 1 scouts; (2)n − 1 attackers
and one scout; (3)n/2 attackers andn/2 scouts. Overall, for every
n agents, we tested close to 60 failure cases, varying the behavior
paths (4 options) selected by the agents. For each single test we
measured the number of messages sent and the runtime by each
one of the diagnosis methods.

Figure 3(a) summarizes the results of these experiments. It com-
pares the different diagnosis methods in terms of the average num-
ber of belief messages they utilize. TheX axis shows the number
of agents in the diagnosed team and theY axis presents the number
of messages. Each data point is an average over approximately 60
trials.

We can see that the growth of the shared beliefs method (belief)
is very similar to that of the reporting algorithm (reporting). We
believe that this is because in teams, the behavior paths selected by
different agents refer to the same propositions, to a large degree.
Thus the number of shared beliefs (that are then communicated)
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Figure 3: ModSAF

is in fact very close to the total number of beliefs (which are all
communicated in the reporting method).

The behavior querying method (behavior) shows limited improve-
ment relative to the querying algorithm (querying) graph. We be-
lieve this is because in the ModSAF domain there are only few pos-
sibilities of behavior path hypotheses and belief hypotheses, and
as mentioned above (section 4.1) the benefit of this method is in
the disambiguation of a high number of behavior path hypotheses
and/or belief hypotheses by a single query.

The grouping method is better than the querying algorithm as
shown in Figure 3(a), since the diagnosis communication is done
only against the representative agents of the groups. Although the
number of the representative agents is fixed through the tests, com-
munication depends linearly on the number of agents since each
added agent is queried about its behavior path. In an application
with a high number of behavior path hypotheses and/or belief hy-
potheses we predict a significant growth in the querying graph in
contrast to the grouping graph which will remain the same (since
the communication growth is affected only by the queries that dis-
ambiguate the agents’ behavior path).

Figure 3(b) presents the average runtime (in CPU milliseconds)
of the different methods. The runtime of each test was taken as the
maximum of any of the agents in the test. Surprisingly, the shared
belief (belief) method grows much faster than querying. The reason
for this is that the shared beliefs method compares all the beliefs
that are associated with all of the behavior path hypotheses of all
the agents,beforedisambiguating the beliefs’ values. This is done
to determine what propositions are possibly shared between agents,
and may thus be in conflict. On the other hand, in the querying
algorithm, the comparisons are done only between the beliefs of
the agentsafter they already have been disambiguated, so only the
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actual beliefs of the agents are compared (although the inference
preceding the querying is exponential in the number of beliefs).

The combination of shared belief and behavior querying meth-
ods (behavior+belief) shows a slight improvement with respect to
shared belief alone (belief), since the comparisons are now done
between the beliefs that are associated with only behavior path hy-
pothesis of the agents (instead of all the behavior path hypotheses).
However, the number of comparisons is still much greater than the
number of comparisons in the querying algorithm, since all the hy-
pothesized beliefs (of the single behavior path) are compared be-
fore disambiguating their value, while in querying algorithm the
diagnosing agent compares the actual beliefs (after they have been
disambiguated).

On the other hand, as expected, the behavior querying method
(behavior) improves the runtime relative to the querying algorithm,
since it saves the belief recognition of all the beliefs that are asso-
ciated with the behavior path hypotheses that have not been disam-
biguated as the correct one. However, it is still polynomial in the
number of agents, since agents’ beliefs are compared.

Undoubtedly, the significant runtime improvement is in the group-
ing method, since it reduces the complexity from polynomial to
linear, as shown in Figure 3(b). The reason is that the number of
representative agents is fixed (the product of the number of behav-
ior hypotheses and the number of agents’ roles), so the number
of comparisons between their beliefs is fixed too. This result was
surprising given the reliance of grouping on thebehavior+belief
combinations, which did not do well.

The conclusion we draw from these figures is that while in gen-
eral runtime grows polynomially in the number of agents (because
of the comparisons), the grouping method reduces the complexity
to a slow linear growth due to the fixed number of comparisons.
In addition, the reduced number of comparisons causes a reduction
in the number of messages. On the other hand, it seems according
to the figures that the other two methods, behavior querying and
shared beliefs, have no contribution to reduce either the runtime or
the number of messages.

5.2 Simulated Domain
The conclusions in the former section lead us to two questions:
First, to what degree do the results of the grouping method de-
pend on the characteristics of the ModSAF domain—low number
of agent roles (two) and behavior paths (four)? And second, are
there benefits to behavior querying and the shared beliefs methods?

In order to address these questions we examine the diagnosis
methods while varying parameters such as roles and behaviors. To
do this, we created a domain called TEST, in which we vary (1) the
number of agents, (2) the number of roles, (3) the number of be-
havior path hypotheses and (4) the number of beliefs per behavior.

Grouping Benefits. A key feature of the grouping method is
that the number of representative agents is bounded from above, by
the minimum of (i) the number of agents in the team, and (ii) the
number of groups. Since groups are distinguished during diagnosis
based on the combination of roles and selected behaviors, the num-
ber of groups, for any disagreement, cannot exceed the product of
the number of roles and number of behavior paths in the behavior
hierarchy.

Figures 4(a) and 4(b) show the results from experiments with
this feature. In these experiments, we fixed the number of roles
and the number of behavior-paths in the behavior hierarchy at six
each. Since groups are distinguished based on role-behavior com-
bination, the maximal number of groups is 36. We then ran the
diagnosis methods in teams of 6–150 agents, where for each team
size ofn agents, we tested six disagreements. Each such disagree-

ment was maximal (i.e., worst case), in the sense that every agent
tried to select behaviors and roles different from its peers. For in-
stance, for twelve agents, six roles are divided equally between the
agents, and for each two agents that have the same role, they select
different behavior paths. Overall, each data point in the figures is
an average over these six trials.
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Figure 4: TEST: diagnosing maximal disagreements

Figure 4(a) shows the number of messages of the grouping method
compared with querying and reporting. We can see that at 36 agents
the linear graph of the grouping method changes its angle and grows
much slower. The same phenomenon occurs in Figure 4(b), that
shows average run-time in these experiments. The graph is poly-
nomial as long as the number of agents is smaller than 36, then the
graph becomes approximately linear since this number is bounded.

We believe that the grouping method is suited for large-scale
teams. As teams grow, the number of groups (and therefore the
number of diagnosed representative agents) is likely to be much
smaller than the total number of agents in the teams, even if we as-
sume that the complexity of the different agents (in terms of roles
and behaviors) would also be higher than in the experiments above.

Let us turn to examining the benefits of the behavior querying
and shared beliefs methods. We believe there are two ways in
which these methods can be beneficial to the diagnosis process:
First, by combining them with the grouping method; and second,
in settings involving a large number of behavior path hypotheses
and number of beliefs.

Combining the Three Methods.The grouping method is com-
posed of two stages: Dividing the agents to groups according to
their role and selected behavior path; and diagnosing the represen-
tative agents of the groups, where the results are assumed to hold
for the other agents. In order to diagnose the representative agents
in the second stage, we can use either the querying algorithm or
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the shared beliefs method. Since the number of diagnosed agents
is relatively small (only representative agents are diagnosed), it is
important to choose a method that works well in small teams. In
the experiments we ran in the previous section (5.1), we preferred
the shared beliefs method.

To evaluate this choice, Figures 5(a) and 5(b) show the commu-
nication and run-time results, respectively, of querying and shared
beliefs, in diagnosing small teams (up to 20 agents, close to 60 tri-
als per data point). We see that the two methods are close in terms
of communications (Figure 5(a)) while the shared beliefs (belief) is
better than the querying in term of runtime (Figure 5(b)). However,
we remind the reader that with larger team sizes, querying runs
faster than shared beliefs, and thus with a large number of groups
generated by the grouping method, it may be preferable to diagnose
representative agents using querying.
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Figure 5: ModSAF

Shared Beliefs Benefits.A second benefit of shared beliefs is
in high number of beliefs and behavior path hypotheses. The com-
plexity of shared beliefs method is linear in the number of beliefs
(Section 4.2). This is in contrast to the querying algorithm that
grows exponentially in the number of beliefs. However, this com-
putational advantage did not manifest itself in the ModSAF do-
main, since in the ModSAF domain tests only the number of agents
is varied where the number of beliefs is fixed and small.

To examine the effects of this difference between shared beliefs
and querying, we compare them in settings involving a larger num-
ber of beliefs, in the TEST domain. In these experiments, the num-
ber of agents is fixed to fifteen, while we vary the number of beliefs
from two to nine per behavior path. Figure 6 summarizes the results
of these experiments (6 trials per data point). TheX axis shows the
number of beliefs per behavior path and theY axis shows the run-
time in CPU milliseconds. Indeed we can see that while the query-
ing graph grows exponentially, the shared beliefs graph grows very
slowly. The implicit conclusion is that in a domain that involves a

high number of beliefs, shared beliefs would be preferable to query-
ing.
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Figure 6: TEST: runtime in varying number of beliefs per be-
havior

Behavior Querying Benefits. The behavior querying method
has a similar benefit, with respect to a high number of behavior path
hypotheses. As we saw in Section 4.1, the number of messages in
the querying method depends on the number of behavior path hy-
potheses. As the number of behavior path hypotheses grows, it
typically multiplies the number of belief hypotheses, and this re-
sults in requiring many more queries to disambiguate the belief hy-
potheses. The intention behind behavior querying was to eliminate
all behavior path hypotheses but one, by directly querying about
the behavior path of the observed agent. In a domain where the po-
tential number of behavior path hypotheses is small (e.g., only two
in the ModSAF domain), the benefit of the behavior querying is not
realized. Therefore, we examine it in the TEST domain. In this set
of experiments, the number of agents is fixed at six, the number of
beliefs per behavior is fixed at three, while the number of behavior
path hypotheses is varied from two to ten.
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Figure 7: TEST: number of messages in varying number of
behavior hypotheses

Figure 7 summarizes the results of the experiments. TheX
axis shows the number of behavior path hypotheses, while theY
axis shows the number of messages. Both the behavior querying
method (behavior) as well as the grouping method (that relies on
the behavior querying) are essentially constant in the number of
sent messages, since once the behavior path of the observed agent
is disambiguated the rest of the process depends on the number of
agents and the number of beliefs, where these parameters are fixed
here. On the other hand, the querying algorithm grows with the
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number of behavior path hypotheses. We conclude that behavior
querying can be very beneficial in domains involving a large num-
ber of behavior path hypotheses.

6. SUMMARY AND FUTURE WORK
A key challenge in scaling up social diagnosis is the need to re-
duce both communication and inference run-time, where normally
a trade-off between them exist [8]. We presented novel techniques
that enable scalability of social diagnosis in the number of agents in
two ways. First, we used communications early in the hypotheses
generation process, to stave off unneeded reasoning, which ulti-
mately leads to unneeded communications. Evaluated empirically,
we showed that this technique offers only limited benefits. How-
ever, it allows grouping the diagnosed agents along disagreement
lines, thus allowing focused diagnosis of only representative agents
from each group. This method proved highly scalable both in com-
munications and in runtime. In the future, we hope to merge social
diagnosis with intra-agent diagnosis methods (e.g. Roos[11]).
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