
Rethinking Virtual Link Mapping in
Network Virtualization

Khoa TD Nguyen†, Qiao Lu†, and Changcheng Huang†
†Department of Systems and Computer Engineering
Carleton University, Ottawa, ON K1S 5B6, Canada

{khoatnguyen, qiaolu, huang}@sce.carleton.ca

Abstract—Virtual Network Embedding (VNE) that addresses
the embedding problems of heterogeneous virtual networks onto
a physical limited-capacity infrastructure efficiently is a major
challenge in network virtualization (NV). VNE is computationally
intractable when considering various constraints on nodes and
links, and is also known as NP-hard even in offline embedding.
Although the VNE problems have received much attentions over
recent decades with a vast number of VNE solutions, the majority
of them only focus on VNE node mapping, whilst leaving the link
mapping stage for the shortest path method or multicommodity
flow (MCF) algorithm. We persuasively argue that node and
link mappings equally play pivotal roles to approach an efficient
VNE solution. In this paper, we reassess the role of link mapping
stage in VNE problem, and then propose a novel intelligent VNE
orchestration which effectively implements a distributed parallel
model to reduce the operation time remarkably. Extensive evalu-
ation results show that our proposed algorithm is not only faster
than state-of-the-art VNE algorithms in speed, but also better in
all performance metrics.

Index Terms—Network Virtualization, Virtual Network Em-
bedding, Parallel Algorithm, 5G-and-beyond networks, smart
IoT, Artificial Intelligent, Genetic Algorithm.

I. INTRODUCTION

NV is considered as a promising paradigm to pave the success of
the future generation networks such as 5G-and-beyond [1], virtualised
IoT networks [2]. NV allows to share the physical network resources
among multiple virtual network requests (VNRs), enabling an isolated
coexistence of multiple virtual networks (VNs) on a single substrate
network (SN). This key technology brings more efficient resource
utilization to the SN and offer a great opportunity of implementing
as well as evaluating new network protocols or architecture designs.
It also prevents an unnecessary expansion of network infrastructure.
The critical challenge of embedding VNRs with diverse topology and
stringent resources onto the underlying physical network is known as
Virtual Network Embedding (VNE) problem.

In essence, VNE process that enables mapping requested VNs
onto the underlying shared physical network can be decoupled into
two sub-problems: Virtual Node Mapping (VNoM) and Virtual Link
Mapping (VLiM). VNE has been proven to be NP-Hard either for
VNoM or VLiM [3]. However, it is important to note that VLiM
problem is de facto more challenging than the analogue VNoM due
to the requirements that all the substrate links along which a virtual
link is mapped onto must have enough residual capacities to support
the bandwidth requirement of the virtual link, which results in the
bandwidth fragmentation problem more likely to occur. In practise,
the most common failures of mapping VNRs invariably emanate from
the ineffective link mapping algorithm [4]. Consequently, we presume
that an appropriate design of VLiM mechanism will not only improve
the efficiency of link resource utilization, but also increase the number
of accepted VNRs.

In fact, the formulated optimization models such as Integer Linear
Programming (ILP) are commonly proposed to achieve optimal VNE
solutions, but they cannot be actually tailored for online VNE problems
due to their intricacy, non-scalability and non-polynomial time issue.
Instead of exact methods, most of research papers have simply adopted
light-weighted heuristic algorithms to tackle the aforementioned
impediments of the formulated optimization models. However, most

research work [3]–[10] engrosses in seeking an efficient node mapping,
but it seems to underestimate the link mapping stage since they
completely entrust to k-shortest path or multicommodity flow (MCF)
algorithms, which definitely restricts VNE link mapping options.

Towards 5G-and-beyond networking and smart IoT, VNE problem
where the physical infrastructure allows splittable and unsplittable
resource configurations is indisputably an essential research topic in
Software Defined Network (SDN), Network Function Virtulization
(NFV) and Future Edge Clouds. Splittability permits a virtual link
demand to be embedded on multiple substrate paths whilst if it
is mapped onto a single physical path with fixed node mapping,
which reduces to unsplittable configuration. Although splittable-based
embedding is literally expected to obtain better resource utilization, it
may generate a larger overhead to consistently maintain the network
state [11]. Due to the aforementioned reasons, we merely focused on
unsplittable mapping in this paper. In contrast, parallel algorithms can
be tremendously beneficial in dealing with the intricate computing
tasks thanks to lower hardware costs for computing recently.

In this paper, we propose a novel GA-based VNE algorithm that is
relied on new design of the crossover operator for VLiM. The multi-
constrained fitness function considering the embedding cost, hop-count
and propagation delay has driven the proposal to an efficient VNE
algorithm. Our proposed algorithm, that exploits a set of distributed
parallel machines, enables to embed multiple link mapping requests
at the same time so as to reduce the execution time. To the best of
our knowledge, this is the first paper that applies an elastic crossover
mechanism in GA algorithm to VNE problems. This paper is an
extension of [12] towards the crossover operator and the improved
fitness function, which not only achieves better performance than [12],
but also outperforms state-of-the-art VNE algorithms.

The remainder of this paper is organized as follows: the network
model is formulated in Section II and then we present our proposed
distributed parallel GA-based algorithm for VNE link mapping in
Section III. The performance evaluation is introduced in Section IV
whilst the related work is presented in Section V. Section VI is finally
a conclusion of this paper.

II. NETWORK MODEL AND PROBLEM DESCRIPTIONS

A. Virtual Network Assignment
The VNE substrate network is modelled as a weighted undirected

graph Gs = (Ns, Ls), in which Ns is the set of all substrate nodes
and Ls is the set of all substrate links. Basically, each substrate node
ns ∈ Ns that has a geographic location loc(ns) is characterised by the
available CPU capacity c (ns), whereas each substrate link ls ∈ Ls
between any two substrate nodes has a finite bandwidth capacity
b (ls). Memory and storage resources will be omitted in this article
for simplification. In VNE research, we can model the ith arriving
VNR as a weighted undirected graph denoted as Gvi = (Nv

i , L
v
i ),

where Nv
i is the set of all virtual nodes and Lvi is the set of all virtual

links towards the ith VNR. Each virtual node nvi ∈ Nv
i is inherently

characterised by a requested CPU capacity c(nvi ), whilst a virtual
edge lvi (s

v
i , d

v
i ) ∈ Lvi between a virtual source node svi and a virtual

destination node dvi has a requested bandwidth capacity b (lvi ). Each
VNR has a preferable mapping radius D(nvi ) that discloses how far
a virtual node nvi can be placed from its location identifier loc(nvi ).
Mapping the ith VNR Gvi onto the SN Gs can be decomposed into
two main components as determined above: VNoM and VLiM. Under
node mapping stage, a virtual node from a VNR can be embedded



onto a substrate node AN : Nv
i → Ns, with nv ∈ Nv

i subject to:

c(nvi ) ≤ RN (AN (nvi )) (1)

D(loc(nvi ), loc(AN (nvi ))) ≤ D(nvi ) (2)

AN (nvi ) ∈ Ns (3)

RN (ns) = c(ns)−
∑

nv→ns

c(nvi ) (4)

where nv → ns defines the virtual node nv that is mapped on the
substrate node ns, and the distance between the geographical locations
of node is and jd is measured by D(is, jd). Besides RN (ns) denotes
the residual/available CPU capacity of a substrate node. In fact, a
virtual link is mostly embedded on the corresponding substrate path
with one or more substrate links. As such, this unsplittable link
embedding can be denoted by AL : Lvi → Ls whilst lvi = (svi , d

v
i ) ∈

Lvi , Es(AL(l
v
i )) is a set of all possible substrate paths from source

node AN (svi ) to destination node AL(d
v
i ).

AL(s
v
i , d

v
i ) ⊆ Es(AN (svi ),AN (dvi )) (5)

subject to: RL(e
s) ≥ b(lvi ),∀es ∈ Es(AL(l

v
i )) (6)

RL(e
s) = min

ls∈es
RL(l

s) (7)

RL(l
s) = b(ls)−

∑
lvi →ls

b(lvi ) (8)

where RL(es) is the available bandwidth of a substrate path es ∈ Es,
and RL(ls) is the residual substrate link capacity.

B. Performance metrics
From the InPs’ perspective, the main VNE objective is to maximize

their accumulated revenues while keeping its embedding cost minimal.
In this paper, the generated revenue of InPs is practically calculated
as the sum of total virtual resources embedded on the SN over time.
Accordingly, the revenue of ith VNR Gvi is computed as below:

R(Gvi ) = wb ∗
∑
lvi ∈L

v
i

b(lvi ) + wn ∗
∑

nv
i ∈N

v
i

c(nvi ) (9)

where b(lvi ) and c(nvi ) are the requested bandwidth of the virtual link
lvi and the requested CPU of the virtual node nvi while wb and wn
are the unit weights of the mapped bandwidth and CPU resources
respectively.
Cost: we likewise characterize the cost of the ith VNE C(Gvi ) as the
sum of total network resources allocated to the ith VN.

C(Gvi ) =
∑

nv
i ∈N

v
i

c(nvi ) +
∑
lvi ∈L

v
i

∑
ls∈Ls

f
lvi
ls (10)

where f l
v
i
ls defines the bandwidth of substrate link ls that is allocated

to the virtual link lvi
Acceptance ratio: is characterized by the ratio between the number of
accepted VNRs over the number of arrived VNRs during the interval
time τ is calculated as following:

Aτc =

∣∣∣∣ξa(τ)ξ(τ)

∣∣∣∣ (11)

where ξa(τ) and ξ(τ) is the number of the successfully mapped
VNRs and the number of VNRs respectively.
Remaining bandwidth: the residual bandwidth of a SN can be
calculated as following:

Rm(Ls) =
∑
ls∈Ls

(b(ls)−
∑
lvi →ls

b(lvi )) (12)

Meanwhile, there are new VNRs arrived, the InP will intrinsically
calculate the residual network resources, and then attempts to embed
the corresponding VNRs onto the physical network depending on
such achieved remaining resource information. Higher remaining
bandwidth would bring higher chance of accepting the prospective
virtual networks.

Fitness Function (FF): the fitness values of each solution determine
which one will reproduce and remain “alive” in the next generation,
relevant to the predefined objectives to be optimized in our proposed
GA-based algorithm in Section III-B. As a result, this function
is utilized to examine the quality of each VLiM solution among
several feasible ones so that its values can provide a scientific proof
for electing the corresponding solutions in GA stages. In details,
we take the cost of embedding a VNR into consideration in this
paper, so solutions with less cost generated are definitely preferable.
Moreover, we consider hop-count as an important factor into FF
as it is substantially associated with bandwidth consumption. This
means that less hop-count solution would consume less bandwidth,
and then leaves more residual network bandwidth, increasing the
possibility of the upcoming VNRs being accepted. The propagation
delay of VLiM solutions is also estimated and added into FF as
another constraint accompanying with the hop-count attribute in order
to construct a multi-constrained fitness function. Fitness function
F(Sz) is eventually calculated as below:

F(S) = (
1

C(Gvi )
) ∗ wc + (

1∑
lvi ∈L

v
i
hAL(lvi )

) ∗ wh

+(
1∑

lvi ∈L
v
i
dP(AL(lvi ))

) ∗ wp
(13)

where, S , h and dP are a feasible solution, hop-count and propagation
delay of the link mapping solution of lvi respectively. wc, wh, and wp
are weight parameters equivalent to cost, hop-count and propagation
delay factors.

III. DISTRIBUTED PARALLEL RESOURCE-ALLOCATION
ALGORITHM

A. Backgrounds and Ideas
Parallel and distributed computing has recently emerged as an

effective mechanism to tackle large and complex problems with less
time consuming and lower cost by supporting the concurrency. In
addition, GA algorithm is an appealing AI approach for dealing with
both constrained and unconstrained optimization problems by adopting
the natural selection idea.

Fig. 1: Parallel operation scheme

A typical GA consists of four primary operators: initialization, se-
lection, crossover and mutation. Crossover operator can be recognized
as an exploitation phase in which the global optimum is positively
expected to discover, so we argue that a creative crossover operator
would improved the efficiency of our GA algorithm driven by an
appropriate FF. Inspired from the DNA replication process in [13],
this mechanism allows cell division to occur. A parental cell can be



split into two or more daughter cells by this process. They can inherit
diverse combinations of partial or all DNA. In this research work, we
redesign a novel crossover operator for the proposed GA algorithm.
This new mechanism allows to proportionally exchange the random
genes between the parental chromosomes to generate new offsprings.

As discussed, we assume that the role of link mapping stage in
VNE is being underestimated, and the fastest speed of shortest path
method can be vanquished by implementing an ingenious parallel
operation scheme. Thus, we propose a novel intelligent GA-based
orchestration algorithm for VLiM stage, running on a predefined
number of independently distributed parallel machines (e.g. virtual
machines) to generate the feasible solutions denoted as chromosomes.
To prove our hypothesis, we deploy a simple Greedy node mapping
as the same with G-SP algorithm in [14] due to its simplicity. This
selection can not only guarantee the rapid embedding speed, but also
maximize the residual network resources leading more successfully
allocated node mapping requests in future. Our proposed parallel GA
scheme is presented in Fig 1.

B. Distributed Parallel Genetic Algorithm (DPGA)
As depicted in Fig 1, we present the functioning procedures

sequentially working under a single master node such as node mapping,
original path pool generation, synchronization, allocation, whereas the
others handle the parallel GA algorithms to find the feasible solutions
for VNE link mapping working as several slave nodes. Each slave
machine is independently running with defined iterations, and then
the best-matching feasible VLiM outcome is selected amongst the
parallel machines. Unlike other research papers embedding virtual link
requests sequentially, our proposed algorithm enables to map all link
requests of a VNR altogether. A chromosome Cf including several
genes gji denotes a feasible link embedding solution for all virtual
link requests of a VNR. Each gene gji , where i and j indicate its
current chromosome and virtual link respectively, is associated with
a substrate path that is a feasible solution for a virtual link request. It
means that the number of genes corresponding to a VNR constitute a
chromosome.
1) Initial path pool generation
We deliberately create the potential path database for the requested
virtual links before conducting link mapping procedures. For each
pair of source-destination, a k-shortest path algorithm e.g. Dijkstra’s
algorithm is simply deployed to identify k-shortest paths during
the path pool generation. This intrinsic process can be obviously
determined prior to the arrival of online VNRs since the substrate
network is static.
2) Slave node
Population Initialization: each slave machine usually begins to
handle the proposed GA algorithm with a population initialization
step where each chromosome Cf defines a feasible solution. It is
assumed that there are M chromosomes and each chromosome has
N genes. An initial population P (MxN size) at the kth machine
can be represented as below:

P =



C1
C2
...
Cf
...
CM


=



g11 · · · gj1 · · · gN1
g12 · · · gj2 · · · gN2
...

. . .
...

. . .
...

g1f · · · gjf · · · gNf
...

. . .
...

. . .
...

g1M · · · gjM · · · gNM


(14)

To construct a chromosome, each gene associated with the potential
embedding solution of a virtual link request shall be uniformly selected
from the initial path pool in random. This solution must pass the
feasibility-checking process to become a potential link solution. This
checking procedure is actually necessary since it guarantees the
underlying SN still has adequate residual resources to embed the
corresponding request. All N potential genes that have already passed
the feasibility check will compose a chromosome, considering as a
feasible solution for the VLiM.
Selection: in order to enhance the parallelism degree, the parents
are randomly chosen from the initial population with replacement.

We apply the fitness-based proportionate selection scheme to adopt
parents from the initial population, which conceptually relies on the
cumulative sum of the fitness relative weights (13). However, the
children produced might either achieve better or worse quality than
their parents in next operators due to the randomness selection.

Crossover: this is literally considered as one of the most impor-
tant step in GA algorithm, which primarily combines the parental
chromosomes to produce new offsprings in next generations. We
define Cs and Cr as the parental chromosomes with the corresponding
indices s and r in the initial population. Different from typical
GA crossover operator that normally employs one or more static
random crossover points to exchange the consecutive sequence of
genes between two parental chromosomes, we proceed the crossover
phase on selected chromosomes with different sequences of random
numbers. Specifically, each related child has a different number
of random genes to exchange with the others and vice versa. For
example, Fig 2 illustrates our proposed crossover operator where
the 1st chromosome exchanges the 1st, 2nd and 5th genes with the
other. On the other hand, the 2nd chromosome gets new 3rd and 4th

genes from the first chromosome. This novel operation will provide
an elastic crossover mechanism producing resilient offsprings, which
is particularly desirable to improve the exploitation phase. Moreover,

Chromosome 1

Before Crossover

g0 g1 g2 g3 g4 g5 g6

g0 g1 g2 g3 g4 g5 g6

Chromosome 2

g0

g1 g2

g3 g4

g5

g6

g0 g1 g2

g3 g4

g5 g6

Offspring 1

g0 g1 g2 g3 g4 g5 g6

g0 g1 g2 g3 g4 g5 g6

Offspring 2

After Crossover

Fig. 2: An example of the elastic crossover operator

denote jc+n as the random gene between any genes inbound the N
length, and new descendant chromosomes are denoted as C(M+1) and
C(M+2) respectively. The new offsprings are ultimately produced by
changing random parent genes as depicted in (14b). Obviously, the
quality of generated children may be worse than their ancestors or
the duplication of solutions may happen at different parallel levels.
The random genes of each parental chromosome jc+n are randomly
selected, and they can be even the first or last gene in the parents’
chromosomes because the mated children are apparently based on



TABLE I: Compared Algorithms

Notation Description
DPGA Novel Distributed Parallel GA-based Algorithm pro-

posed in this paper
TGAL Typical GA-based Algorithm for Link Mapping [12]

NTANRC-S Network Topology Attribute and Network Resource-
considered algorithm (Stable) [10]

G-SP Greedy Node Mapping with Shortest Path Based
Link Mapping [14]

R-ViNE Random Node Mapping with Shortest Path Based
Link Mapping [14]

D-ViNE Deterministic Node Mapping with Shortest Path
Based Link Mapping [14]

distinct genes rather than a successive sequence of genes. Furthermore,
we might wonder how many genes are chosen to exchange because if
all genes are selected, two parental chromosomes are just swapping
all genes each other. In this case, our crossover stage is veritably
dysfunctional. As a result, we define an elastic factor ef which
determines maximum number of genes that can be changed at each
chromosome. It can be considered as a proportion of the N length.
For instance, if ef = 0.75 (75%) and N = 7, the number of genes
that can be randomly chosen for mating is ranging from [1− 5]
Mutation: typically implements random modifications on children
to produce new offspring. Mutation is implemented in the purpose
of sampling the solution space and broadening the search. This is a
crucial piece of the solution process that can somehow prevent from
falling into the local optima. A mutation operator usually includes a
mutation point denoted as jm that is generated in random. At this
point, a new gene which is selected from the original path pool can
substitute any random existing gene in the in-processed chromosome
to create a new child. Definitely, the newly selected gene must pass the
feasibility check. We denote jm and gj

m

r′ as the mutation point and
the new gene that replaced the existing one in C(M+1) respectively.
After substitution, the mutation solution C′(M+1) can be described as
C′(M+1) = [g1s · · · gj

m

r′ · · · g
N
s ].

3) Solution Sorting and Terminations
A GA-based mapping process conducting at each slave node is
expectantly terminated whenever reaching a predefined number of
iterations. After the sorting step that is based on the fitness function
values, the best mapping solution among the feasibles is selected to
convey to the synchronization for the global ranking. In addition, a
parallel operation comprises a series of concurrent processes, and
each will finish its assigned work at different time. Waiting until the
last process accomplishing its particular task is actually painful, but it
does not always guarantee to achieve the envisaged outcome. In some
unexpected situations where a specific process takes excessively longer
time to accomplish, this situation influences on the total operation
time. Moreover, two or more succeeding processes might be jammed
because they need to wait until such process completes its work (e.g.
deadlock). Hence, the master procedure in our parallel model will be
finished if the best solution for VLiM found has not consecutively
improved during t times, where t is known as a termination parameter.
4) Synchronization and VNR allocation
This step is premeditatedly aimed at determining the final VNE
solution for the VLiM request by a ranking process based on fitness
function values of the feasible solutions that have received from slave
nodes. Consequently, the corresponding VNR would be accepted and
allocated onto the physical network relied on the information of the
related node and link mapping solutions. Accordingly, the residual
network resources will be updated in advance.

IV. PERFORMANCE EVALUATION

A. Simulation setup
We have deployed a discrete-event simulator to evaluate the pro-

posed GA algorithm with same parameter settings as [3]. Accordingly,
SN and VNs are generated using a popular GT-ITM topology generator
[15]. In our simulation, substrate networks are configured with 50
nodes, randomly placing on a 25 × 25 Cartesian plane. They are
randomly connected to average 140 edges applying the Waxman

model with α = 0.5 and β = 0.2. Fundamentally, α determines the
maximal edge probability whilst β basically defines the edge length.
Likewise, CPU and bandwidth resources of the SN are uniformly
generated in between 50 and 100 while the VNRs arrive in network
following the Poisson process with an average rate ranging from 4 to
8 virtual networks per 100 time units. The lifetime of VNRs obeys
an exponential distribution with an average value of µ = 1000 time
units. Besides, the number of virtual nodes for each VN graph is
identified by a uniform distribution between 2 and 10 in random
with an average graph connectivity at 50%. Furthermore, the CPU
capacity of the virtual nodes and the bandwidth requirements of
the virtual links are integers uniformly distributed between 0 to 20
and 0 to 50 respectively. Similar to [14], we set wb = wn = 1 in
this paper. Simulations are running for 50, 000 time units which is
exceptionally longer than the average lifetime of a VN 50 times. This
simulation time is actually long enough to achieve a large number of
independent samples. Moreover, all evaluation figures with average
values are plotted with 95% confidence interval.
B. Comparison Methods

In our performance evaluation, we compare the proposed GA-based
algorithm with the selected competitors as listed in Table I. These are
intentionally taken into account because of the fact that [3] is certainly
one of the most popular research paper in VNE field. We select
DViNE, RViNE, and G-SP for comparison because of two objectives:
performance and speed. In details, D-ViNE and R-ViNE algorithms
frequently provision the great performance by implementing a relaxed
linear programming approach for node embedding problems. On the
other hand, G-SP applies the shortest path mechanism for link mapping,
and it is extensively conducted by either heuristic or meta-heuristic
approaches as discussed in section V. It is notably to emphasize
that the shortest path algorithm is widely accepted as the fastest link
embedding algorithm in VNE due to its simplicity. In order to prove
the effectiveness of our proposed algorithm, the state-of-the-art VNE
algorithm, namely NTANRC-S, based on node ranking method is
selected for comparison. NTANRC-S algorithm is preferred because
it shows better performance than NTANRC-D in [10]. Moreover, we
select TGAL [12] since it is one of the first algorithms deliberately
designed for link mapping stage, and it is primarily based on the
typical GA-based algorithm running in parallel. By comparing with
TGAL, we validate the improvement of our proposed GA-based
algorithm in this paper.
C. Evaluation Results

As shown in Fig. 3 and Fig. 4, DPGA algorithm achieves higher
acceptance ratios by accepting more VNRs with significantly less
average costs than all competitors as depicted in Fig. 3c, which
obviously leads to much higher revenue for our proposed algorithm
(Fig. 3b). Specifically, DPGA performs better than R-ViNE - the best
performance in [3], NTANRC-S and TGAL for approximately 9.14%
(17.1%), 7.58% (14.91%) and 3.95% (2.1%) at the acceptance ratios
of 4 (8) respectively as represented in Fig. 3a. In this paper, we
substantially concentrate on the virtual link mapping problem, so the
average remaining bandwidth of all compared algorithms is selected
and illustrated in Fig. 4b. When more VNRs arrive, the link utilization
of compared algorithms unsurprisingly increase. However, our link
mapping result achieves superior performance since it consumes less
bandwidth to embed the link mapping requests, which is confirmed by
Fig. 4a and 4b. More remaining bandwidth means higher probability
of accepting new VNRs. DPGA and TGAL obtain much better average
path length metric compared to other algorithms as shown in Fig.
4a, which contributes to lower costs and better remaining bandwidth
results. This is because we consider the hop-count factor in FF to
determine the VNE link embedding solution. In addition, the average
CPU execution time of DPGA embedding a VNR is almost the same
as TGAL, but our proposed algorithm attains an absolute faster speed
than G-SP for more than 43% as illustrated in Fig. 4c which had
been widely accepted as the fastest and most popular VLiM algorithm.
It is observed that NTANRC-S nearly performs the same execution
time in comparison with G-SP as it also deploys the node-ranking
heuristic algorithm for VNoM and the shortest path method for VLiM.
The remarkable performance is indeed gained because our proposed
GA-based approach explores the searching space efficiently in order



4 5 6 7 8
Arrival rate

0.50

0.55

0.60

0.65

0.70

0.75

Av
er
ag

e 
ac
ce
pt
an

ce
 ra

tio

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Av
er
ag

e 
ge

ne
ra
te
d 
re
ve

nu
e

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

150

160

170

180

190

200

210

220

Av
er
ag

e 
co

st

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

(a) (b) (c)

Fig. 3: (a) VNR Acceptance Ratio (b) Average generated revenue (c) Average cost of accepting VNRs

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Av
er

ag
e 

pa
th

 le
ng

th

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
Av

er
ag

e 
re

m
ai

ni
ng

 b
an

dw
id

th

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

DPGA TGAL NTANRC-S G-SP RViNE DViNE
0

50

100

150

200

250

Av
er
ag

e 
ex

ec
ut

io
n 

tim
e 

(m
s)

11.97886438356164611.68992382762991 18.11494874260355219.279606406685236 245.39423897581793 260.3773220946915

(a) (b) (c)

Fig. 4: (a) Average path length (b) Average remaining bandwidth (c) Average CPU execution time

to acquire more feasible link embedding solutions due to a novel
crossover operator. In addition, our fitness function guides the GA-
based algorithm on the-right-track by minimizing the total embedding
cost, propagation delay and hop-count factors. Furthermore, our novel
GA algorithm tends to evaluate various feasible solutions in a greatly
less time consumption due to a proper parallel operation paradigm as
depicted in Fig. 4c. Accordingly, the time complexity of our GA-based
algorithm is rapidly reduced to logarithmic O(log(p)). Regarding the
execution time study for time complexity and convergence, interested
readers may refer to the paper [12] for further theoretical analysis.

V. RELATED WORK

With demanding research endeavors on NV, [14] essentially
provides a comprehensive survey to this research field. VNE problem
is NP-hard in nature, which is intractable to solve utilizing Integer
Programming (LP). Most researched work in VNE is almost focused
on looking for efficient heuristic algorithms due to the computational
complexity of extract methods. A coordinated node and link approach
for the node embedding relaxing the intractable integer constraints,
and then taking advantage of rounding techniques to achieve the
optimal node mapping was first introduced in [3]. Huang et al. in
[5] primarily extended [3] to enable a novel node splitting scheme
and node collocation. Node ranking approach [10] that was inspired
from Google PageRank algorithm was proposed to rank virtual and
substrate nodes for each VNR, which is based on three topology
attributes and global network resources. In the meantime, one of
the most popular Artificial Intelligence (AI) approaches, Genetic
Algorithm, formally applied to the VNE problems was first reviewed
in [6] and [7]. The research work [6] proposed node ranking methods
relied on GA algorithms with various topology attributes. In addition,
[7] ultimately conducted an evaluation comparison amongst Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO)
and GA where the node mapping stage was intentionally considered.
Additionally, a VNE model that is relied on GA algorithm to resolve
the VNE problems in multiple InP domains was examined in [8]
whereas a research work [9] reordered the mutation operator in the
traditional GA algorithm to produce higher quality offspring in the

initial population. Recently, a parallel GA-based algorithm in [12]
was deliberately devised for the link mapping phase.

VI. CONCLUSION

NV is essentially a key factor of the foreseeable success of the
prospective network architectures (e.g. 5G-and-beyond networks,
virtualised IoT networks), so an efficient resource allocation algorithm
for the VNE applications is highly desirable. In this paper, we proposed
an intelligent parallel algorithm based on a novel GA algorithm
for online VN link embedding, considering both scalability and
optimality. Particularly, we redesign the crossover operator and present
a multi-constrained fitness function considering multiple network
attributes guiding GA algorithm towards an efficient VNE solution.
Our proposed GA-based algorithm eventually outperformed state-of-
the-art algorithms in all evaluation matrices including performance
and time efficiency. In future work, we will investigate simultaneously
embedding nodes and links in one-stage mapping utilizing Genetic
Algorithm.

REFERENCES

[1] A. Hakiri and P. Berthou, “Leveraging SDN for the 5g networks: Trends,
prospects and challenges,” CoRR, vol. abs/1506.02876, 2015. [Online].
Available: http://arxiv.org/abs/1506.02876

[2] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-constrained
devices,” in 2012 IEEE International Conference on Green Computing
and Communications, Nov 2012, pp. 293–300.

[3] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb 2012.

[4] Hong-Kun Zheng, J. Li, Y. Gong, W. Chen, Zhiwen Yu, Z. Zhan, and
Ying Lin, “Link mapping-oriented ant colony system for virtual network
embedding,” in 2017 IEEE Congress on Evolutionary Computation
(CEC), June 2017, pp. 1223–1230.

[5] C. Huang and J. Zhu, “Modeling service applications for optimal parallel
embedding,” IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp.
1067–1079, Oct 2018.



[6] X. Mi, X. Chang, J. Liu, L. Sun, and B. Xing, “Embedding virtual
infrastructure based on genetic algorithm,” in 2012 13th International
Conference on Parallel and Distributed Computing, Applications and
Technologies, Dec 2012, pp. 239–244.

[7] X. Chang, X. Mi, and J. Muppala, “Performance evaluation of artificial
intelligence algorithms for virtual network embedding,” Engineering
Applications of Artificial Intelligence, vol. 26, no. 10, pp. 2540 – 2550,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0952197613001358

[8] I. Pathak and D. P. Vidyarthi, “A model for virtual network embedding
across multiple infrastructure providers using genetic algorithm,” Science
China Information Sciences, vol. 60, no. 4, p. 040308, Mar 2017.
[Online]. Available: https://doi.org/10.1007/s11432-016-9015-3

[9] P. Zhang, H. Yao, M. Li, and Y. Liu, “Virtual network embedding
based on modified genetic algorithm,” Peer-to-Peer Networking and
Applications, vol. 12, no. 2, pp. 481–492, Mar 2019. [Online]. Available:
https://doi.org/10.1007/s12083-017-0609-x

[10] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach and multiple
topology attributes-based embedding algorithm for single-domain virtual
network embedding,” IEEE Internet of Things Journal, vol. 5, no. 1, pp.
108–120, Feb 2018.

[11] G. S. Paschos, M. A. Abdullah, and S. Vassilaras, “Network slicing
with splittable flows is hard,” in 2018 IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Sep. 2018, pp. 1788–1793.

[12] K. T. D. Nguyen and C. Huang, “An intelligent parallel algorithm for
online virtual network embedding,” in 2019 International Conference
on Computer, Information and Telecommunication Systems (CITS), Aug
2019, pp. 1–5.

[13] C. Molnar and J. Gair, “Concepts of biology - 1st canadian edition,”
BCcampus, May 2015. [Online]. Available: https://opentextbc.ca/biology/

[14] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862 – 876,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128609003387

[15] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE INFOCOM ’96. Conference on
Computer Communications, vol. 2, March 1996, pp. 594–602 vol.2.



Rethinking Virtual Link Mapping in
Network Virtualization

Khoa TD Nguyen†, Qiao Lu†, and Changcheng Huang†
†Department of Systems and Computer Engineering
Carleton University, Ottawa, ON K1S 5B6, Canada

{khoatnguyen, qiaolu, huang}@sce.carleton.ca

Abstract—Virtual Network Embedding (VNE) that addresses
the embedding problems of heterogeneous virtual networks
onto a physical limited-capacity infrastructure efficiently is a
major challenge in NV

::::::
network

::::::::::::
virtualization

:::::
(NV). VNE is

computationally intractable when considering various constraints
on nodes and links, and is also known as NP-hard even in
offline embedding. Although the VNE problems have received
::::
much

:
attentions over recent decades with a vast number of

VNE solutions, the majority of them only focus on VNE node
mapping, whilst leaving the link mapping stage for the shortest
path method or multicommodity flow (MCF) algorithm. We
persuasively argue that node and link mappings equally play
pivotal roles to approach an efficient VNE solution. In this paper,
we reassess the role of link mapping stage in VNE problem,
and then propose a novel intelligent VNE orchestration which
effectively implements a distributed parallel model to reduce the
operation time remarkably. Extensive evaluation results show
that our proposed algorithms are

::::::::
algorithm

::
is

:
not only faster

than the most popular
::::::::::::
state-of-the-art VNE algorithms in speed,

but also better in all performance metrics.
Index Terms—Network Virtualization, Virtual Network Em-

bedding, Parallel Algorithm, 5G-and-beyond networks, smart
IoT, Artificial Intelligent, Genetic Algorithm.

I. INTRODUCTION

Network virtualization
:::
NV is considered as a promising paradigm

to pave the success of the future generation networks such as 5G-
and-beyond [1], virtualised IoT networks [2]. NV allows to share
the physical network resources among multiple virtual network
requests (VNRs), enabling an isolated coexistence of multiple virtual
networks (VNs) on a single physical

::::::
substrate

:
network (SN). This key

technology brings more efficient resource utilization to the substrate
network,

::
SN

:::
and

:::::
offer a great opportunity of implementing as well

as evaluating new network protocols or architecture designs, and
eventually

:
.
:
It
::::

also
:
prevents an unnecessary expansion of network

infrastructure.
In VN environment, a service provider (SP) typically converts a

requested service/application into a virtual network, and then conveys
to an infrastructure provider (InP) under a VNR. Thereupon, InP will
embed the underlying VN onto its physical infrastructure through
an optimization process with multiple constraints. To gain expected
profits, InPs desire an efficient resource allocation scheme that can
substantially reduce the embedding costs and increase revenue by
serving as many VNRs as possible. Generally, a VNR that includes
a set of nodes connected via links to construct a specific topology
dynamically arrives and resides in the network during a random
duration in most real scenarios. The critical challenge of embedding
VNRs with diverse topology and stringent resources onto the under-
lying physical network is also known as Virtual Network Embedding
(VNE) problem.

In essence, VNE process that enables mapping requested VNs
onto the underlying shared physical network can be decoupled into
two sub-problems: Virtual Node Mapping (VNoM) and Virtual Link
Mapping (VLiM). VNE has been proven to be NP-Hard either for
VNoM or VLiM even in unsplittable scenario [3].

:::
[3].

:
However, it

is importantly
:::::::
important to note that VLiM problem is de facto more

challenging than the analogue VNoM due to the requirements that all
the substrate links along which a virtual link is mapped onto must have

enough residual capacities to support the bandwidth requirement of
the virtual link, which results in the bandwidth fragmentation problem
more likely to occur. In practise, the most common failures of mapping
VNRs invariably emanate from the ineffective link mapping algorithm
[4]. Consequently, we presume that an appropriate design of VLiM
mechanism will not only improve the efficiency of link resource
utilization, but also increase the number of accepted VNRs.

In fact, the formulated optimization models such as Integer Linear
Programming (ILP) are commonly proposed to achieve optimal VNE
solutions, but they cannot be actually tailored for online VNE problems
due to their intricacy, non-scalability and non-polynomial time issue.
Instead of exact methods, most of research papers have simply adopted
light-weighted heuristic algorithms to tackle the aforementioned
impediments of the formulated optimization models. However, most
research work [3]–[10] engrosses in seeking an efficient node mapping,
but it seems to underestimate the link mapping stage since they
completely entrust to only k-shortest path or multicommodity flow
(MCF) algorithms, which definitely restricts VNE link mapping
options.

Towards 5G-and-beyond networking and smart IoT, VNE problem
where the physical infrastructure allows splittable and unsplittable
resource configurations is indisputably an essential research topic in
Software Defined Network (SDN), Network Function Virtulization
(NFV) and Future Edge Clouds.

:::::::::
Splittability

::::::
permits

:
a
::::::

virtual
:::
link

::::::
demand

::
to

:::
be

::::::::
embedded

:::
on

:::::::
multiple

:::::::
substrate

:::::
paths

:::::
whilst

::
if
::

it
:
is
:::::::

mapped
::::
onto

::
a
:::::
single

:::::::
physical

::::
path

::::
with

:::::
fixed

::::
node

::::::::
mapping,

::::
which

:::::::
reduces

:::
to

:::::::::
unsplittable

:::::::::::
configuration.

:
Although splittable-

based embedding is literally expected to gain
:::::
obtain

:
better resource

utilization, it may generate a larger overhead to consistently maintain
the network state [11]. Due to the aforementioned reasons, we
merely focused on unsplittable mapping in this paper. In contrast,
parallel algorithms can be tremendously beneficial in dealing with
the intricate computing tasks thanks to lower hardware costs for
computing recently.

In this paper, we present a novel intelligent algorithm based on an
enhanced Genetic Algorithm (GA)

::::::
propose

:
a
:::::

novel
::::::::
GA-based

::::
VNE

:::::::
algorithm

::::
that

::
is

:::::
relied

:::
on

:::
new

::::::
design

:::
of

:::
the

:::::::
crossover

:::::::
operator

::
for

::::::
VLiM.

::::
The

:::::::::::::
multi-constrained

::::::
fitness

:::::::
function

:::::::::
considering

:::
the

::::::::
embedding

::::
cost,

:::::::::
hop-count

:::
and

::::::::::
propagation

::::
delay

::::
has

:::::
driven

:::
the

::::::
proposal

::
to

::
an

:::::::
efficient

::::
VNE

::::::::
algorithm.

:::
Our

:::::::
proposed

::::::::
algorithm,

:
that

exploits a set of distributed parallel machinesto address the VNE link
mapping problems.

,
::::::

enables
::
to

:::::
embed

:::::::
multiple

:::
link

:::::::
mapping

::::::
requests

::
at

:::
the

::::
same

:::
time

::
so

::
as

::
to

:::::
reduce

:::
the

:::::::
execution

::::
time.

::
To

:::
the

::::
best

::
of

::
our

:::::::::
knowledge,

:::
this

:
is
:::
the

:::
first

:::::
paper

:::
that

::::::
applies

:::
an

:::::
elastic

:::::::
crossover

:::::::::
mechanism

::
in
:::
GA

:::::::
algorithm

::
to
:::::

VNE
::::::::
problems.

::::
This

:::::
paper

::
is

::
an

::::::::
extension

::
of

:::::
[15]

::::::
towards

:::
the

:::::::
crossover

:::::::
operator

::::
and

:::
the

::::::::
improved

:::::
fitness

::::::::
function,

::::
which

::::
not

::::
only

:::::::
achieves

:::::
better

::::::::::
performance

::::
than

:::::
[15],

::::
but

:::
also

:::::::::
outperforms

:::::::::::
state-of-the-art

::::
VNE

:::::::::
algorithms.

:

The remainder of this paper is organized as follows: the network
model is formulated in Section II and then we present our proposed
distributed parallel GA-based algorithm for VNE link mapping in
Section III. The performance evaluation is introduced in Section IV
whilst the related work is presented in Section V. Section VI is finally
a conclusion of this paper.



II. NETWORK MODEL AND PROBLEM DESCRIPTIONS

A. Virtual Network Assignment

The VNE substrate network is modelled as a weighted undirected
graph Gs = (Ns, Ls), in which Ns is the set of all substrate nodes
and Ls is the set of all substrate links. Basically, each substrate node
ns ∈ Ns that has a geographic location loc(ns) is characterised by the
available CPU capacity c (ns), whereas each substrate link ls ∈ Ls
between any two substrate nodes has a finite bandwidth capacity
b (ls). Memory and storage resources will be omitted in this article for
simplification. In VNE research, we can model the ith arriving VNR as
a weighted undirected graph denoted as Gvi = (Nv

i , L
v
i ), where Nv

i is
the set of all virtual nodes and Lvi is the set of all virtual links towards
the ith VNR. Each virtual node nvi ∈ Nv

i is inherently characterised by
a requested CPU capacity c(nvi ), whilst a virtual edge lvi (s

v
i , d

v
i ) ∈ Lvi

between a virtual source node svi and a virtual destination node dvi
has a requested bandwidth capacity b (lvi ). Additionally, each

:::
Each

VNR has a preferable mapping radius D(nvi ) that discloses how far
a virtual node nvi can be placed from its location identifier loc(nvi ).
Mapping a VN request

::
the

:::
ith

::::
VNR

:
Gvi onto the substrate network

::
SN

:
Gs can be decomposed into two main components as determined

above: Virtual Node Mapping (VNoM ) and Virtual Link Mapping
(VLiM)

:::::
VNoM

:::
and

:::::
VLiM. Under node mapping stage, a virtual node

from a VN request
::::
VNR

:
can be embedded onto a substrate node

AN : Nv
i → Ns, with nv ∈ Nv

i subject to:

c(nvi ) ≤ RN (AN (nvi )) (1)

D(loc(nvi ), loc(AN (nvi ))) ≤ D(nvi ) (2)

AN (nvi ) ∈ Ns (3)

RN (ns) = c(ns)−
∑

nv→ns

c(nvi ) (4)

where nv → ns defines the virtual node nv that is mapped on the
substrate node ns, and the distance between the geographical locations
of node is and jd is measured by D(is, jd). Besides RN (ns) denotes
the residual/available CPU capacity of a substrate node. In fact, a
virtual link is mostly embedded on the corresponding substrate path
with one or more substrate links. As such, this unsplittable link
embedding can be denoted by AL : Lvi → Ls whilst lvi = (svi , d

v
i ) ∈

Lvi , Es(AL(l
v
i )) is a set of all possible substrate paths from source

node AN (svi ) to destination node AL(d
v
i ).

AL(s
v
i , d

v
i ) ⊆ Es(AN (svi ),AN (dvi )) (5)

subject to: RL(e
s) ≥ b(lvi ),∀es ∈ Es(AL(l

v
i )) (6)

RL(e
s) = min

ls∈es
RL(l

s) (7)

RL(l
s) = b(ls)−

∑
lvi →ls

b(lvi ) (8)

where RL(es) is the available bandwidth of a substrate path es ∈ Es,
and RL(ls) is the residual substrate link capacity.

B. Performance metrics

From the InPs’ perspective, the main VNE objective is to maximize
their accumulated revenues while keeping its embedding cost minimal.
In this paper, the generated revenue of InPs is practically calculated as
the sum of total virtual resources embedded on the substrate network
::
SN

:
over time. Accordingly, the revenue of ith VNR Gvi is computed

as below:

R(Gvi ) = wb ∗
∑
lvi ∈L

v
i

b(lvi ) + wn ∗
∑

nv
i ∈N

v
i

c(nvi ) (9)

where b(lvi ) and c(nvi ) are the requested bandwidth of the virtual link
lvi and the requested CPU of the virtual node nvi while wb and wn
are the unit weights of the mapped bandwidth and CPU resources
respectively.
Cost: we likewise characterize the cost of the ith VNE C(Gvi ) as the

sum of total network resources allocated to the ith VN.

C(Gvi ) =
∑

nv
i ∈N

v
i

c(nvi ) +
∑
lvi ∈L

v
i

∑
ls∈Ls

f
lvi
ls (10)

where f l
v
i
ls defines the bandwidth of substrate link ls that is allocated

to the virtual link lvi
Acceptance ratio: is characterized by the ratio between the number of
accepted VNRs over the number of arrived VNRs during the interval
time τ is calculated as following:

Aτc =

∣∣∣∣ξa(τ)ξ(τ)

∣∣∣∣ (11)

where ξa(τ) and ξ(τ) is the number of the successfully mapped
VNRs and the number of VNRs respectively.
Remaining bandwidth: the residual bandwidth of a SN can be
calculated as following:

Rm(Ls) =
∑
ls∈Ls

(b(ls)−
∑
lvi →ls

b(lvi )) (12)

Meanwhile, there are new VNRs arrived, the InP will intrinsically
calculate the residual network resources, and then attempts to embed
the corresponding VNRs onto the physical network depending on
such achieved remaining resource information. Subsequently, higher
:::::
Higher

:
remaining bandwidth would bring higher chance of accepting

the prospective virtual networks.
Fitness Function (FF): the fitness values of each solution crucially
determine which one will reproduce and remain “alive” in the next
generation, relevant to the predefined objectives to be optimized
:
in
::::

our
:::::::
proposed

::::::::
GA-based

::::::::
algorithm

::
in

::::::
Section

::::
III-B. As a result,

this function is utilized to examine the quality of each VLiM
solution among several feasible ones so that its values can provide
a scientific proof for electing the corresponding solutions in GA
stages. Specifically

:
In
::::::

details, we take the cost of embedding a VNR
into consideration in this paper, so solutions with less cost generated
are definitely preferable. Moreover, we consider hop-count as an
important factor into FF as it is substantially associated with bandwidth
consumption. This means that less hop-count solution would consume
less bandwidth, and then leaves more residual network bandwidth,
increasing the possibility of the upcoming VNRs being accepted. The
propagation delay of VLiM solutions is also estimated and added into
FF as another constraint accompanying with the hop-count attribute in
order to construct a multi-constrained fitness function. Fitness function
F(Sz) is eventually calculated as below:

F(S) = (
1

C(Gvi )
) ∗ wc + (

1∑
lvi ∈L

v
i
hAL(lvi )

) ∗ wh

+(
1∑

lvi ∈L
v
i
dP(AL(lvi ))

) ∗ wp
(13)

where, Sz :
S, h and dP are a zth feasible solution, hop-count and

propagation delay of the link mapping solution of lvi respectively. wc,
wh, and wp are weight parameters equivalent to cost, hop-count and
propagation delay factors.

III. DISTRIBUTED PARALLEL RESOURCE-ALLOCATION
ALGORITHM

A. Backgrounds and Ideas
Parallel and distributed computing has recently emerged as an

effective mechanism to tackle large and complex problems with less
time consuming and lower cost by supporting the concurrency. In
addition, GA algorithm is an appealing AI approach for dealing with
both constrained and unconstrained optimization problems by adopting
the natural selection idea. Moreover, [12] proved that GA can beconducted as a parallel search without considering dependency among
the feasible solutions because they are mutually exclusive. Typically,
Genetic Algorithm

:
A
::::::

typical
:::
GA

:
consists of four primary operators: initialization, se-

lection, crossover and mutation. Crossover operator can be recognized
as an exploitation phase in which the global optimum is positively
expected to discover, so we argue that a creative crossover operator will
increase

::::
would

::::::::
improved the efficiency of our GA algorithm along



Fig. 1: Parallel operation scheme

with a proper fitness function
:::::
driven

::
by

:::
an

:::::::::
appropriate

::
FF. Inspired

from the DNA replication process in [13], this mechanism allows
cell division to occur. A parent

:::::
parental

:
cell can be split into two or

more daughter cells by this process. They can complicatedly inherit
diverse combinations of partial or all DNA. In this research work, we
redesign a novel crossover operator for the proposed GA algorithm.
This new mechanism allows to proportionally exchange the random
genes between the parental chromosomes to generate new offsprings.
Furthermore, as argued in previous sections

::
As

::::::::
discussed, we assume that the role of link mapping stage

in VNE is being underestimated, and the unbeatable
::::
fastest

:
speed

of shortest path method can be broken due to a proper parallel
implementation

::::::::
vanquished

:::
by

:::::::::::
implementing

::
an

::::::::
ingenious

::::::
parallel

:::::::
operation

:
scheme. Thus, we propose a novel intelligent GA-based

orchestration algorithm for VLiM stage, operating
::::::
running

:
on a

predefined number of
:::::::::::
independently distributed parallel machines

where they are independently running
:::
(e.g.

::::::
virtual

::::::::
machines)

:
to

generate the feasible solutions denoted as chromosomes.
::
To

::::
prove

:::
our

::::::::
hypothesis,

:::
we

::::::
deploy

:
a
::::::
simple

::::::
Greedy

::::
node

:::::::
mapping

::
as

:::
the

::::
same

:::
with

:::::
G-SP

:::::::
algorithm

::
in

:::::
[14]

::
due

::
to
:::

its
::::::::
simplicity.

:::
This

:::::::
selection

:::
can

::
not

::::
only

::::::::
guarantee

:::
the

:::::
rapid

::::::::
embedding

::::::
speed,

:::
but

::::
also

:::::::
maximize

::
the

:::::::
residual

::::::
network

::::::::
resources

::::::
leading

:::::
more

:::::::::
successfully

:::::::
allocated

:::
node

:::::::
mapping

:::::::
requests

::
in

:::::
future.

:
Our proposed parallel GA scheme

is present
:::::::
presented in Fig 1.

B. Distributed Parallel Genetic Algorithm (DPGA)
As depicted in Fig 1, we basically present the functioning

procedures sequentially working under a single master node such
as node mapping, synchronization, etc.

:::::
original

::::
path

::::
pool

:::::::::
generation,

::::::::::::
synchronization,

::::::::
allocation, whereas the other ones

:::::
others

:
handle

the parallel GA algorithms to achieve
:::
find

:
the feasible solutions

for VNE link mapping working as several slave nodes. Each slave
machine is independently running with defined iterations, and then
the best-matching feasible VLiM outcome will be selected among

:
is

::::::
selected

:::::::
amongst the parallel machines. Unlike other research papers

that sequentially embed requested virtual links one-by-one
::::::::
embedding

:::::
virtual

:::
link

:::::::
requests

::::::::::
sequentially, our proposed algorithm enables

to embed
:::
map

:
all link requests of a virtual network together

:::
VNR

:::::::
altogether. A chromosome Cf :::::::

including
::::::
several

::::
genes

:::
gji denotes a

feasible link embedding solution
::
for

:::
all

:::::
virtual

::::
link

::::::
requests

:
of a

VNRwhereas a
:
.
::::
Each

:
gene gji is associated with a physical path

:
,

where i and j indicate its current chromosome as well as
::
and

:
virtual

link respectively. ,
::
is

::::::::
associated

:::
with

::
a
:::::::
substrate

:::
path

:::
that

::
is
:
a
::::::
feasible

::::::
solution

::
for

::
a
:::::
virtual

:::
link

:::::::
request.

:
It
::::::

means
:::
that

:::
the

::::::
number

::
of

::::
genes

::::::::::
corresponding

::
to
::

a
::::
VNR

::::::::
constitute

:
a
:::::::::::
chromosome.

1) Initial path pool generation
We deliberately create the potential path database for the re-
quested mapping virtual links before

::::::::
conducting

:
link mapping proce-

duresoperated. For each pair of source-destination, a k-shortest path
algorithm e.g. Dijkstra’s algorithm is simply deployed to identify
k-shortest paths for

::::
during

:
the path pool generation. It is argued that

this
:::
This

:
intrinsic process can be obviously determined prior to the

arrival of online VNRs
:::
since

:::
the

:::::::
substrate

:::::::
network

::
is

::::
static.

2) Slave node
Population Initialization: each slave machine usually begins to
conduct

:::::
handle

:
the proposed GA algorithm with a population

initialization step where each chromosome Cf defines a feasible
solution. It is assumed that there are M chromosomes and each
chromosome has N genes. An initial population P (MxN size) at
the kth machine can be represented as below:

P =



C1
C2
...
Cf
...
CM


=



g11 · · · gj1 · · · gN1
g12 · · · gj2 · · · gN2
...

. . .
...

. . .
...

g1f · · · gjf · · · gNf
...

. . .
...

. . .
...

g1M · · · gjM · · · gNM


(14)

To construct a chromosome, each gene associated with the potential
embedding solution of a virtual link request shall be uniformly selected
from the initial path pool in random. However, this

:::
This

:
solution must

pass the feasibility-checking process to generally become a potential
link solution. This checking procedure is actually necessary since it
guarantees the underlying SN still has adequate residual resources to
embed the corresponding request. All N potential genes that have
already passed the feasibility check will compose a chromosome,
considering as a feasible solution for the VLiM.
Selection: determines the chromosome individuals as parents for
the upcoming crossover operation. Basically, more than one pair
of parent chromosomes can be intentionally selected from this step.
Furthermore, in order to enhance the parallelism degree, the parents
are randomly chosen from the initial population with replacement.
We also apply the fitness-based proportionate selection scheme to
adopt parents from the initial population, which conceptually relies
on the cumulative sum of the fitness relative weights (13). However,
the children produced might either achieve better or worse quality
than their parents in next operators due to the randomness selection.

Crossover: this is literally considered as one of the most significant
:::::::
important step in GA algorithm, which primarily combines the parental
chromosomes to produce new offsprings in next generations. We
define Cs and Cr as the parental chromosomes with the corresponding
indices s and r in the initial population. Different from typical
GA crossover operator that normally employs one or more static
random crossover points to exchange the consecutive sequence of
genes between two parental chromosomes, we separately proceed the
crossover phase on selected chromosomes with different sequences
of random numbers. Specifically, each related child has a different
number of random genes to exchange with the other

:::::
others and vice

versa. For example, Fig 2 illustrates our proposed crossover operator
where the 1st chromosome exchanges the 1st, 2nd and 5th genes with
the other. On the other hand, the 2nd chromosome gets new 3rd and



4th genes from the first chromosome. This novel operation will provide
an elastic crossover mechanism producing resilient offsprings, which
is particularly desirable to improve the exploitation phase. Moreover,

Chromosome 1

Before Crossover

g0 g1 g2 g3 g4 g5 g6

g0 g1 g2 g3 g4 g5 g6

Chromosome 2

g0

g1 g2

g3 g4

g5

g6

g0 g1 g2

g3 g4

g5 g6

Offspring 1

g0 g1 g2 g3 g4 g5 g6

g0 g1 g2 g3 g4 g5 g6

Offspring 2

After Crossover

Fig. 2: An example of the elastic crossover operator

denote jc+n as the random gene between any genes inbound the N
length, and new descendant chromosomes are denoted as C(M+1) and
C(M+2) respectively. The new offsprings are ultimately produced by
changing random parent genes as depicted in (14b). Obviously, the
quality of generated children may be worse than their ancestors or
the duplication of solutions may happen at different parallel levels.
The random genes of each parental chromosome jc+n are randomly
selected, and they can be even the first or last gene in the parents’
chromosomes because the mated children are apparently based on
distinct genes rather than a successive sequence of genes. Furthermore,
we might wonder how many genes are chosen to exchange because if
all genes are selected, two parental chromosomes are just swapping
all genes each other. In this case, our crossover stage is veritably
dysfunctional. As a result, we define an elastic factor ef which
determines maximum number of genes that can be changed at each
chromosome. It can be considered as a proportion of the N length.
For instance, if ef = 0.75 (75%) and N = 7, the number of genes
that can be randomly chosen for mating is ranging from [1− 5]
Mutation: typically implements random modifications on children
to produce new offspring. Mutation is implemented in the purpose
of sampling the solution space and broadening the search. This is a
crucial piece of the solution process that can somehow prevent from
falling into the local optima. Correspondingly, a

:
A

:
mutation operator

usually includes a mutation point denoted as jm that is generated
in random. At this point, a new gene which is selected from the
original path pool can substitute any random existing gene in the
in-processed chromosome to create a new child. Definitely, the newly
selected gene must pass the feasibility check. We denote jm and gj

m

r′

as the mutation point and the new gene that replaced the existing
one in C(M+1) respectively. After substitution, the mutation solution
C′(M+1) can be described as C′(M+1) = [g1s · · · gj

m

r′ · · · g
N
s ].

3) Solution Sorting and Terminations
A GA-based mapping process conducting at each slave node is
expectantly terminated whenever reaching a predefined number of
iterations. After the sorting step that is based on the fitness function
values, the best mapping solution among the feasible ones

::::::
feasibles

is selected to transfer to the next important component called
:::::
convey

:
to
:::

the
:
synchronization for the global ranking. In addition, a parallel

operation comprises a series of concurrent processes, and each will
finish its assigned work at different time. Waiting until the last

TABLE I: Compared Algorithms

Notation Description
DPGA Novel Distributed Parallel GA-based Algorithm pro-

posed in this paper
TGAL Typical GA-based Algorithm for Link Mapping

::::
[15]

:::::::::
NTANRC-S

:

::::::
Network

::::::::::
Topology

::::::::
Attribute

:::::
and

:::::::::
Network

:::::::::::::::
Resource-considered

:::::::::
algorithm

::::::::
(Stable)

::::::
[10]

G-SP Greedy Node Mapping with Shortest Path Based
Link Mapping

::::
[14]

R-ViNE Random Node Mapping with Shortest Path Based
Link Mapping

::::
[14]

D-ViNE Deterministic Node Mapping with Shortest Path
Based Link Mapping

::::
[14]

process accomplishing its particular task is actually painful, but it
does not always guarantee to achieve the envisaged outcome. In some
unexpected situations where a specific process takes excessively longer
time to accomplish, this situation influences on the total operation
time. Moreover, two or more succeeding processes might be jammed
because they need to wait until such process completes its work (e.g.
deadlock). Hence, the master procedure in our parallel model will be
finished if the best solution for VLiM found has not consecutively
improved during t times, where t is known as a termination parameter.
4) Synchronization and VNR allocation
This step is premeditatedly aimed at determining the final VNE
solution for the VLiM request by a ranking process based on fitness
function values of the feasible solutions that have received from
slave nodes. Consequently, the corresponding VN request

:::
VNR

would be accepted and allocated onto the physical network relied
on the information of the related node and link mapping solutions.
Accordingly, the residual network resources will be updated in advance.

IV. PERFORMANCE EVALUATION

A. Simulation setup
We have deployed a discrete-event simulator to evaluate the pro-

posed GA algorithm with same parameter settings as [3]. Accordingly,
SN and VNs are generated using a popular GT-ITM topology generator
[16]. In our simulation, substrate networks are configured with 50
nodes, randomly placing on a 25 × 25 Cartesian plane. They are
randomly connected to average 140 edges applying the Waxman
model with α = 0.5 and β = 0.2. Fundamentally, α determines the
maximal edge probability whilst β basically defines the edge length.
Likewise, CPU and bandwidth resources of the substrate network

::
SN

are uniformly generated in between 50 and 100 while the VN requests
:::::
VNRs

:
arrive in network following the Poisson process with an average

rate ranging from 4 to 8 virtual networks per 100 time units. The
lifetime of VNRs obeys an exponential distribution with an average
value of µ = 1000 time units. Besides, the number of virtual nodes for
each VN graph is identified by a uniform distribution between 2 and
10 in random with an average graph connectivity at 50%. Furthermore,
the CPU capacity of the virtual nodes and the bandwidth requirements
of the virtual links are integers uniformly distributed between 0 to
20 and 0 to 50 respectively.

:::::
Similar

::
to
:::::

[14],
:::
we

:::
set

:::::::::::
wb = wn = 1

:
in
::::

this
:::::
paper. Simulations are running for 50, 000 time units which is

exceptionally longer than the average lifetime of a VN 50 times. This
simulation time is actually long enough to achieve a large number of
independent samples. Moreover, all evaluation figures with average
values are plotted with 95% confidence interval.
B. Comparison Methods

In our performance evaluation, we compare the proposed GA-
based algorithm with the selected competitors as listed in Table I.
These are intentionally taken into account because of the fact that
[3] is certainly one of the most popular research paper in VNE
field. We select DViNE, RViNE, and G-SP for comparison because
of two objectives: performance and speed. In details, D-ViNE and
R-ViNE algorithms frequently provision the best

::::
great performance

by implementing a
:::::
relaxed

:
linear programming approach for node



4 5 6 7 8
Arrival rate

0.50

0.55

0.60

0.65

0.70

0.75

Av
er
ag

e 
ac
ce
pt
an

ce
 ra

tio

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Av
er
ag

e 
ge

ne
ra
te
d 
re
ve

nu
e

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

150

160

170

180

190

200

210

220

Av
er
ag

e 
co

st

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

(a) (b) (c)

Fig. 3: (a) VNR Acceptance Ratio (b) Average generated revenue (c) Average cost of accepting VNRs

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Av
er

ag
e 

pa
th

 le
ng

th

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
 Arrival rate

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
Av

er
ag

e 
re

m
ai

ni
ng

 b
an

dw
id

th

DPGA
TGAL
NTANRC-S
G-SP
R-ViNE
D-ViNE

DPGA TGAL NTANRC-S G-SP RViNE DViNE
0

50

100

150

200

250

Av
er
ag

e 
ex

ec
ut

io
n 

tim
e 

(m
s)

11.97886438356164611.68992382762991 18.11494874260355219.279606406685236 245.39423897581793 260.3773220946915

(a) (b) (c)

Fig. 4: (a) Average path length (b) Average remaining bandwidth (c) Average CPU execution time

mapping even in recent research
::::::::
embedding

::::::::
problems. On the other

hand, G-SP applies the shortest path method
::::::::
mechanism

:
for link

mapping, and it is extensively conducted by either heuristic or meta-
heuristic methods

:::::::::
approaches as discussed in section V. It is notably

to emphasize that the shortest path algorithm is widely accepted as
the fastest link embedding algorithm in VNE due to its simplicity. In
order to prove the effectiveness of our proposed algorithm, we also

::
the

:::::::::::
state-of-the-art

::::
VNE

::::::::
algorithm,

::::::
namely

::::::::::
NTANRC-S,

:::::
based

::
on

::::
node

:::::
ranking

::::::
method

::
is
:::::::
selected

::
for

::::::::::
comparison.

:::::::::
NTANRC-S

::::::::
algorithm

:
is

:::::::
preferred

::::::
because

::
it

:::::
shows

:::::
better

::::::::::
performance

:::
than

::::::::::
NTANRC-D

::
in

::::
[10].

::::::::
Moreover,

:::
we select TGAL [15] to compare since it is one of

the first algorithms deliberately designed for link mapping stage, and
it is primarily based on the typical GA-based algorithm running in
parallel.

::
By

:::::::::
comparing

::::
with

:::::
TGAL,

:::
we

::::::
validate

:::
the

::::::::::
improvement

::
of

::
our

::::::::
proposed

::::::::
GA-based

:::::::
algorithm

::
in
:::
this

:::::
paper.

:

C. Evaluation Results
As shown in Fig. 3 and Fig. 4, DPGA algorithm achieves

greater
:::::
higher

:
acceptance ratios by accepting more VNRs with

significantly less total
:::::
average

:
costs than all competitors as depicted

in Fig. 3c, which obviously leads to much higher revenue for our
proposed algorithm (Fig. 3b). Specifically, DPGA is

:::::::
performs better

than R-ViNE - the best performance in [3]and TGAL in [15] for
approximately 9% and 3% at different acceptance ratios ,

:::::::::
NTANRC-S

:::
and

:::::
TGAL

:::
for

:::::::::::
approximately

:::::
9.14%

:::::::
(17.1%),

::::::
7.58%

:::::::
(14.91%)

:::
and

:::::
3.95%

::::::
(2.1%)

::
at
:::

the
:::::::::

acceptance
:::::

ratios
:::

of
::
4
:::

(8)
:

respectively as
represented in Fig. 3a. In this paper, we substantially concentrate
on the virtual link mapping problem, so the average remaining
bandwidth of all compared algorithms is selected and illustrated
in Fig. 4b. When more VNRs arrive, the link utilization of compared
algorithms unsurprisingly increase. However, our link mapping result
achieves superior performance since it consumes less bandwidth
to embed the link mapping requests, which is confirmed by Fig.
4a and 4b. More remaining bandwidth means higher probability of
accepting new VNRs. Moreover, similar to the parallel scheme used
in [15] with a simple greedy method deployed for the node mapping
stage due to its simplification,

:::::
DPGA

:::
and

:::::
TGAL

:::::
obtain

:::::
much

::::
better

::::::
average

:::
path

::::::
length

:::::
metric

::::::::
compared

::
to

::::
other

:::::::::
algorithms as shown

in Fig. 4c
:
a,
:::::

which
:::::::::

contributes
::
to
:::::

lower
::::
costs

::::
and

::::
better

::::::::
remaining

::::::::
bandwidth

:::::
results.

::::
This

::
is
::::::
because

:::
we

:::::::
consider

:::
the

::::::::
hop-count

::::
factor

:
in
:::

FF
::

to
::::::::

determine
:::

the
:::::

VNE
:::
link

:::::::::
embedding

:::::::
solution.

::
In
::::::::

addition,
the average CPU execution time of DPGA embedding one

:
a
:
VNR

is almost the same as TGAL, but our proposed algorithm achieves
:::::
attains an absolute faster speed than G-SP for more than 43%

:
as

:::::::
illustrated

::
in
::::
Fig.

::
4c

:
which had been widely accepted as the fastest

and most popular VLiM algorithm.
:
It
::

is
::::::::

observed
:::
that

:::::::::
NTANRC-S

::::
nearly

:::::::
performs

:::
the

::::
same

::::::::
execution

::::
time

:
in
:::::::::

comparison
::::
with

::::
G-SP

::
as

:
it
::::
also

::::::
deploys

:::
the

::::::::::
node-ranking

:::::::
heuristic

::::::::
algorithm

::
for

::::::
VNoM

:::
and

::
the

::::::
shortest

::::
path

::::::
method

:::
for

:::::
VLiM.

:
The remarkable performance is

indeed gained because our proposed GA-based approach explores the
searching space efficiently in order to obtain

:::::
acquire

:
more feasible link

embedding solutions due to a novel crossover operator. In addition,
our fitness function guides the GA-based algorithm on the-right-
track by minimizing the total embedding cost, propagation delay and
hop-count factors. Furthermore, our novel GA algorithm tends to
evaluate various feasible solutions in a greatly less time consumption
due to a proper parallel operation paradigm as depicted in Fig.
4c. Regarding

::::::::::
Accordingly,

:::
the

::::
time

:::::::::
complexity

::
of

:::
our

::::::::
GA-based

:::::::
algorithm

::
is
::::::

rapidly
:::::::

reduced
::
to

:::::::::
logarithmic

:::::::::
O(log(p)).

::::::::
Regarding

::
the

:
execution time study on

::
for

:
time complexity and convergence,

interested readers may refer to
:::
the paper [15] for further theoretical

analysis.
V. RELATED WORK

With demanding research endeavors on NV, [14] essentially
provides a comprehensive survey to this research field. VNE problem
is NP-hard in nature, which is intractable to solve utilizing Integer
Programming (LP). Most researched work in VNE is almost focused
on looking for efficient heuristic algorithms due to the computational
complexity of extract methods. A coordinated node and link approach
for the node embedding relaxing the intractable integer constraints,
and then taking advantage of rounding techniques to achieve the
optimal node mapping was first introduced in [3]. Huang et al. in
[5] primarily extended [3] to enable a novel node splitting scheme



and node collocation. Node ranking approach [10] that was inspired
from Google PageRank algorithm was proposed to rank virtual and
substrate nodes for each VNR, which is based on three topology
attributes and global network resources. In the meantime, one of
the most popular Artificial Intelligence (AI) approaches, Genetic
Algorithm, formally applied to the VNE problems was first reviewed
in [6] and [7]. The research work [6] proposed node ranking methods
relied on GA algorithms with various topology attributes. In addition,
[7] ultimately conducted an evaluation comparison amongst Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO)
and GA where the node mapping stage was intentionally considered.
Additionally, a VNE model that is relied on GA algorithm to resolve
the VNE problems in multiple InP domains was examined in [8]
whereas a research work [9] reordered the mutation operator in the
traditional GA algorithm to produce higher quality offspring in the
initial population. Recently, a parallel GA-based algorithm in [15]
was deliberately devised for the link mapping phase.

VI. CONCLUSION

NV is essentially a key factor of the foreseeable success of the
prospective network architectures (e.g. 5G-and-beyond networks,
virtualised IoT networks), so an efficient resource allocation algorithm
for the VNE applications is highly desirable. In this paper, we
proposed an intelligent parallel algorithm based on a novel GA
algorithm for online VN link embedding, considering both scalability
and optimality.

:::::::::
Particularly,

::
we

:::::::
redesign

:::
the

:::::::
crossover

:::::::
operator

:::
and

:::::
present

::
a
::::::::::::::

multi-constrained
::::::

fitness
:::::::
function

:::::::::
considering

:::::::
multiple

::::::
network

:::::::
attributes

:::::::
guiding

:::
GA

::::::::
algorithm

::::::
towards

::
an

:::::::
efficient

::::
VNE

::::::
solution.

:
Our proposed GA-based algorithm eventually outperformed

state-of-the-art algorithms in all evaluation matrices .
::::::
including

:::::::::
performance

:::
and

::::
time

::::::::
efficiency.

:
In future work, we will investigate

simultaneously embedding nodes and links in one-stage mapping
utilizing Genetic Algorithm.

REFERENCES

[1] A. Hakiri and P. Berthou, “Leveraging SDN for the 5g networks: Trends,
prospects and challenges,” CoRR, vol. abs/1506.02876, 2015. [Online].
Available: http://arxiv.org/abs/1506.02876

[2] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-constrained
devices,” in 2012 IEEE International Conference on Green Computing
and Communications, Nov 2012, pp. 293–300.

[3] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb 2012.

[4] Hong-Kun Zheng, J. Li, Y. Gong, W. Chen, Zhiwen Yu, Z. Zhan, and
Ying Lin, “Link mapping-oriented ant colony system for virtual network
embedding,” in 2017 IEEE Congress on Evolutionary Computation
(CEC), June 2017, pp. 1223–1230.

[5] C. Huang and J. Zhu, “Modeling service applications for optimal parallel
embedding,” IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp.
1067–1079, Oct 2018.

[6] X. Mi, X. Chang, J. Liu, L. Sun, and B. Xing, “Embedding virtual
infrastructure based on genetic algorithm,” in 2012 13th International
Conference on Parallel and Distributed Computing, Applications and
Technologies, Dec 2012, pp. 239–244.

[7] X. Chang, X. Mi, and J. Muppala, “Performance evaluation of artificial
intelligence algorithms for virtual network embedding,” Engineering
Applications of Artificial Intelligence, vol. 26, no. 10, pp. 2540 – 2550,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0952197613001358

[8] I. Pathak and D. P. Vidyarthi, “A model for virtual network embedding
across multiple infrastructure providers using genetic algorithm,” Science
China Information Sciences, vol. 60, no. 4, p. 040308, Mar 2017.
[Online]. Available: https://doi.org/10.1007/s11432-016-9015-3

[9] P. Zhang, H. Yao, M. Li, and Y. Liu, “Virtual network embedding
based on modified genetic algorithm,” Peer-to-Peer Networking and
Applications, vol. 12, no. 2, pp. 481–492, Mar 2019. [Online]. Available:
https://doi.org/10.1007/s12083-017-0609-x

[10] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach and multiple
topology attributes-based embedding algorithm for single-domain virtual
network embedding,” IEEE Internet of Things Journal, vol. 5, no. 1, pp.
108–120, Feb 2018.

[11] G. S. Paschos, M. A. Abdullah, and S. Vassilaras, “Network slicing
with splittable flows is hard,” in 2018 IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Sep. 2018, pp. 1788–1793.

[12] H. Mühlenbein, “Parallel genetic algorithms in combinatorial
optimization,” in Computer Science and Operations Research,
O. BALCI, R. SHARDA, and S. A. ZENIOS, Eds. Amsterdam:
Pergamon, 1992, pp. 441 – 453. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/B9780080408064500344

[13] C. Molnar and J. Gair, “Concepts of biology - 1st canadian edition,”
BCcampus, May 2015. [Online]. Available: https://opentextbc.ca/biology/

[14] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862 – 876,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128609003387

[15] K. T. D. Nguyen and C. Huang, “An intelligent parallel algorithm for
online virtual network embedding,” in 2019 International Conference
on Computer, Information and Telecommunication Systems (CITS), Aug
2019, pp. 1–5.

[16] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE INFOCOM ’96. Conference on
Computer Communications, vol. 2, March 1996, pp. 594–602 vol.2.



VTC2020 Rebuttal: 

We are truly grateful for the insight reviews provided by the external reviewers of this manuscript. The 

precious comments and judgment on this study are clinically important to us to make this paper more 

valuable. In nature, nothing is perfect, and we are too. Despite our best efforts and intentions, we 

cannot always make it perfect. 

Review 1: 

Relevance 

The manuscript proposes a Genetic Algorithm (GA)-based solution, named DPGA, for handling 

the Virtual Link Mapping (VLiM) problem in Virtual Network Embedding (VNE). 

Even though the evaluation results show some sort of superiority of DPGA with respect to other 

state-of-the-art schemes, the novelty and contribution are not clearly identified, and the 

presentation needs work (see dedicated sections for these aspects). 

Novelty 

The novelty mainly lies in proposing a specific solution for VLiM, considering that most of 

literature in the context of VNE has been focused on the Virtual Node Mapping (VNoM) 

problem. 

However, DPGA appears only slightly incremental with respect to the solution named TGAL, 

proposed by the same authors in a previous publication [15]. 

Contribution 

Similar to "Novelty", the paper seems only slightly incremental with respect to [15]. TGAL in 

[15] is in fact already a GA-based solution for VLiM, and the only evident modification in the 

present paper is a slightly different crossover step for DPGA. 

Is this the case? If not, the authors need to significantly rework their contribution, in order to 

better highlight what they propose as new in this paper. 

 

Presentation 

The presentation lacks of enough quality and clarity, and requires significant rework. 

Many sentences are lengthy and difficult to follow, with many many adverbs and difficult 

constructs. 

Many acronyms are not defined, please define all acronyms at their first appearance. Some 

acronyms are defined more that one time (not needed).  

The difference between "splittable" and "unsplittable" is not clearly defined. 

The mathematical notation appears uselessly complicated, with many subscripts, superscripts, 

and (re-)definitions probably not needed. 

The description of the Fitness Function is unclear and difficult to parse. 

Figures 1 and 2 are of poor quality.  

A reference to a non-existing "(14b)" is given.  

The GA description appears lengthy and can be probably improved. GA is a quite known 

optimisation approach, the paper should reference GA literature for detail, and focus on providing 

a clearer mapping between the GA definitions (chromosomes, genes, and functions) and the 

VLiM problem. This mapping appears often confused and difficult to understand. 

From an architecture perspective, it is not clear how/where the distributed GA optimization is 

performed. Is it done at different physical or virtual machines? how the results across such 

machines are exchanged? what is the overhead, particularly in terms of communication? A 



discussion on the complexity of the proposed approach with respect to the state-of-the-art could 

help to understand the overall scheme. 

In Table I, a reference near to the benchmark algorithms would help.  

It is unclear what is used for solving VNoM in the final proposed algorithm. As I see, DPGA is 

used to solve VLiM but a) the benchmark algorithms are complete algorithms solving both 

VNoM and VLiM (even though they solve VLiM with a simpler approach), and b) the 

performance analysis is given on the entire VNE process that is VLiM+VNoM, so: what DPGA 

uses to solve VnoM? 

Figure 4a is not discussed in detail and is confusing, D-vine, R-vine and G-SP adopt a Shortest 

Path Based Link Mapping, so by definition they should provide the “shortest” paths, which does 

not seem the case. 

 

Recommendation 

In my opinion the paper does not meet IEEE VTC standards in its current shape. 

 

Author’ s response:  

 

1 – Relevance:  

The manuscript proposes a Genetic Algorithm (GA)-based solution, named DPGA, for handling 

the Virtual Link Mapping (VLiM) problem in Virtual Network Embedding (VNE). 

Even though the evaluation results show some sort of superiority of DPGA with respect to other 

state-of-the-art schemes, the novelty and contribution are not clearly identified, and the 

presentation needs work (see dedicated sections for these aspects). 

 

Thank you for pointing this out. We agree with this comment. We have highlighted the novelty 

and contribution of this paper in page 1, Introduction section, line [19-30] “In this paper, ... VNE 

algorithms”. 

  

2- Contribution 

Similar to "Novelty", the paper seems only slightly incremental with respect to [15]. TGAL in 

[15] is in fact already a GA-based solution for VLiM, and the only evident modification in the 

present paper is a slightly different crossover step for DPGA. 

Is this the case? If not, the authors need to significantly rework their contribution, in order to 

better highlight what they propose as new in this paper. 

 

Thank you for your comments. In this paper, we introduce a novel elastic crossover operator for 

Genetic Algorithm (GA) and a multi-constrained fitness function which is based upon the 

embedding cost, hop-count and propagation delay factors to guide the GA algorithm towards an 

efficient VNE solution. To the best of our knowledge, this is the first time that an elastic 

crossover mechanism has been applied to VNE problems. To prove the effectiveness of our 

proposal, we also compare our proposed GA-based algorithm with state-of-the-art VNE 

algorithm, namely NTANRC-S in [10]. We also reveal these differences in page 1, line [19-30] 

“In this paper, ... VNE algorithms”. 

 

3 - Presentation 

a - The presentation lacks of enough quality and clarity, and requires significant rework. 

Many sentences are lengthy and difficult to follow, with many many adverbs and difficult 

constructs. 



Many acronyms are not defined, please define all acronyms at their first appearance. Some 

acronyms are defined more that one time (not needed).  

 

As shown in the revised version, we have fixed the editorial issues including long sentences, 

adverbs, complicated structures, acronyms, etc,.   

 

b- The difference between "splittable" and "unsplittable" is not clearly defined. 

 

We have clarified "splittable" and "unsplittable" terminologies in Page 1, line [9-12], 

“Splittability permits... unsplittable configuration”. 

 

c- The mathematical notation appears uselessly complicated, with many subscripts, superscripts, 

and (re-)definitions probably not needed. 

 

We have fixed “re-definitions” problem. For example: the cost function in equation (13). 

However, we believe that subscripts and superscripts should be remained in order to formulate 

our model. They are popularly used to formulate the VNE problems in many papers like [3-10].   

 

d- The description of the Fitness Function is unclear and difficult to parse. 

 

We have adjusted the fitness function, especially the equation (13) to make it clearer.  

  

e- Figures 1 and 2 are of poor quality. A reference to a non-existing "(14b)" is given. 

 

Thank you for your comments, the problems of figure 1, 2 and reference (14b) have been fixed.  

 

f- The GA description appears lengthy and can be probably improved. GA is a quite known 

optimisation approach, the paper should reference GA literature for detail, and focus on providing 

a clearer mapping between the GA definitions (chromosomes, genes, and functions) and the 

VLiM problem. This mapping appears often confused and difficult to understand. 

 

We have modified throughout several sections to make the descriptions of our proposed 

algorithm clear and precise such as section IIIA and section IIIB.  

 

g- From an architecture perspective, it is not clear how/where the distributed GA optimization is 

performed. Is it done at different physical or virtual machines? how the results across such 

machines are exchanged? what is the overhead, particularly in terms of communication? A 

discussion on the complexity of the proposed approach with respect to the state-of-the-art could 

help to understand the overall scheme. 

In Table I, a reference near to the benchmark algorithms would help. 

 

We describe our proposed parallel architecture where GA algorithm performs at the link mapping 

stage to find feasible solutions for all virtual link mapping requests through figure 1 and section 

IIIB. To keep its simplicity, we overlook communications between slave-machines and all VNE 

processes have done in a single physical machine. Due to the limited length of paper we 

recommend the interested readers would reference paper [12] for more details about time 

execution analysis, convergence and time complexity.  

 



h - It is unclear what is used for solving VNoM in the final proposed algorithm. As I see, DPGA 

is used to solve VLiM but a) the benchmark algorithms are complete algorithms solving both 

VNoM and VLiM (even though they solve VLiM with a simpler approach), and b) the 

performance analysis is given on the entire VNE process that is VLiM+VNoM, so: what DPGA 

uses to solve VNoM? 

  

 Thank you for pointing out. We utilize a simple node mapping mechanism that is based on 

Greedy algorithm due to its simplicity as cited in page 3, section IIIA, line [13-18], “To prove our 

hypothesis...in future”. As discussed throughout this paper, DPGA merely focuses on virtual link 

mapping stage. We have eventually proved that just a simple node mapping (Greedy) combined 

with a complicated link mapping based on a proper architecture design will provide an efficient 

VNE solution that achieves both performance and speed perspectives.  

  

 i - Figure 4a is not discussed in detail and is confusing, D-vine, R-vine and G-SP adopt a 

Shortest Path Based Link Mapping, so by definition they should provide the “shortest” paths, 

which does not seem the case. 

 

Thank you for your review. We have clarified Figure 4a in page 4, section IVC, line [58-62], 

“DPGA and TGAL...embedding solution”. [3] is the most popular paper related to VNE problem 

with D-ViNE, R-ViNE and G-SP algorithms, which has been used as a benchmark in many 

research papers in this field. The shortest path problem is usually to find a path between two 

vertices in a graph such that a single network attribute can be merely optimized (e.g. delay, hop-

count), and the shortest path algorithm is still considered as a heuristic algorithm. Although the 

shortest path mechanism performs quite well in both performance and speed, its solution can be 

optimal for a single virtual link request within a VNR, but it cannot obviously achieve a global 

optimum for several virtual link requests with multiple network constraints. As a result, this 

cannot guarantee an efficient VNE solution at the end, even we may deploy excellent node 

mapping algorithms (e.g. NTANRC-S in [10]). For that reason, we entitle our paper is 

“Rethinking Virtual Link Mapping in Network Virtualization” since we argue that node and link 

mappings equally play pivotal roles to approach an efficient VNE solution. Moreover, our 

proposed link mapping algorithm not only takes multiple objectives into account reflecting in the 

fitness function, but also processes several link mapping requests at the same time. We have 

eventually proved that just a simple node mapping (Greedy) combined with a complicated link 

mapping based on a proper architecture design will provide an efficient VNE solution that 

achieves both performance and speed perspectives.      

 

Review 2: 

 

We appreciate the positive feedback from the reviewer. 

 

Relevance 

Virtual Network Embedding (VNE) is an important issue in lots of scenarios. This article focused on 

unsplittable mapping in VNE and is relevant to this conference. 

Novelty 

Genetic Algorithm(GA) has a good effect in solving optimization problems. The authors applied the 

GA to VNE problem and got a good result. Whatsmore, this algorithm can embed all link requests of a 

virtual network together rather than sequentially embed requested virtual links one-by-one. 



Contribution 

The algorithm not only reduces the running time, but also reduces the cost and improves the profit. 

Presentation 

The article is clear in English and complete in structure. 

Recommendation 

This article is standard in writing and novel in the algorithm. It can be employed in this conference. 

 

Review 3: 

 

We appreciate the positive feedback from the reviewer. 

 

Relevance 

This paper studied virtual network embedding (VNE) problem. 

Novelty 

The proposed algorithm is based on a genetic algorithm using distributed parallel machines. 

Contribution 

This paper proposed an algorithm that solves the VNE mapping problem in a low delay. 

Presentation 

Clear presentation 

Recommendation 

Please refer the comments. 

Comments 

a- In problem (9), please explain how to determine the value of w_b and w_n. Also, what are the 

constraints of problem (9)? 

Thank you for pointing out. w_b and w_n are the weights of the mapped bandwidth and CPU 

resources respectively. From the InPs’ perspective, they can define which factor will be 

preferable to achieve the desired revenue values. Similar to [3], we set w_b = w_n = 1 in page 

4, section IVA, line 13.    

b- It would be necessary to explain how problem (9) is different to the prior works. The 

contributions of this paper need to be emphasized. 

Thank you for your review. We agree with this comment. We have emphasized the novelty and 

contribution of this research work in page 1, Introduction section, line [19-30] “In this paper, ... 

VNE algorithms”. 

c- What is time complexity of the proposed algorithm? Please clarify if the algorithm converges. 

We identify the time complexity of our proposed algorithm in page 5, section IVC, line [7-11], 

“Accordingly...analysis”. Due to the limited length of the paper we recommend the interested 

readers would reference paper [12] for more details about time execution analysis, convergence 

and time complexity.  



d- In Fig. 4(a), the average path length of DPGA is the lowest. However, it is observed that, as the 

arrival rate increases, the average path length of DPGA increases, and the average path length 

of TGAL decreases. If the arrival rate is greater than 8.0, is it possible that the average path 

length of DPGA can be greater than the path length of TGAL? 

Thank you for your question, it is actually interesting. This can be happened but we believe that 

DPGA is still better than TGAL since it advocates the population diversity. We leave this 

question for the future work.  

 

 

 

 

 

 

 

 

 

  



Short list:  

TrackChair ID number:  

 284-70830 

Original track:  

 Spectrum Management, Radio Access Technology, Heterogeneous Networks 


