
Towards Efficient Selection of Web Services
Amir Padovitz

School of Computer Science &
Software Engineering,

Monash University
Padovitz@bigpond.com

Shonali Krishnaswamy

School of Computer Science &
Software Engineering,

Monash University
shonali.krishnaswamy@

mail.csse.monash.edu.au

Seng Wai Loke

School of Computer Science &
Software Engineering,

Monash University
swloke@csse.monash.edu.au

ABSTRACT
In the existing frameworks for web services there is no incentive
to bind dynamically to a specific web service. However, once
runtime information concerning those web services is available to
the application, dynamic binding becomes advantageous over a
static pre-decided one. We propose a model that provides web
service clients with runtime information that is pertinent to its
execution and business logic. When faced with multiple service
providers who can provide the same (in functionality) service, the
client can dynamically select the current best (e.g., in terms of
availability for the duration of the service, reliability, and
estimated response time) service provider for its required service,
according to the client’s constraints and information gathered
about the service providers at runtime.

1. INTRODUCTION
Web Services are software applications or services that are
uniquely identified by a URI (Uniform Resource Identifiers) and
expose public interfaces for clients, using XML (extended mark-
up language). Those web services can be discovered and used by
other client applications using XML based messages and protocols
such as HTTP.

The emergence and continued development of web services
standards such as SOAP (simple object access protocol) and
WSDL (web services description language) [4] enable us to
request and describe web services in a standard way. This will
increase the ease of use of web services, enable interoperability
between heterogeneous platforms and help businesses solve
integration problems of their applications. Consequently, it is
anticipated that web servers that host the services will be subject
to increasing usage and have a higher load. Furthermore, the
current simple modus operandi involving client/server activation
of a single web service will be enhanced to support more complex
scenarios, in which applications and service providers themselves
rely on other external web services as part of their business logic.
The reliance on third party web services reduces the control of the
organization over its application and (sometimes) mission-critical
code. The control and information of certain parts of the system is
pushed outside organizational boundaries. Scenarios involving
reliance on external web services raise several new issues and
challenges. An example of common scenario would be of clients
consuming external web services, which in turn outsource their
computational resources to other service providers.
Furthermore, runtime information such as service load and
availability or business related constraints might affect the
selection process of an external web service, and not be pre-
decided, as it is today. In the existing frameworks for web services

there is no incentive to bind dynamically to a specific web service.
However, once runtime information concerning those web
services is available to the application, a dynamic binding
becomes advantageous over a static, pre-decided one. We suggest
a model that provides the web service client runtime information
that is pertinent to its execution and business logic. The client
application can then dynamically bind to the temporarily best
service, from a selection of acceptable web services it works with,
and according to the client’s set of constraints.

A client may want to apply some business rules when dynamically
choosing a web service, or may be more concerned with response
time or availability. When response time is critical (e.g. stock
quotes service etc.) it is important for an application to activate the
fastest web service available at that given time, or have some
mechanism that ensures availability and reliability. When several
clients participate in such a scenario, an indirect load balancing
mechanism is created, which helps to direct clients to available
and relatively fast web services.

Figures 1 and 2 illustrate a client activation decisions based on
information gathered at runtime from the service providers
according to the client constraints.
In figure 1, the client is concerned with availability and response
times of a web service; after retrieving related information from
the service providers, it activates the fastest available web service.
This behaviour contributes to the robustness of the client
application. Figure 2 shows client activation, based on response
time and quality of service. According to the client’s business
constraints, it may prefer to switch to another service provider
when it observe a change in the combination of quality and
response time offered by the service providers.

Figure 1 – web service activation according to response time
and availability

total response
time = 8 sec

total response
time = 5 sec

total response
time = 15 sec

Client

SP1

SP2

SP3

SP4

unavailable

data

data

activation

Figure 2 - dynamic activation according to response time and quality of service

In order to facilitate dynamic selection, up to date information
concerning parameters that affect the decision of web service
activation must be gathered. We are currently developing and
investigating a system that retrieves runtime related information
from service providers according to the client constraints and
specifications and decides which web service to activate. To
enable such functionality we examine two paradigms – the
traditional RPC (remote procedure call) approach and a mobile
agent approach. We draw three different conceptual models based
on these technologies and compare their strengths and
weaknesses. While the first two are based on applying the well-
known RPC and Mobile Agent paradigms, we also introduce a
novel Circulating Mobile Agent model that exhibits different
characteristics and complements the first two.
The paper is organized as follows. In section 2 we introduce
related work. Section 3 presents architectural models for the
dynamic selection of web services. Section 4 draws a quantitative
analysis for the use of those models. Section 5 discusses
implementation details of the prototype that supports the models
described in section 3. We conclude and discuss future work in
section 6.

2. RELATED WORK
Mobile software agents are units of code capable of migrating to
different hosts while maintaining their data and state of execution.
Mobile agents display autonomous behavior, which implies a
capability to handle various scenarios independently, without a
need for some application management layer. Consequently, they
are capable of performing asynchronous tasks and reduce
communication overheads. Another important feature mobile
agents possess is the ability to work in heterogeneous
environments. Currently, Agents reside in dedicated server
applications, which can potentially be activated on any platform.
Furthermore, they present fault tolerance and robustness
characteristics, as failure of a specific node in a network will
affect only agents physically located on that node at that time.
These characteristics can become very useful when integrated in
large and heterogeneous networks such as the Internet and provide
an alternative to the RPC approach, including web services. Web
services may evolve to become more agent like and enjoy the
agents’ autonomy, interaction capabilities and add robustness and
efficiency effects on the system [5]. The mobile agent paradigm
can also coexist with web services and both can mutually benefit
from each other strengths. In this work we present an attempt to
integrate the two approaches in one system to extract the
beneficial characteristics of both.

An important step towards the integration of mobile agents and
web services is the work being done on the creation of the
semantic web and the development of new web markup languages
such as DAML (DARPA Agent Markup Language) [6] and OWL
[7] as well as ontology of services such as DAML-S that aims to
enable the discovery, activation, monitoring and selection of web
service by agents [8].
A similar client oriented approach is taken by [1] to perform load
balancing of Internet services by moving parts of the load
balancing decision making from the server to the clients. Other
systems [2] also use client-oriented approaches to enhance the
overall file system performance.

3. ARCHITECTURAL MODELS
In this section, we present architectural models that assist in
dynamic activation of web services. We present three models: an
RPC based approach, a mobile agents approach and circulating
mobile agents. In order to illustrate the models and their
respective modes of operation we use the following scenario
shown in figure 3. As seen, each participant can be both a client
and source of information, e.g. a service provider can be the
source of information for another client as well as a client
requesting information on other web services.

Figure 3 - dependencies between service providers

In this scenario a client wishes to retrieve information on a service
of type A. Three service providers are available: A1, A2 and A3.
Those service providers are themselves dependent on other web

total response
time = 14 sec

Client

SP1 -
high quality

SP2 -
low quality

data

data

activation
total response
time = 5 sec

total response
time = 8 sec

Client

SP1 -
high quality

SP2 -
low quality

data

data

activation

total response
time = 5 sec

A1

A2

B2

B3

C4

client

A3

C2

C3

B1

C1 D1

services to complete their tasks. For example service A1 is
dependent on service B1, which is dependent on service C1, etc.
(A1àB1àC1àD1). Here, the service providers, in turn, gather
information about other service providers they depend on. This
dependency makes it more difficult for a service provider to
accurately estimate information such as the total time for
processing a client request. When attempting to retrieve
information on a web service several client constraints should be
imposed on the system. For example, the client should have the
ability to limit the duration of the information retrieval process or
the depth (or level) of the network the information is to be
retrieved from. Figure 4 illustrates a possible outcome of this
approach when activated on figure 1 network, with a client that
restricts the depth to 3 service provider levels and has a timeout
constraint for the search:

Figure 4 - possible results of info retrieval

In the example above, only the route: clientàA3àB2àC2 yields
a result, which is communicated back to the client by service
provider A3. Other service providers are unable to formulate the
desired information for the client. Factors that limited the
information gathering routes in this scenario are: a tree-depth
constraint between nodes C1 and D1 (which has reached the
fourth level), and a timeout constraint between B2 and C3 and B3
and C4 (in this case we assume a relatively long processing time
by service provider C3 and C4)
We have shown a possible scenario that depicts a network in
which information is gathered for a web service; we now present
three models that support this “information gathering for selection
before activation” behaviour.

3.1 Models for Dynamic Selection of Web
Services
We propose three different models for dynamic selection. Each of
these models has its own strengths and weaknesses and is best
suited for particular situations. We aim to integrate all three
approaches and create a hybrid model to cater for different
situations.

3.1.1 RPC based model
In traditional wide network scenarios (e.g. internet) the most
straightforward approach for gathering information for web
services activation would be to use RPC (remote procedure calls)
for communicating information between hosts in the network.
For platform independence, web services themselves can be the
means by which communication between two hosts is performed.
Information could then be easily and generically sent and received
between all the participants in the network. This kind of
implementation is generally beneficial in wired networks, as
multiple connections need to be handled, which may become
problematic in wireless environments where connections are less
reliable. In this model a component-oriented approach is taken, in
which a client/service provider is treated as a black box. When a
service provider receives a request, it may become a client and
actively request information from other service providers.
This approach simplifies the programming complexity of an
environment consisting of many service providers. This model
also supports complex scenarios where service providers support
several web services and a client requires information on more
than one service. This is shown in Figure 5.

Figure 5

The client sends requests to all the service providers; each request
contains information on all the desired services from the recipient.
The data that is retrieved is then examined and ranked by the
client’s system. Following this rule the amount of requests per
service desired is minimized (instead of inquiring all service
providers several times, each is inquired only once).
In this architecture, decisions regarding the ways to query inner
depth nodes in the network or decision on which nodes to query
and when, are all delegated to the service provider, which then
becomes itself a client of the system. In this component-oriented
scheme, the initial client delegates future decisions and
implementation details to sub-contractors, in the form of the
service providers. Once a request is launched, parameters
contained in the request cannot be changed, even if sometime
along the way the criteria for performing future requests have
changed. The initial client no longer has the control over the
operation.

A1

A2

B2

B3

C4

client

A3

C2

C3

B1

C1 D1

tree depth
constraint

timout

timout

S1,S2

S3,S4client

S1,S2,
S5

S4,S5

S2,S3

S1, S2, S3, S4, S5 - Web Service Types

SP1

SP2

SP3

SP4

SP5

SP1, SP2, SP3, SP4, SP5 - Service Providers

Another problem is the high amount of messages sent between
client and service providers. This limits the reliability of such a
system in a wireless environment, where connections are less
reliable. Furthermore, the higher the number of participants, the
more messaging is involved, resulting in more traffic congestion.

3.1.2 Mobile Agents based model
To address the issue of wireless connectivity and client control we
propose a second model, based on mobile agents. We examine
two approaches that differ in the type of behaviour agents
perform. In the first model, agents are launched by the client,
arrive at the service providers, query information, and if needed,
continue to look for dependant services required information.
Agents contain client restrictions such as timeouts and maximum
number of hops as well as other data that pertain only to the
specific client. Following this approach, two agents of different
clients may act differently under similar circumstances given
different client directions for behaviour.
Figure 6 shows a possible strategy performed by agents a and b
that are launched by the client. Upon arriving at service of type A
they are redirected to retrieve information from service providers
B1 and B2. Then they are redirected again to gather information
pertaining to services C1, C2 and C3. After arriving at B2 agent b
clones itself into 2 agents, each traveling on a different path to
accomplish its task

Figure 6 – first mobile agents approach

In this approach we gain a client control of the agent behaviour
also in deeper node levels, after the initial encounter with the first
service provider. On top of client control, we also gain better
reliability in wireless environments, as the amount of connections
is highly reduced compared with the RPC model. In this model
the client (a wieless device) only maintains connections as per the
amount of agents it initially launches. A mobile agent should also
be embedded with the ability to change its migration path if
encountered with disconnected or unresponsive nodes. Despite
their higher level of abstraction, implementing agents to work in a
large network of dependable service providers may be more
complex. Instead of treating the service providers as black boxes
as in the first model, the agents need to be programmed to move
around the network autonomously and respond to possible
changes in the environment.

The main disadvantage of this approach however is that it is less
realistic in a business sense. It is unlikely that a client agent would
be permitted to be redirected and interact with nodes that the
service provider is concerned with. Service providers may have
for example private agreements with other service providers and
would not want to send an agent that represents the initial client. It
may also be against the best interest of the client, since sometimes
a direct request for a service would result in a higher price than if
the other service provider handled it.
The second approach assumes interaction of the client agent only
with the required first level service providers. This approach is
similar to the RPC one, where service providers are treated as
“black boxes”. Although we loose the client control
characteristics, we still maintain better performance in wireless
environments, compared with the RPC model.
Figure 7 shows this approach; agents operate on behalf of their
clients and are restricted to interact only with the required first
level service providers.

Figure 7 - second mobile agents approach

Figure 8 depicts the differences between the RPC and Mobile
Agents models in terms of the number of wireless connections. In
the RPC model the client manages 5 connections to all 5 service-
providers, while in the Mobile Agents model only 1 connection is
established and used to send a single mobile agent that clones
itself and arrives to all the service providers autonomously.

3.1.3 Circulating Mobile Agents model

The two previous models are suitable to work with web services
that are expensive to purchase and/or consume an overall long
processing time. Since the task of collecting information is time
consuming, it is less likely these approaches will be utilized when
it is imperative to perform fast activation of short-term and
inexpensive web services. For such scenarios, a third model is
proposed that can provide service providers related information
“on demand”. The idea behind this model is having mobile agents
periodically circulating the path of the service providers and
retrieving information. The information is then given to the client,
which then performs web service activation. In this scenario,
information that arrives is more updated and is available sooner.

A1

B2

client

A2

C2

C3

B1

C1☺a

☺b

☺b1

☺b2

A1

B3

client

A2

C2

C3

B2

C1

☺client

B1

☺A1

☺A2

☺B3

☺B1

☺B2

Figure 8 - differences in number of wireless connections between the models

Figure 9 – circulating mobile agents

Along with its beneficial characteristics, this model may also
suffer from a varied amount of redundancy. Depending on the
client application, agents may circulate the network, retrieving
information without any current need to do so. To minimize this
redundancy, an ability to control the amount of circulating agents
and the duration of their life cycle will be introduced.

Table 1 – activation considerations of the different models

Service
Characteristics

RPC MA Circulating
MA

Expensive, long
processing time X X

Fast response is
important

 X

Network
Characteristics

Wired X
Wireless X X

4. QUANTITATIVE ANALYSIS FOR
USAGE OF THE MODEL

Having presented the three models, we now analyse the suitability
of the models with respect to the response time criterion.
However, we note that clients may have additional criteria for
activation such as price. In this paper, we focus on response time
and draw a quantitative representation of the processing time of
the different models. We also present rules governing the system
activation decision based on response time for each mode of
operation.
We define Treqi as the time it takes for a request to be sent to a
specific service provider i, Tresi as the time it takes for a response
to be sent back from a specific service provider i, Twsi as the
average time it takes for a web service to complete for a specific
service provider i and Tans i is the total time it takes for a service
provider i to produce information about the user requested
parameters. We define T*req, T*res and T*ws as the request,
response and processing times of the web service that is selected
by the system.

Figure 10 – Basic terminology

{Treq

}Tans

{Tres

Selection

{T*req

{T*res

} T*wsActivation

client
service
provider

1

1'

1''

1'''

client

☺a

☺b

☺c

1'

1''client

1'''

1

1''''

Wireless

1'

1''client

1'''

1

1''''

☺a

☺a1

☺a2

Wireless

RPC Mobile Agents

4.1 RPC Model
On average, the total time for activating a web service without
using the RPC model would be:

Tavg =
n

TwsiTresiTreqi
n

i
∑

=

++
1

)(

and the total average communication time would be

n

TresiTreqi
n

i
∑

=

+
1

)(

where n is the number of service providers offering similar web
services for the client to choose from.
Let Ta = Treqi + Tresi + Tansi
Ta therefore represents the total time for a client to query service
provider i for information.
The total activation time of the selected web service is represented
by Tactivation, and is:
Tactivation = T*req + T*res + T*ws
We express the duration of the processing time of a sequentially
activated RPC model as follows:

Trpc = ∑
=

++
n

i

TansiTresiTreqi
1

)(

If the RPC messaging is performed in parallel, we can express it
as follows:
Trpc1 = Treq1+Tres1+Tans1
Trpc2 = Treq2+Tres2+Tans2
Trpc3 = Treq3+Tres3+Tans3
.
.
.
Trpcn = Treqn+Tresn+Tansn

Equation 1
Trpc = max (Trpc1, Trpc2, Trpc3… Trpcn)

And the total activation time of the RPC model is therefore:
Trpc_total_activation = Trpc + Tactivation

We can formulate a general rule for activating the RPC model
with respect to response time, and state that whenever Equation 1
is observed, the client is encouraged to use the RPC model, as it
gains a better overall response time compared with an average
usage of a randomly selected web service.

Equation 2
Trpc_total_activation < Tavg

Equation 2 is more likely to occur if high variation in the
activation time of web services (Twsi) is observed. In such a case,
it is more likely that Trpc_total_activation will be less than Tavg.
Furthermore, we argue that since the client may not be concerned
only with response time, it is likely that it would prefer to use the

RPC model even if it has a longer total response time, to a certain
extent. We denote this argument in Equation 3, where a client still
prefers to use the model as long as it is not longer than a specific
time amount.

Equation 3
Trpc_total_activation < Tavg + δ

Where δ denotes an extra amount of time.

An example of this would be when a client is more interested in
guaranteeing the reliability of the service or is concerned with the
service pricing, rather than just the response time. In such cases it
will be willing to “pay” for a longer process.

4.2 Mobile Agent Model
We define Tmi,j as the migration time between node i and node j
in a network. n represents the total number of participating nodes
(i.e. the service provider nodes and the client. We count the client
as the first node). We investigate a model in which the agents only
visit service providers in the first level of the service providers
network. When only a single agent is launched, the total migration
and query time of the mobile agent model is:

Equation 4

Tma = ∑ −

=
++

1

1
)1,(1,

n

i
iTmiTmn +∑ =

n

i
Tansi

2

And the total activation time of the Mobile Agent model is:
Tma_total_activation = Tma +Tactivation

The rule for activation of the mobile agent model follows the
same guidelines as the RPC model:

Equation 5
Tma_total_activation < Tavg + δ

A general form for multiple agents launched can be described as
follows:1

M1, M2, M3 … MN denote the total individual migration and
query times for N agents.
a denotes the number of agents participating.
M1 = ∑ −

=
+++++ 1/

1
)1,(1),1()1(,1*)/(an

i
iTinTnanT + ∑ =

n

i
Tansi

2

M2 = ∑ −

+=
+++++

12*)/(

1)/(
)1,(1),1()1(,2*)/(

an

ani
iTinTnanT + ∑ =

n

i
Tansi

2

M3 = ∑ −

+=
+++++ 13*)/(

12*)/(
)1,(1),1()1(,3*)/(an

ani
iTinTnanT + ∑ =

n

i
Tansi

2

.

.
MN = ∑ +−=

+++++ n

aani
iTinTnnT

1)1(*)/(
)1,(1),1()1(),(+ ∑ =

n

i
Tansi

2

The maximal migration and query time for the Mobile Agent
model that uses multiple amounts of agents would then be:

1 For simplicity we assume that service providers are
equally divided between agents

Equation 6
Tma = Max (M1, M2, M3…MN)

In this case we measure the migration and query time of the
slowest agent.

4.3 Circulating Mobile Agents model
Based on Equation 4, which depicts the total migration and query
time of a single mobile agent in a network, we can present the
average time for a system to be notified by one of its N circulating
agents, as follows:

Equation 7

Tcirculating =
N

TansiiTmiTmn
n

i

n

i

2

)1,(1,
1

1 2∑ ∑−

= =
+++

Where we assume a uniform distribution of circulating agents and
similar processing times of service providers for client’s
information queries.

The nominator in Equation 7 presents the total time it takes for a
circulating agent to start circulating agent and to arrive back to the
system and informs on the information collected. This is divided
by N Circulating Agents to denote the maximal time it takes
single agent to arrive back. Finally, this is further divided by 2 to
denote the average time for an agent to arrive back. In other
words, every agent arrives back in Tma / N, and on average in
(Tma / N) / 2.
This can be analyzed also from a client point of view. In the
circulating model, a client that wishes to employ the circulating
agents, first needs to initiate the beginning of their circulation in
the network and only then after a certain amount of time request
for information. In such scenario, (Tma / N) presents a top
boundary for the time a client receives the information. Assuming
that a client request for information is uniformly distributed, an
average time for a client to receive the system information would
be (Tma / N) / 2.
The total activation time of the circulating model from a client
point of view would be:
Tcirculating_total_activation = Tcirculating + Tactivation
The activation rule to be considered for circulating agents would
then be:
Tcirculating_total_activation < Tavg + δ

5. Implementation of Prototype
The architectural overview of the system is depicted in figure 11.
The main functionality is implemented in the WSAdvisor
components; client applications interact with this functionality
either directly - when requesting web service activation
recommendations, or indirectly – when updating information on
new possible web services in the repository. WSAdvisor
components query that repository to obtain information on web
services and create itinerary for communicating with the service
providers. An agent server is used to launch new agents with
itineraries to service providers’ destinations. A communication
utility object – VMSBridge is used to facilitate decoupled
communication between the main WSAdvisor components and
other third party applications. VMSBridge also serve as a link

between different platforms. Many applications today utilize the
.Net platform for their web services and applications, while
mobile agents are usually java based. In such environments a
utility in the form of VMSBridge is needed to transfer information
between the two virtual machines.

Figure 11 – high-level overview

To facilitate an integration of the three models and develop a
system, which is scalable, generic and flexible, we have pursued
an initial design that is depicted in figure 12.

The following section describes the functionality of the major
classes in the design.
AdvisorImpl, Advisor - The Advisor set of classes is
implemented as a proxy to be used by the client to initiate requests
for information gathering on particular web services. Several
modes of operations are available for the client, including
synchronous, asynchronous and optimised (cached). The default
and recommended mode is optimised and Asynchronous
operation, in which the client is advised on recommended web
services Asynchronously. The user also specifies the ranking
criteria for the service providers’ information. The
implementation supports different numbers of client applications.
Chain and Operations - The chain class manages the flow of
operations in a generic way. Operations that adhere to the
interface IOperation can be added during design time or
dynamically and are controlled by the chain class. We identified
four types of operations, which are represented by the Operation
classes: Information, Cache, Itinerary and Activator. These four
basic operations identify the basic steps in the process of
preparing the system to query information from the service
providers.
VMSBridge - VMSBridge offers a generic and decoupled way
to bridge between different environments such as Java and .Net
virtual machines. The idea behind this functionality is to enable
maximum flexibility of the framework to work with different third
party applications. For example .Net based client applications and
Java baesd agent toolkits.
WSManager, AgentManager - The manager classes control
the activity of communicating with the service providers.
This activity is pursued either with an RPC or mobile agents
approach.
Ranking - Upon receiving information collected from the
service providers, it is sent to be ranked according to the user
request. The ranking follows a multi-dimensional shortest distance
approach, as described in [3]. Weights are calculated in reference
to the user specifications.

WSRepository
WSAdvisor

Agent serverVMSBridge

Clients

DAO - A layer that communicates with a repository of web
services descriptions that are dynamically added and controlled by
the client.

Figure 12 – system class diagram

6. Conclusions and Future Work
We are currently in the process of implementing the WSAdvisor
system, which selects related service provider information for the
activating client. We aim to analyze results drawn from the
activation of the RPC, Mobile Agent and Circulating models and
learn more about their performance characteristics in large-scale
distributed environments such as the Internet. The next
implementation step involves the development of a hybrid model
that integrates the existing models into one.

7. References
[1] Yoshikawa C., Chun B., Eastham P., Vahdat A., Anderson T.
Culler D. Using Smart Clients to Build Scalable Services
Proceedings of the {USENIX} 1997 Annual Technical Conference

[2] Anderson T., Dahlin M., Neefe J., Patterson D., Roselli D.,
Wang R. Serverless Network File Systems
Proceedings of the 15th ACM Symposium on Operating Systems
Principles, pp. 109-126 December 1995

[3] Krishnaswamy, S., Pin, E, P., Ho, J., Gunawan, W., An XML
Specification Language to Support A Virtual Marketplace of Data
Mining E-Services, 2002, Proceedings of the Workshop on Data
Semantics in Web Information Systems (DASWIS 2002) held in
conjunction with Third InternationaL Conference on Web
Information Systems Engineering (WISE 2002), Singapore,
December, pp. 194-206, IEEE Press

AdvisorImpl
Advisor

<<proxy>>

IAdvisor

<<interface>>

Chain
<<interface>>

IOperation

Cache Information Itinerary Activator

DAO

AgentManager

<<singleton>>

VMSBridge

<<interface>>

IMessageHandler
Message

Visitor

Agent

<<interface>>

IVisitor

ComplexVisitor

WSManager

Ranking

Command

<<interface>>

ICommand

[4] World Wide Web Consortium (2000/2001): Web Services,
eXtended Markup Language (XML),
Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL)
Available at: 4.1 http://www.w3.org/TR/ws-gloss/, 4.2
http://www.w3.org, 4.3 http://www.w3.org/TR

[5] Huhns M. N.
Software Agents: The Future of Web Services
Agent Technology Workshops 2002, LNAI 2592, pp. 1-18, 2003

[6] Hendler J., McGuinness D. L.
DARPA Agent Markup Language
IEEE Intelligent Systems, 15(6):72 73, 2001

[7] Dean M., Connolly D., van Harmelen F., Hendler J., Horrocks
I., McGuinness D. L., Patel-Schneider P. F. and Stein L. A.
OWL Web Ontology Language
In Bradshaw J., editor, Software Agents.
MIT Press, Cambridge, 1997

[8] DAML-S: Semantic Markup for Web Srevices
Submitted for publication in The Emerging Semantic Web.

