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Abstract

With the emergence of computers in every day activities and with the ever-growing
complexity of networks and network communication protocols, covert channels
are becoming an eminent threat to the confidentiality of information. In light
of this threat, we propose a technique to detect confidential information leakage
via covert channels. Although several works examine covert channel detection and
analysis from the perspective of information theory by analysing channel capacities,
for instance, we propose a different technique from a different perspective. The
proposed technique is based on relational algebra. It provides tests to verify the
existence of a leakage of information via a monitored covert channel. The technique
also provides computations which, when a leakage is detected, shows how the
information was leaked. We also report on a prototype tool that allows for the
automation of the proposed technique.

We limit our focus to protocol-based covert channels and instances where the
users of covert channels modulate the information that is being sent; either by
encryption, or some other form of encoding. We discuss possible applications of
the proposed technique in digital forensics and cryptanalysis.

Keywords: covert channel, confidentiality, formal methods, digital forensics,
cryptanalysis, security
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1 Introduction and Motivation

With the ever-growing popularity and sophistication of computer systems, computer and
information security is becoming more important than ever. Computers are being used in
virtually every workplace in some form or another. Hence, due to the widespread use of
computers and the variety of application domains, security concerns have varying implications
and priority from one domain to another.

Information security has three facets: confidentiality, integrity, and availability [2]. Con-
fidentiality refers to the concealment of information or resources. The demand to keep in-
formation concealed arises from the use of computers in government, medical, and industry
domains. For example, military institutions restrict access to information to those individuals
or groups who have a need for that information. Integrity refers to the trustworthiness of
data or resources, and it is usually phrased in terms of preventing improper or unauthorised
change. Integrity includes both data integrity, the content of the information, and origin in-
tegrity, the source of the data. Origin integrity is commonly referred to as authentication.
The accuracy and credibility of information relies heavily on the integrity of information and
is central to the proper functioning of a system. Availability refers to the ability to use the
information or resource desired. Availability is directly related to the reliability of a system
since a system that is unavailable is at least as bad as no system at all. In terms of computer
and information security, availability has implications that extend to the ability of an agent
to deliberately deny access to data or a service by making it unavailable, thus rendering the
system unusable.

In order to discuss information confidentiality, we must have a means of specifying what
is, and what is not, a violation of security. Hence, we require a security policy to state
what is, and what is not, allowed. According to [38], a security policy is a predicate on the
knowledge of a set of agents that establishes what each agent should know and communicate.
In [38], an agent’s knowledge is captured by a mathematical structure called an Information
Algebra. Consider a data store of student records which contains information classified as
name, identification number, and courses. A policy for this example may be that no agent
should know both the name and identification number of a student. Confidential information
is defined as the information that is protected by the security policy. For the example of a
data store of student records, the confidential information can be the combined knowledge of
both the name and identification number of an individual student.

In the area of computer and information security, there are a number of concerns including
the leak of confidential information, the unauthorised manipulation of sensitive data, and the
denial of a required service. This paper focusses on confidential information leakage via covert
channel communication. According to [44], a covert channel is any communication means
that can be exploited to transfer information in a manner that violates the system’s security
policy. We choose to adopt this definition based on its generality and its relationship to the
security policy employed by a given system. In [21], the reader finds a thorough survey of
covert channels as well as a model for their morphology.

The three facets of information security have a strong relationship to covert channel com-
munication. First, integrity can be compromised by covert channels since covert channeling
techniques enable tampering with data stores in a manner that is unknown to the system. Sec-
ond, covert channels hinder availability since they are able to use system resources to such an
extent that it degrades the system’s performance and jeopardises its availability. Lastly, covert
channels can be used to transmit sensitive information in a secret manner. This makes them
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a particular threat to the confidentiality of a system. In modern organisations, the prospect
of confidential information leakage ranks among the highest fears of any executive [40]. As
many organisations depend on broad and heterogeneous communication networks, the possi-
bilities for the exfiltration of sensitive private information are numerous and the detection of
such an event is a challenging problem. For instance, as organisations are beginning to store
enormous amounts of data in the “cloud”, they must ensure that the cloud is secure. In order
to maintain confidentiality, organisations ought to use detection and prevention mechanisms
to protect their data and secrets from any sort of attack or leakage. Furthermore, covert
channel communication gives rise to economical concerns since they allow for information to
be transmitted using an existing system without paying for the service provided. This is often
the case when a system is infected by a Trojan Horse. Due to these concerns, among others,
covert channel analysis has become part of the evaluation criteria for the classification of se-
cure systems by the United States Department of Defense (DoD) and the National Computer
Security Center (NCSC) as outlined in [44] and [46].

According to the United States Department of Homeland Security, there are shortcomings
in the science, mathematics, and fundamental theory to deal with covert channels in modern
computer systems [45]. We aim to propose mathematical formulations for covert channels
and to develop a formal theory for the detection of the leak of confidential information in
protocol-based covert channels using algebraic techniques. We do not rule out the possibility
that someone may develop heuristics to discover the use of covert channels of various types.
However, we are looking to provide a mathematical method which gives a more formal and
rigorous approach to uncovering the use of covert channels. A mathematical method for
detecting the use of covert channels gives us more power and flexibility than that which could
be done with heuristics. It also gives us a significant advantage in that we are able to mechanise
and automate the computations needed to discover the use of covert channels and to build and
configure monitors which are able to supervise a system for which we strive for confidentiality.

To the best of our knowledge, a formal method such as the one we propose is non-existent.
Several works examine covert channel detection and analysis from the perspective of informa-
tion theory (e.g., [12]) by, for instance, analysing channel capacities. We propose a different
technique from a different perspective. This leads to fertile grounds for developing a theory
of covert channels and provides us with new and innovative ways to approach the problem of
covert channels being a threat to the confidentiality of information. We aim to aid in limiting
the nuisance of covert channels which threaten the privacy and confidentiality of information.

In Section 2, we introduce the required mathematical background including sets, relations,
and their operations. In Section 3, we describe the process by which we formulate a new
technique to detect the leak of confidential information through covert channels. In Section 4,
we examine the automation of the proposed technique using a prototype tool implemented in
the functional programming language Haskell. In Section 5, we discuss the application of the
proposed technique in the area of cryptanalysis. In Section 6, we survey the literature and
look at existing techniques for mitigating covert channel use. In Section 7, we provide a brief
discussion of the proposed technique. Finally, Section 8 draws conclusions and suggests future
work.
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2 Mathematical Background

In this section, we introduce the necessary mathematical concepts required for the rest of the
paper.

2.1 Sets

We aim to detect the use of covert channels through the communication of agents in a system.
We use relations to represent the stream of messages sent between agents in a system. There-
fore, since relations are defined generally in terms of sets, we first give a general introduction
to set theory. The material regarding set theory is extracted from [10].

Definition 1. A set is a collection of distinct elements.

There are two ways to describe a set. The first is called set enumeration, which describes a
set by listing its elements. For example, {1, 8, 27, 64} denotes the set consisting of the elements
1, 8, 27, and 64. The second is called set comprehension, which describes a set by stating
properties shared by its elements. For example, the set comprehension {x ∈ N | ∃(y |
y ∈ N ∧ 1 ≤ y ≤ 4 : x = y3 )} denotes the set of all natural numbers x such that
∃(y | y ∈ N ∧ 1 ≤ y ≤ 4 : x = y3 ) is satisfied.

We identify two special sets: the universal set and the empty set.

Definition 2.

(i) The universal set, denoted by U, is the set fixed within the framework of a theory and
consisting of all objects considered in this theory.

(ii) The set ∅ is called the empty set and is defined by

∅ def
= {x | false}

The following are a selection of useful operations on sets.

Definition 3. Let X and Y be sets and let U be the universal set.

(i) Subset: X ⊆ Y ⇐⇒ ∀(x | x ∈ X : x ∈ Y )

(ii) Complement: x ∈ X ⇐⇒ x ∈ U ∧ x /∈ X

(iii) Union: x ∈ X ∪ Y ⇐⇒ x ∈ X ∨ x ∈ Y

(iv) Intersection: x ∈ X ∩ Y ⇐⇒ x ∈ X ∧ x ∈ Y

2.2 Relations and Their Operations

Definition 4. Given two sets, X and Y , we define the Cartesian product X × Y as

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }

Definition 5 (e.g., [39]). Let X and Y be two sets. A relation R on X × Y is a subset of the
Cartesian product X × Y , that is, R ⊆ X × Y . When X = Y we say that R is a homogenous
relation and when X 6= Y we say that R is a heterogeneous relation.
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We identify three special relations: the identity relation, the universal relation, and the
empty relation.

Definition 6.

(i) For every set X, the relation I on X × X is called the identity relation on X and is
defined by

I def
= {(x, x) | x ∈ X}

(ii) For every two sets X and Y , the relation L on X×Y is called the universal relation and
is defined by

L def
= {(x, y) | true}

(iii) For every two sets X and Y , the relation ∅ is called the empty relation and is defined by

∅ def
= {(x, y) | false}

Definition 7 (e.g., [39]). Let R ⊆ X × Y be a relation:

(i) The domain of the relation R is given by

dom(R)
def
= {x | ∃(y | y ∈ Y : (x, y) ∈ R )}

(ii) The range of the relation R is given by

ran(R)
def
= {y | ∃(x | x ∈ X : (x, y) ∈ R )}

There are three important operations on relations that are needed for the rest of the paper:
composition, converse and complement.

Definition 8 (e.g., [39]).

(i) Let R ⊆ X × Y and S ⊆ Y ×Z be relations. Then, their composition R ;S is defined by

R ;S
def
= {(x, z) | ∃(y | y ∈ Y : (x, y) ∈ R ∧ (y, z) ∈ S )}

(ii) We define the converse of a relation R by

R` def
= {(x, y) | (y, x) ∈ R}

(iii) We define the complement of a relation R by

R
def
= {(x, y) | (x, y) /∈ R}

The next definition introduces total, univalent, surjective, injective, mapping, and bijective
relations.
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Definition 9 (e.g., [39]). If R is a relation, then we say

(i) R is total
⇐⇒ L = R ;L ⇐⇒ I ⊆ R ;R`

⇐⇒ ∀(S |: R ;S ⊇ R ;S )

(ii) R is univalent (deterministic or functional)
⇐⇒ R` ;R ⊆ I
⇐⇒ ∀(S |: R ;S ⊆ R ;S )

(iii) R is surjective
⇐⇒ R` is total

(iv) R is injective
⇐⇒ R` is univalent

(v) R is a mapping
⇐⇒ R is total and univalent
⇐⇒ ∀(S |: R ;S = R ;S )

(vi) R is bijective
⇐⇒ R is surjective and injective

Below, we give some important properties of relations from [39].

Proposition 1. Let P and Q be relations.

(i) P = P

(ii) P`` = P

(iii) (P ∪ Q)` = P` ∪ Q`

(iv) (P ∩ Q)` = P` ∩ Q`

(v) (P ;Q)` = Q` ;P`

The interplay between relational composition, converse, and complement with respect to
containment is given by the Schröder equivalences.

Proposition 2. Let P , Q and R be relations. Then,

P ;Q ⊆ R ⇐⇒ P` ;R ⊆ Q ⇐⇒ R ;Q` ⊆ P

Proof. The proof can be found in [39].

Definition 10 ([19]). For every set A ⊆ X and every relation R ⊆ X×Y , we define a relation
R|A ⊆ X × Y , which is the restriction of R to A as

∀
(
x, y | x ∈ X ∧ y ∈ Y : (x, y) ∈ R|A ⇐⇒ x ∈ A ∧ (x, y) ∈ R

)
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Stated otherwise, if we define a predicate PA(x) which describes the set A, i.e., x ∈ A ⇐⇒
PA(x), and we have a relational expressionR(x, y) that definesR, i.e., (x, y) ∈ R ⇐⇒ R(x, y),
then the restriction of the relation R to A, R|A is described by the expression PA(x) ∧ R(x, y).
Consider the following example. Let R = {(1, a), (2, b), (3, c), (4, d), (5, e), (6, f), (7, g), (8, h),
(9, i), (10, j)} and let A = {x | odd(x)}. Then, R|A = {(1, a), (3, c), (5, e), (7, g), (9, i)}.

We introduce the notion of residue which is a special operation on relations. It helps solve
equations of the form P ;X = Q or X ;P = Q.

Definition 11 ([39]). Let P and Q be two relations.

(i) Q/P def
= Q ;P` is called the left residue of Q by P

(ii) P\Q def
= P` ;Q is called the right residue of Q by P

The left residue and the right residue are also called, in [16, 17], weakest prespecification
and weakest postspecification, respectively. As an example, let A = {a, b} and let P ⊆ A× A
and Q ⊆ A×A such that P = {(a, a), (b, a)} and Q = {(a, b), (b, b)}. In this case, the universe
of values is given as A×A.

We first compute Q/P .

Q/P

= 〈 Definition 11(i) 〉
Q ;P`

= 〈 Substitution: P = {(a, a), (b, a)} and Q = {(a, b), (b, b)} 〉
{(a, b), (b, b)} ; {(a, a), (b, a)}`

= 〈 Definition 8(ii) & Definition 8(iii) 〉
{(a, a), (b, a)} ; {(a, a), (a, b)}

= 〈 Definition 8(i) 〉
{(a, a), (a, b), (b, a), (b, b)}

= 〈 Definition 8(iii) 〉
∅

Next, we compute P\Q.

P\Q
= 〈 Definition 11(ii) 〉
P` ;Q

= 〈 Substitution: P = {(a, a), (b, a)} and Q = {(a, b), (b, b)} 〉
{(a, a), (b, a)}` ; {(a, b), (b, b)}

= 〈 Definition 8(ii) & Definition 8(iii) 〉
{(a, a), (a, b)} ; {(a, a), (b, a)}

= 〈 Definition 8(i) 〉
{(a, a)}

= 〈 Definition 8(iii) 〉
{(a, b), (b, a), (b, b)}
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The left residue gives the greatest solution to X ;P ⊆ Q (see Proposition 3(i)). A solution
to X ;P ⊆ Q is any relation X such that the equation is satisfied. If the equation X ;P = Q
has a solution (i.e., when ran(P ) = ran(Q)), the left residue is its greatest solution. We
illustrate this using Figure 1 where P/Q, P , and Q are presented as graphs. We can see that
ran(P ) ∩ ran(Q) = ∅ since ran(P ) = {a} and ran(Q) = {b}. Therefore, we cannot find a
relation X 6= ∅ such that X ;P = Q. Only X = ∅ satisfies X ;P ⊆ Q.

P/Q

a•

b•

a•

b•

;
P

a•

b•

a•

b•�
�
�
�
�
�

⊆
Q

a•

b•

a•

b•

\
\
\
\
\
\

Figure 1: P/Q ;P ⊆ Q with P/Q = ∅

The right residue is the greatest solution to P ;X ⊆ Q (see Proposition 3(ii)). If P ;X = Q
has a solution (i.e., when dom(P ) = dom(Q)), the right residue is its greatest solution. We
illustrate this in Figure 2 where P , P\Q, and Q are presented as graphs. From these graphs,
we can see that P ;P\Q = Q. So P\Q is the solution of P ;X = Q, i.e., X = P\Q.

P

a•

b•

a•

b•�
�
�
�
�
�

;
P\Q

a•

b•

a•

b•

\
\
\
\
\
\�

�
�
�
�
�

=
Q

a•

b•

a•

b•

\
\
\
\
\
\

Figure 2: P ;P\Q = Q

Proposition 3. Let P , Q and X be relations.

(i) X ;P ⊆ Q ⇐⇒ X ⊆ Q/P ,

(ii) P ;X ⊆ Q ⇐⇒ X ⊆ P\Q.

Proof. The proof can be found in [25, 39].

Some important properties of residues are taken from [6] and are given below.

Proposition 4. For relations P and Q we have

(i) (P/Q)` = Q`\P`

(ii) (P\Q)` = Q`/P`

(iii) (P/Q) ;Q ⊆ P

(iv) Q ; (Q\P ) ⊆ P

In some cases, it is required that a relation be a left residue and right residue simultane-
ously. This notion is called the symmetric quotient.
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Definition 12 ([39]). If P and Q are relations, we define the symmetric quotient as

syq(P,Q)
def
= P` ;Q ∩ P` ;Q = (P\Q) ∩ (P`/Q`)

The symmetric quotient syq(P,Q) of two relations P and Q is defined as the greatest
relation X such that P ;X ⊆ Q and X ;Q` ⊆ P`. For example, let A = {a, b}, and P ⊆ A×A
and Q ⊆ A×A such that P ={(a, a), (b, a)} and Q={(a, b), (b, b)}. In this case, the universe
of values is A×A.

We compute syq(P,Q).

syq(P,Q)

= 〈 Definition 12 〉
P` ;Q ∩ P` ;Q

= 〈 Substitution: P = {(a, a), (b, a)} and Q = {(a, b), (b, b)} 〉
{(a, a), (b, a)}` ; {(a, b), (b, b)} ∩ {(a, a), (b, a)}` ; {(a, b), (b, b)}

= 〈 Definition 8(ii) & Definition 8(iii) 〉
{(a, a), (a, b)} ; {(a, a), (b, a)} ∩ {(b, a), (b, b)} ; {(a, b), (b, b)}

= 〈 Definition 8(i) 〉
{(a, a)} ∩ {(b, b)}

= 〈 Definition 8(iii) 〉
{(a, b), (b, a), (b, b)} ∩ {(a, a), (a, b), (b, a)}

= 〈 Definition 3(iv) 〉
{(a, b), (b, a)}

Some important results used in the remainder of this paper regarding the properties of
relations and residues are given in Proposition 5.

Proposition 5. Let P and Q be relations.

(i) P is a bijection ∧ Q is surjective =⇒ P\Q is surjective

(ii) P\Q = (Q\P )` =⇒ P ⊆ Q ; (Q\P ) for Q a bijection and P surjective

(iii) P ⊆ Q ; (Q\P ) ∧ Q ⊆ P ; (P\Q) ⇐⇒ P\Q = (Q\P )` for P and Q bijections

Proof. The detailed proof can be found in Appendix A.1. The proof for (i) involves the
properties of total and surjective relations, as well as the application of Definition 11 and
Proposition 1. In the proof for (ii), we use the complement and converse properties of relations
and apply Definition 11, Proposition 1, Proposition 3, and Proposition 4. The proof for (iii)
involves the properties of total and surjective relations and the properties of residues. We
apply Definition 11, Proposition 1 and Proposition 4.

3 Formulation of a Detection Technique

In this section, we formulate our proposed technique for detecting confidential information
leakage via covert channels in computer and information systems.
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3.1 Assumptions

In formulating the problem of covert channel communication in computer and information
systems, we make some basic assumptions regarding the problem in order to simplify the
proposed detection technique. Firstly, it is assumed that the communicating agents have a
predefined scheme regarding how the information is transmitted from its source to its des-
tination. This includes an agreement on the protocol to be exploited and the fields of the
data structure to be used. This is a common assumption among the literature [4, 14, 24, 32].
This assumption is required in order to ensure that the receiving agent is able to recover
the communicated information. Next, it is assumed that the communication among agents is
recorded by monitors which begin recording when a communication channel is established. It
is also assumed that the monitors maintain an unbounded history of all of the communication
which has taken place. With these assumptions, we are able to ensure that the monitors have
a record of all of the transmissions between the communicating agents. This allows for sim-
plicity in reasoning about the abilities of the system monitors. A similar assumption is made
in [7, 11, 14, 50], where the monitors or wardens have access to all of the messages passed
between the communicating agents. Another basic assumption is that the monitor always
knows the set of confidential information that is protected by the security policy. Lastly, the
analysis is done in a forensics context, meaning that it is performed after the information has
already been sent. In [35, 42], we find that it is common for an organisation to gather and
preserve digital evidence such as transaction logs before an incident occurs. This way, when
there is reason to suspect that some violation of the security policy may have been committed
using a computer, either in a stand alone manner or in a network environment, analyses can
be performed.

3.2 Representing Covert Channels as Relations

Finding an appropriate abstract representation for the information being sent on a channel
is a crucial step in solving the problem of detecting the use of covert channels to leak confi-
dential information. Without an appropriate representation for information, we are unable to
accurately model the scenarios in which confidential information is leaked via a covert chan-
nel. In [21], we discussed how we can view information sent over covert channels as being
encapsulated in a data structure of some dimension. This data structure has fields in which
the information is embedded. In this paper, we represent the information sent on a channel
as a relation, i.e., a series of data structures which are sent over time. At each time, we have
an element of information sent. Therefore, one can see a stream of information as a subset of
the Cartesian product of time and the state space of a data structure. If we model time by
N, and the set of information (or data) by D, then a stream S is a subset of N × D. There-
fore, it is a relation and more precisely, it is a function when we consider only one channel
(without noise). We associate each datum with the time stamp at which it was received. For
example, if the data sent on the channel was the sequence of characters ‘h’, ‘e’, ‘l’, ‘l’, ‘o’
to form the word “hello”, the information that is sent on the stream is formed as the rela-
tion R = {(1, ‘h’), (2, ‘e’), (3, ‘l’), (4, ‘l’), (5, ‘o’)}, where ‘h’ was sent at time 1, ‘e’ was sent at
time 2 and so on.

In order to uncover a confidential information leakage via a covert channel, we show that
it is sufficient to find an abstraction relation between the confidential information which we do
not want to be leaked and the stream of information observed to be sent on the channel. An
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abstraction relation X can be seen as a simulation relation between two relations P and Q.
In Figure 3, the relation X is an abstraction relation that relates DP to DQ.

P

X
Q

N DP

DQ

Figure 3: A representation of the relationship between the
relations P and Q via the abstraction relation X

In Figure 3, we have the relation P representing the confidential information which should
not be sent on the channel, the relation Q representing the information that is observed by
a monitor watching the information transmitted over the communication channel, and the
relation X representing an abstraction relation that gives the relationship between P and Q.
An abstraction relation X, requires that the diagram given in Figure 3 commutes. We can
see that the diagram in Figure 3 can commute in four ways as described in Figure 4.

P

X
Q

⊆

(a) P ⊆ Q ;X`

P

X
Q

⊆

(b) P ;X ⊆ Q

P

X
Q

⊇

(c) Q ;X` ⊆ P

P

X
Q

⊇

(d) Q ⊆ P ;X

Figure 4: Four ways in which the diagram of Figure 3
can commute

However, we can see that the diagrams in Figure 4 can be reduced to two diagrams. For
Figure 4a and Figure 4c we have P ⊆ Q ;X` ∧ Q ;X` ⊆ P which is equivalent to

Q ;X` = P which is equivalent to X ;Q` = P` (1)

and for Figure 4b and Figure 4d we have P ;X ⊆ Q ∧ Q ⊆ P ;X which is equivalent to

P ;X = Q which is equivalent to X` ;P` = Q` (2)

So, we have the following two diagrams, given in Figure 5, for which we are able to solve
their corresponding equations for an abstraction relation X.

In each case, the confidential information represented by P is known. The observed in-
formation represented by Q is known only after observing the information that is sent on the
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P

X
Q

=

(a) Q ;X` = P

P

X
Q

=

(b) P ;X = Q

Figure 5: Reduction of the ways in which the diagram of
Figure 3 can commute

communication channel. We are looking to find a solution to Equation 1 or Equation 2. The
solution is an abstraction relation X relating the relation P and the relation Q. In terms of
covert channels, the solution is an abstraction relation relating the confidential information
and the observed information that has been sent on the communication channel.

The mathematics required to solve for the abstraction relation X in the diagrams given in
Figure 5 was first introduced by Bertrand Russell who wrote on the similarity of relations in
1919 [36]. Russell wrote that two relations are similar when there is at least one abstraction
relation between them. When two relations are similar, they share all properties that do not
depend upon the actual terms of their fields. This means that if we can find an abstraction
relation between the confidential information and the observed information sent on a covert
channel, then we can conclude that there is a similarity between the confidential information
and the observed information. This means that each element of the confidential information
can be mapped to one or more elements of the observed information. This is indeed what we
see in Figure 3, whereby composing the relation P with the abstraction relation X, we get the
relation Q. Putting this in terms of the communication of information over covert channels,
we have that the transformation of the confidential information by the abstraction relation
gives the information observed on the communication channel. It is important to emphasise
that it is not the communication between agents that is in violation of a security policy, but
rather, the information that is being communicated. We are only interested in finding an
abstraction relation between the confidential information that is known to the monitor and
the observed information sent on the channel(s).

When considering the detection of confidential information leakage via covert channels, we
must determine the necessary and sufficient conditions which imply the existence of a covert
channel in violation of a security policy. We consider an information leak to be detected
if and only if there exists an abstraction relation between the confidential information and
the information that is sent on the covert communication channel such that the abstraction
relation is different from ∅ and L. The case where an abstraction relation is equal to ∅ indicates
that there is no abstraction and thus no relationship between the confidential information
and the information observed to be sent over the communication channel. The case where
an abstraction relation is equal to L indicates that all information is related to all other
information. In this case, the abstraction becomes irrelevant.

3.3 The Proposed Technique

The proposed technique for the detection of confidential information leakage via covert chan-
nels has two major components: monitoring the information sent on the communication chan-
nel and finding and computing an abstraction relation relating the confidential information to
the information observed to be sent on the communication channel.

11



3.3.1 Illustrative Example

We give a simple example to illustrate the proposed technique in detecting confidential infor-
mation leakage via covert channels. We use this example as a running example throughout
the remainder of this paper.

Consider a system for which two agents are communicating. Suppose that agent A is
communicating from within an organisation and suppose that agent B is communicating from
outside the organisation. Suppose that the organisation has a security policy which defines
its confidential information to be the sequence of the first ten digits of the number π, i.e.,
we have P = {(1, 3), (2, 1), (3, 4), (4, 1), (5, 5), (6, 9), (7, 2), (8, 6), (9, 5), (10, 3)} which is a
representation of the sequence 〈3, 1, 4, 1, 5, 9, 2, 6, 5, 3〉.

Assume that agent A and agent B agree on a scheme for transmitting the confidential
information. It is decided that agent A will exploit the Internet Protocol, in particular,
the IP Identification field in order to leak the confidential information to agent B. The IP
Identification field is used to uniquely identify an IP datagram within a flow of datagrams
that share the same source and destination. Since the value for the IP Identification field
should be chosen at random, it is possible to choose a non-random value for the field without
interrupting the IP mechanism.

Suppose that agent A uses the 16-bit IP Identification field to send, in a sequence of IP
datagrams, the set of confidential information of its organisation. Also, suppose that in order
to attempt to mask the data being sent, agent A first encrypts the information before embed-
ding it into the IP header. For this purpose, agent A uses a public key encryption technique
(though it is not important how the information is encrypted) to encrypt the information.
The encryption generates the sequence1 〈12, 1, 16, 1, 17, 18, 11, 6, 17, 12〉 in place of the
sequence 〈3, 1, 4, 1, 5, 9, 2, 6, 5, 3〉.

Using this particular example for illustration, we are able to show how we can detect
confidential information leakage via covert channel communication. Since the example has
redundancy in the information, i.e., it contains more than one instance of the digits, it allows
for the demonstration of the technique and aids in explaining when the detection of the leakage
of confidential information using the proposed technique can be averted. In Section 5.1, we
provide a larger scale example through a case study of the Zodiac 408 cipher for which we
demonstrate the use of the proposed technique in the context of cryptanalysis.

3.3.2 Monitoring the Communication Channels

Suppose that the organisation from which agent A is communicating wishes to detect if its
confidential information is being leaked to an agent outside of the organisation. The organ-
isation installs a monitor on the known communication channels from which an agent from
within the organisation can communicate with an agent outside the organisation. The moni-
tor begins monitoring the communication over a channel when the communication channel is
established and it keeps a history of the all of the communication that has been observed on
the channel, denoted by Q. We can view the monitor as a specialised and customisable packet
sniffer in the case of covert channels exploiting the use of network protocols. In order for the
monitor to be effective, we must assume that it is configured with the following necessary
information:

1This set is generated using RSA encryption with p = 3, q = 7, N = 21, e = 5, d = 41.
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• Protocol : This refers to the protocol in which the communicating agents are using in
order to communicate. In our example, the protocol that is being used is the Internet
Protocol (IP).

• Header Field : This refers to the field in the header of the particular protocol which is
being used as the carrier for the covert information channel. In our example, the field
that is being exploited is the IP Identification field.

• Confidential Information: The monitor must know the confidential information in order
to perform the required analysis. In our example, the confidential information that the
monitor must know is P .

• Analysis Tools: This refers to the set of tests which can be run in order to verify whether
there is an abstraction relation between the confidential information and the information
that is observed by the monitor. This will be discussed further in Section 3.3.3 and
Section 3.3.4.

The monitor of the communication channels that is installed by the organisation can perform
either a post-mortem analysis2 or a real-time analysis looking for an abstraction relation
between P and Q.

The monitor watches the stream of packets being transmitted from agent A to agent B.
Based on its configuration, the monitor can either extract the header field from the protocol
packets that it is monitoring as they are being transmitted and store them, or it can mirror
and store the packets of the protocol and then extract the prescribed header field at a later
time so as not to interrupt the performance of the communication channel. The monitor finds
that agent A sends the confidential sequence of information 〈3, 1, 4, 1, 5, 9, 2, 6, 5, 3〉 as
the encrypted sequence of information 〈12, 1, 16, 1, 17, 18, 11, 6, 17, 12〉, then the relation
constructed by the monitor would be given as Q = {(1, 12), (2, 1), (3, 16), (4, 1), (5, 17), (6, 18),
(7, 11), (8, 6), (9, 17), (10, 12)}. Recall that the monitor is already equipped with the relation
corresponding to the set of confidential information, P . So, the monitor now knows the stream
of confidential information which should not be sent according to the system security policy
and the stream of information observed to have been sent on the communication channel.
The monitor needs to determine whether the confidential information has been leaked in any
capacity. It decides if there was a confidential information leakage by verifying the existence
of an abstraction relation X which relates the relation constructed as P , the confidential
information, and the relation constructed as Q, the observed information.

3.3.3 Finding an Abstraction Relation

In this section, we provide the necessary and sufficient conditions which imply the existence
of a covert channel in violation of the system security policy.

Since the monitor knows the relation corresponding to the set of confidential information P
and the relation corresponding to the set of observed information Q, the existence of an
abstraction relation X which relates P and Q can be verified using Proposition 6.

2Post-mortem analysis refers to the fact that the analysis is being done in a digital forensics context whereby
confidential information may have already been leaked and the damage may already be done.
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Proposition 6. X ;P = Q has a solution if and only if Q = (Q/P ) ;P .

Proof. The detailed proof can be found in Appendix A.2. The proof involves the application of
Proposition 3, trading rules, the One-Point Axiom and the isotony of relational composition.

Proposition 6 is used as a test to verify if there is an abstraction between the observed
information and the confidential information. This test is directly related to Figure 3 in
that if the test holds, we can say that the diagram in Figure 3 commutes and we can find an
abstraction relationX that satisfies Equation 1 or Equation 2 which is not the empty relation ∅
or the universal relation L. Therefore, we can say that the confidential information P seems to
have been leaked using the abstraction given byX and was sent as the observed information Q.

Corollary 1. Let P be the relation containing confidential information. Let Q be a relation
representing an information observed on the monitored communication channel. The confi-
dential information contained in P is being leaked as that represented by Q if and only if

P = Q ; (Q\P ) ∨ Q = P ; (P\Q)

Proof. The detailed proof can be found in Appendix A.3. The proof involves the application
of Proposition 6, Proposition 1(ii), Proposition 1(v) and Proposition 4(i).

In order for an abstraction relation to exist, we require that the diagram in Figure 3
commutes. The diagram in Figure 3 can commute in two ways as described by Figure 5. In
Corollary 1, we verify whether the diagram commutes in at least one of the two ways. Each
term of the disjunction in the test corresponds to one of the ways in which Figure 3 can
commute. The term P = Q ; (Q\P ) corresponds to Figure 5a and the term Q = P ; (P\Q)
corresponds to Figure 5b. Therefore, as long as we can satisfy at least one of the ways in
which the diagram commutes, we can find an abstraction relation X that satisfies Equation 1
or Equation 2 which is not the empty relation or the universal relation. Then, we can conclude
that the confidential information has been leaked via the covert communication channel on
which the observed information was sent.

In our example, the confidential information is represented by P = {(1, 3), (2, 1), (3, 4),
(4, 1), (5, 5), (6, 9), (7, 2), (8, 6), (9, 5), (10, 3)} and the information observed by the monitor
is represented by Q = {(1, 12), (2, 1), (3, 16), (4, 1), (5, 17), (6, 18), (7, 11), (8, 6), (9, 17),
(10, 12)}. Using our prototype tool (see Section 4) to automate the application of Corollary 1,
we find that the test holds. We interpret this result as saying that there exists an abstraction
relation which relates the confidential information P to the observed information Q meaning
that the confidential information has been leaked in some form on the communication channel.

3.3.4 Computing the Abstraction Relation

Now that we have verified whether an abstraction relation does in fact exist, the next step
is to compute the abstraction relation giving us the abstraction that is used to relate the
confidential information and information that is sent on the channel. Using Proposition 7,
we are able to compute the abstraction relation X. The proposition also allows for filtering
on the abstraction relation to look for an abstraction which maps particular elements of the
confidential information to particular elements of the observed information. The filtering
relation is designed by the analyst and is represented by R.
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Proposition 7. Let P and Q be relations. X ;P = Q has a solution X = R ∩ (Q/P ) if and
only if Q ⊆

(
R ∩ (Q/P )

)
;P .

Proof. The detailed proof can be found in Appendix A.4. The proof involves the application of
Definition 11, Proposition 1 and Proposition 4, as well as anti-symmetry and weakening.

The relation R plays the role of a filter. A filter allows for the removal of some unwanted
elements of the transmitted sequences. The filter R allows us to select only those elements of
the transmitted sequences which we are interested in examining further. In its most general
case, if we consider the filter R to be the universal relation L, we are interested in all of
the elements of the transmission. Otherwise, we can select the elements of the range of the
confidential information for which we wish to find an abstraction by choosing different filtering
relations for R. For instance, if we suspect that the confidential information is sent using only
a subset SP of DP , then we can filter using the relation R = {(dp, dq) | dp ∈ SP ∧ dq ∈ DQ}.
By computing an abstraction relation which is not the empty relation ∅ or the universal
relation L, we can say that we have uncovered a leak of confidential information on the
communication channel.

Corollary 2. Let P be the relation containing confidential information. Let Q be a relation
representing an information observed on the monitored communication channel. Let R be a
filtering relation allowing for the selection of particular elements of the relations P and Q.
The confidential information included in P is being leaked as that represented by Q via the
abstraction relation X such that

(i) X = R ∩ (Q\P )` if and only if P ⊆ Q ;
(
R` ∩ (Q\P )

)
(ii) X = R ∩ (P\Q) if and only if Q ⊆ P ;

(
R ∩ (P\Q)

)
(iii) X=R ∩ syq(P,Q) if and only if P ⊆Q ;

(
R` ∩ (Q\P )

)
∧Q⊆P ;

(
R ∩ (P\Q)

)
Proof. The detailed proof can be found in Appendix A.5. The proofs for (i), (ii) and (iii)
involve the application of Proposition 1 and Proposition 7. The proof for (iii) also involves
the Golden Rule Axiom.

Corollary 2 gives three cases for which we can compute the abstraction relation X. In
each of these cases, we compute the abstraction relation X according to the way(s) in which
Figure 3 commutes. Corollary 2(i) corresponds to the case where the diagram commutes only
as in Figure 5a. Corollary 2(ii) corresponds to the case where the diagram commutes only as
in Figure 5b. Lastly, Corollary 2(iii) corresponds to the case where the diagram commutes as
in both Figure 5a and Figure 5b.

Continuing with our example, we have already verified the existence of an abstraction
relation relating the confidential information P to the observed information Q. Now, using
our prototype tool to compute the application of Corollary 2 with the filter R = L, we find
that the abstraction relation X contains3 X ′ = {(1, 1), (2, 11), (3, 12), (4, 16), (5, 17), (6, 6),
(9, 18)}. Here, we have X ′ ⊆ DP × DQ. We can interpret X ′ by reading that a 1 in the
confidential information was sent as 1 through the communication channel, that a 2 in the

3Here we say X contains X ′ since the abstraction relation X will have elements relating the unused digits,
i.e., 7, 8, 0, to all elements of the ring of integers modulo N , Z/NZ where N = 21 comes from the use of RSA
for encryption. For brevity, we are simply removing these elements from the relation X to obtain X ′.
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confidential information was sent as 11 through the communication channel and so on. The
abstraction relation X shows how the confidential information P was transformed into the
observed information Q.

It is possible when the confidential information and the information observed to be sent on
the channel have certain properties, namely if they are bijections, that we can have a specialised
case of Corollary 2 where the test is simplified based on the results of Proposition 5. This
simplified test and computation is given in Corollary 3.

Corollary 3. Let P be a bijection containing confidential information. Let Q be a bijection
representing an information observed on the monitored communication channel. Let R be a
filtering relation allowing for the selection of particular elements of the relations P and Q.
The confidential information contained in P is being leaked as that represented by Q via the
abstraction relation X = R ∩ (P\Q) if and only if P\Q = (Q\P )`.

Proof. The detailed proof can be found in Appendix A.6. The proof involves the properties of
bijective relations and the application of Proposition 1, Proposition 4, and Proposition 5.

Examples illustrating Corollary 3 are mainly trivial since they involve P and Q being
bijections. Although applications of Corollary 3 may be limited, it is still an important result
as it can be seen as a special case for computing the abstraction relation X with simplified
conditions.

3.3.5 Modulating the Confidential Information Prior to Transmission

Suppose that agent A and agent B develop a new scheme to mask their covert communication
of confidential information. Assume that the agents decide to modulate the confidential infor-
mation prior to its encryption. This means that they modify the confidential information by
some agreed upon scheme and then encrypt the modulated information so as to add another
level of abstraction to the transmitted information. Proposition 8 shows how the modulation
of the confidential information prior to the encryption and transmission makes no difference
on the ability to detect whether it has been leaked in some form. This highlights the point
that the encryption of the information does not matter. Since we know the confidential in-
formation and we observe the information that is being sent on the channel, we do not need
to know how the information was encrypted. If an abstraction relation exists between the
confidential information P and the observed information Q, then even if a modulation of P
by some relation M is transmitted as Q, we can still find an abstraction relation relating P
and Q without knowing M .

Proposition 8. Let P be a relation containing confidential information. Let M be a total
and injective relation that modulates the confidential information in some way such that the
modulated confidential information is represented by (P ;M). Let Q be a relation representing
an information observed on the monitored communication channel. If the confidential infor-
mation contained in P is being leaked as that represented by Q then any modulation of the
confidential information contained in P is also being leaked as that represented by Q (i.e.,
∃(X |: P ;X = Q ) =⇒ ∃(Y |: P ;M ;Y = Q )).

Proof. The detailed proof can be found in Appendix A.7. The proof involves the properties
of total and injective relations, as well as the application of Proposition 1, Proposition 4, and
Proposition 6.
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In the case of modulating the confidential information, we require that the modulation
relation be total and injective. The totality of the modulation relation ensures that, when
composed with the relation containing the confidential information, no information is lost, i.e.,
all of the confidential information is represented in some form in the modulated confidential
information. The injectivity of the modulation relation ensures that no inconsistencies are
introduced which will cause the tests to be averted (see Section 3.3.6). The introduction of an
inconsistency in the modulated confidential information leads to a loss of information. The
purpose of the conditions on the modulation relation is to ensure that no information is lost
during the modulation of the confidential information.

We modify our example from Section 3.3.1 to illustrate the case where the two communi-
cating agents modulate the confidential information prior to its encryption and transmission.
Consider now that in order to obscure the transmission of the information, agent A modulates
the confidential information by a relation represented byM = {(0, 9), (1, 0), (2, 1), (3, 2), (4, 3),
(5, 4), (6, 5), (7, 6), (8, 7), (9, 8)} prior to its encryption. Agent A computes (P ;M) = {(1, 2),
(2, 0), (3, 3), (4, 0), (5, 4), (6, 8), (7, 1), (8, 5), (9, 4), (10, 2)}. Now, using the same encryption
scheme as before, agent A encrypts the information and sends it to agent B on a single commu-
nication channel as the relation Q = {(1, 11), (2, 0), (3, 12), (4, 0), (5, 16), (6, 8), (7, 1), (8, 17),
(9, 16), (10, 11)}. We verify the existence of an abstraction relation by applying Corollary 1.
In this case, we are looking for an abstraction relation relating the confidential information P
and the observed information Q which corresponds to the encrypted modulated confidential
information. Using our prototype tool, we find that an abstraction relation does in fact ex-
ist relating the confidential information P and the observed information Q. We then use
the prototype tool to apply Corollary 2 with the filter R = L to compute the abstraction
relation X which contains X ′ = {(1, 0), (2, 1), (3, 11), (4, 12), (5, 16), (6, 17), (9, 8)}. This
example illustrates how the modulation of the confidential information prior to the encryption
and transmission makes no difference on the ability to detect whether it has been leaked in
some form.

3.3.6 Averting the Test for an Abstraction Relation

The test outlined in Proposition 6 can be averted when an element of the confidential in-
formation maps to more than one element of the information observed to be sent on the
communication channel, of which another element of the confidential information is already
mapped. In many cases, the failure of the test means that there is no abstraction between the
confidential information and the information observed to be sent on the channel and thus, the
confidential information is not being leaked through the communication channel. However, it
is possible that an abstraction exists between parts of the confidential information and the
information observed to be sent on the channel.

If we take our running example and consider the case where agent A makes an error when
representing the confidential information, i.e., instead of the confidential information being
P = {(1, 3), (2, 1), (3, 4), (4,1), (5, 5), (6, 9), (7, 2), (8, 6), (9, 5), (10, 3)}, it is represented as
P ′ = {(1, 3), (2, 1), (3, 4), (4,3), (5, 5), (6, 9), (7, 2), (8, 6), (9, 5), (10, 3)}. Now, assume that
this information P ′ is encrypted and sent to agent B as Q = {(1, 12), (2, 1), (3, 16), (4,12),
(5, 17), (6, 18), (7, 11), (8, 6), (9, 17), (10, 12)}. We can automatically verify the existence of
an abstraction relation using our prototype tool to apply Corollary 1. We find that the result
of the test is false. This means that no confidential information has been leaked, which is
the case (strictly speaking). Thus, we can conclude that an abstraction relation cannot be
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computed and that the confidential information represented by P is not being leaked as that
represented by Q. This is due to the inconsistency introduced at times 1, 2, and 4. The data
observed at each of these times generates an abstraction relation which cannot be used to
accurately uncover the confidential information at those times. This is to say that when we
observe a 12 to have been sent on the communication channel, we are unable to determine
whether that 12 corresponds to 1 or to 3 in the confidential information. With this example,
it is obvious that if the element which was introduced by the error of agent A, i.e., (4, 3), is
removed, that an abstraction exists between the confidential information and the information
observed to be sent on the channel. Thus, we emphasise that even if the test fails, it is possible
for an abstraction to exist between parts of the confidential information and the information
observed to be sent on the channel. Currently, we are not able to handle such as scenario and
it is left as future work.

The ideas presented in Proposition 6 and Proposition 7, and consequently Corollary 1 and
Corollary 2, are the core of the detecting whether confidential information has been leaked via
covert channels. Equipped with each of the above propositions and corollaries, and under our
assumptions, it is possible to detect the leak of confidential information via monitored covert
channels in a digital forensics context, i.e., investigation after the information has already
been sent. We do not rule out the possibility that a real-time analysis can be performed,
but we do not investigate this issue in this paper. The above propositions and corollaries
represent tests for which we can determine the existence of an abstraction relation defining
the relationship between the confidential information and the information observed to be sent
on the communication channel. The existence of an abstraction relation is often enough to
raise suspicion that confidential information has been leaked via a covert channel. Hence,
we have formulated a mathematical framework for the post-mortem detection of the leak of
confidential information via covert channels.

4 Automation

To automate the process of detecting confidential information leakage via covert channel com-
munication, we implemented a prototype tool, written in the functional programming language
Haskell. This prototype tool is used to automate the tests and computations presented in Sec-
tion 3.3.

4.1 Architecture Design

In designing the prototype tool, we opted for a layered architecture. Each layer of the tool
specialises in a set of related activities. The architectural design of the prototype tool is given
in Figure 6.

The layered architectural style is suitable for our need for a number of reasons. Firstly,
a layered architecture enables the incremental development of the tool based on increasing
levels of abstraction. For instance, each layer of our tool, with the exception of the User
Interface Layer, corresponds to a level of abstraction. The layered architecture also lends to
enhanced independence among layers. This is to say that there is no impact from changes
of lower services provided that their interface to the other layers is maintained. Again, this
independence allows for better maintainability and flexibility in the technology used for a
given layer. For example, we are able to change the database system that is used in the
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Figure 6: Main layers of the prototype tool’s architecture

Data Store Layer without affecting the rest of the system as long as we do not change the
interface to the other layers. This is an application of the principle of information hiding and
gives us a modular system. Lastly, since the layered architecture is a modular architectural
style, it is suitable for plug-and-play components. Indeed, in future work, we will wish to add
more services and functionality to the tool and this particular characteristic of the layered
architecture lends to a simple integration of new components, particularly at the Services
Layer.

The Data Store Layer is responsible for storing and retrieving information from the file
system. The Data Store Layer keeps the data independent from the business logic which
allows for improved scalability and performance. The prototype tool implements the Data
Store Layer as a file system consisting of data files used to store the relational representa-
tion of the confidential information and the observed information that has been sent on the
communication channel.

The Business Logic Layer is responsible for coordinating the flow of data from the Data
Store Layer to the Services Layer. This layer handles the parsing of the data files, generating
the internal relational representation of the data and relaying the results to the appropriate
service offered by the Services Layer.

The Services Layer currently provides two main services which employ the proposed tech-
nique for two different applications:

(i) Covert Channel Analysis: The covert channel analysis service offers tools to detect the
leak of confidential information through covert channel communication. These tools
correspond to the corollaries of the proposed technique from Section 3.3 and can be
used to verify whether confidential information has been leaked and to compute the
corresponding abstraction relation if it is found that one does indeed exist. An example
use of the prototype tool with emphasis on the covert channel analysis service is given
in Section 4.2.

(ii) Cryptanalysis: The cryptanalysis service offers the ability to perform a cryptanalysis
based on the proposed technique and a known-plaintext attack. Further details regarding
the application of the proposed technique in cryptanalysis are given in Section 5.

The User Interface Layer supports the display and input of service commands. Currently,
the prototype tool has a command-line interface which is run through the Glasgow Haskell
Compiler’s interactive environment (ghci). In Section 4.2, the reader finds examples on the
usage of the tool.
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4.2 Example Tool Use

In this section, we show the use of the prototype tool to automate the detection of confidential
information leakage via covert channel communication through the use of our running example.

A monitor extracts the IP Identification field from the transmitted IP datagrams associated
with the communication between agent A and agent B. The monitor collects this data and
stores it in a file for processing, i.e., verification of the existence of a confidential information
leakage. Suppose that the information that the monitor records is the sequence 〈12, 1, 16, 1,
17, 18, 11, 6, 17, 12〉. Then, this observed information is stored in a file which, from this point
forward, we call observed.seq.

Assume that the monitor is already configured with the set of confidential information,
which in this case is the sequence 〈3, 1, 4, 1, 5, 9, 2, 6, 5, 3〉. This sequence is stored in a file
which we call confidential.seq.

Now, we wish to analyse the information that the monitor observed to have been sent on
the communication channel to verify whether the confidential information has been leaked in
some form. We start by loading the prototype tool modules in the Glasgow Haskell Compiler’s
interactive environment (ghci) with the following command:

> :load PrototypeTool

Before we start to process the observed information collected by the monitor, we create a
new data store file called ExampleDB to store all the relations for this session so that we can
quickly recall them later. This is done by issuing the following command:

> new "ExampleDB"

Next, the files are loaded into the prototype tool to construct the internal relational repre-
sentation of the information, i.e., the contents of the files observed.seq and confidential.seq
are represented as the relations {(1, 12), (2, 1), (3, 16), (4, 1), (5, 17), (6, 18), (7, 11), (8, 6),
(9, 17), (10, 12)} and {(1, 3), (2, 1), (3, 4), (4, 1), (5, 5), (6, 9), (7, 2), (8, 6), (9, 5), (10, 3)}, re-
spectively. The internal relational representation is stored in our data store file, ExampleDB.
This is done by issuing the following commands:

> loadRel "observed.seq" "observed" "ExampleDB"
> observed <- select "observed" "ExampleDB"
> loadRel "confidential.seq" "confidential" "ExampleDB"
> confidential <- select "confidential" "ExampleDB"

These commands construct the relational representation of the information contained in
the files observed.seq and confidential.seq and store them in ExampleDB, which is the
data store for the session. We then select the relations from the data store to be used in our
tests and computations. In the prototype tool, relations are represented as set-valued maps.
Thus, the relations representing the observed information and the confidential information are
given by:

> printRel observed
{

"01" |-> ["12"]
"02" |-> ["1"]
"03" |-> ["16"]
"04" |-> ["1"]
"05" |-> ["17"]
"06" |-> ["18"]
"07" |-> ["11"]
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"08" |-> ["6"]
"09" |-> ["17"]
"10" |-> ["12"]

}
> printRel confidential
{

"01" |-> ["3"]
"02" |-> ["1"]
"03" |-> ["4"]
"04" |-> ["1"]
"05" |-> ["5"]
"06" |-> ["9"]
"07" |-> ["2"]
"08" |-> ["6"]
"09" |-> ["5"]
"10" |-> ["3"]

}

Once, the files have been loaded we can perform the first test: verifying the existence of
an abstraction relation. The test function corresponds to Corollary 1.

> print (test confidential observed)
True

Here the result is True. This means that there exists an abstraction relation relating the
confidential information to the information observed to be sent on the communication channel.

Now that we have verified that an abstraction relation does indeed exist, we can continue
to compute the abstraction relation which relates the confidential information to the observed
information. The compute function corresponds to Corollary 2. In the prototype tool, the
universal relation L is represented as the restricted universal relation on P and Q, denoted
L|P,Q, where P and Q are relations and

L|P,Q
def
= {(x, y) | x ∈ ran(P ) ∧ y ∈ ran(Q)}

This representation is required since, in the implementation of the prototype tool, we need
to define the universal relation on a finite space. For the computation, the filter R from
Corollary 2 is this universal relation restricted on the relations confidential and observed
and is denoted by top. In our example, the relation top is given by:

> printRel top
{

"1" |-> ["1","11","12","16","17","18","6"]
"2" |-> ["1","11","12","16","17","18","6"]
"3" |-> ["1","11","12","16","17","18","6"]
"4" |-> ["1","11","12","16","17","18","6"]
"5" |-> ["1","11","12","16","17","18","6"]
"6" |-> ["1","11","12","16","17","18","6"]
"9" |-> ["1","11","12","16","17","18","6"]

}

The computation of the abstraction relation is done with the compute function which
corresponds to Corollary 2.
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> printRel (compute confidential observed top)
{

"1" |-> ["1"]
"2" |-> ["11"]
"3" |-> ["12"]
"4" |-> ["16"]
"5" |-> ["17"]
"6" |-> ["6"]
"9" |-> ["18"]

}

From this result, we can see that the abstraction relation is given by X ′ = {(1, 1), (2, 11),
(3, 12), (4, 16), (5, 17), (6, 6), (9, 18)}. In this case, we find that a 1 in the confidential infor-
mation was transmitted as a 1 in the observed information, a 2 in the confidential information
was transmitted as an 11 in the observed information, a 3 in the confidential information was
transmitted as a 12 in the observed information, and so on.

With this small illustrative example, we are able to use the prototype tool to verify the
existence of an abstraction relation relating the confidential information to the information
observed to be sent on the communication channel and we are able to compute the abstraction
relation.

Now, consider the case where agent A makes an error when representing the confidential
information as outlined in Section 3.3.6. In this case, the monitor is configured with the same
set of confidential information as in our running example, i.e., we still have confidential.seq.
The difference is in what the monitor observes to be sent on the communication channel.
Suppose that the information that the monitor records is the sequence 〈12, 1, 16, 12, 17, 18, 11,
6, 17, 12〉. Then, this observed information is stored in a file which we call observedError.seq.

The observed information and confidential information are loaded in the prototype tool in
the same way as described above so that the relations representing the observed information
and the confidential information are given respectively by:

> printRel observedError
{

"01" |-> ["12"]
"02" |-> ["1"]
"03" |-> ["16"]
"04" |-> ["12"]
"05" |-> ["17"]
"06" |-> ["18"]
"07" |-> ["11"]
"08" |-> ["6"]
"09" |-> ["17"]
"10" |-> ["12"]

}
> printRel confidential
{

"01" |-> ["3"]
"02" |-> ["1"]
"03" |-> ["4"]
"04" |-> ["1"]
"05" |-> ["5"]
"06" |-> ["9"]
"07" |-> ["2"]
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"08" |-> ["6"]
"09" |-> ["5"]
"10" |-> ["3"]

}

We automatically verify the existence of an abstraction relation using our prototype tool
to apply Corollary 1 as we have done earlier to obtain

> print (test confidential observedError)
False

Here the result is False. Therefore, we can conclude that an abstraction relation relating
the confidential information to the information observed to be sent on the communication
channel does not exist.

Knowing the confidential information and the information that has been sent, we are able
to automate the proposed technique to carry out a post-mortem analysis to detect whether
the confidential information has been leaked in some form via covert channels. This sort
of investigation relates to computer forensics investigations whereby, with some systematic
assumptions, we are able to detect whether or not the information was leaked in one way or
another. It is important to note that we do not necessarily care how the information was
leaked, but simply whether it has been leaked.

5 Application in Cryptanalysis

Consider a scenario where an encrypted communication between two suspected criminals is
intercepted. Suppose that an analyst is attempting to decipher the encrypted message and that
the analyst has an intuition that the message contains some important pieces of information,
i.e., a date, a location, a name, etc. Equipped with the proposed technique, the analyst can
perform an investigation into the observed (intercepted) information transmitted between
the suspected criminals. For instance, the analyst can run the test for an abstraction relation
(Corollary 1) between the observed information and the information for which he/she suspects
may have been sent. For example, the analyst may suspect that the transmission contains
the suspected location of where a crime has taken place. If we allow these assumptions to
form a confidential information, then the proposed technique can be used to search for an
abstraction relation relating the suspected plain text to the intercepted cipher text message.
If an abstraction relation can be found relating some plain text to the intercepted cipher
text message, the analyst can begin to develop the cipher key that may have been used. This
procedure is very much like the procedures developed by Alan Turing at Bletchley Park during
World War II when deciphering the codes of the Enigma machine, which use cribs to analyse
cipher texts [43].

Consider the scenario where an analyst is given a cipher text, N characters in length, and
is asked to decrypt the message. We describe how the analyst can use the proposed technique
for cryptanalysis on the given cipher. In performing the cryptanalysis, the analyst must begin
by enumerating all of the cipher text characters (if necessary). We denote the set of all cipher
text characters as DC and the set of all plain text characters as DP . Assume that the analyst
models the position of each character in the cipher text by N. Then, the analyst is able to
construct the relational representation of the cipher text as a relation C ⊆ N×DC . Next, the
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analyst guesses a fragment of plain text which is suspected to occur in the cipher text. We
denote the plain text fragment as P = p1p2 . . . pn where ∀(i | 1 ≤ i ≤ n ≤ N : pi ∈ DP ).
The length of the plain text fragment is denoted by n. The idea is to check if there exists an
abstraction relation between the plain text fragment and any cipher text fragment of length n
for all positions in the cipher text. In order to test for an abstraction relation, the plain
text fragment then needs to be represented as a set of relations Pi ⊆ N × DP such that
∀
(
i | 1 ≤ i ≤ N − n : Pi = {(i, p1), (i + 1, p2), . . . , (i + n − 1, pn)}

)
. Similarly, we

construct the corresponding fragments of the cipher text as relations Ci ⊆ N× DQ such that
∀
(
i | 1 ≤ i ≤ N − n : Qi = {(i, ci), (i+ 1, ci+1), . . . , (i+ n− 1, ci+n−1)}

)
. Now, the analyst

runs the test given in Corollary 1 for each pair of corresponding plain text, cipher text pairs,
i.e., Pi = Ci ; (Ci\Pi) ∨ Ci = Pi ; (Pi\Ci) for 1 ≤ i ≤ N − n. Each positive test result
indicates that there exists an abstraction relation between the guessed plain text fragment
and the corresponding cipher text fragment. This indicates the presence of a possible cipher
key fragment. The analyst can compute each of the possible cipher key fragments by applying
Corollary 2 for each (Pi, Qi) pair yielding a positive test result. With the possible cipher key
fragments, the analyst can apply the key fragment to the cipher text, which can reveal part
of the plain text. With the additional information provided by applying the possible cipher
key fragments, the analyst can generate a new, more refined guess at a plain text fragment
suspected of occurring in the cipher text and repeat the process. The analyst may be able to
infer a larger fragment of the message with some intuition of the neighbouring characters in
the message. The process is very likely to converge on the complete cipher key thus decrypting
the given cipher text message.

5.1 Case Study: Zodiac 408 Cipher

Using the prototype tool presented in Section 4, we have automated the process of applying
the proposed technique to cryptanalysis. As an example, we study the Zodiac 408 cipher and
show how the proposed technique, in conjunction with a known-plaintext attack, can break
the cipher to uncover the message.

The Zodiac was a serial killer who terrorised Northern California in the late 1960’s. The
Zodiac sent four ciphers to local newspapers. The first cipher was separated into three different
parts and each part was sent to three different newspapers: the Vallejo Times-Herald, the San
Francisco Chronicle, and the San Francisco Examiner. The Zodiac requested each part be
published on the front page of the respective newspapers such that the combination of all three
parts formed a 408-character cipher, which was decrypted one week after it was received [5].
The Zodiac also sent a 340-character cipher that remains unsolved to this day. The case of
the Zodiac killer remains open in Napa County, California [5].

In this paper, we examine only the 408-character cipher since it has a known solution and
can be used for illustrative purposes. Table 1 shows the Zodiac 408 cipher in its entirety.

The Zodiac 408 cipher includes inaccuracies and errors which were made by the Zodiac
himself when he transcribed the cipher symbols from the draft to the final version [51]. Ac-
cording to [51], in the Zodiac 408 cipher, G6 should read F instead of E, N13 should read
H instead of N, and U6 should read A instead of 4. In our analysis, we have accounted for
these errors and have made the necessary corrections.
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Table 1: Zodiac 408 Cipher

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X
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We start by loading the prototype tool modules in the Glasgow Haskell Compiler’s inter-
active environment (ghci) as follows:

> :load PrototypeTool

As preparation for the analysis, we first need to enumerate each of the 54 cipher characters
so that we are able to represent them for use with the prototype tool. The enumeration is
given in Table 2.

Table 2: Zodiac 408 Cipher Character Enumeration

1 10 19 28 37 46

2 11 20 29 38 47

3 12 21 30 39 48

4 13 22 31 40 49

5 14 23 32 41 50

6 15 24 33 42 51

7 16 25 34 43 52

8 17 26 35 44 53

9 18 27 36 45 54

We store the enumerated representation in a file for use with the prototype tool. From
this point forward, we call the file containing the enumerated cipher text cipher.seq. We
construct the relational representation of the information contained in the cipher.seq file
and store it in the newly created data store, Zodiac408, by issuing the following commands:

> new "Zodiac408"
> loadRel "cipher.seq" "cipher" "Zodiac408"
> cipher <- select "cipher" "Zodiac408"

Now, the idea is to guess a known word or phrase that is likely to appear in the plaintext
message corresponding to the Zodiac 408 cipher. Since, from the context, we know that cipher
was written by a serial killer, it would be suspected that the author might have used words
such as “kill”, “killed”, or “killing” or perhaps something like “zodiac” in some reference to
himself. These would offer formidable starting points for the analysis. However, for simplicity
and brevity, suppose that we have obtained a tip by some means (it is not important how)
that suggests the plain text message contains the phrase “TO KILL SOMETHING GIVES ME
THE MOST THRILL”. In our representation of the phrase, we use only uppercase letters and
ignore spaces as we are simply trying to find a readable plain text based on the assumption
that spaces are not encoded. We generate a relation based on this phrase by issuing the
following command with the prototype tool:

> let phrase = relFromString "TOKILLSOMETHINGGIVESMETHEMOSTTHRILL"

Then, the relation representing the plain text guess is given by:
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> printRel phrase
{

"01" |-> ["T"]
"02" |-> ["O"]
"03" |-> ["K"]
"04" |-> ["I"]
"05" |-> ["L"]
"06" |-> ["L"]
"07" |-> ["S"]
"08" |-> ["O"]
"09" |-> ["M"]
"10" |-> ["E"]
"11" |-> ["T"]
"12" |-> ["H"]
"13" |-> ["I"]
"14" |-> ["N"]
"15" |-> ["G"]
"16" |-> ["G"]
"17" |-> ["I"]
"18" |-> ["V"]
"19" |-> ["E"]
"20" |-> ["S"]
"21" |-> ["M"]
"22" |-> ["E"]
"23" |-> ["T"]
"24" |-> ["H"]
"25" |-> ["E"]
"26" |-> ["M"]
"27" |-> ["O"]
"28" |-> ["S"]
"29" |-> ["T"]
"30" |-> ["T"]
"31" |-> ["H"]
"32" |-> ["R"]
"33" |-> ["I"]
"34" |-> ["L"]
"35" |-> ["L"]

}

Now we are ready to apply the cryptanalysis technique described above. We use the
following command:

> cryptanalysis phrase cipher
The 3 fragmented key possibilities are:

{
"E" |-> ["19","24","25","39"]
"G" |-> ["34","52"]
"H" |-> ["1","35","37"]
"I" |-> ["15","17","40","5"]
"K" |-> ["2"]
"L" |-> ["10","26","33","48"]
"M" |-> ["20","28","8"]
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"N" |-> ["38"]
"O" |-> ["21","51","6"]
"R" |-> ["29"]
"S" |-> ["27","31"]
"T" |-> ["16","22","23","46","50"]
"V" |-> ["12"]

}
{

"E" |-> ["12","21","40","46"]
"G" |-> ["22","35"]
"H" |-> ["27","29","47"]
"I" |-> ["20","24","37","49"]
"K" |-> ["16"]
"L" |-> ["10","14","38","5"]
"M" |-> ["17","23","48"]
"N" |-> ["19"]
"O" |-> ["26","39","52"]
"R" |-> ["53"]
"S" |-> ["31","34"]
"T" |-> ["1","13","25","41","8"]
"V" |-> ["28"]

}
{

"E" |-> ["12","19","5","51"]
"G" |-> ["10"]
"H" |-> ["37","48"]
"I" |-> ["1","3","6","8"]
"K" |-> ["4"]
"L" |-> ["32","7"]
"M" |-> ["31"]
"N" |-> ["39"]
"O" |-> ["13","30","34"]
"R" |-> ["52"]
"S" |-> ["28","29","41"]
"T" |-> ["16","27","40","47"]
"V" |-> ["18"]

}

The 3 possible plain texts are:
H K _ _ I _ O _ K M _ L _ V _ _ _
E M O T T E E L H S _ M R _ S E T
H N E E O I M _ S _ _ _ _ E T _ L
_ _ _ H _ _ _ _ L T O K I L L S O
M E T H I N G G I V E S M E T H E
M O S T T H R I L L S _ _ _ _ _ _
L _ _ _ E O L _ H S T _ _ _ _ _ _
T G _ _ _ _ M _ S O S H O E L L M
_ I R S V I L E S _ _ _ T H G H _
_ _ T L O _ _ L I _ _ T O O S M E
I _ V _ M E I _ O _ T L L E L L S
I H T L _ _ E G I G T _ M _ N _ T
_ _ H H L O _ K T L _ M O R S _ T
G I _ N M _ H H T H L S T L I _ _
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_ O V M T H _ _ M E I O M _ _ _ _
E _ _ G L I O T L H T _ T K K I H
_ M L _ _ O _ H K K I I T _ _ _ M
V T _ S E S _ E _ H _ O M H T H _
K _ _ _ L O _ O _ G E S _ E _ S E
M I T T E R O _ _ E T H K _ T _ _
S _ E _ _ T _ _ T T G I _ T _ _ S
_ T G _ _ L T _ _ _ L _ _ E K T _
I M N _ _ S _ H N I O G _ _ _ E L
M O _ G H E I L S O S H L _ O I M

T _ _ _ L _ _ _ _ T _ L _ E T _ _
N I E G M I T O T H _ V H _ S I G
I L I O _ E T T S _ _ _ _ I E H M
I L _ T _ _ _ _ L _ _ _ _ L _ S _
T O K I L L S O M E T H I N G G I
V E S M E T H E M O S T T H R I L
L _ _ _ I _ _ _ T S M _ _ _ I _ _
K S _ _ _ _ V T S _ H I _ O L L T
_ L H S E E M N S _ T H K I O T _
_ _ E L E _ _ O M _ L G _ _ H T T
L _ E _ I N E H E _ K M _ O L O H
E T E L _ _ I O M S G _ V T L _ _
_ H I G L _ _ _ K M _ I _ H H _ M
O E _ L T H T G K I _ H _ M L L _
R _ E T _ T _ _ I N M E I _ _ _ _
O _ I O _ _ _ G O G E R M _ _ E I
_ T M I _ _ _ T _ _ L _ _ _ _ _ I
E G T S N S _ T _ G _ E V T _ T _
_ _ _ H L _ _ E _ S I S _ O I S N
I L G M I H _ _ _ I _ T _ _ K _ _
H _ T _ T _ R T _ E S M T K _ _ S
_ G S _ _ O G H _ _ L T _ T _ M _
L V L _ _ S _ G L E E O _ _ _ N O
I _ T O T N E O S _ H I M _ _ E T

I _ I K E K I L _ I _ G _ E O _ L
E _ _ _ _ _ _ _ I T I S S O M _ _
H _ _ N I T I S M _ _ _ _ _ _ T H
_ _ K I L L I _ G _ I _ _ G _ M E
I N T H E _ O R _ E _ T _ E _ _ _
S _ M _ _ I S T H _ M O S T _ _ _
G _ _ O _ E _ _ I M _ L _ _ _ L L
T O K I L L S O M E T H I N G G I
V E S M E T H E M O S T T H R I L
L I _ G _ _ _ _ _ _ _ _ E I T I _
E V E _ _ E T T _ _ T H _ N G _ T
T I _ G _ _ _ R _ O _ K S O _ _ _
I T H _ G I _ _ T H _ _ E S T _ _
R T O _ I T I _ T H _ T _ H E _ I
_ I E I _ I L L _ E _ _ _ _ _ _ I
N _ _ R _ _ I _ _ _ _ _ _ _ _ T H
_ I H _ V E K I _ _ E _ _ I L L _
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E _ O M E M _ _ L _ V _ S I _ I L
_ _ _ T G I V _ _ O _ M _ N _ M E
_ E _ _ _ S E _ _ _ _ I _ L T _ _
T O _ L O _ _ O _ _ O _ S T O _ M
_ _ O L L _ _ T I _ G O _ _ _ _ V
E S _ _ _ M _ _ _ T _ R L I _ E _
_ E O R I E T _ M E T H H _ I T I

As a result of applying the cryptanalysis technique on the Zodiac 408 cipher, we find that
we have three fragmented possibilities for the cipher key. In this case, by examining the three
possible plain texts (which are generated by the prototype tool), it is easy to see that there
is only one plain text which appears to make any sense; namely the third one. So, we can
refine our phrase and try to run the cryptanalysis again. Based on the third possible plain
text, we can see that our phrase is preceded by “LL” which might suggest that the word “ALL”
comes before our original phrase. We can also see that succeeding our phrase, we have “I_G”
which suggests the suffix “-ING”. As a refined phrase, we can try the cryptanalysis with the
phrase “ALL TO KILL SOMETHING GIVES ME THE MOST THRILLING”. The process
of performing the cryptanalysis is given below.

> let phrase2 = relFromString "ALLTOKILLSOMETHINGGIVESMETHEMOSTTHRILLING"
> cryptanalysis phrase2 cipher
The 1 fragmented key possibility is:

{
"A" |-> ["49"]
"E" |-> ["12","19","5","51"]
"G" |-> ["10"]
"H" |-> ["37","48"]
"I" |-> ["1","3","6","8"]
"K" |-> ["4"]
"L" |-> ["32","7"]
"M" |-> ["31"]
"N" |-> ["39","46"]
"O" |-> ["13","30","34"]
"R" |-> ["52"]
"S" |-> ["28","29","41"]
"T" |-> ["16","27","40","47"]
"V" |-> ["18"]

}

The 1 possible plain text is:
I _ I K E K I L _ I _ G _ E O _ L
E _ _ _ _ _ _ _ I T I S S O M _ _
H _ _ N I T I S M _ _ _ _ _ N T H
A _ K I L L I _ G _ I _ _ G _ M E
I N T H E _ O R _ E _ T _ E _ _ _
S _ M _ N I S T H _ M O S T _ A _
G _ _ O _ E _ _ I M _ L _ _ A L L
T O K I L L S O M E T H I N G G I
V E S M E T H E M O S T T H R I L
L I N G _ _ _ _ _ _ _ _ E I T I _
E V E _ _ E T T _ _ T H _ N G _ T
T I N G _ _ _ R _ O _ K S O _ _ _
I T H _ G I _ _ T H _ _ E S T _ _
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R T O _ I T I _ T H _ T _ H E _ I
_ I E I _ I L L _ E _ _ _ _ _ _ I
N _ A R _ _ I _ _ _ N _ _ _ _ T H
_ I H A V E K I _ _ E _ _ I L L _
E _ O M E M _ _ L _ V _ S I _ I L
_ _ _ T G I V _ _ O _ M _ N A M E
_ E _ _ _ S E _ _ _ _ I _ L T _ _
T O _ L O _ _ O _ N O _ S T O _ M
_ _ O L L _ _ T I _ G O _ _ _ _ V
E S _ _ _ M _ _ _ T _ R L I _ E _
_ E O R I E T _ M E T H H _ I T I

Now, we are left with only one fragmented key. One can easily fill in many of the blanks
in the possible plain text to reconstruct the original message, which is given in Table 3.

After substituting the letters and reconstructing the cipher symbols from their enumera-
tion, we find that we have uncovered the cipher key for the Zodiac 408 cipher. The cipher key
is given in Table 4.

In this section, we have demonstrated the application and automation of the proposed tech-
nique in the context of cryptanalysis. Using the Zodiac 408 cipher as an illustrative example,
we have shown that in a cryptanalytic investigation where we may be able to perform a
known-plaintext attack, we are able to uncover the encrypted message using our proposed
technique.

6 Survey of the Literature

When it comes to eliminating the use of covert channels in computer systems, a variety of
approaches have been proposed. Some approaches look at detecting the use of covert channels
and some approaches look at preventing the use of covert channels, while there are very few
approaches which aim to recover from the effects of covert channel use.

In [30], Nagatou and Watanabe present a technique for detecting the use of covert channels
at run time. Security policies are enforced through flow control and access control mechanisms.
The flow control mechanism compares the result of each system call into a system resource and
the result of an emulator. If the results are different then it is considered that a covert channel
occurred in the system and the monitor terminates the process that invoked the infracting
system call. This technique is only able to enforce non-interference and non-inference policies.
In the case of non-interference and non-inference, computer systems are modelled as machines
with inputs and outputs, each classified as either low-level or high-level. A computer system
has the non-interference property if and only if any sequence of low-level inputs will produce
the same low outputs, regardless of what the high-level inputs are [8]. A computer system has
the non-inference property if and only if an adversary cannot infer the value of a high-level
output from low-level inputs [34]. The authors also admit that the monitor which they propose
does not scale well since it would need to have emulators that have equal security levels and
exploit many system resources. This technique also runs the risk of false positives, whereby
the result of a system call into a system resource and the result of the emulator are different
for reasons other than covert channels. One such example of this occurrence may be emulator
failure. These noted weaknesses of this technique dramatically reduce the technique’s ability to
be used in many real world applications. However, the idea of monitoring the communication

31



Table 3: Zodiac 408 Plain Text

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A I L I K E K I L L I N G P E O P L

B E B E C A U S E I T I S S O M U C

C H F U N I T I S M O R E F U N T H

D A N K I L L I N G W I L D G A M E

E I N T H E F O R R E S T B E C A U

F S E M A N I S T H E M O S T D A N

G G E R O U S A N I M A L O F A L L

H T O K I L L S O M E T H I N G G I

I V E S M E T H E M O S T T H R I L

J L I N G E X P E R E N C E I T I S

K E V E N B E T T E R T H A N G E T

L T I N G Y O U R R O C K S O F F W

M I T H A G I R L T H E B E S T P A

N R T O F I T I S T H A T W H E N I

O D I E I W I L L B E R E B O R N I

P N P A R A D I C E A N D A L L T H

Q E I H A V E K I L L E D W I L L B

R E C O M E M Y S L A V E S I W I L

S L N O T G I V E Y O U M Y N A M E

T B E C A U S E Y O U W I L L T R Y

U T O S L O W D O W N O R S T O P M

V Y C O L L E C T I N G O F S L A V

W E S F O R M Y A F T E R L I F E E

X B E O R I E T E M E T H H P I T I
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Table 4: Zodiac 408 Cipher Key

A J S

B K T

C L U

D M V

E N W

F O X

G P Y

H Q Z

I R

among agents in the system is a good way to maintain a knowledge of the information flow of
the system and has been adopted in Section 3.3.2, as it plays a large role in the development
of the technique proposed in this paper.

In [23], Kemmerer describes a technique for detecting the use of covert channels in com-
puter systems based on shared resources called the Shared Resource Matrix (SRM). The
motivation for the SRM technique lies within the knowledge that the use of covert channels
requires the collusion between an agent with the authorisation to signal or leak information
to an unauthorised agent and that the authorisation is granted on system objects which may
include file locks, device busy flags, the passing of time, etc. A matrix is constructed where
the attributes of all shared resources are indicated in the row headings and the operation
primitives, (i.e., Write File, Read File, Lock File, etc.), are indicated in the column head-
ings. After all of the row and column headings are determined, one must determine, for each
attribute (each row), whether the primitive indicated by the column heading modifies and/or
references that attribute. This is done by carefully reviewing the description for each of the
primitives, whether it is stated in natural language, formal specification, or implementation
code. The generated matrix is then used to determine whether any covert channels exist.
Kemmerer provides the following minimum criteria which must be satisfied in order to have
a covert channel:

(i) The sending and receiving agents must have access to the same attribute of a shared
resource.

(ii) There must be some means by which the sending agent can force the shared attribute
to change.

(iii) There must be some means by which the receiving agent can detect the attribute change.

(iv) There must be some mechanism for initiating the communication between the sending
and receiving agents and for sequencing the events correctly.

If each of these criteria are satisfied, then a covert channel exists. The advantages of the SRM
technique include the ability to quickly discard attributes that do not meet the preliminary
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criteria of being modified or referenced by an agent and the ability to provide a graphical
design for developers in all stages of software design. However, the SRM technique is quite
tedious and a little bit ad hoc in that the analyst must decipher scenarios in which the criteria
might be satisfied.

Another technique for detecting covert channels in computer systems is Covert Flow Trees
(CFTs). Presented by Kemmerer and Porras in [24] and [32], CFTs attempt to identify opera-
tion sequences that support either the direct or indirect ability of an agent to detect when an
attribute has been modified. This means that CFTs aid in recognising when system attributes
have been changed in some way by a sequence of operations. CFTs can be constructed auto-
matically by providing the algorithm described in [24]. Once the CFT is constructed, the tree
can be traversed to develop all possible operation sequences of the system. These operation
sequences can then be analysed by developing hypothetical agents and system states that
could use the operation sequences for covert communication. The analyst may assume that
the sender and receiver share some mechanism whereby they can synchronise communication.
CFTs are able to generate a comprehensive list of scenarios that could potentially support
covert communication. The downfall of the CFT technique lies in the size of the CFTs that
are generated and the scalability of the approach.

In [13, 14], Hélouët et al. propose a method for detecting potential covert channels using
scenarios. The use of scenarios has several advantages. Scenarios are often the first information
one can obtain about a system’s behaviour since they are used to describe system requirements.
Several recommendations [44, 46] ask to document the use of covert channels with such models.
The idea is that from a scenario description of a system, a covert channel is modelled as a
game where a pair of corrupted users, sender and receiver, try to send information while the
rest of the protocol is attempting to prevent the information from being communicated. This
scenario based approach only reveals “potential covert channels”, the existence of which needs
to be tested on a real implementation of the protocol.

According to [3], a system is separable (i.e., multilevel secure) if and only if it is be-
haviourally equivalent to a collection of single level systems that do not interact. In [3],
Browne presents an approach called Mode Security. The idea is to organise the state tran-
sitions of a multilevel state machine into distinct sets called modes. The aim is to create a
separable system. In essence, each machine mode is considered totally secure when considered
in isolation of all other modes. This means that covert channels can only occur when the
machine makes a transition from one mode to another. Therefore, by reducing the number of
mode transitions in the system, one can reduce the number of potential covert channels in the
system. Similarly, in [18], Jacob proposes a technique for detecting covert channels where the
idea is to begin by making a list of all channels in a system. From this list, a new system is
produced by “cutting” known channels from the system. This new system is checked for sepa-
rability. If the new system is separable, then there are no covert channels, otherwise, at least
one covert channel exists. The downfall of Jacob’s technique is that it does not detect covert
channels completely dependent on known channels. The major concern with approaches for
mitigating covert channels based on separability is that these approaches are not universally
applicable to all systems.

In [1], Andrews and Reitman provide an axiomatic definition for information flow in se-
quential programs, with particular emphasis on proof rules for programs containing assign-
ment, alternation, iteration, composition, and procedure calls. The definition provided closely
resembles Hoare’s deductive system for functional correctness found in [15]. The axiomatic
approach of Andrews and Reitman analyses programs looking for information flows which
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violate the security policy of the system. A similar approach was taken by Sabri et al. in [38],
where an amended version of Hoare logic was used to verify the satisfiability of security policies
in communication protocols.

Since the confinement notion introduced by Lampson in [26], more and more approaches
to detect illegal information flows have been proposed. A short while after Lampson, in [8],
Goguen and Meseguer defined the existence of covert channels through non-interference prop-
erties. Numerous approaches to non-interference have been proposed. For example, in [47],
Volpano and Smith describe the idea of non-interference through typing where a system con-
tains interference if it cannot be correctly typed and in [28], Lowe describes non-interference
using process algebra. The notion of non-interference is questioned in [37] since the trans-
fer of a single bit of information causes a non-interference violation. According to [13], it is
often the case that non-interference approaches attempt to classify data and processes of a
system according to two security levels: high and low. However, it may not always be the case
that there are only two security levels. This leads to a fundamental restriction of the use of
non-interference properties to define the existence of covert channels in a system.

A wide variety of prevention schemes for the use of covert channels in computer systems
have been proposed. One such approach is through information theoretic techniques such
as channel capacity analysis. In [28], [29], and [41], mechanisms for computing the capacity
of covert channels in computer systems are presented where the idea is that if the capacity
of a covert channel can be reduced to a reasonably small rate, then the channel is rendered
unusable as a means of effectively transferring information. The guidelines outlined in [44]
and [46], state that covert channels with capacities of less than one bit per second are usually
considered acceptable; while a capacity of more than 100 bits per second is considered unac-
ceptable. One such method, developed by the United States Naval Research Laboratory, is
called the Pump. Described in [22] and [27], the Pump lets information pass from a low level
system to one at a higher level. The motivation comes from the idea that acknowledgements
are required for reliable communication. If a higher level system passed acknowledgements
directly to a lower level system, then the higher level system could pass high information
by altering acknowledgement delays. In order to minimise such a covert channel, the Pump
decouples the acknowledgement stream by inserting random delays. With consideration on
overall performance of the system in mind, the Pump uses statistical averages to compute
the delay time which it inserts into the communication stream. It is admitted in [27] that
this method cannot handle a large state space which proves to be its major flaw. A number
of additional prevention schemes take probabilistic approaches to covert channel mitigation.
For example, in [11], Grusho et al. assume that for a secure transmission, covert channels
will exploit a manipulation of the probability distribution parameters of the sent message
sequence.

Although there are many existing techniques which aid in the fight against covert channels,
there seems to be no single technique which can handle any type of covert channel in any type
of system. Many of the existing techniques, based on mathematics in particular, seem to target
specific types of covert channels. However, through the use of an abstract mathematical model,
the proposed technique attempts to encompass covert channel communication in general.
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7 Discussion

It has been a general assumption that it is impossible to completely eliminate covert channels
from open systems. Any given open system typically contains several covert communication
channels [9]. Many covert channels in computer systems arise from the use of shared resources.
In order to completely eliminate covert channels, one would need to remove all contention for
shared resources which leads to an inefficient utilisation of system resources and an unaccept-
able reduction in system performance. The detection and prevention of covert channels has
been deemed challenging since the objects that are being used to hold the information being
transferred are not normally seen as data objects i.e., buffer size, device flags, the passing of
time, etc. We require a comprehensive and systematic way to model, detect, and prevent the
use of covert channels without reducing the performance of the system to an unacceptable
level.

In addressing covert channel threats, two challenges are distinguished: detection of covert
channels and prevention of covert channels. In detecting covert channels, we ought to strive
to develop techniques to identify covert channels in a systematic and comprehensive way.
We must uncover the use of covert channels efficiently while minimising the number of false
positives. We would like to provide some measure of assurance in the detection techniques
being used. In covert channel prevention, we should determine ways to remove covert channels
or at least find ways to restrict the use of covert channels without degrading the performance
of the system to an unacceptable level. We ought to balance the tradeoff between system
security and system performance which may not always be the most trivial of decisions.

The proposed relational model of covert channels offers simplicity when carrying out the
computations required in the detection of confidential information leakage via covert channels.
Since a stream is a discrete sequence of data, indexed by time, a stream provides major
advantages in that it allows us to take intervals of data from the channel and examine each
interval, leading to computations of finite relations rather than infinite ones. As well as
gaining simplicity from the use of a stream representation, we also gain simplicity from the
use of relations. Relations are simple mathematical concepts. They also offer a certain level
of abstraction in the model of covert channels which gives much more power and flexibility in
the ability to model particular types of covert channels.

In this paper, we are developing investigative support for confidentiality. This involves
looking at covert channel communication from a digital forensics perspective. By its very
nature, digital forensics is analysis after-the-fact [42]. Hence, the primary focus of a digital
forensics investigation is placed on detection, that is, to prove that some form of violation of the
security policy has taken place, despite that it seems the policy is being respected. Therefore,
since we are dealing with analysis after-the-fact, performance is not a major consideration
when developing detection mechanisms for covert channel communication. We simply need
the analysis to be done in a reasonable amount of time.

The use of a covert channel detection technique in a computer forensics context is a new
concept for generating investigative support for confidentiality. To the best of our knowledge,
an application of a mathematical-based covert channel detection technique for computer foren-
sics investigations is non-existent in the literature. The importance and necessity for this type
of application seems to be growing day by day. Covert channels are a reality and are being
used in real-world scenarios to smuggle information.

With the ongoing threat of insiders with malicious interest to cause harm or inappropri-
ately access and divulge information, we must strive to devise new support to investigate
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those individuals who may be responsible for the breach of confidentiality. As an example,
we can examine the recent investigation in the United States of America with regards to a
Russian spy ring. The spies were allegedly using various forms of covert communication in-
cluding steganography, covert channels via e-mail protocols and even Morse Code-like radio
signals [49]. This example stresses the real threat of covert communication on security. The
implications of the use of covert channel communication on the scale of the international es-
pionage highlights the importance of developing techniques to detect and prevent the use of
covert channels in computer systems.

As the complexity of the covert channels increases and as the amount of information that
is transmitted increases, will the proposed tests and computations be able to be computed in
a reasonable amount of time? We examine the worst-case theoretical complexity of the tests
and computations associated with the proposed technique. Let n be the cardinality of the
relation. According to [31], the computational complexity of unary operators in relational al-
gebra such as the complement and converse operators is O(n). The computational complexity
of binary operators in relational algebra is O(n log n) if each tuple of the first relation should
be compared with each tuple in the second relation. This includes the set operators, union
and intersection, as well as the comparison operations, equality and containment. According
to [48], the computational complexity of relational composition is O(n3). By applying the
rules for sequential composition and conditional execution [33], we arrive at the computa-
tional complexity for the tests and computations involved in the proposed technique. The
computational complexity of the test described by Corollary 1 is O(n3). The complexity of
the computations described by Corollary 2 and Corollary 3 are both O(n3).

The O(n3) complexity arises from the need to compute the composition of relations in
each of the tests and computations. As the complexity of relational composition is the most
expensive operation, it dominates the computational complexity of the algorithms for verifying
the existence of an abstraction relation and for computing the abstraction relation if it does
in fact exist. Further investigation into possible ways for improving the theoretical worst-case
complexity for the tests and computations of the proposed technique is left as future work.

8 Conclusion and Future Work

In this paper, we presented a technique for detecting confidential information leakage via covert
channels based on relational algebra. The technique does not rely on heuristics to uncover
the use of covert channels. It gives a more formal and rigorous approach and offers a degree
of simplicity. The technique provides tests to verify the existence of an abstraction relation
and computations to find the abstraction relation if it exists. These tests and computations
are expandable allowing for the technique to handle complex scenarios which may involve
modulating the confidential information, for example. We also presented an application of
the proposed technique in the area of cryptanalysis and discussed the use and development of
tools to aid in the automation of the proposed technique and its applications.

The detection technique proposed in this paper does have some drawbacks. First and
foremost, the tests can be averted under some conditions, particularly when there is an incon-
sistency between the confidential information and the information that is observed to be sent
on the communication channel. Although this generally means that an abstraction relation
does not exist which relates the confidential information to the observed information, it is
possible that we can still find part of an abstraction relation which relates a large portion
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of the confidential information to the observed information. It is also unknown how well the
technique scales with larger systems. An empirical study is needed to address this point. In
addition, the technique performs a post-mortem analysis of the communicated information.
This can be seen as a weakness of the technique since the damage may already be done in
terms of confidential information being leaked and falling into the wrong hands. It would
perhaps be better if the analysis could be done in real-time.

Currently, it is unclear how communication channels can be effectively sampled for random
testing to determine if any confidential information is being leaked. When we sample a large
stream of information, it is possible that we will be sampling a portion of the communication
stream which was leaking confidential information. However, rather than the sample contain-
ing the confidential information in its entirety, we may only have a portion of it. There is a
need to be able to detect whether a part of the confidential information is contained in the
sampled communication stream. Also, the proposed detection technique handles only a spe-
cific set of covert channels, i.e., protocol-based covert channels where the common knowledge
is the sequence of the information (time). We would like to extend the proposed technique
in order to tackle the most general covert channel possible where we have communication
consisting of a combination of environmental and protocol-based knowledge.

More research into the applicability of the proposed detection technique for computer
forensics investigations is needed. This research will likely involve more exploration into
developing alternative tools and mechanisms for investigative support for confidentiality. The
tests and computations related to the proposed detection technique are currently automated
using our prototype tool. The use of the prototype tool to handle large scale covert channels
needs to be examined further. However, it is possible that using Binary Decision Diagrams
(BDDs) to represent relations, one can expect to handle fragments of sizes about 232; this
size is tested with the BuDDy BDD library [20]. The continuing development of a more
sophisticated and configurable automation system to handle large scale covert channels and
to implement the capabilities of the communication monitors presented in Section 3.3.2 would
be ideal.
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A Proofs of Propositions and Corollaries

A.1 Detailed Proof of Proposition 5

(i) P\Q is surjective
⇐⇒ 〈 Formalisation 〉

L = L ; (P\Q)

⇐⇒ 〈 Definition 11(ii) 〉
L = L ;P` ;Q

⇐⇒ 〈 P is a bijection⇐⇒P` is a mapping⇐⇒P` ;S = P` ;S for all S 〉
L = L ;P` ;Q

⇐⇒ 〈 Proposition 1(i) 〉
L = L ;P` ;Q

⇐⇒ 〈 P is total ⇐⇒ P ;L = L ⇐⇒ L ;P` = L 〉
L = L ;Q

⇐⇒ 〈 Q is surjective ⇐⇒ L ;Q = L 〉
L = L

⇐⇒ 〈 Identity of = 〉
true

(ii) P\Q = (Q\P )`

⇐⇒ 〈 (Q\P )` = P`/Q` 〉
P\Q = P`/Q`

⇐⇒ 〈 Definition 11(ii) & Definition 11(i) 〉
P` ;Q = P` ;Q

⇐⇒ 〈 Complement both sides&Proposition 1(i) 〉
P` ;Q = P` ;Q

⇐⇒ 〈 Antisymmetry 〉
P` ;Q ⊆ P` ;Q ∧ P` ;Q ⊆ P` ;Q

⇐⇒ 〈 Proposition 3(i) 〉
P` ⊆ (P` ;Q)/Q ∧ P` ⊆ (P` ;Q)/Q

⇐⇒ 〈 Hypothesis: P\Q = (Q\P )` ⇐⇒ P` ;Q = P` ;Q 〉
P` ⊆ (P` ;Q)/Q ∧ P` ⊆ (P` ;Q)/Q
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⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Complement both sides &
Proposition 1(i) 〉

P ⊆
[
(P` ;Q)/Q

]` ∧ [
(P` ;Q)/Q

]
⊆ P`

⇐⇒ 〈 Definition 11(i) 〉

P ⊆
[
P` ;Q ;Q`

]` ∧ [
P` ;Q ;Q`

]
⊆ P`

⇐⇒ 〈 Proposition 1(i) & Proposition 1(v) 〉
P ⊆ Q ;Q` ;P ∧ P` ;Q ;Q` ⊆ P`

⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Proposition 1(v) 〉
P ⊆ Q ;Q` ;P ∧ Q ;Q` ;P ⊆ P

⇐⇒ 〈 Q\P is surjective ⇐⇒ Q ;Q` ;P ⊆ Q ;Q` ;P ⇐⇒ Q ;Q` ;P ⊆

Q ;Q` ;P 〉

P ⊆ Q ;Q` ;P ⊆ Q ;Q` ;P ∧ Q ;Q` ;P ⊆ P
=⇒ 〈 Proposition 1(i) & Transitivity of ⊆ 〉
P ⊆ Q ;Q` ;P ∧ Q ;Q` ;P ⊆ P

⇐⇒ 〈 Definition 11(ii) 〉
P ⊆ Q ; (Q\P ) ∧ Q ; (Q\P ) ⊆ P

⇐⇒ 〈 Proposition 4(iv) & Identity of ∧ 〉
P ⊆ Q ; (Q\P )

(iii) P\Q = (Q\P )`

⇐⇒ 〈 Proposition 4(ii) 〉
P\Q = P`/Q`

⇐⇒ 〈 Definition 11(ii) & Definition 11(i) 〉
P` ;Q = P` ;Q

⇐⇒ 〈 Complement both sides&Proposition 1(i) 〉
P` ;Q = P` ;Q

⇐⇒ 〈 Antisymmetry 〉
P` ;Q ⊆ P` ;Q ∧ P` ;Q ⊆ P` ;Q

⇐⇒ 〈 Proposition 3(ii) 〉
Q ⊆ P`\(P` ;Q) ∧ Q ⊆ P`\(P` ;Q)

⇐⇒ 〈 Definition 11(ii) & Proposition 1(ii) 〉
Q ⊆ P ;P` ;Q ∧ Q ⊆ P ;P` ;Q

⇐⇒ 〈 Complement both sides&Proposition 1(i) 〉
P ;P` ;Q ⊆ Q ∧ Q ⊆ P ;P` ;Q

⇐⇒ 〈 Definition 11(ii) & Definition 11(i) 〉
P ; (P`/Q`) ⊆ Q ∧ Q ⊆ P ; (P\Q)

⇐⇒ 〈 P is a bijection ∧ Q is surjective =⇒ P\Q is surjective &
P\Q is surjective ⇐⇒ P ; (P\Q) ⊆ P ; (P\Q) 〉
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P ; (P`/Q`) ⊆ Q ∧ Q ⊆ P ; (P\Q) ⊆ P ; (P\Q)

⇐⇒ 〈 Proposition 1(i) & Transitivity of ⊆ 〉
P ; (P`/Q`) ⊆ Q ∧ Q ⊆ P ; (P\Q)

⇐⇒ 〈 Hypothesis: Q ⊆ P ; (P\Q) 〉
P ; (P`/Q`) ⊆ Q ∧ true

⇐⇒ 〈 Identity of ∧ & Proposition 3(i) 〉
P ⊆ Q/(P`/Q`)

⇐⇒ 〈 Definition 11(i) 〉
P ⊆ Q ; (P`/Q`)`

⇐⇒ 〈 Proposition 4(i) 〉
P ⊆ Q ; (Q\P )

⇐⇒ 〈 Q is a bijection ∧ P is surjective =⇒ Q\P is surjective &
Q\P is surjective ⇐⇒ Q ; (Q\P ) ⊆ Q ; (Q\P ) 〉

P ⊆ Q ; (Q\P ) ⊆ Q ; (Q\P )
⇐⇒ 〈 Proposition 1(i) & Transitivity of ⊆ 〉
P ⊆ Q ; (Q\P )

⇐⇒ 〈 Hypothesis: P ⊆ Q ; (Q\P ) 〉
true

A.2 Detailed Proof of Proposition 6

(⇐= ) Q = (Q/P ) ;P =⇒ X ;P = Q has a solution

X ;P = Q has a solution
⇐⇒ 〈 Formalisation 〉
∃(X |: X ;P = Q )

⇐⇒ 〈 Antisymmetry 〉
∃(X |: X ;P ⊆ Q ∧ Q ⊆ X ;P )

⇐⇒ 〈 Proposition 3(i) 〉
∃(X |: X ⊆ Q/P ∧ Q ⊆ X ;P )

⇐⇒ 〈 Definition of ⊆ 〉
∃(X |:

(
X = Q/P ∨ X ⊂ Q/P

)
∧ Q ⊆ X ;P )

⇐⇒ 〈 Distributivity of ∃ over ∨ 〉
∃(X |: X = Q/P ∧ Q ⊆ X ;P ) ∨ ∃(X |: X ⊂ Q/P ∧ Q ⊆ X ;P )

⇐⇒ 〈 Trading 〉
∃(X | X = Q/P : Q ⊆ X ;P ) ∨ ∃(X |: X ⊂ Q/P ∧ Q ⊆ X ;P )

⇐⇒ 〈 One-Point Axiom 〉
Q ⊆ X ;P [X := Q/P ] ∨ ∃(X |: X ⊂ Q/P ∧ Q ⊆ X ;P )

⇐⇒ 〈 Substitution 〉
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Q ⊆ (Q/P ) ;P ∨ ∃(X |: X ⊂ Q/P ∧ Q ⊆ X ;P )

⇐⇒ 〈 Hypothesis: Q = (Q/P ) ;P 〉
true ∨ ∃(X |: X ⊂ Q/P ∧ Q ⊆ X ;P )

⇐⇒ 〈 Zero of ∨ 〉
true

( =⇒ ) X ;P = Q has a solution =⇒ Q = (Q/P ) ;P

X ;P = Q has a solution
⇐⇒ 〈 Formalisation 〉
∃(X |: X ;P = Q )

⇐⇒ 〈 Antisymmetry 〉
∃(X |: X ;P ⊆ Q ∧ Q ⊆ X ;P )

⇐⇒ 〈 Proposition 3(i) 〉
∃(X |: X ⊆ Q/P ∧ Q ⊆ X ;P )

=⇒ 〈 Isotony of ; 〉
∃(X |: X ;P ⊆ (Q/P ) ;P ∧ Q ⊆ X ;P )

=⇒ 〈 Transitivity of ⊆ & Idempotency of ∧ 〉
∃(X |: Q ⊆ X ;P ⊆ (Q/P ) ;P ∧ Q ⊆ (Q/P ) ;P )

⇐⇒ 〈 Distributivity of ∧ over ∃ 〉
Q ⊆ (Q/P ) ;P ∧ ∃(X |: Q ⊆ X ;P ⊆ (Q/P ) ;P )

=⇒ 〈 Weakening 〉
Q ⊆ (Q/P ) ;P

=⇒ 〈 Proposition 4(iii) 〉
Q ⊆ (Q/P ) ;P ⊆ Q

⇐⇒ 〈 Antisymmetry 〉
Q = (Q/P ) ;P

A.3 Detailed Proof of Corollary 1

According to the problem formulation illustrated by Figure 5, we need to find solutions to
either Equation 1 or Equation 2. Therefore,

X ;Q` = P` or X` ;P` = Q` have solutions
⇐⇒ 〈 Proposition 6 〉
P` = (P`/Q`) ;Q` ∨ Q` = (Q`/P`) ;P`

⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Proposition 1(v) & Proposi-
tion 4(i) 〉

P = Q ; (Q\P ) ∨ Q = P ; (P\Q)
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A.4 Detailed Proof of Proposition 7

(⇐= ) Q ⊆
(
R ∩ (Q/P )

)
;P =⇒ X ;P = Q has R ∩ (Q/P ) as a solution

X ;P = Q has R ∩ (Q/P ) as a solution
⇐⇒ 〈 X = R ∩ (Q/P ) & Substitution 〉(

R ∩ (Q/P )
)
;P = Q

⇐⇒ 〈 Antisymmetry 〉(
R ∩ (Q/P )

)
;P ⊆ Q ∧ Q ⊆

(
R ∩ (Q/P )

)
;P

⇐⇒ 〈 Hypothesis: Q ⊆
(
R ∩ (Q/P )

)
;P 〉(

R ∩ (Q/P )
)
;P ⊆ Q ∧ true

⇐⇒ 〈 Definition 11(i) & Identity of ∧ 〉
(R ∩ Q ;P`) ;P ⊆ Q

⇐⇒ 〈 Identity of ∧ & Proposition 2 & Proposition 1(iv) 〉
Q ;P` ⊆ (R ∪ Q ;P`)

⇐= 〈 Weakening 〉
Q ;P` ⊆ Q ;P`

⇐= 〈 Reflexivity of ⊆ 〉
true

( =⇒ ) X ;P = Q has R ∩ (Q/P ) as a solution =⇒ Q ⊆
(
R ∩ (Q/P )

)
;P

X ;P = Q ∧ X = R ∩ (Q/P )

=⇒ 〈 Substitution of X 〉(
R ∩ (Q/P )

)
;P = Q

⇐⇒ 〈 Antisymmetry 〉(
R ∩ (Q/P )

)
;P ⊆ Q ∧ Q ⊆

(
R ∩ (Q/P )

)
;P

=⇒ 〈 Weakening 〉
Q ⊆

(
R ∩ (Q/P )

)
;P

A.5 Detailed Proof of Corollary 2

(i) P ⊆ Q ;
(
R` ∩ (Q\P )

)
⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Proposition 1(iv) & Propo-

sition 1(v) 〉
P` ⊆

(
R ∩ (Q\P )`

)
;Q`

⇐⇒ 〈 Proposition 7 〉
∃(X | X = R ∩ (Q\P )` : X ;Q` = P` )
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(ii) Q ⊆ P ;
(
R ∩ (P\Q)

)
⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Proposition 1(iv) & Propo-

sition 1(v) 〉
Q` ⊆

(
R` ∩ (P\Q)`

)
;P`

⇐⇒ 〈 Proposition 7 〉
∃(X | X = R ∩ (P\Q) : X` ;P` = Q` )

(iii) P ⊆ Q ;
(
R` ∩ (Q\P )

)
∧ Q ⊆ P ;

(
R ∩ (P\Q)

)
⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Proposition 1(iv) & Proposi-

tion 1(v) & Proposition 4(ii) 〉
P` ⊆

(
R ∩ (P`/Q`)

)
;Q` ∧ Q` ⊆

(
R` ∩ (Q`/P`)

)
;P`

⇐⇒ 〈 Proposition 7 〉
∃(X |X = R ∩ (P`/Q`) ∧ X` = R` ∩ (Q`/P`) : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 Converse both sides & Proposition 1(ii) 〉
∃(X | X = R ∩ (P`/Q`) ∧ X = R ∩ (P\Q) : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 Golden Rule Axiom: X = P ∧ X = Q ⇐⇒ X = (P ∪ Q) ∧ X =
(P ∩ Q) 〉

∃(X | X =
[(
R ∩ (P`/Q`)

)
∩

(
R ∩ (P\Q)

)]
∧ X =

[(
R ∩ (P`/Q`)

)
∪

(
R ∩

(P\Q)
)]

: X ;Q` = P` ∧ X` ;P` = Q` )
⇐⇒ 〈 Distributivity of ∩ of ∪ 〉
∃(X | X = R ∩

(
(P`/Q`) ∩ (P\Q)

)
∧ X = R ∩

(
(P`/Q`) ∪ (P\Q)

)
:

X ;Q` = P` ∧ X` ;P` = Q` )
⇐⇒ 〈 Golden Rule Axiom: X = R ∩ (P ∩ Q) ∧ X = R ∩ (P ∪ Q) ⇐⇒

X = R ∩ P ∩ Q ∧ (P ∩ Q) = (P ∪ Q) 〉
∃(X | X = R ∩

(
(P`/Q`) ∩ (P\Q)

)
∧

[(
(P\Q) ∩ (P`/Q`)

)
=

(
(P\Q) ∪

(P`/Q`)
)]

: X ;Q` = P` ∧ X` ;P` = Q` )
⇐⇒ 〈 Proposition 4(ii) 〉
∃(X | X = R ∩

(
(P`/Q`) ∩ (P\Q)

)
∧ true : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 Definition 12 & Identity of ∧ 〉
∃(X | X = R ∩ syq(P,Q) : X ;Q` = P` ∧ X` ;P` = Q` )

A.6 Detailed Proof of Corollary 3

According to the problem formulation illustrated by Figure 5, we need to find solutions to
Equation 1 and Equation 2.

X = R ∩ (P\Q)

⇐⇒ 〈 Corollary 2 〉
P ⊆ Q ;

(
R` ∩ (Q\P )

)
∧ Q ⊆ P ;

(
R ∩ (P\Q)

)
⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Proposition 1(iv) & Proposi-

tion 1(v) & Proposition 4(ii) 〉
P` ⊆

(
R ∩ (P`/Q`)

)
;Q` ∧ Q` ⊆

(
R` ∩ (Q`/P`)

)
;P`
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⇐⇒ 〈 Proposition 7 〉
∃(X |X = R ∩ (P`/Q`) ∧ X` = R` ∩ (Q`/P`) : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 Converse both sides & Proposition 1(ii) 〉
∃(X | X = R ∩ (P`/Q`) ∧ X = R ∩ (P\Q) : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 Proposition 4(ii) 〉
∃(X | X = R ∩ (Q\P )` ∧ X = R ∩ (P\Q) : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 P is a bijection & Q is a bijection & P ⊆ Q ; (Q\P ) & Q ⊆ P ; (P\Q) &
Proposition 5(iii) 〉

∃(X | X = R ∩ (P\Q) ∧ X = R ∩ (P\Q) : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 Idempotency of ∧ 〉
∃(X | X = R ∩ (P\Q) : X ;Q` = P` ∧ X` ;P` = Q` )

⇐⇒ 〈 Proposition 3(ii) 〉
∃(X | X = R ∩ (P\Q) : X = P`/Q` ∧ X` = Q`/P` )

⇐⇒ 〈 Converse both sides & Proposition 4(i) 〉
∃(X | X = R ∩ (P\Q) : X = (Q\P )` ∧ X = P\Q )

⇐⇒ 〈 Converse both sides & Proposition 4(i) 〉
∃(X | X = R ∩ (P\Q) : (Q\P )` = P\Q ∧ X = P\Q )

⇐⇒ 〈 One-Point Axiom & R = L & Identity of ∩ 〉(
(Q\P )` = P\Q ∧ X = P\Q

)
[X := P\Q]

⇐⇒ 〈 Substitution 〉
(Q\P )` = P\Q ∧ P\Q = P\Q

⇐⇒ 〈 Reflexivity of = & Identity of ∧ 〉
(Q\P )` = P\Q

A.7 Detailed Proof of Proposition 8

∃(X |: P ;X = Q )

⇐⇒ 〈 Converse both sides & Proposition 1(v) 〉
∃(X |: X` ;P` = Q` )

⇐⇒ 〈 Proposition 6 〉
Q` = (Q`/P`) ;P`

⇐⇒ 〈 Converse both sides & Proposition 1(ii) & Proposition 1(v) & Proposi-
tion 4(i) 〉

Q = P ; (P\Q)

⇐⇒ 〈 Definition 11(ii) 〉
Q = P ;P` ;Q

=⇒ 〈 M is total ⇐⇒ I ⊆M ;M` 〉
Q = P ;P` ;Q ⊆ P ;M ;M` ;P` ;Q

⇐⇒ 〈 M` is deterministic ⇐⇒ M` is injective 〉
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Q = P ;P` ;Q ⊆ P ;M ;M` ;P` ;Q

⇐⇒ 〈 Proposition 1(v) 〉
Q = P ;P` ;Q ⊆ P ;M ; (P ;M)` ;Q

=⇒ 〈 Transitivity of ⊆ 〉
Q ⊆ P ;M ; (P ;M)` ;Q

⇐⇒ 〈 Definition 11(ii) & Proposition 4(iii) 〉
Q ⊆ P ;M ;

(
(P ;M)\Q

)
⊆ Q

⇐⇒ 〈 Antisymmetry 〉
Q = P ;M ;

(
(P ;M)\Q

)
⇐⇒ 〈 Proposition 6 〉
∃(Y |: P ;M ;Y = Q )
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