MAPWEB: Cooperation between Planning Agents and Web
Agents

David Camacho, José M.Molina, Daniel Borrajo, Ricardo Aler
Universidad Carlos 11l de Madrid
Avda. de la Universidad, n.30
28911,Leganes,Spain

{dcamacho,jmolina,dborrajo}@ia.uc3m.es, aler@inf.uc3m.es

ABSTRACT

This paper presents MAPWEB (MultiAgent Planning in
the Web), a multiagent system for cooperative work among
different intelligent software agents whose main goal is to
solve user planning problems using the information stored
in the World Wide Web (WEB). MAPWEB is made of
a heterogeneous mixture of intelligent agents whose main
characteristics are cooperation, reasoning, and knowledge
sharing. The architecture of MAPWEB uses four types of
agents: UserAgents that are the bridge between the users
and the system; ControlAgents (Manager and Coach Agents)
that are responsible to manage the rest of agents; Planner-
Agents that are able to solve planning problems; and finally
WebAgents whose aim is to retrieve, represent and share in-
formation obtained from the WEB. MAPWEB solves plan-
ning problems by means of cooperation between PlannerA-
gents and WebAgents. Instead of trying the PlannerAgent
to solve the whole planning problem, the PlannerAgent fo-
cuses on a less restricted (and therefore easier to solve) prob-
lem (what we call an abstract problem) and cooperates with
the WebAgents to validate and complete abstract solutions.
In order for cooperation to take place, a common language
and data structures have also been defined.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Data sharing, Web-

based services; 1.2 [Artificial Intelligence]; 1.2.6 [Learning]:

Knowledge acquisition; 1.2.8 [Problem Solving]: Plan-
ning; 1.2.11 [Distributed Artificial Intelligence]: Intel-
ligent agents, Multi-Agent Systems, Web agents

Keywords
Information System, Agent Architecture, Multi-Agent Sys-
tems, Web Agents, Intelligent Agents, Planning.

1. INTRODUCTION

Nowadays, there is a vast (and growing) amount of infor-
mation stored in the WEB available for any user connected
to the network. This information is heterogeneous and dis-
tributed. Web information could be used by the users to
solve many different problems if only they could spend enough
time searching, retrieving and analyzing the data. Internet
provides a lot of WEB applications like search engines and
meta-search engines that allow the users to look for the in-
formation they need. However, currently it is impractical
to build a single and unified system that combines all of
the possible information sources that could be useful to the
users. Some of these problems are summarized below:

e The number of information sources in the web grows
exponentially.

e There are a lot of WEB information sources that pro-
vide similar information, each one using its own repre-
sentation for the information. For instance, a traveller
might want to find suitable plane companies to get
to his/her destination. However, different companies
will display on the web similar data but using different
representations.

e Different information sources usually provide different
kinds of information and it is not always easy to com-
bine them to achieve common goals. For instance,
in NEO domains (Non-combatant Evacuation Oper-
ations), it would be useful to combine information co-
ming from weather forecast sites and information ob-
tained from GIS (Geographical Information System)
servers.

e The information stored could change dynamicaly over
time. A short term weather forecast site is a good
example.

Due to the previous problems, current WEB search engines
basically rely only on purely syntactical textual informa-
tion retrieval. There are only a few approaches that try to
integrate a set of different and specialized sources, but un-
fortunately it is very difficult to maintain and to develop
this kind of systems [3, 28]. Therefore, users cannot use
heterogeneous information to obtain satisfactory results in
problem solving in a short time and with high quality. It
is true that there are many systems that extract, filter and

represent efficiently the information obtained from the WEB.
However, most of those systems are focused mainly on the
amount of information to be retrieved [17].

Integrating heterogeneous information is one of the goals of
MAPWEB. However, having complete and good quality in-
formation is not necessarily an end in itself. If the user wants
to solve complex problems using that information, the sys-
tem must include intelligent elements able to reason about
complex domains. For instance, a traveller needs to be sup-
plied good plans that combine different means of transport
in an efficient way. Similarly, NEO and military operations
need intelligent systems to move units and supplies on the
terrain in a coordinated and efficient manner. Artificial In-
telligence provides software components that fill in that gap:
planning systems to find good quality plans in complex do-
mains, machine learning systems to learn from experience in
those domains, etc. In our work, we use such Al techniques
but in a Multi-Agent System (MAs) framework (a part of
what is called Distributed Artificial Intelligence or DAT).
These systems are built using a set of modular components,
or agents [24] that are specialized at solving a particular
problem aspect. This decomposition allows each agent to
use the most appropriate paradigm for solving its particular
problem [9, 22]. Any MAS uses the agent concept, which is
extensively described in [10, 43]. The properties of a MAS
can be summarizez as follows:

e Fach agent has an incomplete amount of information
or does not have the required abilities to solve the
whole problem.

e There is no centralized control.

e Data is not centralized, therefore agents must share
their data.

e System execution is asynchronous, any agent can be
working while it receives queries anytime.

e Fach agent has an internal state. It is also able to
reason about the environment and possibly learn to
improve its behaviour.

Any MAS should be able to include new different software
applications (or complex systems) and use them like a new
agent in the system. Unfortunately, including a new soft-
ware application in the system does not guarantee that it
will integrate correctly within the system and that it will
achieve the expected results. Therefore, it is necessary to
provide methodologies to integrate distributed control algo-
rithms and problem solving techniques into the system.

The agent framework provides several advantages for our
purpose, because:

e First, multiagent systems are societies of (usually) he-
terogeneous software components, but communicating
with each other in a common language. Therefore, MAS
addresses directly the problem of integrating hetero-
geneous systems, each one handling different kinds of

information, which is the problem complex web infor-
mation retrieval systems have to face, as we mentioned
before.

e MAS are often used to solve Al problems, like planning,
scheduling, learning, etc and they have shown their
worth because:

— Different agents can combine their abilities in a
synergic way. This has been clearly shown in the
so called multistrategy learning systems, where
different systems provide different characteristics
useful for a common goal [2]. But this is not the
only example. For instance, it has been shown
that different planners work well in different do-
mains [39]. Therefore in some cases it would be a
good idea to combine different planner agents in
the same MAS system [41].

— They offer modularity, flexibility, and adaptabil-
ity. A MAS uses a common language to communi-
cate heterogeneous agents. Hence it is easy to add
new agents with new abilities, if required. These
characteristics are essential in complex, large or
unpredictable domains [35].

— MAS are inherently parallel, therefore permitting
to execute more efficiently the computationally
complex problems associated with Al

However, integrating and coordinating different agents is a
complex problem in itself that must be addressed [8, 21,
26]. When interdependent problems arise, the agents in the
system must cooperate with each another to ensure that
interdependencies are properly managed.

This paper presents a distributed multiagent architecture
(M APWEB) that accepts queries from the user. Such queries
are actually problems to solve. The system then produces
possible schematic solutions by means of AI problem solv-
ing techniques (planning and learning), which are then val-
idated and completed by using the information available in
the WEB.

This paper is divided into seven sections: Section 2 presents
a revision of the related work in Multi-agent systems; Sec-
tion 3 describes the MAPWEB architecture; Section 4 ana-
lyzes how the system interacts with the user and looks for
solutions; Section 5 presents an example over the WEB using
the designed system in a particular application domain; Sec-
tion 6 summarizes the conclusions of the paper; and finally,
Section 7 shows the future lines of work.

2. RELATED WORK

There are several approaches that try to work in different
ways with the information stored in the Web. These ap-
proaches focus mainly on the retrieval (usally textual) in-
formation, but only few of them try to reason with that
information. This section analyzes these systems and show
how they handle the stored data. Next subsections describe
the main domain characteristics that have been used for the
deployed WEB applications, and the main characteristics of
these applications. We will focus on the agent-based systems
(like Web and Intelligent agents) and the multiagent-based

systems that have been developed and deployed during the
last years.

WEB and Internet applications can be classified in different
ways. The next classification focuses mainly on how these
systems use the available data:

1. Simple Web-Applications: Systems that search,
retrieve and store information, like searchers, meta-
searchers or any other popular information retrieval
applications. The main goals of these systems are the
search and retrieval of WEB information.

2. Complex Web-Applications: Systems that trans-
form the information obtained, share with other sys-
tems its own knwoledge, and even could cooperate with
others to obtain solutions that will be useful to the
users. These kinds of systems have a wide range of
characteristics that try to achieve more complex tasks
than just retrieving information.

Figure 1 displays a posible classification of the most com-
mon WEB applications. Solid lines show that most of these
kinds of systems should belong to this class and the discon-
tinous lines show that some applications could be built by
using a subset of characteristics so that intelligence and/or
robustness of the system is increased.

Comply
Wethpoiatir

et Agens

-t Sytms
Figure 1: Generic classification of WEB systems.

2.1 Intelligent Agents

Intelligent Agents are software entities that assist people and
act on their behalf. They make the user’s life easier, save
his/her time, and provide a simplified view of a complex
world. Any Intelligent Agent tries to assist, advise or learn
from past experiences or from other agents experiences to
anticipate the necessities from the user. In fact, agent tech-
nology is a combination of many technologies [10] including
but not limited to, neural networks, expert systems, fuzzy
logic, machine learning, planning, etc ...

It is difficult to characterize accurately what is an agent.
There is a wide literature about this [9, 10, 24, 34]. The
following points can be used to characterize an intelligent
agent:

e Agents are proactive in nature (although they can and
will be reactive as well) [43].

e Agents can learn as a result of their actions - not to
mention their mistakes [5, 30].

e Agents can be predictive in nature [5, 30, 33].

o Other key attributes into the paradigm include au-
tonomy, security, personality, and mobility [10, 36,
43]. However, an agent needs not have all of these
characteristics. The fact that an agent can move from
one environment to another is not a requirement in all
cases.

o Lastly, agents are social in nature. They can collabo-
rate with other agents as well as delegate tasks to sub-
ordinate agents or "better suited for the job” agents
[22, 43].

Different and successful intelligent agents have been devel-
oped last years. Next, some of these agents are briefly de-
scribed:

e Softbot. This agent interacts with a software environ-
ment by using and interpreting the environment feed-
back. The softbot efectors are UNIX commands that al-
lows to the agent change the user’s environment state
[18].

e SodaBot is a general-purpose software agent user en-
vironment and construction system. Its main compo-
nent is the basic software agent that is a computational
framework for building agents which is essentially an
agent operating system. Through the definition of a
new programming language it is possible for the users
to implement a wide-range of typical software agent
applications, like on-line assitants or meeting schedul-
ing agents [15].

e SIMS and Ariadne. These intelligent information agents
are focused mainly on information retrieval and intre-
grating different kinds of information sources. sims fo-
cuses on the integration of well-structured databases
[16, 28], while the ARIADNE project deals with ac-
cessing information from more loosely structured Web
sources [4, 29].

2.2 WebAgents

Currently there is an enormous number of Web applications
that offer different services, like search and meta-search en-
gines (Lycos, Altavista, Yahoo, etc ...), e-commerce mar-
kets, auctions, web directories, etc ... to Internet users [17].
As we said in Section 1, due to the current evolution of the
WEB (and other on-line information sources), it is almost
required some sort of intelligent assistance. WebAgents are
applications that are able to consult the best Internet sites
and perform agent specific tasks, such as retrieving, process-
ing, tracking and submitting required informations. Any
WebAgent performs specific internet tasks. From this point
of view, the functionality of WebAgents is given by the
agents installed on the system and their specific purpose.
There is a lot of research and developement about these
kinds of systems. Here we only mention some of them:

e MetaCrawler. The METACRAWLER SOFTBOT is a par-

allel WEB search service that provides a single inter-
face with which any user can query popular general-
purpose WEB search engines, such as Lycos or AL-
TAVISTA. METACRAWLER has some characteristics that
allows it to obtain resuls of higher quality than simply
showing the output from each search service [33].

Letizia is a user interface agent that assists a user
browsing the World Wide Web. As the user oper-
ates a conventional Web browser, the agent tracks user
behavior and attempts to anticipate items of interest
by doing concurrent, autonomous exploration of links
from the user’s current position. The agent automates
a browsing strategy consisting of a best-first search
augmented by heuristics inferring user interest from
browsing behavior [30].

WebWatcher is a ”tour guide” agent for the world wide
web. Once any user asks to WebWatcher what kind of
information is seeking, it accompanies the user from
page to page. While the user browses the web, it high-
lights hyperlinks that it believes could be of interest.
Its strategy for giving advice is learned from feedback
from earlier tours. Currently WebWatcher is online
only on an irregular basis [5, 27].

WebPlan. This intelligent WEB agent has been devel-
oped at Kaiserslautern Universtity. WEBPLAN is a
search assistant for domain-specific search on the in-
ternet based on dynamic planning and plan execution
techniques [23].

e JATLite is a framework for creating multi-agent sys-
tems. JATLite includes a message router (agent mes-
sage router or simply the AMR agent) that supports
message buffering, allowing agents to fail and recover.
Agents can send and receive messages using KQML, an
early ACL standard, although other languages such
as FIPA’s ACL can also be used. Message buffering
also supports a name-and-password mechanism that
lets agents move freely between hosts [31].

e Kasbah is a virtual market place on the WEB where
users can create autonomous agents to buy and sell
goods on their behalf. Users can specify parameters
to guide and constrain the agent overall behaviour.
Any intelligent agent in Kasbah is an object (an in-
stance of a class) and the market place allows to cre-
ate buying and selling agents, which then interact in
the market with other agents. The agents themselves
are not very smart, although they are completely au-
tonomous. Agents do not use AI or Machine Learning
techniques. The main interest in Kasbah is its multi-
agent aspect. It is a good framework to test different
important characteristics in this kind of systems like
negotiation [14].

e MPA. The Multiagent Planning Architecture (MPA) is
a framework for integrating diverse technologies into
a system capable of solving complex planning prob-
lems. MPA has been designed for application to plan-
ning problems that cannot be solved by individual sys-
tems, but rather require the coordinated efforts of a
diverse set of technologies and human experts [41,
42].

2.3 Multi-Agent Systems

Due to the growing agent-technologies importance in the de- e CMUexpress is a MAS architecture developed at CMU
velopment of software systems, there are several commercial whose purpose is to plan, execute plans, and monitor
and research agent development toolkits. It is very difficult its performance. It has been applied to Non-combatant
to select an appropriate toolkit, as each toolkit has been de- Evacuation Operations (NEO). In this particular case,
signed for a certain architecture or paradigm. We will only the whole system integrates about 20 agents. In par-
examine several popular toolkits and deployed MAS. ticular, it includes MMM (a user interface developed

e AgentBuilder. This is a very popular commercial toolkit
to build and test agent-based software. Agents con-
structed using AgentBuilder communicate using KQML
[20]. It allows to develop and extend the standard
KQML performatives (or messages) to include any ad-
ditional performatives [25].

JAFMAS. This toolkit provides a framework to help de-
velopers to structure their ideas into specific agent ap-
plications. It directs development from a speech-act
perspective and supports multicast and directed com-
munication, KQML or other speech-act performatives.
It also performs some analysis of multi-agent system
coherency and consistency [13].

JADE (Java Agent Development Framework) is a soft-
ware development framework aimed at developing multi-
agent systems and applications, conforming to Fipa !
standard for intelligent agents. JADE can be consid-
ered an agent middle-ware that implements an Agent
Platform and a development framework [7, 32].

Lhttp:/ fwww. fipa.org

at SRI), Ariadne (an information agent developed at
ISI), and the already mentioned CMUExpress. The
goal is to locate, pick up, and carry civilians to a safe
place. The agents collaborate in the following way.
First, Ariadne locates the civilians. Then, CMUEx-
press provides routing plans to transport them, be-
sides monitoring the on-going plan, and reacting to
events. CMUExpress can use the tracking information
provided by Ariadne, that is obtained from an on-line
website [37].

e Finally, there is a hierarchical multiagent system de-
veloped at DERA (UK) to plan military activities (i.e.
moving troops on a terrain) and execute them. Its
aim is to combine deliberative and reactive behaviour.
Agents in the society are organised in a hierarchical
military manner. For instance, there is a Squadron
Commander agent, a Troop Commander agent, a Tank
agent, etc. This framework allows the more reactive
behaviours of agents at the lower level of the hierar-
chy bo be guided by more deliberative planning from
agents above them in the hierarchy. In particular, a
constraint planner (deliberative) and an anytime plan-
ner (reactive) are combined within the hierarchy [6].

3. MAPWEB: AMULTIAGENT ARCHITEC-
TURE FOR REASONING IN THE WEB

As we said before, the main advantage for using MAS tech-
niques is the flexibility and adaptability of the resulting sys-
tem. A MAS could be made of several and heterogeneous
elements. These elements or agents, can play different pro-
grammed roles, could execute different functions, and could
modify their behaviour dynamically.

MAPWESB is a MAS approach that integrates heterogeneus
agents. These agents build a different set of “logic-layers”
between the users and the WEB. The architecture hides the
WEB to the users. Thus, the user avoids coping with the
overload of information. Figure 2 shows the four-layered
architecture of MAPWEB.

1. Physical World: it represents the users.

2. Reasoning Layer: this layer connects any physical
agent (usally human) with a set of systems that allows
the agents to access the desired information.

3. Access Information Layer: this layer retrieves the
information from distributed sources (like the WEB)
and represents it in an understandable way for the pre-
vious layer.

4. Information World: it represents all the information
available in networks, computers, or any other kind
of electronic support. This “world” is accesible only
through the use of information retrieval systems.

{ Physical World

REASONING
LAYER
i Access

i Information
i Layer

i

Information World

Figure 2: World/Web Layers.

The way MAPWEB implements the previous multi-layer ar-
chitecture, can be seen in Figure 3. The system is built by
a set of agents that can communicate, share knowledge and
cooperate among them to search for solutions to problems
posed by users.

This architecture has been designed to cope with some fre-
quent problems existing in the WEB. To do this, it is nec-
essary to use an internal knowledge representation sharable
by the agents, and use different reasoning techniques that
allow the agents to search for new solutions. MAPWEB
is a MAs approach that integrates different heterogeneous
agents with different roles into the agent-society. They can
be summarized as:

e UserAgent: this agent connects the physical world
and the reasoning layer. It pays attention to user

|
N
1
E
R
N
E
1
| ! (Ve .
Physcd 1 REASONING I WEB s Information
Wold LAYER "olvR ! World

Figure 3: MAPWEB general Architecture.

queries and displays to them the solution or solutions

found by the system. UserAgents get problem queries

from the users and give them to a reasoner-agent. Plan-
nerAgent is at the moment the only developed reasoner-
agent developed, but different kinds of reasoner-agents,

like LearningAgents will be in the future. Subsequently
the reasoner-agents requests for solutions to those prob-
lem.

ControlAgents: These agents belong to the reason-
ing layer and due to the organizational structure of the
system, there are two different types of control-agents
in MAPWEB: ManagerAgent and CoachAgents.
Their main roles are summarized below:

— ManagerAgent: Handles the insertion and dele-
tion of agents in the system. This agent is the re-
sponsible for building dynamical teams of agents,
each one of them specialized in problem solving
tasks.

— CoachAgent: This agent manages a set of het-
erogeneous agents that represent a team of agents
that accept problems from any agent (software or
human) in the system and try to solve them.

Figure 4 shows the interrelation among these kinds of
agents and the rest of the system agents in MAPWEB.
Agents are organised in teams, each one is managed by
a coach. The whole system is managed by a manager.
Any UserAgent, PlannerAgent or WebAgent could be-
long to several teams if it could be necessary to the
correct work of the team.

PlannerAgent: This agent (belonging to the rea-
soning layer) receives a planning problem, builds an
abstract representation of it, and solves it. Planner-
Agents have different skills like communication and
planning.

WebAgent: These agents belong to the access infor-
mation layer and connect the reasoning layer with the
information world. Its main goal is to fill in the details

ManagerAgent
PRIV N
- \ <
- o
/—__—é)—‘\/’\~—g\‘// RN

/ > v \
/ [CoachAgenﬂ 0 [ComhAgeng N [CoachAgeng \

A
AN |

|/@ j%
'@0

% % % %

Figure 4: Manager and Coach Agents Organization.

! \
\

\ 4

I

|

/ WebAg

of the abstract plans obtained by the PlannerAgents.
It obtains that information from the WEB.

Some of the basic characteristics (see Figure 5) in any MAPWEB-

agent are: 2

1. Control module: it manages all the possible tasks per-
formed by the agents. This module is basically made
of an agenda, some policies, and a set of especialized
skills.

2. Knowledge module: this module is used by the different
agents to store their own kwnowledge.

3. Skills module: this module implements the specialized
skills of any agent in the system.

4. Communication module: Implements the communica-
tion protocol with other system agents (UserAgents,
PlannerAgents, CoachAgents, or WebAgents). This
module is implemented using two sub-modules:

e Transport module: implements a TCP/IP net-

work level communication between two agents run-

ning in different computers.

e Language module: implements an standard ver-
sion of KQML [19, 20] that allows to share a com-
mon language between two agents in MAPWEB.

Next subsections give a more detailed description about the
different agents: roles, architectures, and organizations.

2Any MAPWEB-agent is built using a set of standard and
reusable Java packages and classes implemented as the basis
to build the different system agents.

)
Knowledge Base
S —
Heterogeneous
Information
@ S ——
é TR _
s ‘ Control ‘ DabataBase
« Module Profiles
2] _
CangtagelModdle Communication
Transport Module Module
-~/

In-0 out-Q

Figure 5: Skeleton-Agent in MAPWEB.

3.1 UserAgents

The main role of UserAgents is to connect the users with
MAPWEB. Each UserAgent uses a set of Graphical User
Interfaces (GUI) to comunicate with the users and an imple-
mentation of the standard language KQML to communicate
with other agents in the system. In Figure 6 a modular
description of UserAgent architecture is shown.

'O

Knowledge Base

DabataBase
Profiles

) [}
21z S —
3|3
s/ g Heterogeneous
2| o W\‘ Information

= _——~
S| |E Module
g3
&

Communication
Module

1]

! '

In-0 Out-0

Figure 6: UserAgent Architecture.

The Knowledge Module is used by the UserAgent to store
a set of different users profiles and successful old solutions,
that should be used by UserAgent (applying its learning
skills using its (Learning Module) to analyze and customize
the system.?

The main goals for a UserAgent are:

e To accept problems from users, and to show the solu-
tions found by MAPWEB.

e To analyze the problems and to obtain an homoge-
neous representation of them.

e To communicate with PlannerAgents to ask for solu-
tions.

In order to fulfill these previous goals, it is necessary to pro-
vide for each particular domain the specific set of Gul that

3This characteristic is being developed at the moment.

can represent all the necessary input/output information to
comunicate with the external world, and to define an ontol-
ogy that allows the other agents in the system to know the
type of the problem that must be solved. In Section 5, the
set of Guis for the analyzed domain are shown.

3.2 PlannerAgents

Any PlannerAgent has a modular architecture where each
module has its own capabilities and tasks. These are the
reasoning agents in the system. Figure 7 shows a modular
description.

Knowledge Base

S —
Heterogeneous
W\‘ Information
_——
Module

Plan
Server
| —

Communication
Module

Reasoning Module
[(Planning ModuleHLearning Modulej}

In-0 Out-0
Figure 7: PlannerAgent Architecture.

Some of its most interesting characteristics are:

o Communication module: it implements a subset of
specific performatives (speech-acts in KQML) to share
plans or subplans between PlannerAgents.

o Knowledge module: Stores all the useful information
for the agents. It is composed by two main submod-
ules:

— Heterogeneous Information: This stores the use-
ful data (heterogeneous information) about the
application domain, planning operators, heuris-
tics, information about other agents characteris-
tics and statistics information, etc ...

— Plan server: This module stores old plans or sub-
plans to find out a new solution.*

e Control module: to manage the different agent mod-
ules. The following are some of its main functions:

— To handle abstract solutions; they should be val-
idated using the information acquired from other
agents, or from other heterogeneous information
sources.

— To build an agenda that allows to handle the
questions asked by other agents and its own tasks.

— To handle all possible answers given to questions
asked by other agents/users.

e Reasoning module: PlannerAgents have mainly two
submodules:

4This module is being developed at the moment.

— Learning modules: They can modify the system
behaviour if the obtained solutions are successful
to the user queries. Currently a Case-Base Plan-
ning Module is being developed, and it is used to
gain efficiency in planning processes by retriev-
ing and adapting old stored solutions in the own
agent to avoid the planning process itself [23, 40].

— Planning module: Works to solve the user prob-
lem. Currently the planning module uses a non
linear planner named PRODIGY4.0 [38].

The PlannerAgents use a planner as the main reasoning
module. The agent generates an abstract representation
of the problem and the specific users queries (given by the
UserAgent). Then, it uses a planner to obtain a very ab-
stract solution (or solutions) of the problem, and finally co-
operates with the WebAgents to fill in the gaps of these
abstract solutions.

3.3 ControlAgents

As we said in the previous section, there are two different
types of Control agents in MAPWEB. They have the same
architecture (see Figure 8) with different roles.

M
/SR
P Control Module %
g - 1]
2% Adgenda/ Policies o
2= - 2
w|g 3
c
8 :
— X
Communication
U Module —
In-0 Oout-0

Figure 8: Generic ControlAgent Architecture.

‘We could summarise the differences as follows:

1. ManagerAgent:

o There is only one of them.

e It is responsible to add and remove other agents
from the system.

e It manages which agents are active in the agent
society.

e It groups teams of agents.
e It determines which agents are shared between
different teams.
2. CoachAgent
e It controls a team of agents, guaranteeing stabil-
ity and a smooth working of the active agents.

e It reports problems to the ManagerAgent. For
instance, when a new agent is required for the
team.

e It guarantees that agendas of the agents in the
team are coherent.

To work correctly in MAPWEB (for any possible Multi-
agent topology) it is necessary to use at least one Manager
and one Coach to build teams of agents that will be able to
reason over the user problems.

3.4 WebAgent

The WebAgents, like other system agents, have their own
modular architecture (this architecture is shown in Figure 9).
A WebAgent handles (CONTROL MODULE) questions from
other agents (PlannerAgents), and translates these ques-
tions into queries to access the WEB (INTERNET ACCESS
MODULE). Answers from the WEB will be filtered and stored
in a data base (DATABASE FROM WEB). This useful informa-
tion will be sent later to the PlannerAgent. WebAgents
know several places to look for the requested information.

M Knowledge Base
Query 2 —
N
< Heterogeneous
° é = Control Information
Z|E | Module
05
< DabataBase
Reguest| |5 from
@ (Communication Web
=
=) Module

P

In-0 Out-0

Figure 9: WebAgent Architecture.

Although MAPWEB has a general architecture and it is
possible to apply it to different domains, this paper presents
an implementation of a set of WebAgents specialized in the
task of retrieving, filtering, and representing the necessary
information from the WEB for a particular domain (see sec-
tion 5).

4. PROBLEM SOLVING AND COOPERA-
TION IN MAPWEB

MAPWEB has an architecture where different agents need
to cooperate to reach solutions. Different agents need to
share knowledge and skills to complete the abstract solu-
tions obtained by the PlannerAgent. MAPWEB success
needs from both characteristics: sharing knowledge to ob-
tain new solutions and to use the different Web and rea-
soning skills among the different MAPWEB agents to find
useful solutions for the users. In the next sections the format
for sharing and communicating knowledge, and the generic
cooperative solving process in MAPWEB, are analyzed.

4.1 Shared Information Among Agents

Agents in MAPWEB use a common representation for the
knowledge. This characteristic allows to simplify the pro-
cesses of sharing and reasoning with the knowledge. The
communication among agents uses performatives. Any

performative stores an implicit order to other agent. To
communicate two system agents, a subset of the KQML for-
mat (Knowledge Query and Manipulation Language) [19] is
currently being used. In Table 1 this format is shown. This
example shows the representation for two performatives:
ACHIEVE and TELL. The first performative (ACHIEVE) is sent
by a PlannerAgent (PAgent!) to a WebAgent (WBot1) ask-
ing for WEB information that the WebAgent are specialized
in. The second performative (TELL) is the request from the
WebAgent to the PlannerAgent, this request stores the re-
trieved information obtained by the WBot1.

There exist other KQML performatives implemented by MAP-
WEB agents to manage the group of agents and to allow
agent negotiation, like: ACCEPT, REJECT, REGISTER, UN-
REGISTER, DELETE, INSERT, etcC ...

Performative | Format

achieve (:content (FLY Company MAD ZAZ ...)
:language JAVA

:ontology Electronic-Tourism

:in-reply-to MAPWEB

:sender PAgentl

:receiver WBot1)

tell (:content (FLY IBERIA 323 Price ...)
:language JAVA

:ontology Electronic-Tourism
:in-reply-to MAPWEB

:sender WBot1

:receiver PAgentl)

Table 1: Some performatives in MAPWEB.
4.2 Cooperation in MAPWeb

This section presents the way UserAgents, PlannerAgents,
and WebAgents cooperate to solve problems. From a generic
point of view, a problem is a pair (initial situation, final
situation). An example of problem is that of a person wish-
ing to fix (final situation) a broken car (initial situation). A
solution to a problem is the sequence of actions to get from
the initial situation to the final one (called a plan). Usually,
actions are defined in terms of operators. For instance,
screw(x) could be an operator to use the screwdriver on
any screw x. Therefore, a solution to the car fixing problem
could be something like the plan showed in Figure 10.

Solution:
unscrew Tooll Screwl1>

<unscrew Tool2 Screw2>
<fix Tool3 Cable1>
<check Spark-plugs1>
<screw Tooll Screwl>

<screw Tool2 Screw2>

Figure 10: Possible Fizing car Plan.

A set of problems that uses the same operators is called a
domain. The goal of MAPWeb is to give solutions to prob-
lems in a domain as defined above.

The sequence MAPWeb follows to solve a problem is as fol-
lows:

1. The user interacts with the UserAgent to define his/her
problem. Then the UserAgent sends an ACHIEVE per-
formative to a PlannerAgent containing the problem
definition.

2. The PlannerAgent receives the user problem and ana-
lyzes it. Usually, a user problem contains a lot of de-
tails that makes problem solving for classical AI plan-
ning systems computationally very expensive. So, be-
fore attempting to solve it, the Planner Agent discards
some of the details and transforms the user problem
into an abstract representation. For instance, in the
car fixing domain, there could be many different kinds
of pieces and tools to handle those pieces. In that case,
the PlannerAgent would reduce the number of kinds
of pieces and tools to a manageable size. Then, the
user problem would be transformed into an abstract
representation that uses only the reduced set of pieces
and tools. At this point, the PlannerAgent would use
a planning system to solve the abstract problem and
get several abstract possible solutions. However, the
user requires all the details to be able to apply the
plan. Furthermore, many of the abstract solutions
might not be valid in reality because it ignores ac-
tual details. Therefore, the abstract plans have to be
completed and validated. The PlannerAgent analyzes
which parts of the abstract plans require to be com-
pleted, and asks for details to the WebAgents.

3. WebAgents receive PlannerAgent queries for details,
look for them in those websites the agent is specialized
in, and returns the information to the PlannerAgent in
a shared format. If it cannot find such information, the
PlannerAgent will be told so, and it will discard all the
plans that include this unvalid operator. For instance,
different car companies could have websites inform-
ing about technical characteristics of cars, tools, and
pieces, which could be used by specialized WebAgents
to fill in the requested details. If the WebAgents could
not find information for validating the fixing step,
because for instance, there are no Tools? to handle
Cablel?. All the plans that contain this step will be
discarded by the PlannerAgent.

4. Finally, the PlannerAgent receives a TELL performa-
tive from several WebAgents, validates and completes
the abstract plans, and returns complete plans to the
UserAgent. In our example, a possible complete solu-
tions would include which actions to perform and the
specific tools and pieces to use. This plan could be
utilised directly by the user.

5. MAPWEB APPLICATION EXAMPLE

In principle, MAPWEB can be applied to many different
problem solving domains. In this section, we describe how
MAPWEB has been applied to a particular domain “elec-
tronic tourism” (or simply, e-tourism) and how the dif-
ferent agents cooperate to solve poblems in this domain.
Some ideas about earlier versions of MAPWEB have been
described in [11, 12]. This section will first describe the

e-tourism domain (i.e. how solutions are represented) and
then we describe how the different agents in MAPWEB co-
operate to provide solutions to the user. Communications
between the UserAgent, the PlannerAgent, and the We-
bAgents will be described in detail.

5.1 Electronic Tourism Domain
An e-tourism system must provide the user services such as:

1. Inform how to go from the origin to the destination
town using different means of transport.

2. Lodging at destination.

3. Informing about possibilities about visiting around town
(renting a car, local transport, etc ...).

4. Returning to the initial (or other) town.

MAPWEB has the abilities enumerated above. However, in
this paper, we will focus on the logistics problem of providing
the user with plans to move from one place to another place.
Moving from place to place involves long range travels that
can be achieved by means of airplanes, trains, or buses. It
also involves taking local transport means (taxi, subway,
bus, etc ...) to move between airports, bus stations, or
train stations. In order to represent and provide solutions
to the user, we have defined an e-tourism domain that uses
the operators enumerated in Table 2.

5.2 UserAgent — PlannerAgent Communica-
tion

The UserAgent provides a GUI to the user, so that s/he can

describe the problem and the restrictions associated with it.

Obviously, Guls depend on the problem domain: other do-

mains would require other Guis. Figure 11 shows the input-

GUI to the system.

TravelPlan [_ O]
Profile

Travel Options

Departure Date:

Day (3 [%1 mMonth [June =] vear [2z000 [=] Hour (800 [+

Return Date:

Day |6 [=! mMonth June [=] vear 2000 [Hour 1600 =

Departure City Arrival City

‘Madrid {MAD)]u’| Barcelona {BCN) |~

Departure Place: [airport ‘Ej Arrival Place: [train station ,E‘:"
[vl Round Trip

Class: [economic [

Number of maximum transfers: |:|__'_':'|

Transport: @ Airplane @ Train @ Bus

[sswe

Figure 11: User Agent Input.

The data the user has to supply to the system is as follows:

Operator Arguments

TRAVEL-BY-AIRPLANE
TRAVEL-BY-TRAIN
TRAVEL-BY-BUS
MOVE-BY-LOCALBUS
MOVE-BY-TAXI
MOVE-TO
BOOK-HOTEL-ROOM

User-name, Company, Origin-airport, Destination-airport
User-name, Company, Origin, Destination

User-name, Company, Origin, Destination

Origin, Destination

Origin, Destination

Origin, Destination

User-name, Hotel, City

Table 2: E-tourism planning operators

e Departure and return dates
e Departure and arrival cities

e Origin and arrival places inside the cities (which air-
port, train station, bus station, etc ...)

e One way or return trip
e Maximum number of transfers

e Economic cost (luxury, business, first class, tourist
class, etc ...)

e Long range kind of transport (airplane, train, or bus)

In the example described in Figure 11, the user wants to
travel to Barcelona (Spain) from Madrid (Spain) on June
the 3rd at 8:00. The return date is June the 6th at 4:00 or
later. The user wants to start his travel from an airport and
wishes to end his trip at a train station in Barcelona. S/he
wants to minimise cost and s/he does not mind what kind
of long range transport is used. Also, s/he does not want to
transfer more than once.

Once the UserAgent has received the user problem, it sends
an ACHIEVE performative to a PlannerAgent and waits for
the solution.

5.3 PlannerAgent «— WebAgents Cooperation
The PlannerAgent receives from the UserAgent a problem
and proceeds to build an abstract representation which re-
tains only those parts that are essential for the planning
process. For instance, a typical description of the previous
problem for an AI planning system would include:

e All the cities in the world

inside those

All the airports, train stations, etc ...
cities

All the plane, bus, and train companies in the world

All local transports (taxi, subway, etc ...) in the cities

Any classical Al planning system would get bogged down if
it tries to find a plan by considering all the elements men-
tioned. Instead, the PlannerAgent builds an abstract prob-
lem in the following way:

1. First, it defines an abstract city. This city includes
all possible local transports, but only the long range
transport terminals that the user wishes to use are in-
cluded. For instance, if the user wants to travel on
plane only, the abstract city would include just air-
ports. The goal is to reduce the number of elements
in the problem, so that the planner can handle them
more efficiently. In the previous example, as there are
no restrictions about the long range transports, the
abstract city has airports, bus stations, and train sta-
tions.

2. Then, this abstract city is repeated as many times as
the maximum number of transfers supplied by the user.
It is important to remark that the cities are abstract
cities.

3. Finally, the rest of details provided by the user are
ignored at this stage. For instance, departure and ar-
rival times, travel cost, etc ... are not considered. This
data will be used later to query the WebAgents and
validate the abstract solutions.

For instance, from the problem given by the UserAgent,
the PlannerAgent would construct a planning problem that
includes three unnamed cities: city0, cityl, and city2.
city0 is the departure city, city2 is the destination, and
cityl is a (possible) transfer city. Each one of the cities in-
cludes all possible local transports, abstract locations (hotell,

.) and terminals (airport0, trainstation0, ...). Fi-
nally, the planning problem would include an initial situa-
tion of the user being in airport0 at city0, and a goal of
the user being in trainstation2 at city2.

The abstract problem above would be given to the Plan-
nerAgent planner (Prodigy4.0) which would obtain several
possible abstract solutions. In this case, the planner would
reply with:

Solution 1:

<move-to trainstationO bustop01>

<move-to bustop0l airport0>

<travel-by-airplane userl plane0 airport0 airporti>
<move-to airportl bustoplil>

<move-by-localbus bustopll bustopi2>

<move-to bustopl2 trainstationi>

<travel-by-train userl trainl trainstatl trainstat2>

Information-Flights flight1 flight2 flight3
air-company Iberia Iberia Spanair
http-address www.iberia.es | www.iberia.es | www.spanair.com
flight-id 323 450 null
ticket-fare 38200 21850 43700
currency ESP ESP ESP
flight-duration null null null
airport-departure-city | MAD MAD MAD
departure-date 03-06-00 03-06-00 03-06-00
airport-arrival-city VLC VLC VLC
return-date 06-06-00 06-06-00 06-06-00
class D D null
number-of-passengers | 1 1 1
round-trip one-way one-way one-way

Table 3: WebAgent Information Retrieved

Solution 2:

<move-to trainstation0 bustop01>

<move-by-localbus bustopOl bustop02>

<move-to bustop02 airport0>

<travel-by-airplane userl plane0 airport0 airport2>
<move-to airport2 bustop21l>

<move-by-localbus bustop2l bustop22>

<move-to bustop22 trainstat2>

This is a set of abstract plans that contain no details and
some of which might not even be possible to executed. There-
fore, those plans need to be validated and completed. This
is achieved by querying the WebAgents. In this case, the
following query schemas would be generated:

Queries:
(travel-by-airplane user plane0? Madrid city1?)
(travel-by-train user trainl? cityl? Barcelona)

The queries above have some uninstantiated variables (plane0?,

traini?, and cityl?). cityl? will be instantiated by the
PlannerAgent before querying the WebAgents. The Plan-
nerAgent will choose several actual cities by using some
heuristics. For every selected city, an actual query will be
generated. For instance, the first query schema would be
translated into:

Queries:
(travel-by-airplane user plane0? Madrid Valencia)
(travel-by-airplane user plane0? Madrid Alicante)

Those queries (an all the additional information given by the
UserAgent) are sent to several WebAgents that know about
airplane travel, so that variable plane0? is instantiated as
well.

A WebAgent receives a query and associated data and trans-
forms it into the actual web query. The WebAgent knows
the structure of the data stored in the web sites it is spe-
cialized in, and knows how to look for information in those
web sources. The information retrieved is then analyzed
and stored in a common template, which is subsequently
sent to the PlannerAgent. For instance, in our example, the

following information (see Table 3) would be returned to in-
stantiate variable plane0?. Actually, that variable can be
instantiated in many ways, as many as possible flights there
are from Madrid to Valencia. Table 3 shows some retrieved
flight information by WebAgents.

Finally, the PlannerAgent instantiates all the abstract plans
for which it received a positive answer for each plan step
from the WebAgents. Those plans in which one or several
steps received either no answer or an empty answer are re-
jected. Therefore, only fulfillable plans are sent back to the
UserAgent. Every abstract plan will be instantiated into
many different actual plans.

5.4 PlannerAgent — UserAgent Communica-
tion

Finally, the list of actual plans is received by the UserAgent
and displayed to the user. Figure 12 shows the output-GUI
where the found plans for our problem are displayed. A
couple of solutions are shown in Table 4. If the user wants
more information about a plan step, s/he can click on the
corresponding operator and get data about departure time,
location, etc ...

TravelPlan]
Profile

Initial Problem

Departure Place: Airport Number of transfer; 1

Transport: any

User ID: David Camacho
Departure Date: 3/June/2000/8:00 Arrival Place: Trainstation
Return Date: 6/June/2000/16:00

Departure City: Madrid.Spain (MAD)

[/ Round Trip
Class: Economic
Arrival City: BarcelonaSpain (BCN)

Solutions

Number of cities used: 14
Number of abstract solutions: 10
Number of possible transports: 4 local, 3 intercity

Number of possible solutions: 624

Number of solutions analyzed: 25

Solution no: [3 ¥ ® success

[<GETON- AIRPLANE David_Canacho lberia MAD-aiport> &
|<TRAVEL-BY- AIRPLANE lberia MAD-aifport ZAZ- Airpart (click here, for more informaion)

|<GETOFF - AIRPLANE David_Canacho beria 2AZ-airport>

<GETON- AIRPLANE David_Camacho Spain air ZAZ- aiport> I
|<TRAVEL-BY- AIRPLANE SpainAir 242~ irport EC- airprt> click hsre, for more nformstion) |
|<GETOFF~AIRPLANE David_Camacho Spainir BCN- airport- | |
|<GETON-LOCAL-BUS-IN- 8IRPORT David_Camacho BCN-airporl) B
JEE : A EIAREAEREA AR

| saveall solutions. \ [save

Figure 12: UserAgent Output.

Solutionl

Solution2

(move-to trainstation0 bustop01)

(move-to bustop01 MAD)

(travel-by-airplane SMejias Iberia MAD VLC)
(move-to VLC bustopll)

(move-by-localbus bustopll bustopl2)
(move-to bustopll VLCtrainstationl)
(travel-by-train SMejias Talgo VLC BCN)
(move-to BCN bustop21)

(move-by-localbus bustop21 bustop22)
(move-to bustop22 hotel2)

move-to trainstation0 bustop01)
move-by-localbus bustop01 bustop02)
move-to bustop02 MAD)

travel-by-airplane SMejias plane0 MAD BCN)
move-to BCN bustop21)

move-by-localbus bustop21 bustop22)
move-to bustop22 hotel2)

Table 4: Solutions given by MAPWEB .

6. CONCLUSIONS

We have presented a multiagent approach (MAPWEB) to
solve planning problems by using information distributed
in the WEB. In particular, this paper focuses on how to
solve user planning problems by means of cooperation be-
tween a PlannerAgent and several WebAgents. This co-
operation amounts to dividing the planning problem into
two parts: generation of abstract plans (by the PlannerA-
gent) and validation-completion of those plans (by the We-
bAgents). This is done because planning problems contain
a lot of details that makes classical AI problem solving com-
putationally very expensive.

Therefore, before attempting to solve a planning problem,
the PlannerAgent discards some of the details and builds an
abstract version of it which is easier to solve. Then, several
abstract solutions are obtained from the abstract problem.
However, many of the abstract solutions might not be valid
in reality because it ignores actual details. Therefore, the
abstract plans have to be completed and validated.

There is another important reason to divide the planning
process into two cooperating agents. Information in the
WEB is hetereogeneous and is provided in multiple formats.
Therefore, it makes sense to have many different agents spe-
cialized in each information source or web site. Thus, Web-
Agents not only free PlannerAgents from the details, they
also isolate them from the complexities of the information
sources.

MAPWESB is not only a set of conceptual ideas. The whole
described architecture has been implemented. Also, it has
been applied to an actual domain (e-tourism) where the co-
operation characteristics above are fully exploited.

7. FUTURE LINES OF WORK

e Cooperation among several PlannerAgents. In many
planning domains, a problem can be divided into a
set of subproblems. Each subproblem could be sent to
different PlannerAgents. This would be useful for two
reasons. First, problem solving is parallelized. And
second, different kinds of subproblems could be sent
to specialized PlannerAgents, that could use different
planning techniques.

e Reuse of information stored in both PlannerAgents
and WebAgents. Agents can learn from experience.
For instance, if a PlanningAgent has previously solved

a problem, it can be stored in an internal database for
later use, either by the same agent or by others. In
a similar manner, a WebAgent can reuse information
retrieved previosly to reduce WEB access.

e Application of Case Based Reasoning techniques [1,
40], so that new planning problems can be solved by
adapting previously solved plans which were similar.
This would reduce enormously the planning process
which is computationally very expensive.

e Finally, in order not to overload the user with too
many plans, MAPWEB should be able to order so-
lutions and recommend the best ones by using user
profiles and by learning from user previous behaviour.

8. REFERENCES
[1] A. Aamodt and E. Plaza. Case-based reasoning:
Foundational issues, methodological varations, and
system approaches. AICom-Artificial Intelligence
Communications. I0S Press, 7:39-59.

[2] R. Aler, D. Borrajo, and P. Isasi. Genetic
programming and deductive-inductive learning: A
multistrategy approach. In J. Shavlik, editor,
Proceedings of the Fifteenth International Conference
on Machine Learning, ICML’98, pages 10-18,
Madison, Wisconsin, July 1998.

[3] J. L. Ambite and C. A. Knoblock. Agents for
information gathering. In IEEE Ezpert: Intelligent
Systems and their Applications, September/October
1997.

[4] J. L. Ambite and C. A. Knoblock. Planning by
rewriting: Efficiently generating high-quality plans. In
In proceedings of the Fourteenth National Conference
on Artificial Intelligence, 1997.

[6] R. Armstrong, D. Freitag, T. Joachims, and
T. Mitchell. Webwatcher: A learning apprentice for
the world wide web. In Working Notes of the AAAI
Spring Symposium: Information Gathering from
Heterogeneous, Distributed Environments, pages 6-12,
Stanford University, 1995. AAAI Press.

[6] J. Baxter and R. Hepplewhite. A hierarchical
distributed planning framework for simulated
battlefield entities. In In Proceedings of 19th

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Workshop of the UK Planning and Scheduling Special
Interest Group (PLANSIG 2000), December 2000.

F. Bellifemine, A. Poggi, and G. Rimassa. Jade - a
fipa-compliant agent framework. In Proceedings of
PAAM’99, London, pages 97-108, April 1999.

A. H. Bond and L. Gasser. Readings in Distributed
Artificial Intelligence. San Francisco California,
Morgan Kaufmann, 1988.

J. Bradshaw. Software Agents. Menlo Park California,
AAAT:Press, 1997.

W. Brenner, R. Zarnekow, and H. Wittig. Intelligent
Software Agents. Foundations and Applications.
Springer-Verlag. ISBN: 3-540-63411-8, New York,
1998.

D. Camacho, D. Borrajo, and J. M. Molina.
Travelplan: A multiagent system to solve web
electronic travel problems. In Workshop on
Agent-Based Recommender Systems. Fourth
International Conference on Autonomous Agents,
Barcelona, Catalonia (Spain), June 2000. ACM.

D. Camacho, J. M. Molina, and D. Borrajo. A
multiagent approach for electronic travel planning. In
Proceedings of the Second International Bi-Conference
Workshop on Agent-Oriented Information Systems
(AOIS-2000), Austin, TX (USA), July 2000.

A AAT-2000.

D. Chauhan and A. D. Baker. Jafmas: A multiagent
application development system. In Proceedings on
The Second International Conference on Autonomous
Agents (Agent’s 98), May 9-13, Minneapolis 1998.

A. Chavez and P. Maes. Kasbah: An agent
marketplace for buying and selling goods. In
Proceedings of the First International Conference on
the Practical Appication of Intelligent Agents and
Multi-Agent Technology, London, UK, April 1996.

M. Coen. SodaBot: A Software Agent Environment
and Construction System. MIT AI Lab Technical
Report 1493, June, 1994.

Y. A. Craig A. Knoblock and C.-N. Hsu. Cooperating
agents for information retrieval. In Proceedings of the
Second International Conference on Cooperative
Information Systems, Toronto, Ontario, Canada,
University of Toronto Press, 1994.

O. Etzioni. Moving up the infomation food chain. AT
Magazine, 18(2):11-18, summer 1997.

O. Etzioni, N. Lesh, and R. Segal. Building softbots
for unix. In Software Agents-Papers from 1994 Spring
Symposium (Technical Report SS-94-03), pages pp.
9-16. AAAT Press, 1994.

T. Finin and J. W. et. al. Draft specification of the
KQML agent communication language. Jun 15 1993.

(20]

[21]

[22]

23]

(24]

25]

[26]

27]

28]

29]

(30]

31]

32]

[33]

[34]

T. Finin, R. Fritzson, D. Mackay, and R. McEntire.
Kqgml as an agent communication language. In In
Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM94),
pages 456-463. New York: Association of Computing
Machinery, 1994.

L. Gasser. Distributed Artificial Intelligence: Theory
and Prazis, chapter An Overview of DAI, pages 9-30.
Kluwer Academic, 1992.

M. R. Genessereth and S. P. Ketchpel. Software
agents. Communications of the ACM, 37(7):48-53,
1994.

J. Hullen, R. Bergmann, and F. Weberskirch.
Webplan: Dynamic planning for domain-specific
search in the internet. In Workshop Planen und
Konfigurieren (PuK-99), 1999.

M. N. Hunhs and M. P. Singh. Readings in Agents.
San Francisco California, Morgan Kaufmann, 1997.

R. S. Inc. AgentBuilder. An Integrated Toolkit for
Constructiong Intelligent Software Agents. ed. by
Reticular Systems Inc., February,1999.

N. R. Jennings. Coordination Techinques for
Distributed Artificial Intelligence, pages 187-210.
O’Hare et al., 1996.

T. Joachims, D. Freitag, and T. Mitchell. A tour guide
for the world wide web. In Proceedings of IJCAI97,
August 1997 (longer version internal CMU technical
report September 1996).

C. A. Knoblock and J. L. Ambite. Software Agents,
chapter Agents for Information Gathering. J.
Bradshaw ed., AAAI/MIT Press, Menlo Park, CA,
1997.

C. A. Knoblock, S. Minton, J. L. Ambite, and

N. Ashish. Modeling web sources for information
integration. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, Madison, WI,
1998.

H. Lieberman. Letizia: An agent that assists web
browsing. In Proocedings of the International Joint
Conference on Artificial Intelligence (IJCAI95), pages
924-929, 1995.

C. Petrie. Agent-based engineering, the web, and
intelligence. IEEE Ezpert, 11(6):24-29, December
1996.

J. Pitt and F. Bellifemine. A protocol-based semantics
for fipa ’97 acl and its implementation in jade. In
Proceedings of AI*IA, 1999.

E. Selberg and O. Etzioni. The metacrawler
architecture for resource aggregation on the web. In
IEEE Ezxpert, pages pp. 8-14. IEEE,
January/February 1997.

H. S.Nwana. Software agents: An overview.
Knowledge Engineering Review, 11(3):205-224,
October/November 1996.

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

K. P. Sycara. Multiagent systems. AI Magazine, 18(2),
1998.

C. Thirunavukkarasu, T. Finin, and J. Mayfield.
Secret agents— a security architecture for the kqml
agent communication language. In In Proceedings of
the ACM CIKM Intelligent Information Agents
Workshop. New York: Association of Computing
Machinery, December 1995.

M. Veloso, T. Balch, and S. Lenser. Integrating
information agents, planning, and execution
monitoring. In In Proceedings of Agents-2000, June
2000.

M. Veloso, J. Carbonell, A. Perez, D. Borrajo,
E. Fink, and J.Blythe. Integrating planning and
learning: The prodigy architecture. Journal of
Ezperimental and Theoretical AL 7:81-120, 1995.

M. M. Veloso and J. Blythe. Linkability: Examining
causal link commitments in partial-order planning. In
Proceedings of the Second International Conference on
AI Planning Systems, pages 170-175, Chicago, IL,
June 1994. AAAT Press, CA.

M. M. Veloso and J. G. Carbonell. Derivational
analogy in PRODIGY: Automating case acquisition,
storage, and utilization. Machine Learning,
10(3):249-278, Mar. 1993.

D. E. Wilkins and D. L. Myers. Multiagent planning
architecture. In Proceedings on The Fourth
International Conference on Artificial Intelligence
Planning Systems. AIPS98, June 1998.

D. E. Wilkins and K. L. Myers. A common knowledge
representation for plan generation and reactive
execution. Journal of Logic and Computation,
5(6):731-761, 1995.

M. Wooldridge and N. R. Jennings. Intelligence
agents: Theory and practice. Knowledge Engineering
Review, October 1994.

