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BOOSTING COOPERATION
BY EVOLVING TRUST

ANDREAS BIRK
Vrije Universiteit Brussel, Artificial Intelligence
Laboratory, Brussels, Belgium

Instead of establishing trust through deÐning compliance-based standards like protocols
augmented by cryptographic methods, it is shown that trust can emerge as a self-organizing
phenomenon in a complex dynamical system. It is assumed that trust can be modeled on the
basis of an intrinsic property called trustworthiness in every individual i. T rustworthiness is
an objective measure for other individuals , whether it is desirable to engage in an interaction
with i or not. T rustworthiness cannot directly be perceived. Building trust, therefore, relates
to estimating trustworthiness. Subjective criteria like outer appearance are important for
building trust as they allow the handling of unknown agents for whom data from previous
interactions do not exist. Here, trustworthiness is grounded in the strategies of agents who
engage in an extended version of the iterated prisonerÏs dilemma. T rust is represented as a
preference to be grouped together with agents with a certain label to play a game. It is
shown that stable relations of trust can emerge and that the coevolution of trust boosts the
evolution of cooperation.

The investigation of the formation and application of trust is interesting
from two di†erent perspectives. First, it relates to basic research on funda-
mental principles of social interactions between living systems, especially
humans. Second, constructive approaches investigating trust are important
for applications, allowing autonomous interactions between artiÐcial
systems.

Almost all higher life forms interact with other individuals of their kind,
leading to complex social behaviors. Man is no exception ; on the contrary,
social and cultural behaviors are among the most crucial aspects of the
major pride of humans, namely cognition. The study of the social inter-
actions of living systems in general and of humans in particular is, accord-
ingly, an important issue of basic research, and it is pursued in many
di†erent Ðelds like ecology, economics, and social science, to name just a
few.
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Today, there is an increasing amount of artiÐcial autonomous systems,
which control various devices without a continuous or explicit supervision
by humans. To reach their full potential, artiÐcial autonomous systems must
be capable of interacting with each other. E-commerce can, for example,
only be successful if a multitude of devices cooperates in an autonomous
delivery of goods into the buyerÏs place. There must be, for example, a
goods-port, which is capable of handling deliveries without the presence of a
human supervisor.

The classic scientiÐc Ðelds investigating the basic principles of social
interactions between living systems were forced to rely on descriptive
approaches for their work, as the manipulation of living societies is simply
infeasible or even immoral. The appearance of artiÐcial autonomous systems
now leads to the possibility as well as to the need to use constructive
approaches. It is on the one hand a gift, as it allows one to ““tinkerÏÏ with
artiÐcial but nonetheless complex societies to investigate basic research
questions. It poses, on the other hand, a serious challenge as further techno-
logical progress needs working solutions for concrete applications.

The Ðeld of multiagent systems (MAS) (Castelfranchi & Wemer, 1994 ;
Demazeau & MuÈ ller, 1991 ; Garijo & Boman, 1999 ; Jennings & Wooldridge,
1998a, 1998b) focuses on compliance-based approaches for a constructive
investigation or exploitation of artiÐcial societies. This means this Ðeld tries
to establish standards for agent languages and architectures (MuÈ ller et al.,
1996 ; MuÈ ller et al., 1999 ; Singh et al., 1998 ; Wooldridge et al., 1996) within
which interactions take place. In respect to trust, cryptographic methods are,
for example, used (Harbison, 1998 ; Lehti & Nikander, 1998 ; Phillips, 1997),
which establish a well-deÐned security at the cost of restricting interactions
to systems that comply to the standard.

Here in contrast, trust is formed in a dynamical process. There is no
absolute security as trusted systems can cheat. But the process is completely
open and robust as trust is not predeÐned, but emerges from subtle inter-
actions between the systems. The basic ideas of this process go back to two
roots, namely, the Ðeld of artiÐcial life or short Alife (Langton, 1989 ;
Langton et al., 1990 ; Steels, 1994a) and the Ðeld of evolutionary game theory
(Axelrod, 1984 ; Axelrod & Hamilton, 1981 ; Smith, 1984 ; Smith & Price,
1973). Before the process of the formation of trust can be described, it is
necessary to Ðrst deÐne the notion of trust itself as it is used here. The basis
for trust is an intrinsic property of each individual in form of the so-called
trustworthiness . The trustworthiness of an agent is an objective measureaA
for another agent of the desirability of interactions with If the poss-aB aA .
ibly continuous, trustworthiness of is high, it is highly desirable for toaA aB
engage in trust-based interactions with Vice versa, if the trustworthinessaA .
of is low, it is highly undesirable for to engage in interactions withaA AB aA .

The trustworthiness of can be dynamic, both in time as well as inaA
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respect to the agent space, i.e., the trustworthiness of for agent can beaA aB
di†erent from the trustworthiness of for agent at the same moment inaA aC
time. The problem of trustworthiness is that it is an internal state of agent

which cannot be accessed by any other agent. It might even be based onaA ,
hidden or so-called unconscious processes such that himself cannot trulyaA
determine its own trustworthiness for others. In addition, trustworthiness is
dynamic, i.e., even when correctly determining it once in respect to its
meaning for one agent, this information can be useless shortly after time or
in respect to another agent.

Any process that tries to establish an approximation of the trustwor-
thiness of is here denoted as building trust. Processes for building trustaA
often include a nonrational component in the sense that decisions on how to
deal with another individual are not only based on previous interactions
with this individual, but also on other, presumingly subjective criteria. These
criteria, for example, include outer appearance, recommendations from
others, and so on. Subjective processes for building trust are extremely
important as they allow decisions whether to interact or not with unknown
individuals, i.e., individuals who have not been encountered in previous
interactions.

There are more or less unlimited possibilities for the representation of
trustworthiness and for the implementation of trust-building processes. In a
purely descriptive approach to the matter, Bacharach and Gambetta (2000),
for example, propose to use certain properties of pay-o† matrices for rep-
resenting trustworthiness and signaling theory to formalize the aspects of a
subjective building of trust. In this article, trustworthiness has grounded
itself in the strategies of agents who engage in an extended version of the
iterated prisonerÏs dilemma. Trust is represented as a preference to be
grouped together with agents with a certain label to play a game.

Furthermore, a constructive algorithm for establishing trust is presented.
Starting with meaningless labels, agents develop preferences to interact with
other agents with a certain type of label. The underlying process follows the
principles of self-organization as investigated and used within Alife and evo-
lutionary game theory. So there is no central control. Agents engage only in
limited local interactions, and the information exchanged among agents is
partial and unreliable. Nevertheless, a stable relation of trust emerges. In
addition, trust boosts the evolution of cooperation in the underlying game.

The rest of this article is structured as follows. In the next section, the
framework for the experiments is presented. A previously published,
extended version of the prisonerÏs dilemma, allowing continuous degrees of
cooperation and N-players as well as strategies for this game, are shortly
introduced. The next section shows how trust can be embedded into this
framework. A set of labels is used to mark agents. Labels as a kind of outer
appearance of agents and the strategies of agents as a basis for trustwor-
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thiness are not correlated in the beginning of each experiment. An algorithm
is presented, which builds trust by evolving preferences for each agent to be
grouped together with agents carrying a certain label. Results based on sets
of experiments are presented in the section following. Experimental evidence
is given that stable relations of trust can actually emerge from limited inter-
actions among agents. In addition, it is shown that this trust boosts the
evolution of cooperation, i.e., a higher cooperative level in the population is
reached faster with the trust building mechanism then without it. The Ðnal
section concludes the article.

THE FRAMEWORK FOR COOPERATION

A Continuous N-Player PrisonerÏs Dilemma

Roberts and Sherratt (1998) published results on the evolution of
cooperation in an extension of the standard prisonerÏs dilemma (PD) to con-
tinuous degrees of cooperation. Partially inspired by this work and partially
based on experiments with heterogeneous robots in an artiÐcial ecosystem
(Birk & Belpaeme, 1998 ; Steels, 1994b), following further extension to an
N-player case was developed, leading to a continuous-cooperation N-player
prisonerÏs dilemma (CN-PD).

In the artiÐcial ecosystem, simple mobile robots, the so-called ““moles,ÏÏ
can autonomously recharge their batteries, thus staying operational over
extended periods in time. As illustrated in Figure 1, a so-called ““headÏÏ can
track the mobile robots and it can perceive so-called pitfalls which are a
kind of inverse charging station where the batteries of the moles are partially
discharged via a resistor. When a mobile robot approaches a pitfall, which it
cannot distinguish from a charging station, the head can warn the mobile

FIGURE 1. The extended artiÐcial ecosystem of the VUB AI-Lab, including a head and several moles.
So-called pitfalls in the form of inverse charging stations can suck energy out of a mole. Unlike moles, a
head can distinguish pitfalls and charging stations, and it can warn a mole when being close to a pitfall.
The mole in return feeds a part of its beneÐt in the form of energy to the head.
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robot. The mobile robot, in exchange, can share the beneÐt of the saved
energy with the head.

Let there be N moles and one head. Each mole (1 # i # N) has a gainmi
based on the avoidance of pitfalls due to warnings of the head. This gainGi

only depends on the so-called headsight hs Î [0,1], i.e., the percentage with
which the head perceives dangerous situations. Concretely, the gain is the
headsight times one energy unit (EU) :

Gi 5 hs É 1.0EU.

Furthermore, in the beginning of each time step t, each mole investsmi
up to 0.75 energy units to feed the head. The investment is proportional toIi
the continuous cooperation level ofcoi Î [0,1] mi :

Ii 5 coi É 0.75EU.

The headsight hs depends on the amount of food the head receives from the
moles, i.e., the head is completely fed when it receives the 0.75 energy units
from every mole. Concretely, the headsight hs is deÐned as the average sum
of cooperation levels in time step t :

hs 5 ^
1 i N

coi/N.

The pay-o† for a mole is the di†erence between gain and investment :poi mi

poi 5 Gi 2 Ii 5 ^
1 j N

coj /N É 1.0EU 2 coi É 0.75EU. (1)

So, a dilemma for the moles arises. On the one hand, it is in the interest of
each mole that the head is well fed. On the other hand, there is the tempt-
ation to leave the task of actual feeding to others, as the head does not react
to the behavior of a single mole, i.e., it does not punish a mole when it does
not donate energy.

Note that the pay-o† for a mole depends on its own cooperation level
and on the cooperation levels of all other moles. Let denote the averagec` o
cooperation level of the group, i.e.,

c` o 5 ^
1 i N

coi/N.

The pay-o† for a mole can directly be computed for and Namelymi coi c` o.
the pay-o† function [0,1] [0,1] ® IR isfp :

fp(coi , c` o) 5 coi É 2 0.75EU 1 c` o É 1.0EU. (2)
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Based on this, we can extend the terminology for pay-o† values in the stan-
dard prisonerÏs dilemma with pay-o† types for cooperation (C), punishment
(P), temptation (T), and sucking (S), as follows :

cooperation as all fully invest :d Full Call 5 fp(1.0,1.0) 5 0.25 ;

punished as nobody invests :d All Pall 5 fp(0.0,0.0) 5 0.0 ;

d Maximum temptation : Tmax 5 fp 1 0.0,
N 2 1

N 2 $ 0.5 ;

d Maximum sucking : Smax 5 fp 1 0.0,
1
N 2 # 2 0.25.

For co, 1.0, one gets the following additional types of pay-o†s,c` o 0.0,
the so-called partial temptation, the weak cooperation, the single punish-
ment, and the partial sucking. They are not constants (for a Ðxed N) like the
previous ones, but actual functions in (co, Concretely, they are sub-c` o).
functions of (co, operating on subspaces deÐned by relations of co infp c` o),
respect to (Table 1).c` o

Note that for a Ðxed average cooperation level and two individualc` o
cooperation levels co’ . co" , it always holds that fp(co’ , c` o) , fp(co", c` o).
Therefore, it holds for an individual player in a single game that

partial temptation always pays better than weak cooperation.d The
partial temptation increases with decreasing individual cooperation.d The
absolute value of partial sucking increases with increasing individuald The

cooperation.

This can also be stated as

Tmax . Tpartial(.) . Call . Cweak(.) . 0.0

Psingle(.) 5 Pall 5 0.0

Smax , Spartial(.) , 0.0. (3)

Equation 3 illustrates the motivation for the names of the di†erent types of
pay-o†. The attribute max for temptation T and sucking S indicates that
these are the maximum absolute values. The partial accordingly indicates

TABLE 1 Additional Pay-O† Types in the CN-PD

co , c` o c` o # co , 4/3 É c` o co 5 4/3 É c` o co . 4/3 É c` o

Tpartial(co, c` o) Cweak(co, c` o) Psingle(co, c` o) Spartial (co, c` o)
Î ]0, 1.0[ Î ]0, 0.25[ 5 0 Î ] 2 1.0, 0[

partial temptation weak cooperation single punish partial sucking
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that these values are only partially reached through the related T or S func-
tions. The attribute weak for the cooperation function C relates to the fact
that though the player receives a positive pay-o†, it is less than in the
maximum cooperation case where all players fully cooperate. When no
player invests, all are punished with a zero pay-o†. Whereas in the single
case, at least the individual player we are looking at gets punished with a
zero pay-o† ; other players can receive all types of pay-o†.

The Evolution of Cooperation in the Iterated CN-PD

Much like in the standard prisonerÏs dilemma, rational agents are also
trapped in the global punishment as nobody will feed the head in a single
game of the CN-PD. But when iterating the game over several time-steps t,
strategies taking previous cooperation or noncooperation of others into
account can lead to the agents into cooperation. In Birk & Wiernik (2000),
where the continuous N-player prisonerÏs dilemma is also described in more
detail, a novel strategy, the so-called justiÐed-snobism (JS), is presented.

JustiÐed-snobism cooperates slightly more than the average cooperation
level of the group of N players if a nonnegative pay-o† was achieved in the
previous iteration, and it cooperates exactly at the previous average
cooperation level of group otherwise. So JS tries to be slightly more co-
operative than the average. This leads to the name for this strategy as the
snobbish belief to be ““betterÏÏ (in terms of altruism) than the average of the
group is somehow justiÐed for players which use this strategy. It can be
shown that JS is a successful strategy for the CN-PD and especially that JS
is evolutionary stable. In the experiments reported here, JS has to compete
with following strategies in iterated CN-PDs:

Follow-the-masses (FT M) : match the average cooperation level from the
previous iteration, i.e., coi[t] 5 c` o[t 2 1].

Hide-in-the-masses (HIM) : subtract a small constant c from the average
cooperation level, i.e., coi[t] 5 c` o[t 2 1] 2 c.

Occasional-short-changed-JS (OSC-JS) : a slight variation of JS, where
occasionally the small constant c is subtracted from the JS-investment.

Occasional-cheating-JS (OC-JS) : another slight variation of JS, where
occasionally nothing is invested.

Challenge-the-masses (CT M) : Zero cooperation when the previous average
cooperation is below oneÏs one cooperation level, a constant cooperation
level c’ otherwise, i.e.,
d coi[t 2 1] $ c` o : coi[t] 5 c’
d coi[t 2 1] , c` o : coi[t] 5 0.

Nonaltruism (NA) : always completely defect, i.e., coi[t] 5 0.
Anything-will-do (AW D) : always cooperate at a Ðxed level, i.e., coi[t] 5 c’ .
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The strategies compete in an evolutionary tournament proceeding in time-
steps t. In the beginning, a population of 1000 agents is randomly created,
i.e., each agent gets a randomly selected strategy following an even distribu-
tion. In the iterations t ® t 1 1, the population is divided in a random
manner into groups with 20 agents each. Each group plays a CN-PD. The
so-called Ðtness of agent in time-step t is determined by the runningÐt(ai) ai
average of its pay-o†s, i.e. :

Ðt(ai)[t] 5 (1 2 q) É poi[t] 1 q É Ðt(ai)[t 2 1]

with

q Î ]0.0, 1.0[.

Reproduction of agents is proportional to their Ðtness as roulette-wheel
selection keeps the population size Ðxed to 1000. In addition, new agents are
randomly created in each time-step with a small likelihood pnew 5 0.05.
When running the evolutionary tournament without trust, JS multiplies and
starts to take over the population (Figure 5).

THE EVOLUTION OF TRUST

The Outer Appearance of Agents

As mentioned is the introduction, trust is seen here as a kind of subjec-
tive criterion guiding the interaction with others. More concretely, a strategy
is based on the objective measures on the performance of other agents,
namely, their cooperation level in previous iterations. Furthermore, the
given strategy of an agent establishes its trustworthiness in anstratA aA
objective manner. If another agent would explicitly known thenaB stratA , aB
could rationally decide whether it is desirable to play a game with or not.aA

Trust, in contrast, is based on secondary, derived measures, here the
““outer appearanceÏÏ of an agent in form of a marker. The main idea is as
follows : Agents are randomly marked with labels from a Ðnite set SL 5

. . . , The function L maps labels to agents. Whenever a new agent a is{ l 1, lk} .
created, a label l is randomly selected and assigned to a, i.e., L (a) 5 l. Note
that this assignment is completely independent of the strategy of the
agent, even during the course of the evolution. The set Scolor 5

will serve as an extremely simple example of labels in{red,green,blue}

the remainder of this article.
The coevolution of strategies and trust proceeds in time-steps t, much

like the evolution of strategies on its own. Figure 2 illustrates the overall
program in pseudo-code. The crucial change to the mere evolution of stra-
tegies is that groups are not randomly formed anymore, but based on prefer-
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FIGURE 2. The pseudo-code of the overall coevolution of trust and strategies.

ences on labels. The exact mechanism is described in detail in the next
section.

Trust as Preferences in the Group Formation

Trust as estimation of trustworthiness is established through preferences
in the group formation, i.e., agents prefer to play games with agents carrying
a certain marker. Note that this trust cannot be justiÐed by rational means
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alone, at least in the beginning of the iterated games, as there is no corre-
lation between a certain label and a certain strategy.

Concretely, the so-called trust function L ® [0.0,1.0] of an agenttrusti : ai
maps a weight w to each possible label such that The weightlj , trusti(lj) 5 w.
w represents preference to interact with an agent with label If w isaiÏs lj .
high, i.e., close to 1.0, prefers to interact with agents with label or itai lj ,
simply trusts them. If w is low, i.e., close to 0.0, prefers not to interact withai
agents with label or it simply does not trust them.lj ,

The pseudo-code program in Figure 3 shows how a trust functions are
concretely used to form a new group G. The simple example of color labels

is now used to illustrate how a new group is formed. Given the trustScolor
functions of several agents at time-step t 2 1 as listed in Table 2, a new
group G of size is formed as follows. First, an agent is selected fromNA 5 6
pop[t 2 1] with the roulette-wheel principle based on the Ðtness of all
agents. Let us assume agent is selected. After the Ðrst agent has beena 1 a 1

added to the group G, further agents are added in iterations of the lines 8 to
10. In the Ðrst iteration, the trust-function of is used to initialize thea 1

summed weight sw for each possible label (line 8). Table 3 shows theli
results of this Ðrst iteration and for the further iterations. In general, the

FIGURE 3. The pseudo-code of a group formation based on the trust functions.
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TABLE 2 An Example of Trust Functions for the Agents toa 1

in Time-Step t 2 1a6

Agent ai T rusti(red) T rusti(green) T rusti(blue)

a 1 0.241 0.987 0.328
a2 0.793 0.846 0.201
a3 0.086 0.392 0.003
a4 0.393 0.586 0.245
a5 0.230 0.567 0.045
a6 0.187 0.793 0.627

function sw( ) is used to bias the selection of the next agent which is included
in the group (line 9) for each possible label. Table 4 shows the according
probabilities for this Ðrst and the further iterations with the color set
example.

As the number of labels is usually much smaller than the size of the
population, the roulette-wheel selection of an agent biased with label prefer-
ences is done for efficiency reasons as follows. First, a label l is chosen with
roulette-wheel selection using the bias sw( ). Then a sequential search is used
starting from a random position in the population. The Ðrst agent with label
l which is encountered is added to the group G.

Back to the color set example, let us assume that agent is selected anda2

added to the group at the end of the Ðrst iteration. In the next second iter-
ation of lines 8 to 10, the summed preferences of agent and are used toa 1 a2

select the next agent and so on.a3 ,

TABLE 3 The Weights for the Roulette-Wheel Selection of Additional
Agents for Group G

Iteration Group G Sw(red) Sw(green) Sw(blue)

1 G 5 {a 1} 0.241 0.987 0.328
2 G 5 {a 1,a2 } 1.034 1.833 0.529
3 G 5 {a 1, . . . , a3} 1.120 2.225 0.532
4 G 5 {a 1, . . . , a4 } 1.513 2.811 0.777
5 G 5 {a 1, . . . , a5} 1.743 3.378 0.822
6 G 5 {a 1, . . . , a6 } 1.930 4.171 1.449

TABLE 4 The Development of the Probabilities of the Color of the Agent that
Is Added to the Group

Iteration Group G Prob(red) Prob(green) Prob(blue)

1 G 5 {a 1} 0.155 0.634 0.210
2 G 5 {a 1,a2 } 0.304 0.540 0.156
3 G 5 {a 1, . . . , a3 } 0.289 0.574 0.137
4 G 5 {a 1, . . . , a4 } 0.297 0.551 0.152
5 G 5 {a 1, . . . , a5} 0.293 0.568 0.138
6 G 5 {a 1, . . . , a6 } 0.255 0.552 0.191
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The Update of the Trust Functions

The trust function of an agent is updated in each time-step t based onai
the (very limited) experiences with other agents with a certain label. Con-
cretely, the weight of trusting agents with label is updated in each gamelj
proportionally to the pay-o† and the number of agents with that label in the
group. This means that when many agents with label are in the group andlj
the pay-o† is high, then the agent increases its trust in agents with thatai
label A running average is used to sum the updates over consecutivelj .
time-steps :

trusti(lj)[t] 5 (1 2 q) É trusti(lj )[t 2 1]

1 q É poi[t 2 1] É [ {ak Î G with L (ak) 5 lj } /NA

with q Î ]0.0, 1.0[.

The constant q is set to 0.1 in all experiments reported here.
Again, let us return to the example with the set of color labels.Scolor

Assume that the group . . . , has played a CN-PD game in time-G 5 {a 1 a6 }
step t 2 1. The pay-o†s for each agent in this game and the (Ðxed) labels of
each agent are shown in Table 5. Agent for example, has received aa4 ,
rather high pay-o†. As there are rather many blue agents in the group, a4

increases its trust in this color as

trust4(blue)[t] 5 (1 2 0.1) É trust4(blue)[t 2 1]

1 0.1 É po4[t 2 1] É [ {ak Î G with L (ak) 5 blue} /NA

5 0.9 É 0.245

1 0.1 É 0.404 É 4/6

5 0.247.

Note that each of the blue agents can have a di†erent strategy. Especially in
the beginning of the evolution, where labels and strategies are independently

TABLE 5 The (Fixed) Labels of the Agents toa 1 a6

and Their Pay-O†s in Time-Step t

Agent Label Pay-o†
ai L (ai) poi[t 2 1]

a 1 blue 0.257
a2 green 2 0.035
a3 blue 0.392
a4 red 0.404
a5 blue 0.157
a6 blue 0.289
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distributed among randomly created agents, this is very likely. Note also
that the relatively high pay-o† for agent can be due to an exploitation ofa4

the green agent and rather independent from the presence of the four bluea2

agents.

RESULTS

Trust Becomes Stable

There is neither a meaningful form of trust nor a (obvious) basis for it in
the beginning of each experiment. Or more concretely, neither the labels nor
the trust functions contain any information or meaning in the beginning of
each experiment :

labels are randomly assigned to the agents. Therefore, there is nod The
meaningful relation between an agentsÏs label and its strategy.

trust functions of the agents are randomly initialized. Therefore, thered The
is no a priori, global preference of agents to be grouped together.

Nevertheless, a stable relation of trust emerges. This means, the agents
evolve Ðxed preferences for interacting with agents with a certain label.
Figure 4 shows the percentage of agents that cannot ““decideÏÏ which type of
agent they should trust. More precisely, the graph shows the percentage of
agents where the highest preference of a particular agent for a certain label

FIGURE 4. The percentage of agents in the population which cannot ““decideÏÏ which types of agents
they should trust. In the beginning of the run, this percentage is high as most agents change their prefer-
ence in every time-step, more or less randomly guessing. After a while, Ðxed preferences evolve.
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in the current step is di†erent from its highest preference in the previous
step. In the beginning of the run, the percentage of ““undecidedÏÏ agents is
very high, i.e., the agents are more or less randomly guessing in each step
which type of agents they should trust. After a while, this indecision is drop-
ping to almost zero, i.e., the agents evolve Ðxed preferences for certain labels.

Note that the basis for this evolving trust as Ðxed preferences is really
subjective in some sense. First, it is grounded on very limited data, i.e., there
are many agents with label in the population, but an agent builds uplj ai
some belief by interacting with just a few of them. Second, within the group
to which agent belongs to at a time-step t, there are (most probably) manyai
di†erent agents in respect to labels. The update of trust does not distinguish
between those labels, though di†erent agents, and accordingly labels, do
(most probably) contribute very di†erently to the pay-o† that receives.ai

Evolution of Trust Boosts the Evolution of Cooperation

Despite the lack of meaning for the labels in the beginning, the evolution
of trust boosts the evolution of cooperation in these experiments. Figure 5
shows the development of the general cooperation level for both cases,
namely, respectively 50 averaged runs with and without a coevolution of
trust. When the coevolution of trust is activated, a higher general level of
cooperation is reached much faster than without an evolution of trust.

In each of the 50 runs, the population evolved into a set of agents, which
in their majority had the following properties :

FIGURE 5. The general cooperation levels, averaged from, respectively, 50 runs with and without a
coevolution of trust. When trust is activated, a higher general cooperation level is reached much faster
than without trust.
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all follows the cooperative strategy JSd they
all are marked with the same label ld they
all have a high trust in the label ld they
all have a low trust in other labels.d they

This result indicates a possible explanation for the boosting of cooperation
in the reported experiments. In the beginning, labels are evenly distributed
over agents and thus strategies. Also, preferences are evenly distributed.
Assume random Ñuctuations cause a slightly above-average likelihood that
trustworthy agents, which means here agents with a cooperative strategy,
have a certain label. If there is, in addition, a slightly above-average likeli-
hood that trustworthy agents trust this label, then there is the possibility
that this subtle e†ect reinforces itself. As a result, trustworthy agents can
so-to-say recognize each other and actively group together.

CONCLUSION

Trust is here modeled as emergent property in a complex dynamical
system. Its basis is trustworthiness, which is deÐned as an intrinsic property
of an individual in respect to another individual It is an objectiveiA iB .
criterion in the sense that it gives a measure allowing a rational choice ofiB
whether to interact with or not. Unfortunately, the trustworthiness isiA iA
not perceivable by in the general case. It is even questionable if caniB iA
access its very own trustworthiness for as it is an internal state that caniB ,
be derived from well-hidden or so-called unconscious processes.

The building of trust deals with the approximation of trustworthiness.
When an individual meets another one for the Ðrst time, there is no objective
data from previous interactions allowing a rational choice of whether to
interact or not. Subjective criteria like outer appearance must be used in
those situations. Here, (in the beginning) meaningless labels are used for this
purpose. Trust as approximation of trustworthiness is established through
the preferences of agents to be grouped together with other agents carrying a
certain marker. Groups play a game based on an extended version of the
prisonerÏs dilemma. Strategies of the agents in the iterated game establish
their trustworthiness.

A constructive way to update trust, based on limited interactions with
other agents, is presented. In the experiments reported here, there is neither
a correlation between labels and strategies, nor between preferences and
strategies in the beginning of each experiment. Nevertheless, stable relations
of trust emerge. Furthermore, the coevolution of trust can signiÐcantly boost
the evolution of cooperation. This means that in the underlying evolutionary
game, a higher cooperative level in the population is reached faster with the
trust building than without it.
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