A Dynamically Formed Hierarchical Agent Organization for
a Distributed Content Sharing System

Haizheng Zhang

Victor Lesser

Department of Computer Science
140 Governors Drive
Ambherst, MA, 01003

{hzhang,lessery@cs.umass.edu

ABSTRACT

The organization and collaborative protocols of agent soci-
eties are becoming increasingly important with the growing
size of agent networks. Particularly, in a multi-agent based
content sharing system, a flat, peer-to-peer(P2P) agent or-
ganization is not the most efficient organization for locating
relevant agents for queries. This paper develops and ana-
lyzes a hierarchical agent group formation protocol to build
a hybrid organization for large-scale content sharing system
as well as a content-aware distributed search algorithm to
take advantage of such an organization. During the orga-
nization formation process, the agents manage their agent-
view structures to form a hierarchical topology in an incre-
mental fashion. The algorithm aims to place those agents
with similar content in the same group. We evaluate the sys-
tem performance based on TREC VLC 921 datasets. The
results of the experiment demonstrate a significant increase
in the cumulative recall ratio(CRR) measure compared to
the flat agent organization and structure.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: ,Distributed Artificial In-
telligence, Multi-agent Systems

General Terms
Algorithms,Design,Experimentation

Keywords
Peer to Peer Networks, Agent Organization, Distributed In-
formation Retrieval

1. INTRODUCTION

This paper investigates the role of an agent organization in a
large-scale content retrieval system. In such a system, each
agent shares its document collection and cooperates with
other agents to conduct information retrieval tasks. An in-
formation retrieval task is defined as a process during which

an agent receives a query from a user, forwards the query
to other agents, who then conduct local searches on their
own document collections and return relevant documents to
the query initiator. In this paper, we consider such a sys-
tem as a multi-agent system and focus on the organizational
perspectives, i.e. how to organize these agents together to
provide better system performance.

Our previous results showed that an unstructured search
strategy performs badly on flat P2P agent networks. How-
ever, a topology reorganization process combined with context-
aware search algorithms can improve the information re-
trieval performance considerably [9]. This has motivated us
to investigate more complicated multi-agent organizations.
Here we propose a hierarchical agent organization formation
protocol to explicitly form a multi-level topical hierarchical
structure to facilitate locating relevant documents. In this
approach, the agents join different groups in the hierarchy
based largely on their content similarity.

We make the following assumptions in this paper. First,
each agent maintains an independent index and an IR search
engine for its local document collection. However, we do not
introduce any further restrictions on the local search engines
and thus the network can be populated by agents having
very different local search engines. Second, the experimen-
tal results presented are based on local search engines that
are “perfect” in that they return all relevant documents in
the collection for a given query. Third, we assume there is a
third-party protocol in place to merge the returned results.
Thus, our protocol does not have to deal with the merging
of the returned lists. Lastly, we assume that agents are co-
operative in that they all agree to use the same protocols for
propagating resource descriptions among each other, accept-
ing queries from peers and finally returning search results to
the originators of the queries

The main contributions of this paper are as follows: (1) A
group formation protocol for forming a hierarchical topical
organization. The group formation is achieved by organizing
the agent-view structures properly so as to place semanti-
cally similar agents together to form explicit groups in an
incremental and distributed manner. (2) A content-aware
search algorithm taking full advantage of the hierarchical
organization. During the search process, agents in the net-
work follow various cooperation strategies to forward queries
and return results in the network.

The remainder of the paper is structured as follows: Section
2 presents the agent’s internal structure and overall system
architecture. Section 3 describes the algorithm to incremen-
tally form the hierarchical organization of agents. Section
4 illustrates the content-aware distributed search algorithm.
Section 5 presents the experimental framework used to eval-
uate search performance and analyzed the results of the ex-
periments. Section 6 presents the related work. Section 7
concludes the paper.

2. THE SYSTEM ARCHITECTURE

In the proposed hierarchical agent society, agents have two
roles: group-mediator and query-processor. All non-leaf
agents in the organization take on both roles while leaf
agents only take on the role of query-processor. Each medi-
ator manages a group of agents and takes on a central role
in group management including decisions on whether a new
agent should be added to the group, when to reorganize the
group, the selection of group members to handle a query
and the propagation of queries to non-group members. In
this section, we first describe the internal structure of an
agent(Section 2.1) and then in Section 2.2, we introduce
techniques for how agents can form a hierarchical organiza-
tion based on topics.

2.1 The internal structure of an agent

Fig. 1 illustrates the internal structure of an agent. Each
agent is composed of four components: the collection infor-
mation, a local search engine, an agent-view structure and a
control unit. The collection information includes the collec-
tion hosted by the agent to share with other agents as well
as a collection model built for the collection. The collection
model can be considered as the “signature” of a collection;
a collection model is a statistical language model built for a
particular collection. It characterizes the distribution of the
vocabulary in the collection and estimates the probability
of absent words using various smoothing techniques. The
language model concept was originally introduced in infor-
mation retrieval research [8] and has proven effective in the
distributed IR applications [1], [9].

The language model has many interesting properties which
are easily exploitable in peer-to-peer network systems: first,
a collection model is lightweight as it significantly condenses
the description of the content of the collection and thus is
much smaller in size compared to the collection. Addition-
ally, the size of the collection model grows minimally with
the size of the document collection. Secondly, the collection
model is a relatively accurate indicator for the content of
the collection.

The agent control unit’s role is to accept user queries, decide
whether the queries should be processed by one or more
group members, and determine the order of the other agents
or groups that the queries should be forwarded to. The local
search engine allows each agent to conduct a local search on
its document collection so as to determine whether there are
any documents that meet the criteria of a specific user query
and then return relevant documents.

The agent-view structure, also called the local view of each
agent, contains information about the existence and struc-
ture of other agents in the network and thus defines the

Agent Internal Structure e

\ Agent—View

Upward Links
Neighboring Local Search Engine
Links

Collection | Model
Downward
Links [[nformation

Figure 1: The internal structure of an agent

underlying topology of the agent society. The hierarchical
group formation process organizes the agent-view structures
of the agents to form a nearly-decomposable hierarchical
structure. The agent-view structure also contains the col-
lection model of the collections besides the address of these
agents. The agent-view structure differentiates agents that
take on both roles from those that take on only the role of
query-processor. The agents who only take on the role of
query-processor have only two kinds of links in their agent-
view: neighboring links which connect neighboring agents
together and upward links, which connect a member to its
immediate and higher level group mediators. Besides these
two kinds of links, mediators have downward links which
connect a mediator to its immediate group members. In our
current model, besides their direct mediators, agents also
connect to the top-level mediator of their group with an up-
ward link so as to facilitate the incremental group formation
process as well as the search process, which will be intro-
duced in later sections. This top-level connection is not an
absolute necessity since there are many alternative linking
structures that can achieve this goal. However, for simplic-
ity in describing the protocol and in our implementation, we
assume the existence of this type of link.

It is worth to pointing out that the degree, or the number
of the entries in agent-view structures is an important fac-
tor in determining system performance. On one extreme,
if each agent has the information about all agents in the
network, it is indeed a centralized version of distributed in-
formation retrieval problem which has been well studied in
the information retrieval community[1]. This, however, is
impracticable in P2P system for a very large network. Pre-
vious studies indicate that in general the degree of each node
satisfies the power law distribution statistics. In our work,
we specify that each agent has a degree limit for neighboring
links based on power law distribution assumption. Further
we assume there is an underlying linear relation between
the neighboring links degree and upward, downward links
degrees. In this paper, we use a degree ratio, which is de-
fined as the ratio of the upward(downward) links degree and
the neighboring links degree, to capture this correlation.

2.2 The topic based hierarchical structure

In this paper, we attempt to create a topic based hierar-
chical structure on a multi-agent based content sharing net-
work. In this structure, we define a content group as a
set of agents including a mediator and all the group mem-
bers which connect to the mediator directly or indirectly
through upward links. We call a content group led by a
top-level mediator a top-level content group. Inside each
content group, all the agents store collections on a same
topic. An agent can belong to multiple groups if applica-
ble. In our nearly-decomposable hierarchical organization,
the neighboring links connect agents in a peer-to-peer fash-
ion while downward and upward links connect agents in a
hierarchical fashion. These hybrid links make the system
well connected, more load-balanced, and meanwhile have
clusters of agents that are organized by topical structures.

Figure 2 illustrates an example of a hierarchical multi-agent
based content sharing network. The solid lines between
agents represent downward links and upward links. In this
example, we simply assume upward links and downward
links are symmetric, thus we use a solid line represent both
links. The dashed lines between agents are neighboring
links. The ellipse with solid line represents the top-level
mediator network. In this figure, there are three topic-level
mediators which lead content groups on “Sports”, “Busi-
ness” and “College” respectively. Through downward links,
top-level mediator leading “Sports” group is connected to
three immediate group members “Basketball”, “Professional
League” and “College Sports” respectively. Notice that the
two agents “Basketball” and “Professional League” share a
same group member which hosts NBA game information.
We also stipulate that agents in different level can connect
to each other via neighboring links. For example, “Basket-
ball” is connected to “Business” through a neighboring link.
This specification makes the “level” concept somewhat fuzzy
in our system.

The potential advantages of such a structure are: (1) It al-
lows for rapid locating a certain topic during the new agent
joining process and search process. (2) During the search
process, only a small subset of agents where most of the
matching documents reside needs to be probed, thereby re-
ducing the number of messages propagated in the network
and the number of local document search. This can signifi-
cantly improve the throughput of the system.

3. HIERARCHICAL GROUP FORMATION

In this section, we propose an online hierarchical group-
ing protocol. The protocol aims to build a topical hier-
archical structure incrementally as agents join the network.
The joining process for a new agent involves locating one or
more appropriate groups (or starting a new group), deciding
which group(s) to join and then merging itself into the de-
sired group(s). Similar to the classical clustering problem, a
natural question we have to answer is “how many top-level
mediators should we have”. This problem is not trivial even
if we have global knowledge. Various solutions have been
proposed to address this problem. In this work, we exploit
a threshold based approach: we assume that each agent is
associated with a threshold, called Tgroup. If the likeli-
hood of another agent belongs to a top-level content group
is above the threshold Terovp associated with the top-level
mediator, this agent can potentially be considered as a mem-

College

= Business

P \‘ /\/ | \\‘—\‘\\\
‘\ College N .
-\ \ Colleg - \
A\ Funds | /J
Professional A | o
Legue o %

Figure 2: The system architecture

ber of this top-level content group.However, if there is no
top-level mediator whose collection model is close enough to
the new agent, the new agent will start a top-level content
group on it own.

In the heteregeous environment, the topical similarity thresh-
old Teroup can vary considerably for different topics. We
therefore stipulate this threshold as an application-dependent
value instead of trying to determine a value for all the sit-
uations. Due to the limited space, we do not present here
how to calculate content similarity and determine topical
threshold[10].

After locating a top-level content group, the protocol pro-
ceeds to locate the most appropriate group for the new agent
by recursively splitting and inserting operations on the agent
organization. Through these operations, agents always keep
those agents with the most similar content as their imme-
diate group members. During this process, the new agent
builds its agent-view structure to place itself appropriately
in the network. Meanwhile, the current existing members
might prune their agent-view structure to reflect the changes
and connect themselves to the new agent through neighbor-
ing links. Section 3.1 introduces the message propagation
and group locating process; Section 3.2 describes the actual
join procedure. To further clarify this procedure, [10] pro-
vides many examples and figures.

3.1 Message propagation and group locating

When a new agent joins the system, it first contacts any
agent in the system with a Join? message. (Note that our
protocol does not specify how to acquire the entry point in-
formation of the network. However, we assume the network
is accessible either by an out-of-band approach as Gnutella
does or by other mechanisms). The results of these messages
are groups invitations from which the new agent chooses one
or more invitations to join a specific part of the agent society.
This process is carried out in a top-down fashion. Specifi-
cally, the new agent always tries to locate the appropriate
top-level mediators whose similarity with the new agent is
above their group threshold, Terovp. The top-level medi-
ators will then either add the new agent as its own direct
lower level member, or add it to a lower level group by pass-

ing the new agent to other members in the group. The rest
of this section details the group locating process.

The Join? message includes the collection model and other
information about a new agent. Upon receiving a Join?
message from a new agent, say Na, an agent forwards the
message to its top-level mediator, say M, through the up-
ward link described in the previous section. M compares
the similarity of agent Na’s collection model and its group
model, which is approximated by M’s collection model, i.e
P(Na|M). If the similarity is above the threshold associated
with M, (i.e Teroupr), M will start a procedure to generate
an invitation for agent Na to join the group it manages.
Otherwise, M deems that the new agent is not close enough
to be a member of the group. In either case, M forwards the
Join? message to its neighbors(other top mediators) with
a certain TTL(Time to Live) value. Each mediator who re-
ceives the Join? message repeats the same procedure as M
does. The T'TL value decreases by 1 when the message goes
through each agent in the agent society. During this pro-
cess, the new agent may join multiple groups if its collection
model is close enough to those groups’ group models.

There are two different procedures that can be followed in
this action. In the first case, if the number of the downward
links for the top-level mediator is below a pre-specified limit,
the top-level mediator will simply invite the new agent to
join its group. In the second case, if the downward degree
of the mediator has reached a pre-specified limit, the me-
diator then starts to merge two of its group members into
one subgroup in order to integrate the new agent. Note that
the mediator makes the connection changes permanently re-
gardless of whether the new agent accepts the invitation or
not. Because the outcome of such a merging operation al-
ways makes similar agents more closer by moving one agent
to a deeper level, we believe that the topology can be bet-
ter off with such an operation. Furthermore, by specifying
it this way, we avoid introducing transaction-like operations
which would make the protocol considerably complicated.

3.2 Member Joining and mediator re-election
After sending out the Join? message, the new agent starts
a timer. When the timer expires, the new agent examines
the group invitations received from current agents in the
network and decides which group(s) to join.

If the process ends up with no group invitations when the
timer expires, or NotAccept messages from all the groups it
wanted to join in, the new agent will start a new group with
a threshold P.(D|G) which is pre-acquired through offline
computation. It then becomes a top-level mediator in the
network. If it receives multiple group invitations, we specify
that the new agent will join all the groups as long as the
number of its upward links is below the upward links degree
limit. If the limit is reached, it picks the groups with the
highest similarity to join. At this point, the new agent would
always connect to the top-level mediator with an upward
link.

Note that we set the mediator as the content centroid for
the group. With more and more nodes joining in, the con-
tent centroid changes over time. For this reason, the current
mediator periodically checks its group members and deter-

mines if it should hand over the mediator position to a new
mediator. If this happens, the mediator will pass to the
new mediator its mediator neighbors and all the information
about the regular agents in the group to the new mediator.
The structure of the group might change correspondingly as
the degree of the old mediator and the new mediators could
be different. This update will be sent to the affected agents
to update their agent-view structures to reflect the recent
changes.

Once the new agent and its group mediators update their
agent-view structure, the new agent is now part of the agent
organization. The new agent will then broadcast Arrival
messages in order to build intra-level connections to other
agents in the group. This process results in building neigh-
boring links for both new agents and the currently existing
agents.

Specifically, the new agent sends out NewArrival! messages
with a certain TTL value to the mediators who then forward
the message to their neighbors and or upper level mediators.
TTL value decreases after each hop. During the message
propagation process, each existing agent in the network also
takes this opportunity to prune its neighboring list. Upon
receiving the NewArrival! message, a current agent chooses
to build a connection with the new agent and send out a
LinkInvitation message with a certain likelihood. Once it
decides to build a link to the new agent, the current agent
simply adds the new agent as a neighbor if the current de-
gree is below the capacity limit and otherwise, they will
cancel one of the current links to take on the new agent.
Upon receiving the LinkInvitation message, the new agent
chooses which agent to connect to randomly. For the sake
of simplicity, we specify that the issuing and acceptance of
an invitation message are two independent processes, which
implies that the current existing agent makes its own de-
cision to issue LinkInvitation and cancel the current links
even though the new agent may not accept the “Invitation”

4. A TWO-STAGE SEARCH ALGORITHM

Search in a content sharing multi-agent system should avoid
significant communication costs and minimize the access to
those agents that do not contain relevant documents for a
given query. The benefits of communication cost savings are
obvious. However, avoiding unnecessary query processing
that involves local searches of documents collection can also
significantly improve overall system performance especially
in situations where there are many active queries concur-
rently being processed by the system.

Our query search process is structured into two stages. In
the first stage, a coordinated search protocol is used to re-
locate the queries to “relevant agent zones” by taking ad-
vantage of the hierarchical structure that has been built.
Here, a “relevant agent zone”, as opposed to an “irrelevant
agent zone”, means a group whose members contain rele-
vant documents. This is a somewhat fuzzy definition as
there is no clear boundary between a relevant-agent-zone
and an irrelevant-agent-zone. However, as shown in [9], in
reality, most of the agents in the network are irrelevant to a
given query. Therefore, in our coordinated search algorithm,
we try to locate the “relevant agent zones” by sorting the

P(Q|G) value, which can be considered as the similarity of
a query Q and a group collection model G. This value in our
paper is again estimated by the similarity between the query
and the mediator collection model. Specifically, the query
initiator sends out the query to its most similar top-level
mediator who then forwards the query to the other top level
mediators with a certain T'TL(time to live) value. After it
expires an agent will not forward the query any further, thus
stopping further search along this path. Upon receiving the
queries, a mediator will return with the content similarity
of the group and the query P(Q|G). The query initiator
then picks the N highest similar top-level mediators as the
starting points of the second phase search. Notice that a
sorting strategy is used to pick the starting points instead
of a threshold strategy used in [9] as the calculation for
content similarity value between a short query and a collec-
tion[6] can be biased by the particular collection properties
and thereby making an absolute threshold value inaccurate.

During the second stage, we start the search from the medi-
ators chosen in the first phase. The query initiator forwards
the query to the Krop most promising agents who then
proceed to forward the query on to their neighbors in a de-
creasing order of similarity values. This process continues in
the network until all the agents receiving the query drop the
message or there are no other agents to forward to. There is
no explicit recognition by individual agents that the query
is no longer being processed by any agent in the network.
The Krop value affects the number of agents that could be
visited when the search algorithm ends. The bigger Krop
value is, the more messages will be generated in the system
and potentially more agents will eventually be visited.

time unit as the communication time cost from one agent
to the next one. Notice that this definition does not include
the local search time, which will be analyzed separately in
the next section. During the search process, we record the
time when each agent is visited and the time when messages
are generated. To get a greater than 95 percent confidence
interval on the number of messages and CRR value(will be
introduced in the next section), we ran the simulation 50
rounds. In each round, we built a new agent organization
and repeated every query 50 times on that organization.

The experimental results show that the semantically close
agents are consistently grouped together. In this section, we
analyze the resulting hierarchical group organization from
both an information retrieval and a system performance per-
spectives. Note that Figures 3, 4, 5 compare the simulation
results of the algorithm described in this paper which is
denoted as disc-0.8-ttl-4 in these figures with a random al-
gorithm and the AVRA algorithm. The AVRA algorithm,
which is described in our previous work[9], conducts search
on a reorganized topology in which agents with similar col-
lection are clustered together implicitly. In Fig.3, The upper
line is the centralized approach: Centralized KL divergence
based approach is used as an upper bound on performance,
which is common in the distributed IR literature. This ap-
proach assumes the network is a fully-interconnected graph
and agents are visited in the order of decreasing similar-
ity values between collections and each query. In Fig 3,
ImprovedRandom represents an improved random approach
with a heuristic that agents forward queries to the neighbor-
ing agents in a decreasing similarity order while the rest of
the algorithm is the same as random approach, As it turned
out that the degrees of downward and upward links did not

5. EXPERIMENT SETUP AND RESULTS AN AL_contribute much to the system performance in all the three

YSIS

5.1 Experiment setup

In our experiment, we use TREC-VLC-921 dataset which
contains 921 sub-collections to simulate the collections hosted
on agents. TREC-VLC-921 was split from TREC VLC1
collection by data sources in order to create testbed for dis-
tributed information retrieval research originally[3]. TREC
VLC1 is part of the TREC collections which are distributed
by the National Institute of Standards and Technology (NIST)
for testing and comparing the current text retrieval tech-
niques. TREC VLC1 (very large collection) includes docu-
ments from 18 different data sources, such as news, patents,
and the Web[4]. We ran the query set 301-350 on TREC-
VLC-921 to simulate the user queries. .

We use the algorithm introduced in [7] to calculate the de-
gree limit of the agents with parameters « = 0.5 and 8 = 0.6.
In our experiments, we expQlored three different upward de-
gree limits and downward degree limits based on linear de-
gree ratios of 0.5, 0.8 and 1.0. During the search process,
Krop value is set to the minimum value of 8 and the number
of top-level mediators, this value allows a reasonable cover-
age of the relevant documents while still keep the traffic low.

In experiments, we build the agent organization incremen-
tally as the 921 agents join the system. Then we ran the
search algorithms with the query set 301 — 350. The query
always starts from a randomly picked agent. We define a

cases, we only keep the curve when the degree ratio is 0.8 in
Fig 3, 4 and 5.

5.2 Query processing efficiency

Recall and precision are two important measures in tradi-
tional information retrieval research.In this paper, we eval-
uate the query processing efficiency of our system based on
a variant of the recall ratio which is defined below:

Definition 1: Cumulative Recall Ratio (CRR) for a query
after n agents are searched is defined as

n

CRRgm =Y =

2R,

Here R, is defined as the total number of relevant docu-
ments located in the entire network for the query ¢;, and r;
is the number of relevant documents located at agent j.

The traditional recall ratio reflects the proportion of the
relevant documents over the retrieved documents in a col-
lection while the CRR value characterizes the relevant doc-
uments returned when a certain number of agents have been
searched. Therefore, the CRR metric in our system can be
considered as the counterpart of recall ratio in traditional
information retrieval field. As we assume that each agent is
able to distinguish relevant documents from irrelevant ones
with 100% precision, the traditional precision ratio corre-
sponds to the capability of the agent selection(database se-

The number of local searches vs CRR

0.9 T
081 S Qe arl
ImprovedRandom o
07} cerﬁraYized search --m-
e
0.6 = o)
g:: 0.5 B % 2
e
O 0.4 / » T j//"' /
//,X a
L
0.3 f s o o %/
0.1){fﬁ“ x
Y
0 50 100 150 200 250 300

The number of local searches

Figure 3: CRR versus the number of local searches

lection) in P2P systems. Thus, in order to maximize the
cumulative recall ratio, we need to forward the query to
those agents hosting the most relevant documents. Fig. 3
presents experimental data on the ratio of CRR over the
agents retrieved. This is achieved by plotting with the pair
(CRR, site searched). This measure has theoretical meaning
in terms of information retrieval performance as it charac-
terizes the collection selection performance. By searching
fewer agents, we are able to significantly reduce message
cost and local computational costs.

Note that we are not interested in the exhaustive searches
with 100% recall ratio. Instead, we only evaluate the system
when a relative small part of the system is searched. This
is because that there can be a very large number of relevant
information sources in P2P information retrieval as Web in-
formation retrieval thereby making an exhaustive search un-
necessary. Additionally, exhaustive searches could lead to a
bad performance in the presence of many concurrent queries
in the system as it consumes more computational resources.

#Message versus CRR
600

/

300 - K=3%€§g§rgjlzl —— e /

200 _— et

Message number

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
CRR

Figure 4: Messages number versus CRR

We have several observations from Fig.3: (1) The central
KL approach consistently outperforms the other three ap-
proaches. The results are consistent with the conclusion that
the collection model is a stable indicator for the collection
from distributed information retrieval experiments; (2) As
little is known about the content distribution, the number

of relevant documents retrieved by random algorithm is pro-
portional to the number of agents that have been searched;
(3) The figure demonstrates that the search algorithm on
the hierarchical topology consistently outperforms the other
approaches including AVRA and the improved random ap-
proach; (4) The ImprovedRandom algorithm outperforms
the AVRA algorithmwhen more agents are visited. As the
major difference between the two algorithm is the forward-
ing strategy when an agent receives a query, this observation
indicates that a simple sorting strategy performs better than
threshold strategy used in [9]. Again, as we mentioned in the
previous sections, we believe the edge of the sorting strategy
comes from the fact that absolute content similarity is less
accurate in heteregeous environment.

Time vs. CRR
1.2
1 o
¥
#
; K [i
02 B o
H andom ---x--
; spOxR0O0O
£ 06 : S]
o ‘ < -

‘ X
; x //
0.4

02 i X *M
L

0 10 20 30 40 50 60
Time

Figure 5: CRR versus communication time

5.3 Traffic and time based efficiency

In addition to the two IR metrics, the number of messages
generated and searching time ¢ are two important measures
from the system performance perspective. To simplify eval-
uation, we do not consider the time spent for relevant doc-
uments to return to the query initiator. Therefore, we de-
fine the the searching time t as the sum of the time spent
in the trip from the query initiator to agents, i.e. ¢i, and
local processing time spent in agents, i.e, t2. As the local
processing involves searching the local document collections,
sorting the similarity of neighboring agents to queries and
forwarding queries to other agents, we believe that ¢2 is the
dominant factor in searching time ¢. Fig. 4 illustrates the
number of messages generated versus CRR value. Fig. 5 de-
picts cumulative recall ratio versus the elapsed time in the
search.

Fig.4 illustrates that our approach generates fewer messages
than random approach. Particularly when CRR reaches
40%, there are about 500 messages generated in the system
for the random search while the two-stage search algorithm
generates from 260 — 300 messages depending on the pa-
rameters. An interesting fact is that AVRA algorithm per-
forms very well when CRR is below a certain value, but its
performance then drops off sharply above that value. This
benefit comes from the fact that AVRA algorithm attempts
to locate a good start point for a given query with min-
imal communication efforts. Therefore, messages number
increases slowly at the begining. However, once the query is
forwarded out of relevant-agent-zone, AVRA algorithm con-

sumes more messages in order to achieve a certain level of
CRR.

Fig.5 demonstrates the time units ¢; spent to reach a cer-
tain CRR value. Not surprisingly, with the presence of only
a single query, the two-stage search algorithm and AVRA
algorithm spend more time in communication. This fact is
attributed to the facts that (1) the two-stage search is a fo-
cused search approach while the random search algorithm
broadcasts the query to every possible directions.; (2) In
AVRA algorithm, as agents of similar collection models are
normally clustered together, a query tends to be forwarded
to same agent, thereby making the query harder to reach
more agents. However, we believe that in real system, both
AVRA and the two-stage search algorithm would perform
much better. This confidence comes from two reasons: (1)
as we mentioned in the previous section, we believe that the
t1 is a minor factor contributing to the search time t con-
sidering the agent selection efficiency. (2) Fig.5 only shows
the situation with a single query in the system. With many
queries concurrently in the system, considering the messages
queuing time, the situation in Fig 5 may not be an accurate
predictor of performance. We leave this simulation as future
work.

6. RELATED WORK

Peer-to-peer (P2P) systems have emerged as a popular way
to share huge volumes of data. However, early work in this
area focused on file-sharing systems with exact-match based
searching approaches. Most recently, P2P based informa-
tion retrieval, which allows partial match among documents
and queries, has attracted significant attention.Among these
works, many researchers are also working on the combina-
tion of underlying topologies and searching schemes in order
to improve system performance[5] [2]. In [5], the authors use
a vector model to represent each node and propose a cluster-
ing algorithm to cluster agents with similar content together
through the “attractive” links. Based on this model, the au-
thors further propose a Firework query model. This work is
very similar to our previous work in which content-similar
agents are implicitly clustered together by aggregating col-
lection models for agents and two search strategies are em-
ployed based on the reorganized topology[9]; In [2], the au-
thors show that a simple search strategy on possession-rule
overlays can dramatically increase the effectiveness of search
for rare items over that of plain unstructured network, and
the performance can be further improved by preferring rules
that correspond to recently acquired items or rules where the
meta data of the corresponding items is more related to the
query items.

Our work differs from these works in that our topology al-
gorithm forms a multi-level hierarchical structure which can
better reflect the inherent connections among those collec-
tions. We also believe that our model has better scalabil-
ity in larger content sharing networks. In our algorithm,
the agents calculate content-similarity thresholds offline and
thus we do not need a pre-set topic number and level for the
topic hierarchy. Additionally, we proposed a context-aware
searching algorithm to take advantage of the hierarchy struc-
ture to reduce the traffic and improve throughput.

7. CONCLUSION

In the multi-agent based content sharing system, the flat,
peer-to-peer(P2P) organization hinders agents from efficiently
locating relevant agents for queries. This paper develops and
analyzes a hierarchical agent group formation protocol to
build a hybrid organization for a large-scale content sharing
system in an incremental and distributed fashion. During
the group formation process, agents are classified into var-
ious semantic groups by organizing their agent view struc-
ture.A collection model based coordinated search algorithm
is also proposed to take advantage of the organization. We
evaluated the system performance based on TREC-VLC-
921 datasets. The results of the experiments demonstrate
a significant increase in the cumulative recall ratio(CRR)
measure compared to the flat agent organization and struc-
ture.

8. REFERENCES

[1] J. Callan. Distributed information retrieval. Kluwer
Academic Publishers, Reading, Massachusetts, 2000.

[2] E. Cohen, A. Fiat, and H. Kaplan. Associative search
in peer to peer networks: Harnessing latent semantics.
In In Proceedings of the IEEE INFOCOM’03
Conference, 2003.

[3] J. French, A. Powell, J. Callan, C. Viles, T. Emmitt,
K. Prey, and Y. Mou. Comparing the performance of
database selection algorithm. In Proceedings of the
22nd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
1999.

[4] D. Hawking, N. Craswell, and P. Thistlewaite.
Overview of trec-6 very large collection track. In In
Proceedings of the Tenth Text Retrieval Conference
TREC, pages 93-105, 1997.

[6] C.-H. Ng and K.-C. Sia. Peer clutering and firework
query model. In Proceedings of the 11th World Wide
Web Conference, Poster, 2002.

[6] P. Ogilvie and J. Callan. Experiments using the lemur
toolkit. In In the Tenth Text Retrieval Conference,
TREC 2001. NIST Special Publication, pages 103-108,
2001.

[7] C. R. Palmer and J. G. Steffan. Generating network
topologies that obey power laws. In Proceedings of
GLOBECOM ’2000, November 2000.

[8] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the 21st annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 275-281. ACM Press, 1998.

[9] H. Zhang, W. Croft, B. Levine, and V. Lesser. A
multi-agent approach for peer-to-peer information
retrieval. In Proceedings of Third International Joint
Conference on Autonomous Agents and Multi- Agent
Systems, July 2004.

[10] H. Zhang and V. Lesser. A dynamically formed
hierarchical agent organization for a distributed
content sharing system. In University of
Massachusetts, Amherst Technical Report
UM-CS-04-47.

