
A Layered Approach for Modelling
Agent Conversations

Mariusz Nowostawski
Martin Purvis

Stephen Cranefield

The Information Science
Discussion Paper Series

Number 2001/05
March 2001

ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/publications.htm). Any other cor-
respondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/publications.htm
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/

A Layered Approach for Modelling Agent Conversations

Mariusz Nowostawski
Martin Purvis

Stephen Cranefield
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

Phone: (64 3) 479 8318, Fax: (64 3) 479 8311
{mnowostawski,mpurvis,scranefield}@infoscience.otago.ac.nz

ABSTRACT
Although the notion of conversations has been discussed for some
time as a way in which to provide an abstract representation of ex-
tended agent message exchange, there is still no consensus estab-
lished concerning how to use these abstractions effectively. This
paper describes a layered approach based on coloured Petri Nets
that can be used for modelling complex, concurrent conversations
among agents in a multi-agent system. The approach can be used
both to define simple conversation protocols and to define more
complex conversation protocols composed of a number of simpler
conversations. With this method it is possible (a) to capture the con-
current characteristics of a conversation, (b) to capture the state of a
conversation at runtime, and (c) to reuse conversation structures for
the processing of multiple concurrent messages. A prototype im-
plementation of such a system with some examples is described.

Keywords
Agent communication languages, conversations, conversation pro-
tocols, Petri Nets, conversation monitoring and visualising

1. INTRODUCTION
Speech act theory [1,20] has been used as a fundamental mecha-
nism for the modelling of, analysis, and design of agent commu-
nication, but it is still difficult for an agent that receives a message
to understand the sender agent’s intended meaning. Several au-
thors [21,8] have indicated that the basic problem lies in having
agent communication specified in terms of the mental states of the
sending agent, and that the way forward is to work on the specifi-
cation of expanded external protocols that characterise agent con-
versations. However, beyond the initial proposal to use finite state
machines, there has been little agreement on how such protocols
should be specified and how they should be used in modelling and
guiding agent conversations.

We might consider some of the features that a useful agent con-
versation formalism would be expected to have. For example, we

might like such an approach to be able to

• define dialogue patterns (protocols)

• define conversation models

• capture different roles acting in an interaction

• capture the concurrent characteristics of a conversation

• capture the state of a complex conversation during runtime

• direct mapping to the conversation implementation

• graphical representation supporting visualisation, monitor-
ing and debugging

• promote reuse of the conversation structures for independent
concurrent instances of dialogues

In this paper we present a layered architecture that employs a for-
malism based on coloured Petri Nets that can be used for the mod-
elling of complex, concurrent conversations agents. Although col-
oured Petri Nets have previously been proposed for agent conver-
sation modelling [3,4], the approach presented here involves some
additional features that take advantage of some of the unique prop-
erties offered by coloured Petri Nets and thereby is able to provide
most of the desired features listed above. A prototype implemen-
tation of a system supporting predefined conversation protocols as
Petri Net models developed for the New Zealand Distributed Infor-
mation Systems research platform is briefly described at the end of
the paper.

We employ a three-layer architecture for modelling conversations,
which expands on previous approaches that employs two abstrac-
tions of protocolsandconversations, by adding an additional no-
tion, that ofpolicy (or strategy). The policy layer guides the par-
ticipating agents during the course of a conversation and can be
used to deal with conversational components that are directed to
be about the current conversation in progress or that can serve to
reroute the current conversation in a new direction. This new ad-
ditional level helps to keep conversation-specific logic close to the
conversation models, which improves encapsulation and helps con-
versation debugging and the verification process.

In Section2 we briefly introduce formalisms currently being used
for conversation modelling, and in Section3 we propose a mod-
elling architecture and terminology to describe modelling entities.

In Section4 we introduce the concepts of coloured Petri Nets,
which we further expand in Section5 to present a modelling frame-
work based on coloured Petri Nets. In Section6 some simple and
more complex examples are presented, and finally in Section7 a
brief summary and comparison with other formalisms is presented.

2. RELATED WORK
There is reasonably extensive work being done in the field of agent
conversation modelling. The suitability of Petri Nets as a compact
and uniform model has been already proposed [4,?]. For refer-
ence and comparison we have chosen some other traditional solu-
tions based on the Deterministic Finite Automata (DFAs) [2,24,14],
Enhanced Dooley Graphs [18], and extended UML [16,17] for-
malisms.

Deterministic Finite Automata represent the simplest and most straight-
forward modelling formalism used for conversations. They are
suitable for specifying all the states the conversation must go through,
and can be used to check the validity of the designed model. This
approach however suffers from two major shortcomings: it does not
cope well with representing concurrency, and it fails to associate
clearly the message information with the individual participants in
the conversation. Enhanced Dooley Graphs modelling is a tech-
nique based on extensions to Dooley graphs [6] proposed in [18].
It provides not only state information but also information about the
individual participants of the conversation, which is a considerable
improvement over purely DFA-based solutions. Recently a number
of possible approaches based on the Unified Modelling Language
(UML) [15] have been investigated, and a number of possible mod-
elling formalisms have been proposed [16,17]. In contrast with
a purely graph-based solution, they consist of a number of inter-
leaving and complimentary techniques and modelling formalisms,
based on state charts, sequence diagrams, and activity diagrams.

3. AGENT INTERACTIONS MODELLING
Modelling agent interactions is not a trivial task. It is not enough
to have an appropriate modelling formalism with a graphical rep-
resentation and formal semantics supporting the analysis process.
It is important also to identify key aspects of the agent interactions
and to model the interactions on different levels of abstraction and
different levels of details. To improve the modelling process and to
help make the discussion that follows more clear we have defined
(or redefined) three fundamental terms used when discussing agent
interactions:

protocol (interaction or conversation protocol) - the template of
the communicative acts sequence

conversation - an instance of a conversation, a particular sequence
of communicative acts

policy (interaction or conversation policy) - a strategy, guidelines
and constraints guiding a conversation.

We will explain those terms in more detail in the following para-
graphs1.

1Please note that the terminology used by us does not necessary
match the terminology from other publications in the field, where
protocol, policy and conversation are very often used interchange-
ably. In particular the notion of conversation policy from [14] is
equivalent to conversation protocol in our terminology.

Firstly the most important term is acommunicative act. A com-
municative act is a special action type in the speech act theory
[1,20]. It represents a basic building block of the dialogue between
agents, and it has a well-defined semantics independent of the con-
tent of the action. There is ongoing work to define standard col-
lections of communicative acts, and there are currently two major
widely accepted standards, namely Foundation for Intelligent Phys-
ical Agents (FIPA) [11] agent communication language (ACL) [10]
and Knowledge Query and Manipulation Language (KQML) [9].
Both define a set of communicative acts, together with the outer,
transport layer and the inner, content layer of messaging.

From our experiences in building multi-agent systems we have ob-
served that agent conversation modelling can be decomposed into
several separate layers. The first, most basic layer, is aprotocol
layer. A conversation protocolor interaction protocol or just a
protocol is a template of sequences (in our case subnets) of ex-
pected communicative acts organised into roles. This definition is
compatible with the definition of a protocol specified by FIPA as:
“a common pattern of dialogues used to perform some generally
useful task; the protocol is used to facilitate a simplification of the
computational machinery needed to support a given dialogue task
between agents; simply: a dialogue pattern” [10]. A protocol, apart
from identifying roles and sequences of communicative acts, also
specifies relations betweenroles. A role is an identity of a single
sequence of acts executed by a single entity; it is denoted by an
identifier, a name of such a sequence.

On top of that layer another layer is constructed: theconversation
layer. A conversation is a particular instance of a protocol or set
of protocols; it is an ongoing sequence of messages exchanged be-
tween two or more agents. Please note the distinction: a protocol
is just a template or pattern, whereas a conversation is an instance
of a given template or templates. It is possible, conceptually in a
general sense, to have a conversation not be an instance of any par-
ticular template. This definition also complies with the one defined
by FIPA: “an ongoing sequence of communicative acts exchanged
between agents relating to some ongoing topic of discourse” [10].
However, for the sake of argument we have decided to constrain the
term only to valid predefined templates and combinations (com-
positions) of templates, and to consider only conversations as in-
stances of predefined agreed patterns. This excludes conversations
being constructed from arbitrary chosen acts not conforming to a
formal protocol.

The final, third layer is called thepolicy layer. This is the layer
which would, with other approaches, be left to the agent applica-
tion to coordinate and not be included explicitly in the conversation
modelling process. However we feel that it is more appropriate
to treat it as closely related to the conversation layer. A conver-
sation policy is a collection of rules and interaction specifications
that guide a particular path or trajectory in a conversation space.
A policy defines the details concerning the conversation is handled
by interested parties. Eachprotocol defines a space of possible
sequences of communicative acts. Eachconversationfollows one
trajectory from this space. Apolicy guides a particular conversa-
tion.

For example: imagine one protocol defining two roles,buyerand
seller, and a sequence of acts for the buyer:ask (ask a seller for
a particular goods delivery), thenaccept (accept the price and buy
goods) orreject (reject goods, do not buy). And for a seller, the
possible answers to the buyerask action could be:propose (pro-

pose the goods price) thensell when accepted or do nothing when
rejected. This simple specification is aprotocol. Two participants
have to follow aprotocolto form aconversation. One possiblepol-
icy (strategy) for the buyer would be to ask for goods from several
other agents concurrently, and accept the lowest price and reject
all the other proposals. That would dynamically create a relatively
complex conversation involving several selling agents and a single
buying one. A simpler strategy would be toask only one selling
agent, andaccept or reject the proposal given by this agent, then
start over a new conversation by issuing yet anotherask to another
potential seller for a proposal if the first iteration was finished with-
out making a deal.

Policies may be implemented simply by set of rules, or, in more
complex cases, they may have their own complex protocols that
exist and change state in parallel with the immediate context of an
ongoing conversation. Under these more complex circumstances,
there might be a ”policy-level interaction protocol” (another pro-
tocol, but at the policy level). It is under these conditions that
we can benefit from having another modelling layer at the policy
level, above that of the ordinary conversational modelling layer.
The two layers can be joined together by representing them both as
a coloured Petri Net (see Section 5).

Suppose, for example, we have a conventional conversation proto-
col involving two players playing a game of chess in a chess tourna-
ment. There are possible rules for legal moves and legal responding
moves by the opposing players, which would be described by this
conversation protocol. But existing above that level of abstraction
is another level of discourse that can take place during the game.
Suppose one of the players has a question concerning the official
rules of the game and wants to have a ruling made by one of the
tournament judges. Or suppose one of the players at some point
wants to take time out from the game and halt play so that he or
she can drink water or attend to some personal needs. These kinds
of ’interrupt’ or ’exception’ are common to many kinds of interac-
tions and can take place at almost any time. The discourse involved
in these interrupts are usually ”off-topic” from the context of the
immediate conversation, and in fact they are oftenabout the con-
versation that is taking place (such as the chess player who may
accuse his opponent of breaking the conversation protocol rules as-
sociated with playing the game of chess). Since they are likely to
be ”off-topic” and can occur at any moment, it can be tedious to
include these kinds of conversational strands in the given (domain-
specific) conversation protocol. To do so would ”clutter” the visual
simplicity of the original conversation protocol and would lessen
the value in providing a easy-to-comprehend visual modelling rep-
resentation of the interaction. On the other hand, to leave out the
possibility of representing such events is to ignore the possibility of
their occurrence and consequently means that there is a failure to
model the world adequately so that its essentially contingent nature
is recognised. Our solution is to model these kinds of interactions
that can guide, interrupt, or redirect existing conversations by rep-
resenting them as another, parallel modelling layer above that of
the existing conversation layer. This idea was suggested in [7] for
specific types of converation, but we have generalised the notion
and incorporated it into a Petri Net representation.

Thus aconversationis a combination ofprotocolsbeing instanti-
ated and manipulated by a particularpolicy. In Section5 we will
discuss how Petri Nets can be used on all those layers, to specify
protocols, to monitor and analyse conversations, and how one can
construct and use policies within conversations.

4. COLOURED PETRI NETS
Petri Nets provide an appropriate mathematical formalism for de-
scribing distributed, concurrent systems in the same way that finite-
state automata are an appropriate tool for describing sequential sys-
tems. Petri Nets are ordinarily described in terms of a graphical
representation (see for example Figure7), but they have a formal
mathematical description that is independent of any graphical rep-
resentation. The basic (elementary) structure of a Petri Net can be
formally defined by a 5-tuple (P,T,I,O,M0), where:

P – is a set ofplaces,

T – is a set oftransitions,

I and O – are the input and output functions, described asarcs,
that map places to transitions and transitions to places, re-
spectively; and

M0 – themarking, is a vector that characterises the initial state of
the system by indicating the number of tokens in each place
in the net.

In addition to the net structure, there are rules that describe how
transitions fire in order to produce new states of the system. Al-
though there are a number of transition firing rules associated with
different types of Petri Net, they all share the common property of
nondeterminism. If the Petri Net arcs haveweightsassociated with
them, then a Petri Net transition is enabled (and may fire) if:

– for every input place the number of tokens is greater than the
weight associated with the connecting arc and

– every output place the sum of the number of tokens already
existing in the place and the weight associated with the con-
necting arc is equal to or less than the capacity of the output
place.

When a transition does fire:

◦ the tokens in each input place are reduced by a number equal
to its input arc weight and

◦ the tokens in each output place are increased by a number
equal to its output arc weight.

After a transition fires, the Petri Net has a new marking, charac-
terised by a new distribution of tokens in the various places.

Coloured Petri Nets represent an elaboration of ordinary (Place-
Transition, PT-net) Petri Nets and are so-named, because the initial
extension to PT-nets involved the attempt to distinguish individ-
ual tokens of PT-nets by giving them colours [13]. Here, tokens
can be designated to have any abstract data type that can exist in a
programming language. Consequently CP-net tokens can have an
arbitrary degree of complexity, if desired, and their types can be
composites of other simpler types.

Informally, a coloured Petri Net has three basic components:

¦ a net structure of places, transitions, and arcs, which is like
that of PT-nets

¦ a set of data declarations

¦ a set of net inscriptions (arc expressions, guards, and place
initialisations)

The reader will find more detailed information in other publications
[12,19].

Petri Nets are in widespread use in many different aspects of soft-
ware system design, analysis and implementation. The main reason
for the great success of Petri Nets is their graphical representation,
well-defined semantics and mathematical formalism allowing for-
mal analysis and transformations [12]. Petri Nets are successfully
being used in workflow modelling, and many useful workflow pat-
terns have been developed [22,23]. We believe that as much as
Petri Nets are suited for modelling and simulating workflow pro-
cesses, they can be used for modelling, simulating, analysing, mon-
itoring and debugging conversations between agents in multi-agent
systems. There is also substantial work being done in modelling
protocols [5].

5. CONVERSATIONS
To be able to benefit from Petri Net modelling it is necessary to
precisely define the semantics of different elements we are going
to use. In this section we will define all the concepts necessary
to design, analyse, deploy, monitor and debug protocols, conversa-
tions and policies.

Generally, tokens represent messages, arcs represent message pass-
ing and delivery mechanisms, and transitions represent message
processing units. Roles are organized into subnets, and roles are
separated by horizontal dashed lines. Arcs crossing role bound-
aries, i.e. arcs which cross dashed lines represent physical mes-
sage passing actions (the process of sending and receiving a sin-
gle message in the agent system). The arcs within roles are left
up to the implementation and usually, for efficiency purposes, are
implemented as method calls. This is how we have implemented
it. Places represent message containers or intermediate containers,
and usually do not map in the implementation to anything in par-
ticular, unless the Petri Net model is mapped directly to a Petri Net
implementation, as in our case. Then a place is an abstraction of a
message folder, containing processed or being processed messages.

There is always one initiator of a conversation, a role which starts
the conversation by issuing the very first message, and this role
(and only this role) always has theStart place, which enables
the very first transition to fire. All roles have separate dedicated
Terminated places, which collect the tokens when no further mes-
sage processing is scheduled to occur.

A conversation is a whole Petri Net composed of a set of subnets
(i.e. protocols), where at least one role has theStart place (initia-
tor) and is connected to an arbitrary number of other conversation
participants. A conversation state is a current net marking. A con-
versation policy may, in straightforward cases, be encoded via arc
inscriptions and guards inside roles of existing conversations. In
more complicated cases, a conversation policy can be encoded as a
parallel Petri Net that lies above the existing conversation protocol
and represents exceptional, or ”off-topic” conversational elements
that may take place at various times during the ordinary conversa-
tion. See Figure1 for an example of such a policy-level Petri Net.

It is natural to compose more complex conversation models out of

Conversation Level

Policy Level

Figure 1: Coloured Petri Net incorporating conversation and
policy level diagrams

simpler conversations or sets of protocols by connecting appropri-
ate elements by arcs. It is important to note that complex conversa-
tions do not change the semantics of the protocols (subnets).

For consistency, all basic act exchange schemas are defined via pro-
tocols, even if only a single communicative action is executed be-
tween two agents (single act without a response). That means that
all communicative acts defined in an Agent Communication Lan-
guage (ACL) (such as FIPA ACL [11] or KQML [9]) have at least
one protocol defined for them .

6. EXAMPLES
To demonstrate the expressive power of Petri Net based interaction
protocols, we have decided to show some of the examples based
on the FIPA [11] interaction protocols specifications. FIPA has de-
fined a collection of simple interaction protocols, which can be used
in separation or in conjunction with other protocols. We will start
with two very simple ones,inform andrequest. The former is
a simple communicative act for passing a single statement (propo-
sition) from one agent to another, the latter is a simple request for
an execution of an action. Then we will discuss a more complex
example with a simple contract net protocol, which in the final ex-
ample we extend to handle other unspecified cases of interactions
and we demonstrate how to compose complex conversations out of
simpler interaction protocols.

For an informal outline of the protocol, we have chosen a notation
based on FIPA 97 specifications. FIPA [11] used a notation (in its
previous specifications) based on Deterministic Finite Automata,
represented graphically simply as connected boxes. Boxes with
double edges represent communicative actions, which can also be
treated as states; white boxes represent actions performed by ini-
tiators; shaded boxes represent actions performed by other partic-
ipants in the protocol. Connections between boxes can be inter-
preted as transitions. For simplicity we have skipped
not-understood responses, which can be sent in response to vir-
tually any communicative act.

For Petri Net models we use the notation introduced in Section5.
It is important to distinguish interaction protocols, i.e. individual
subnets, from the conversation models. For simplicity and clarity

of the diagrams, only names of places and transitions are presented,
and inscriptions, guards and marking are left unspecified.

6.1 FIPA inform protocol
This is one of the simplest interaction protocols specified by FIPA2.
There are only two participating agents, fixed at the beginning of
the interaction, and the protocol basically consists of a singlein-
form action being executed by one of the participating agents. Fol-
lowing FIPA conventions this interaction protocol can be repre-
sented as a single rectangle, shown on Figure2.

inform
statement

Figure 2: FIPA inform protocol

The same protocol represented as a primitive Petri Net is shown
on Figure3. It is worth noting that the Petri Net model captures
the details of even such a simple interaction, and can be directly
used to implement an application framework to handle this type of
conversation - the developer needs simply to fill out the specific
processing code inside transition actions, and clean up the subnet
when the conversation is finished, i.e. when the token is placed
in the Terminated place. It is possible to reuse the model con-
currently for more than a single inform conversation, and collect
in Terminated places information from the past activities of the
conversation structures.

Process Inform

Inform

Terminated

Terminated

Start

Figure 3: Inform protocol as a Petri Net model

6.2 FIPA request protocol
The FIPA request protocolsimply allows one agent to request an
action to be performed by another agent. The action request can
be rejected or accepted, and once accepted can be finished with a
success or failure. The schematic representation of this protocol is
shown on Figure4.

agreerefuse
reason

inform
Done(action)

failure
reason

inform
action result

request
action

Figure 4: FIPA request protocol

2In fact it is not usually referred to as aprotocol, but following the
conventions introduced in Section3, we will consistently call all
interaction patterns asprotocols, even if they only contain a single
communicative act.

The Petri Net based model of a simple request conversation is drawn
in Figure5. As discussed in Section5 all the arrows (transitions)
crossing the roles boundaries represent message exchange between
two agents (roles). We can call the upper role from the diagram
anemployerand the other role acontractor. The conversation for-
mally specifies where and how the interaction between two inter-
ested parties occur, and what communicative acts are allowed in
particular stages of the conversation.

Process Request

Prepare Request

Process Inform

Process AgreeProcess Refuse
Refuse

Done

Process Done

Terminated

Terminated

Agree

Agree

Start

Figure 5: Petri Net request conversation

It is worth noting that in the Petri Net models it is always possi-
ble to capture the current state of the conversation via taking the
current marking of all the participating subnets. If the request was
successfully accomplished in both of the roles (subnets) there will
be one token in eachTerminated place. In the real application
though, those tokens need to be collected by means of some house-
keeping mechanisms to free memory and release all irrelevant state
information.

6.3 Contract-net protocol
We will use here a modified version of the FIPA contract-net pro-
tocol. In our model the manager wishes a task to be performed by
one or a group of agents according to some arbitrary function which
characterises the task. The manager issues thecall for proposals,
i.e. cfp act, and other interested agents can sendproposals. In
contrast to the original FIPA contract-net protocol, there is no need
to do anything if an agent playing a role of a potential contrac-
tor is not interested in submitting proposals. That means that our
contract-net model from the very beginning relies on the notion of
timeout, i.e. some actions need to be performed in the event of a
lack of enough proposals or even in the case of a complete lack of
proposals.

cfp
action

propose
conditions

reject
reason

accept

failure
reason Done(action)

inform

reason
cancel

Figure 6: Custom contract-net protocol

The proposals are collected by the manager, and then they are re-
jected or accepted. The accepted proposals can be cancelled, ei-
ther, by the manager via acancel action, or by the contractor via a
failure action. In case of cancellation other submitted proposals
can be reconsidered, or a completely new call for proposals can be

issued. The schematic representation in the FIPA notation is pre-
sented on Figure6. The Petri Net model is shown on Figure7. Fol-
lowing FIPA naming conventions we will refer to the contract-net
initiator as amanagerand all other participants ascontractors. In
the Petri Net case, we have drawn an example conversation based
on the contract-net protocol between amanagerand threecontrac-
tors.

Success

CFP

CFP

CFP

Process

ProposalsTimeout
Process proposals

Prepare Proposal

Prepare Proposal

Prepare Proposal Terminate

Terminate

Terminate

Terminate

Accepted

Accepted

Accepted

Process

Process

Process

Failure

Failure

Done

Done

Done

Failure

Prepare CFP

Process
FailureStart

Figure 7: Custom contract-net conversation with three contrac-
tors

It is important to note here that the actual behaviour of the manager
and contractors is not specified by the example net, and this in-
formation is encoded inside arc inscriptions and guards. Consider
two potential strategies, i.e. conversation policies, the manager can
follow during the course of the conversation:

1. wait for the first two proposals, choose the best one, accept
the chosen one and reject the second one, and all other late
proposals. If the chosen proposal fails3, reissue thecfp again
and follow this approach all over again until the task is suc-
cessfully accomplished.

2. wait for the first two proposals, choose the best one, accept
the chosen one, but do not reject the second one, keep col-
lecting the incoming proposals instead. Once the chosen one
is finished successfully, reject all other proposals. If the cho-
sen one fails, choose the next best, and iterate through the
process until successful, or in the case of no more proposals
waiting, reissuecfp.

One can build more complex conversations based on the manager
and contractor roles. It is even possible to combine two or more
protocols into a single conversation model. It is not difficult to
imagine a contract-net protocol to work together withrequest and
inform protocols. Imagine a situation when a contractor is not
really capable of performing the advertised job, but acts on behalf
of one or more agents, which are capable of performing the job. In
such a case, setting up an agreement between a contractor broker
and a real worker can be achieved via therequest and inform
protocols, whereas the other part of the conversation, between the
broker and manager, is done with the unmodified contract-net pro-
tocol.

With the complex interaction schemas it is possible but not desir-
able to reuse the net models and structures for concurrent unrelated

3The proposal fails when the contractor cannot successfully finish
the contract, or if the contractor decided to drop the intention of
finishing the agreed action.

conversations, as the net is already being used in a concurrent fash-
ion by a single concurrent conversation. In such a case the creation
of separate structures for each of the conversation instances is sug-
gested for the sake of simplicity. This approach is undertaken by
our current implementation. However it is worth mentioning that
with coloured Petri Net-based underlying model, it is possible to
use a single net structure even in those complex concurrent cases.
In that case an appropriate additional matching based on conversa-
tion identifiers is necessary inside the arc expressions and transition
code.

7. SUMMARY
We have developed a Petri Net simulator which allows during run-
time the construction of conversations out of simple predefined pro-
tocols, plug-in on-the-fly additional participants, and the specifica-
tion of policies for different roles in a conversation. There is not yet
a fully integrated visualisation module which will enable visualiz-
ing and monitoring progress of the conversation. At the moment
only marking dumps can be used to debug a conversation. The
prototype implementation allows construction of complex concur-
rently progressing conversations. It also allows multiple instances
of different conversations that use the same conversation structures
(reuse concurrently the same conversation structures).

Can model a conversations
composed of single protocol

Can model a conversation
composed of many protocols

of a conversation
Can visualise progress

F
IP

A
 9

7
P

ro
to

co
l

P
et

ri
 N

et

E
n

h
an

ce
d

 D
o

o
le

y
G

ra
p

h

D
et

er
m

in
is

ti
c

S
ta

te
 A

u
to

m
at

o
n

U
M

L
 s

eq
u

en
ce

 d
ia

g
ra

m

Reuse of the runtime structures

Can model a protocol

Can be constructed dynamically

Can distinguish different participants

Maps directly to the implementation

Concurrency supported

Can express a particular policy

Figure 8: Features summary

In Figure8 we present a brief summary of the different features and
their support by different formalisms. We discuss the comparison
below.

Can model a protocol refers to a formalism’s ability to model a
single interaction pattern, i.e. a protocol. All of the discussed for-
malisms can cope with this task well, as this is the primary re-
quirements for the formalism to be useful. The protocol needs to

be split into the initiator and other parties, and in some of the for-
malisms this split is done explicitly promoting reuse (UML, Petri
Nets). In some however it results in a complete separation of roles,
which means the designer ends up with a set of loosely decoupled
partsnot connected with one another (DFAs). This is undesirable,
because the information of individual participants is lost and the
conversation cannot be easily monitored as a whole.

Can model a conversation composed of one protocolrefers to
the ability of expressing a whole conversation model, in the case
when the conversation consists of a single protocol. As in the case
above, all discussed formalisms cope with this task well, as they
are basically used mostly for that purpose. As mentioned before,
some of the formalisms will provide only the state information.

Can model a conversation composed of many protocolsrefers
to the ability of expressing a whole conversation model, in the
case when the conversation consists of more than a single proto-
col. Apart from the simplistic notation of FIPA 97 specification, all
formalisms could be successfully used to plug more than a single
protocol into a complete conversation model.

Can be constructed dynamicallyrefers to the ability of the for-
malism to have a model built dynamically at runtime, i.e. the
model emerges from the progress of the ongoing conversation, and
the formalism can capture some of the aspects of the ongoing con-
versation and can provide some quantitative measurements. Three
formalisms based on different graph-based modelling can gener-
ally cope with this task quite easily (DFAs, Dooley Graphs, Petri
Nets), however extended UML notation provides no support here.
For UML models the roles and interactions need to be known in
advance, and there is only limited support for capturing the conver-
sation model from the ongoing conversation.

Can visualise progress of a conversationrefers to the ability of
the formalism to represent graphically the progress of a known
conversation. Similarly to the previous point, all graph-based mod-
elling techniques are quite useful here, and provide such an ability.
UML also provides tools here to visualise the progress of the on-
going conversation via sequence diagrams, state charts and activity
diagrams. Unlike with graph-based solutions where the progress
can be directly shown on the conversation model, with UML there
is a need for a separate notion of the conversation model, and a sep-
arate notion for the processes within the model. This can be useful
in some cases, however it may introduce an unnecessary level of
complexity in other cases.

Can distinguish between different participantsrefers to the abil-
ity of the model to capture the identity of different participants of a
given conversation. This is only supported fully in Enhanced Doo-
ley graphs and Petri Nets models. We consider this to be a very
important feature for monitoring and debugging a running multi-
agent system.

Can express particular policy refers to the ability of the conver-
sation model to include a particular policy for conversation partici-
pants. Only Petri Net models with the expressive power of inscrip-
tions and guards can cope with this task. With other formalisms
this is left to the agent application layers and is not accessible on
the conversation level as such. We consider this to be a unique and
powerful feature of a proposed conversation modelling approach
based on Petri Nets. We believe this to be an important aspect of
conversations, and the policy logic should be expressed in the con-

versation model.

Concurrency supported refers to the ability to express concur-
rency on the conversation model level. Today, only Petri Net mod-
els are considered to support this feature fully.

Maps directly to the implementation refers to the ability of gen-
erating automatically an implementation supporting protocols and
participants for a given conversation model. UML-based, DFAs,
and Petri Nets models are all suitable and easily mappable into im-
plementation stubs and skeletons which can be generated automat-
ically from the model.

Reuse of the runtime structuresrefers to the ability of concurrent
reuse of the runtime structures by different instances of a given con-
versation. Only in the case of Petri Nets is this available to the agent
programmer, simply by the propagation of different message in-
stances through the different places of the same conversation Petri
Net. In both UML-based and DFAs models it is possible to reuse
the structures, but only in a sequential and synchronised fashion.

To conclude, coloured Petri Nets offer a useful abstraction for use
in modelling complex concurrent interactions driven by discrete
events. As such, they are suited as a modelling formalism for
agent interaction protocols and agent conversations. It has been
shown in this article that apart from the underlying formal math-
ematical model, there are other useful features of the proposed
approach, namely a consistent modelling formalism on all levels
of abstractions: from the protocols and conversation specifications
through the implementation and conversation integration with the
given agent and agent platform, to the conversation monitoring and
debugging. In the proposed modelling approach Petri Net proto-
cols, conversation models and policy models can be used not only
for the specification itself, but can also help to deploy a given con-
versation and ensure the correctness of a particular conversation
implementation. The approach can assist an agent developer to
construct interaction-based behaviour, and keep track of the progress
of concurrently running conversations along with possible changes
in policy level interaction protocols. It can also promote reuse of
conversation structures, and provide a more compact implementa-
tion than alternative solutions.

8. FUTURE WORK
Predefined conversations are enough for some domains and some
problems, but more general models for constructing and sharing
conversation models and protocols need to be addressed. Further
investigation of dynamically constructed conversations out of a col-
lection of simpler predefined conversation protocols has not been
fully investigated so far and it is a direction for possible future re-
search. Such dynamically constructed conversations can grow into
considerably large and complex structures. Management of such
dynamically created and enacted conversation is the issue, which
could potentially benefit from an underlying Petri Net representa-
tion as outlined in the article.

We will continue the development of software tools supporting the
proposed modelling technique, and in particular the development of
a graphical representation and visualizer for debugging and moni-
toring purposes.

9. REFERENCES
[1] J. L. Austin.How to Do Things With Words. Oxford

University Press: Oxford, England, 1962. J. O. Urmson

editor.

[2] J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley.
Kaos: Toward an industrial-strength open agent architecture.
In J. M. Bradshaw, editor,Software Agents. AAAI/MIT
Press, 1998.

[3] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling
agent conversations with colored petri nets, May 1999.

[4] S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using
colored petri nets for conversation modeling, 1999.
Available online at http://www.csee.umbc.edu/∼jklabrou/
publications/ijcai99acl.ps.

[5] M. Diaz. Petri nets based models in the specification and
verification of protocols. InPetri Nets: Applications and
Relationships to other Models of Concurrency, Advances in
Petri Nets, Part III, Lecture Notes in Computer Science,
volume 255. Springer-Verlag, 1987.

[6] R. A. Dooley. Repartee as a graph. InAppendix B in
Longacre 76, pages 348–358. 1976.

[7] R. Elio and A. Haddadi. On abstract task models and
conversation policies. InWorking Notes of the Workshop on
Specifying and Implementing Conversation Policies, pages
89–98, May 1999.

[8] J. Ferber.Multi-Agent Systems - An Introduction to
Distributed Artificial Intelligence. Addison-Wesley, 1999.

[9] T. Finin, Y. Labrou, and J. Mayfield. Kqml as an agent
communication language In Software Agents, 1997.
Available at
http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf.

[10] FIPA. FIPA Spec 2 - 1999. Agent Communication Language.
Draft, Version 0.1,Available at FIPA http://www.fipa.org/
specifications/index.html, 16 April 1999.

[11] FIPA. FIPA specification.FIPA specifications online at
http://www.fipa.org/specifications/index.html, 2000.

[12] K. Jensen.Coloured Petri Nets - Basic Concepts, Analysis
Methods and Practical Use, volume 1: Basic Concepts.
Springer-Verlag, Berlin, 1992.

[13] J. l. Peterson.Petri Net Theory and the Modelling Systems.
Prentice-Hall, 1981.

[14] J. B. Mark Greaves, Heather Holmback. What is a
conversation policy? Mathematics and Computing
Technology The Boeing Company P.O. Box 3707.

[15] Object Management Group. OMG Unified Modeling
Language Specification, version 1.3. Available at OMG:
ftp://ftp.omg.org/pub/docs/ad/99-06-09.pdf, June 1999.

[16] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for
agents. In E. Y. Gerd Wagner, Yves Lesperance, editor,
Proceedings of the Agent-Oriented Information Systems
Workshop at the 17th National conference on Artificial
Intelligence, pages 3–17, 2000.Available online at http://
www.jamesodell.com/ExtendingUML.pdf.

[17] J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent
interaction protocols in UML. In P. Ciancarini and
M. Wooldridge, editors,Proceedings of the First
International Workshop on Agent-Oriented Software
Engineering 2000. Springer-Verlag, 2000.Available online
at http://www.jamesodell.com/RepAgent Protocols.pdf.

[18] H. V. D. Parunak. Visualizing agent conversations: Using
Enhanced Dooley graphs for agent design and analysis. In
Proceedings of the Second International conference on
Multi-Agent Systems (ICMAS’96), 1996.Available online at
http://www.erim.org/∼vparunak/dooldesn.pdf.

[19] W. Reisig. Petri nets. an introduction. InEATCS Monographs
on theoretical Computer Science, volume 4. Springer-Verlag,
1985.

[20] J. R. Searl.Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press: Cambridge,
England, 1969.

[21] M. P. Singh. Agent communication languages: Rethinking
principles. InIEEE Computer, 0018-9162, pages 40–47.
December 1998.

[22] W. M. P. van der Aalst. Three good reasons for using a
petri-net-based workflow management system. In S. Navathe
and T. Wakayama, editors,Proceedings of International
Working Conference on Information and Process Integration
in Enterprises (IPIC’96), pages 179–201, November 1996.

[23] W. M. P. van der Aalst. The application of petri nets to
workflow management.The Journal of Circuits, Systems and
Computer, 8(1):21–66, 1998.

[24] T. Wagner, B. Benyo, V. Lesser, and P. Xuan. Investigating
interactions between agent conversations and agent control
components. InAgents 99 Workshop on Conversation
Policies. 1999.

http://www.csee.umbc.edu/~jklabrou/publications/ijcai99acl.ps
http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf
http://www.fipa.org/specifications/index.html
http://www.fipa.org/specifications/index.html
ftp://ftp.omg.org/pub/docs/ad/99-06-09.pdf
http://www.jamesodell.com/ExtendingUML.pdf
http://www.jamesodell.com/Rep_Agent_Protocols.pdf
http://www.erim.org/~vparunak/dooldesn.pdf

	Introduction
	Related Work
	Agent Interactions Modelling
	Coloured Petri Nets
	Conversations
	Examples
	FIPA inform protocol
	FIPA request protocol
	Contract-net protocol

	Summary
	Future Work
	REFERENCES

