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Abstract

Communication is integral to the understanding of agent interactions in concurrent
systems. In this paper, we propose a mathematical framework for communica-
tion and concurrency called Communicating Concurrent Kleene Algebra (C2KA).
C2KA supports the ability to work in either a state-based or event-based model
for the specification of concurrent and communicating systems by extending con-
current Kleene algebra with the notion of communication actions. This extension
captures both the influence of external stimuli on agent behaviour as well as the
communication and concurrency of communicating agents. We also illustrate the
different levels of abstraction for the behaviour of agents that are offered by the
proposed framework with the specification of a simple illustrative example.
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1 Introduction and Motivation

Systems interact with other systems resulting in the development of patterns of stimuli-
response relationships. Therefore, models for concurrency are commonly constructed upon
the assumption of uninterruptible system execution or atomic events. Models for concurrency
differ in terms of how they capture this notion. A coarse-grained classification categorises
models for concurrency as either state-based models or event-based models [3]. State-based
models describe the behaviour of a system in terms of the properties of its states. Typical
state-based approaches consist of representing system properties as formulae of temporal log-
ics, for example, such as LTL [27], CTL [2], or CTL∗ [4], and model-checking the state space
of the system against them. Conversely, event-based models represent systems via structures
consisting of atomic events. There is an extensive variety of examples of event-based models
for concurrency including labelled transition systems [16], Petri nets [26], process calculi (e.g.,
CCS [22], CSP [6], ACP [1], and π-calculus [24]), Hoare traces [7], Mazurkiewicz traces [20],
synchronisation trees [22], pomsets [28], and event structures [32].

Recently, Hoare et al. [8, 9, 10, 11] proposed a formalism for modelling concurrency called
Concurrent Kleene Algebra (CKA). CKA extends the algebraic framework provided by Kleene
algebra by offering, aside from choice and finite iteration, operators for sequential and concur-
rent composition. It can be perceived as a hybrid model of concurrency as it encompasses the
characteristics of both state-based models and event-based models. If we consider CKA at
the abstract algebraic level, it is similar to an event-based model. In the algebraic structure
of CKA, the carrier set is a set of programs and the language of the algebra is used to specify
the behaviour of the system. On the other hand, if we consider CKA instantiated with the
concrete model where programs are explicitly given as commands (as the ones used in [13, 25]),
it can be viewed as a state-based model. In this way, the executions of the programs show
how the current system state evolves and properties of each system state can be checked with
pre- and post-condition assertions.

In this paper, we propose a mathematical framework for communication and concurrency
called Communicating Concurrent Kleene Algebra (C2KA). It extends the algebraic model
of concurrent Kleene algebra and allows for the separation of communicating and concurrent
behaviour in a system and its environment. With C2KA, we are able to express the influence of
external stimuli on the behaviours of system agents resulting from the occurrence of external
events, from communication among agents, such as sending and receiving actions, or from
the environment of a particular agent, such as an environmental parameter passing a certain
threshold. In this way, we can think about concurrent and communicating systems from two
different perspectives. We can obtain a behavioural perspective by focussing on the behaviour
of a particular agent in a communicating system and considering the influence of stimuli, from
the rest of the world in which the agent resides, as transformations of the agent’s behaviour.
Similarly, we can obtain an external event (stimulus) perspective by considering the influence of
agent behaviours as transformations of external stimuli. C2KA also allows for the specification
of message passing and shared-variable communication as found in many existing formalisms
for concurrency and communication. It provides a framework which presents a different view
of communication and concurrency than what is traditionally given by existing process calculi.

The remainder of this paper is organised as follows. In Section 2, we discuss the notions of
external stimuli and induced behaviours and introduces a hybrid view of agent communication.
In Section 3, we provide the mathematical preliminaries needed for the remainder of this
paper. In Section 4, we present the proposed mathematical framework for communication
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and concurrency and the related results. In Section 5, we give a simple illustrative example of
how to specify a system of communicating agents using the proposed framework. In Section 6,
we discuss the proposed framework and related work. Lastly, in Section 7 we draw conclusions
and point to the highlights of our current and future work.

2 Stimuli and Induced Behaviours

An essential aspect of concurrent systems is the notion of communication. As presented
in [8, 9, 10, 11], communication in CKA is not directly captured. Variables and communication
channels are modelled as sets of traces. Communication can be perceived only when programs
are given in terms of the dependencies of shared events [12]. One needs to instantiate the
low-level model of programs and traces for CKA in order to define any sort of communication.
We would like to have a way to specify communication in CKA without the need to articulate
the state-based system of each action (i.e., at a convenient abstract level). This would allow
us to work at the abstract algebraic level and then instantiate a concrete model when needed.

Furthermore, CKA does not directly deal with describing how the behaviours of agents in
a system are influenced by external stimuli. From the perspective of behaviourism, a stimulus
constitutes the basis for behaviour. In this way, agent behaviour can be explained without the
need to consider the internal states of an agent [31]. When examining the effects of external
stimuli on agent behaviours, it is important to note that every external stimulus invokes a
response from an agent. When the behaviour of an agent changes as a result of the response,
we say that the external stimulus influences the behaviour of the agent. Moreover, it is
important to have an understanding of how agent behaviours may evolve due to the influence
of external stimuli. In particular, it is often useful to have an idea of the possible influence that
any given external stimulus may have on a particular agent. We call these possible influences,
the induced behaviours via external stimuli. This is to say that induced behaviours indicate
the influence of external stimuli on agent behaviours.

Env(A5)

A1 A2

Env(A1) Env(A2)

external stimuli

shared  environment

Env(A4)

A5

A3

Env(A3)

A4

communication  channels

external stimuli

Figure 1: A hybrid view of agent communication.

Agents can communicate via their shared environment and through their local commu-
nication channels, but they may also be influenced by external stimuli. For example, if we
consider agents A1 and A2 (dotted box) depicted in Figure 1, they have a shared environment
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through which they can communicate. Additionally, they have some communication channels
at their disposal for sending and receiving messages. However, the behaviour of A1 and A2

can be influenced by the external stimuli coming from A3, for example. The system formed
by A5 alone is a closed system and does not communicate with the rest of the world neither
by external stimuli nor a shared environment. Consider the case where A1 is subjected to an
external stimulus from A3. Then, A1 may respond to the stimulus by changing its behaviour
which can affect the communication between it and A2. Currently, this notion cannot be
directly handled with CKA. We would like to have a mathematical framework for systems
of communicating agents which can capture both the influence of external stimuli on agent
behaviour, as well as the communication and concurrency of agents at the abstract algebraic
level.

3 Mathematical Background

In this section, we provide the mathematical preliminaries of monoids, semirings, and Kleene
algebras, introduce concurrent Kleene algebra, and give the required background of semimod-
ules.

3.1 Monoids, Semirings, and Kleene Algebras

A monoid is a mathematical structure
(
S, ·, 1

)
consisting of a nonempty set S, together with

an associative binary operation · and a distinguished constant 1 which is the identity with
respect to ·. A monoid is called commutative if · is commutative and a monoid is called
idempotent if · is idempotent.

A semiring is a mathematical structure
(
S,+, ·, 0, 1

)
where

(
S,+, 0

)
is a commutative

monoid and
(
S, ·, 1

)
is a monoid such that operator · distributes over operator +. We say

that element 0 is multiplicatively absorbing if it annihilates S with respect to ·. We say that a
semiring is idempotent if operator + is idempotent. Every idempotent semiring has a natural
partial order ≤ on S defined by a ≤ b ⇐⇒ a+ b = b. Operators + and · are isotone on both
the left and the right with respect to ≤.

Kleene algebra extends the notion of idempotent semirings with the addition of a unary
operator for finite iteration.

Definition 1 (Kleene Algebra – e.g., [18]). A Kleene algebra is a mathematical structure(
K,+, ·, ∗, 0, 1

)
where

(
K,+, ·, 0, 1

)
is an idempotent semiring with a multiplicatively absorb-

ing 0 and identity 1 and where the following axioms are satisfied for all a, b, c ∈ K:

(i) 1 + a · a∗ = a∗

(ii) 1 + a∗ · a = a∗

(iii) b+ a · c ≤ c =⇒ a∗ · b ≤ c

(iv) b+ c · a ≤ c =⇒ b · a∗ ≤ c

3.2 Concurrent Kleene Algebra

Concurrent Kleene algebra is an algebraic framework extended from Kleene algebra offering
operators for sequential and concurrent composition, along with those for choice and finite iter-
ation. The operators for sequential and concurrent composition are related by an inequational
form of the exchange axiom.
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Definition 2 (Concurrent Kleene Algebra – e.g., [8]). A concurrent Kleene algebra (CKA) is
a structure

(
K,+, ∗, ; , *©, ;©, 0, 1

)
such that

(
K,+, ∗, *©, 0, 1

)
and

(
K,+, ; , ;©, 0, 1

)
are Kleene

algebras linked by the exchange axiom given by (a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d).

A selection of laws for CKA which are needed for the remainder of this paper are found
in [8] and are given in Proposition 1.

Proposition 1 (e.g., [8]). For all a, b, c, d ∈ K,

(i) a ∗ b = b ∗ a

(ii) (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d)

(iii) a ; b ≤ a ∗ b

(iv) (a ∗ b) ; c ≤ a ∗ (b ; c)

(v) a ; (b ∗ c) ≤ (a ; b) ∗ c

An additional useful law is given in Proposition 2.

Proposition 2. For all a ∈ K, a ;© ≤ a *©.

Proof. The proof involves the application of Definition 1(iii), Definition 1(i), and Proposi-
tion 1(iii). The detailed proof is given in Appendix A.1.

3.3 Semimodules

An important notion required for the proposed framework for communication and concurrency
is that of semimodules.

Definition 3 (Left S-semimodule – e.g., [5]). Let S =
(
S,+, ·, 0S , 1

)
be a semiring and

K =
(
K,⊕, 0K

)
be a commutative monoid. We call

(
SK,⊕

)
a left S-semimodule if there

exists a mapping S ×K → K denoted by juxtaposition such that for all s, t ∈ S and a, b ∈ K

(i) s(a⊕ b) = sa⊕ sb

(ii) (s+ t)a = sa⊕ sb

(iii) (s · t)a = s(ta)

(iv)
(
SK,⊕

)
is called unitary if it also satisfies 1a = a

(v)
(
SK,⊕

)
is called zero-preserving if it also satisfies 0Sa = 0K

A right S-semimodule can be defined analogously. From Definition 3, it is easy to see that
each unitary left S-semimodule

(
SK,⊕

)
has an embedded left S-act SK with respect to the

monoid
(
S, ·, 1

)
.

4 The Proposed Framework

In the following sections, we first articulate the algebraic structures which capture agent
behaviours and external stimuli. After that, we use the aforementioned algebraic structures for
agent behaviours and external stimuli to develop the proposed framework for communication
and concurrency.
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4.1 Structure of Agent Behaviours

In [8, 9, 10, 11], Hoare et al. presented the framework of concurrent Kleene algebra which
captures the concurrent behaviour of agents. In this paper, we adopt the framework of CKA
in order to describe agent behaviours in systems of communicating agents. In what follows,
let K def

=
(
K,+, ∗, ; , *©, ;©, 0, 1

)
be called a CKA.

It is important to note that throughout this paper, the term agent is used in the sense
used by Milner in [23] to mean any system whose behaviour consists of discrete actions. In
this way, an agent can be defined by simply describing its behaviour. Because of this, we
may use the terms agents and behaviours interchangeably. With this understanding of agents,
the support set K of the CKA K represents a set of possible behaviours. The operator + is
interpreted as a choice between two behaviours, the operator ; is interpreted as a sequential
composition of two behaviours, and the operator ∗ is interpreted as a parallel composition of
two behaviours. The element 0 represents the behaviour of the inactive agent and the element 1
represents the behaviour of the idle agent just as in many process calculi. Moreover, associated
with a CKA is a natural ordering relation ≤K representing the sub-behaviour relation. For
behaviours a, b ∈ K, a ≤K b indicates that a is a sub-behaviour of b if and only if a+ b = b.

4.2 Structure of External Stimuli

As mentioned in Section 2, a stimulus constitutes the basis for behaviour. Because of this,
each discrete, observable event introduced to a system, such as that which occurs through the
communication among agents or from the system environment, is considered to be an external
stimulus which invokes a response from each system agent.

Definition 4 (Stimulus Structure). Let S def
=

(
S,⊕,�, d, n

)
be an idempotent semiring with

a multiplicatively absorbing d and identity n. We call S a stimulus structure.

Within the context of external stimuli, S is the set of external stimuli which may be
introduced to a system. The operator ⊕ is interpreted as a choice between two external stimuli
and the operator � is interpreted as a sequential composition of two external stimuli. The
element d represents the deactivation stimulus which influences all agents to become inactive
and the element n represents the neutral stimulus which has no influence on the behaviour of all
agents. Furthermore, each stimulus structure has a natural ordering relation ≤S representing
the sub-stimulus relation. For external stimuli s, t ∈ S, we write s ≤S t and say that s is
sub-stimulus of t if and only if s⊕ t = t.

4.3 Communicating Concurrent Kleene Algebra (C2KA)

C2KA extends the algebraic foundation of CKA with the notions of semimodules and stimulus
structures to capture the influence of external stimuli on the behaviour of system agents.

Definition 5 (Communicating Concurrent Kleene Algebra). A Communicating Concurrent
Kleene Algebra (C2KA) is a system

(
S,K

)
, where S =

(
S,⊕,�, d, n

)
is a stimulus structure

and K =
(
K,+, ∗, ; , *©, ;©, 0, 1

)
is a CKA such that

(
SK,+

)
is a unitary and zero-preserving

left S-semimodule with mapping ◦ : S×K → K and
(
SK,⊕

)
is a unitary and zero-preserving

right K-semimodule with mapping λ : S×K → S, and where the following axioms are satisfied
for all a, b, c ∈ K and s, t ∈ S:
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(i) s ◦ (a ; b) = (s ◦ a) ;
(
λ(s, a) ◦ b

)
(ii) a ≤K c ∨ b = 1 ∨ (s◦a) ;

(
λ(s, c)◦b

)
= 0

(iii) λ(s� t, a) = λ
(
s, (t ◦ a)

)
� λ(t, a)

In essence, a C2KA consists of two semimodules which describe how the stimulus struc-
ture S and the CKA K mutually act upon one another in order to characterise the response
invoked by an external stimulus on the behaviour of an agent as a next behaviour and a next
stimulus.

First, the left S-semimodule
(
SK,+

)
describes how the stimulus structure S acts upon the

CKA K via the mapping ◦. We call ◦ the next behaviour mapping since it describes how an
external stimulus invokes a behavioural response from a given agent. From

(
SK,+

)
, we have

that the next behaviour mapping ◦ distributes over + and ⊕. Additionally, since
(
SK,+

)
is

unitary, we have that the neutral stimulus has no influence on the behaviour of all agents and
since it is zero-preserving, the deactivation stimulus influences all agents to become inactive.
Second, the right K-semimodule

(
SK,⊕

)
describes how the CKA K acts upon the stimulus

structure S via the mapping λ. We call λ the next stimulus mapping since it describes how
a new stimulus is generated as a result of the response invoked by a given external stimulus
on an agent behaviour. From

(
SK,⊕

)
, we have that the next stimulus mapping λ distributes

over ⊕ and +. Also, since
(
SK,⊕

)
is unitary, we have that the idle agent forwards any

external stimulus that acts on it and since
(
SK,⊕

)
is zero-preserving, the inactive agent

always generates the deactivation stimulus.
In Definition 5, Axiom (i) describes the interaction of the next behaviour mapping ◦ with

the sequential composition operator ; for agent behaviours. This axiom roughly corresponds
to the definition of the transition function for the cascading product (or synchronous serial
composition) of Mealy automata [14]. Axiom (ii), which is referred to as the cascading output
law , states that when an external stimulus is introduced to the sequential composition (a ; b),
then either the cascaded stimulus must be generated by the behaviour a, or the behaviour b
must be the idle agent behaviour 1. It allows distributivity of ◦ over ; to be applied indis-
criminately and ensures consistency between the next behaviour and next stimulus mappings
with respect to the sequential composition of agent behaviours. Finally, Axiom (iii) describes
the interaction of the next stimulus mapping λ with the sequential composition operator �
for external stimuli.

In a given system of communicating agents, agent behaviour can be initiated in two ways.
The first way to initiate agent behaviour in a system of communicating agents is by reacti-
vation. We say that a C2KA is with reactivation if s ◦ 1 6= 1 for some s ∈ S\{d}. Consider
the case where the idle agent 1 is not fixed with respect to some given external stimulus.
Then, the passive idle agent could be influenced to behave as any active agent. In this case,
we say that the agent has been reactivated as it then begins to actively participate in the
system operation. If a C2KA is without reactivation, then the idle agent 1 reflects an idle
behaviour that is not influenced by any external stimulus other than the deactivation stim-
ulus. In this case, the idle agent does not actively participate in the operation of a system
and it cannot initiate agent behaviours. The second way in which agent behaviour can be
initiated in a system of communicating agents is by external stimuli. In a C2KA, we say that
an agent a ∈ K\{0, 1} is a stimulus initiator if and only if λ(n, a) 6= n. When an agent is a
stimulus initiator then that agent may generate a new stimulus without outside influence. Be-
cause

(
SK,⊕

)
is unitary and zero-preserving, the inactive agent 0 and the idle agent 1 cannot

be stimulus initiators. Intuitively, the inactive agent is not a stimulus initiator since it can

6



only generate the deactivation stimulus to influence all other agents to cease their behaviours
and become inactive. Likewise, the idle agent is not a stimulus initiator since it can be seen
as having no state-changing observed behaviour and therefore it cannot generate any stimuli.

Proposition 3 provides some consequences of the axiomatisation of C2KA. In [8], an
idempotent semiring is called a quantale if the natural order induces a complete lattice and
multiplication distributes over arbitrary suprema.

Proposition 3. Let
(
S,K

)
be a C2KA where the underlying CKA and stimulus structure are

built from quantales. For all a, b ∈ K and s, t ∈ S:

(i) a ≤K b =⇒ s ◦ a ≤K s ◦ b

(ii) s ≤S t =⇒ s ◦ a ≤K t ◦ a

(iii) a ≤K b ∧ s ≤S t =⇒ s ◦ a ≤K t ◦ b

(iv) s ◦ (a ; b+ b ; a) ≤K s ◦ (a ∗ b)

(v) s ◦ a ;© ≤K s ◦ a *©

(vi) s ◦ a ;© = +(n | n ≥ 0 : s ◦ an )

(vii) s ≤S t =⇒ λ(s, a) ≤S λ(t, a)

(viii) a ≤K b =⇒ λ(s, a) ≤S λ(s, b)

(ix) a ≤K b ∧ s ≤S t =⇒ λ(s, a) ≤S λ(t, b)

(x) λ(s, (a ; b+ b ; a)) ≤S λ(s, (a ∗ b))

(xi) λ(s, a ;©) ≤S λ(s, a *©)

(xii) λ(s, a ;©) = ⊕(n | n ≥ 0 : λ(s, an) )

Proof. The detailed proofs can be found in Appendix A.2.

In Proposition 3, Identity (i) (resp. (vii)) shows that ◦ (resp. λ) is isotone with respect
to ≤K (resp. ≤S). Identities (ii), (iii), (viii), and (ix) relate sub-stimuli and sub-behaviours
with respect to the next behaviour mapping ◦ and the next stimulus mapping λ. Lastly,
identities (iv)–(vi) (resp. (x)–(xii)) relate the influence of an external stimulus (resp. the
external stimuli generated by) on the interleaving and parallel composition of agent behaviours
and the sequential iteration and parallel iteration of agent behaviours.

4.4 C2KA and Orbits, Stabilisers, and Fixed Points

Orbits, stabilisers, and fixed points are notions that allow us to perceive a kind of topology
of a system with respect to the stimulus-response relationships among the system agents.
Because of this, we are able to gain some insight into the communication channels that can
be established among system agents. For example, with C2KA, we are able to compute
the strong orbits (presented below) of the agent behaviours in a given system. The strong
orbits represent the strongly connected agent behaviours in the system and therefore can
provide some insight into the abilities of the agents in the same strong orbit to influence one
another’s behaviour through communication. Furthermore, having an idea of the topology of
the system allows for the abstraction of components of the overall system behaviour. This
kind of abstraction can aid in separating the communicating and concurrent behaviour in a
system and its environment.

Since a C2KA consists of two semimodules
(
SK,+

)
and

(
SK,⊕

)
for which we have a

left S-act SK and a right K-act SK, we have two complementary notions of orbits, stabilisers,
and fixed points within the context of agent behaviours and external stimuli, respectively. In
this way, one can use these notions to think about concurrent and communicating systems
from two different perspectives, namely the behavioural perspective provided by the action
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of external stimuli on agent behaviours described by
(
SK,+

)
and the external event (stim-

ulus) perspective provided by the action of agent behaviours on external stimuli described
by

(
SK,⊕

)
. In this section, we focus only on the treatment of these notions with respect to

the left S-semimodule
(
SK,+

)
and agent behaviours. In a very similar way, we can present

the same notions for the right K-semimodule
(
SK,⊕

)
and external stimuli.

Definition 6 recalls the notions of orbits, stabilisers, and fixed points from the mathematical
theory of monoids acting on sets [17].

Definition 6. Let
(
SK,+

)
be the unitary and zero-preserving left S-semimodule of a C2KA

and let a ∈ K.

(i) The orbit of a in S is the set given by Orb(a) = {s ◦ a | s ∈ S}.

(ii) The strong orbit of a in S is the set given by OrbS(a) = {b ∈ K | Orb(b) = Orb(a)}.

(iii) The stabiliser of a in S is the set given by Stab(a) = {s ∈ S | s ◦ a = a}.

(iv) The element a ∈ K is called a fixed point if ∀(s | s ∈ S\{d} : s ◦ a = a ).

We can define a preorder on K as a �K b ⇐⇒ Orb(a) ⊆ Orb(b). Given this preorder,
we can obtain an equivalence relation ∼K from the intersection of �K and �K. The equiva-
lence classes of ∼K give the strong orbits [19]. The strong orbits can also be viewed as the
strongly connected components of a directed graph [30]. Additionally, when a ∈ K is a fixed
point, Orb(a) = {0, a} and Stab(a) = S\{d}. It is important to note that since

(
SK,+

)
is zero-preserving, every agent behaviour becomes inactive when subjected to the deactiva-
tion stimulus d. Because of this, we exclude this special case when discussing fixed agent
behaviours.

Before we discuss the interplay between C2KA and the notions of orbits, stabilisers, and
fixed points, we first extend the partial order of sub-behaviours ≤K to sets in order to express
sets of agent behaviours encompassing one another.

Definition 7 (Encompassing Relation). Let A,B ⊆ K be two subsets of agent behaviours.
We write A lK B and say that A is encompassed by B (or B encompasses A) if and only
if ∀

(
a | a ∈ A : ∃(b | b ∈ B : a ≤K b )

)
.

The encompassing relation lS for external stimuli can be defined similarly.

4.4.1 Orbits.

The orbit of an agent a ∈ K represents the set of all possible behavioural responses from an
agent behaving as a to any external stimulus from S. In this way, the orbit of a given agent
can be perceived as the set of all possible future behaviours for that agent.

Proposition 4 provides a selection of properties with respect to the orbits and the encom-
passing relation for agent behaviours.

Proposition 4. Let
(
S,K

)
be a C2KA. For all a, b, c ∈ K:

(i) a ≤K b =⇒ Orb(a)lK Orb(b)

(ii) Orb(a)lK Orb(a+ b)

(iii) Orb((a ∗ b) ; (c ∗ d))lK Orb((a ; c) ∗ (b ; d))
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(iv) Orb(a ; b)lK Orb(a ∗ b)

(v) Orb(a ; b+ b ; a)lK Orb(a ∗ b)

(vi) Orb((a ∗ b) ; c)lK Orb(a ∗ (b ; c))

(vii) Orb(a ; (b ∗ c))lK Orb((a ; b) ∗ c)

(viii) Orb(a ;©)lK Orb(a *©)

(ix) Orb(a)lK Orb(c) ∧ Orb(b)lK Orb(c) ⇐⇒ Orb(a) ∪ Orb(b)lK Orb(c)

Proof. The detailed proofs can be found in Appendix A.3.

As stated before, without discussing the properties derived from the rightK-semimodule
(
SK,⊕

)
,

due to the cascading output law (see Definition 5 (ii)), we also have that Orb((s◦a) ;
(
λ(s, c)◦

b
)
) = {0} for any (a ; b) ∈ K and ¬(c ≤K a).

4.4.2 Another Interpretation of Orbits.

As mentioned in Section 2, we call the influence of external stimuli on agent behaviours the
induced behaviours via external stimuli. The notion of induced behaviours allows us to make
some predictions about the evolution of agent behaviours in a given system by providing
some insight into the topology of the system and how different agents can respond to any
external stimuli. Here, we provide a formal treatment of the notion of induced behaviours.
While studying induced behaviours, we focus particularly on the next behaviour mapping ◦
and the effects of external stimuli on agent behaviours since we are interested in examining
the evolution of agent behaviours via the influence of external stimuli in a given system of
communicating agents.

Definition 8 (Induced Behaviour). Let a, b ∈ K be agent behaviours such that a 6= b. We say
that b is induced by a via external stimuli (denoted by a C b) if and only if ∃(s | s ∈ S :
s ◦ a = b ).

Equivalently, we can express aC b ⇐⇒ b ∈ Orb(a) for a 6= b. In this way, it can be seen
that the orbit of a behaviour a represents the set of all behaviours which are induced by a via
external stimuli.

4.4.3 Strong Orbits.

Two agents are in the same strong orbit, denoted a ∼K b for a, b ∈ K, if and only if their
orbits are identical. This is to say when a ∼K b, if an agent behaving as a is influenced by an
external stimulus to behave as b, then there exists an external stimulus which influences the
agent, now behaving as b, to revert back to its original behaviour a. Furthermore, if a ∼K b,
then ∃(s, t | s, t ∈ S : s ◦ a = b ∧ t ◦ b = a ). In this case, the external stimuli s and t can
be perceived as inverses of one another and allow us to revert an agent back to its original
behaviour since t ◦ s ◦ a = a and s ◦ t ◦ b = b (i.e., s� t ∈ Stab(a) and t� s ∈ Stab(b)).
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4.4.4 Stabilisers.

For any agent a ∈ K, the stabiliser of a represents the set of external stimuli which have no
observable influence (or act as neutral stimuli) on the behaviour of an agent behaving as a.
By straightforward calculation and the definition of the encompassing relation lS for external
stimuli, we have that Stab(a) ∩ Stab(b) lS Stab(a + b) for a, b ∈ K (see Appendix A.4 for
the detailed proof). However, consider a case where ∃(s | s ∈ S : s ◦ a = b ∧ s ◦ b = a ).
Then, s /∈ Stab(a) and s /∈ Stab(b) but s ∈ Stab(a + b). Therefore, it is easy to see that in
general ¬

(
Stab(a+ b)lS

(
Stab(a) ∩ Stab(b)

))
and ¬

(
Stab(a+ b)lS

(
Stab(a) ∪ Stab(b)

))
.

4.4.5 Fixed Points.

An agent behaviour is a fixed point if it is not influenced by any external stimuli other than
the deactivation stimulus d.

Proposition 5 gives a selection of properties regarding fixed agent behaviours.

Proposition 5. Let
(
S,K

)
be a C2KA and let a, b ∈ K such that a and b are fixed points.

We have:

(i) 0 is a fixed point

(ii) a+ b is a fixed point

(iii) a ; b is a fixed point

(iv) a ;© is a fixed point if additionally
(
S,K

)
is without reactivation

Proof. The proofs each use Definition 6(iv). The proof for (i) is straightforward from the
axiomatisation of C2KA. The proof for (ii) involves Definition 3(i) for

(
SK,+

)
and the proof

for (iii) uses Definition 5(i). The proof for (iv) uses Proposition 3(vi), the application of (iii),
and the definition of a ;©. The detailed proofs are given in Appendix A.5.

In Proposition 5, Identity (i) states that the inactive agent 0 is a fixed point with respect
to the next behaviour mapping ◦. In this way, the inactive agent is not influenced by any
external stimulus. Similarly, we can see that the deactivation stimulus d is a fixed point with
respect to the next stimulus mapping λ if we consider the notion of a fixed point in terms of
external stimuli. Identity (ii) (resp. (iii) and (iv)) state that the choice (resp. sequential com-
position and sequential iteration) of fixed behaviours results in a fixed behaviour. In general,
even if a, b ∈ K are both fixed points, we are unable to say anything about (a ∗ b) as a fixed
point.

Proposition 6 provides further insight into how the topology of a system of communicating
agents can be perceived using C2KA and the notion of induced behaviours.

Proposition 6. Let a, b, c ∈ K be agent behaviours.

(i) a is a fixed point =⇒ ∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : ¬(aC b) )

(ii) a ∼K b =⇒ aC b ∧ bC a

(iii) a ∼K b =⇒ (aC c ⇐⇒ bC c)

10



Proof. The proof for (i) follows straightforwardly from Definition 8 and the definition of the
orbit of a fixed point. The proof for (ii) is straightforward from Definition 8 and the definition
of ∼K. The proof for (iii) involves the shunting rule, the definition of ∼K, and Definition 8.
The detailed proofs can be found in Appendix A.6.

Proposition 6(i) states that if an agent has a fixed behaviour, then it does not induce
any agent behaviours via external stimuli besides the inactive behaviour 0. This is a direct
consequence of the fact that an agent with a fixed behaviour is not influenced by any exter-
nal stimuli (except for the deactivation stimulus d) and therefore remains behaving as it is.
Proposition 6(ii) states that all agent behaviours which belong to the same strong orbit are
mutually induced via some (possibly different) external stimuli. This is to say that if two
agent behaviours are in the same strong orbit, then there exists inverse stimuli for each agent
behaviour in a strong orbit allowing an agent to revert back to its original behaviour. Finally,
Proposition 6(iii) states that if two agent behaviours are in the same strong orbit, then a
third behaviour can be induced via external stimuli by either of the behaviours within the
strong orbit. This is to say that each behaviour in a strong orbit can induce the same set
of behaviours (perhaps via different external stimuli). Therefore, the strong orbit to which
these behaviours belong can be abstracted and perceived as an equivalent agent behaviour
with respect to the behaviours which it can induce via external stimuli.

5 Specifying Systems of Communicating Agents

In order to specify a system of communicating agents using C2KA, we have three levels of
specification. To aid in explaining each of these levels of specification, we utilise a simple
illustrative example of a one-place buffer adapted from [23].

5.1 Scenario

Consider the behaviour of a one-place buffer. Suppose that the buffer uses two flags to indicate
its current status. Let flag1 denote the empty/full status of the buffer and let flag2 denote the
error status of the buffer. We consider the following set of events which are simple assignments
to the buffer status flags:

P1
def
= flag1 := off Q1

def
= flag2 := off

P2
def
= flag1 := on Q2

def
= flag2 := on

In this way, K is generated by the set of basic behaviours {P1, P2, Q1, Q2, 0, 1}.
Furthermore, suppose that the behaviour of the each agent in the one-place buffer system

is influenced by a number of external stimuli which either place an item in the buffer, remove
an item from the buffer, or generate an error. We denote these stimuli by in, out ,and error
respectively. These external stimuli form a stimulus structure S where S is generated by the
set of basic external stimuli {in, out , error , d, n}. Note that in this example, the external
stimuli are related to the external ports of the buffer as described in [23], in the sense that
the external stimuli are introduced at the external ports of the buffer.
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5.2 Stimulus-Response Specification of Agents

At the stimulus-response specification of agents level, we give the specification of the next
behaviour mapping ◦ and the next stimulus mapping λ for each agent in the system. This
involves providing a specification of the form

(
a, ◦A, λA

)
for each agent A, where a ∈ K is a

CKA term describing the behaviour of agent A and where the mappings ◦A and λA define the
stimulus-response specification for agent A in terms of the next behaviours and next stimuli,
respectively.

In order to specify the one-place buffer using C2KA, assume that there are two basic system
agents, P and Q, which are responsible for controlling the buffer state flags flag1 and flag2,
respectively. Also assume that we have a C2KA without reactivation (i.e., s ◦ 1 = 1 for
all s ∈ S\{d}). In this way, the agent behaviours can be compactly specified as the following
CKA terms:

P
def
= P1 + P2 Q

def
= Q1 +Q2

This means that agent P can behave as either P1 or P2 and similarly, agent Q can behave
as either Q1 or Q2.

Next, we specify the next behaviour mapping ◦ and the next stimulus mapping λ for
agents P and Q. In other words, we articulate how each agent responds to each external
stimulus. For our example of the one-place buffer, the stimulus-response specification for
agents P and Q are given in Table 1 and Table 2, respectively. In this example, it is easy
to see that the behaviour Q2 is a fixed point. Furthermore, it is clear that agent Q is not a
stimulus initiator since λ(n,Q) = n.

Table 1: Stimulus-Response Specification for Agent P
◦P n in out error

P1 P1 P2 P1 P1

P2 P2 P2 P1 P2

λP n in out error

P1 n n error n

P2 n error n n

Table 2: Stimulus-Response Specification for Agent Q
◦Q n in out error

Q1 Q1 Q1 Q1 Q2

Q2 Q2 Q2 Q2 Q2

λQ n in out error

Q1 n n n n

Q2 n n n n

By composing the behaviours of P and Q, we are able to obtain the complete behaviour
of the one-place buffer. The behaviour of the one-place buffer is given by the following CKA
term:

Buffer
def
= P ;Q = (P1 + P2) ; (Q1 +Q2)

The Buffer agent has four possible behaviours as a result of the composition of agents P
and Q.

empty def
= P1 ;Q1 underflow def

= P1 ;Q2

full def
= P2 ;Q1 overflow def

= P2 ;Q2

12



This is to say that the one-place buffer may behave as if it is empty, as if it is full, or
as an underflow error or an overflow error. For example, the behaviour P1 ;Q1 denotes the
sequential composition of the assignments to flag1 and flag2 to indicate that the buffer is
empty and in a non-error state which, at the state-level, represents that the buffer is in an
empty state. Similarly, the behaviour P2 ;Q2 denotes that the buffer is an overflow error state.

We compute the stimulus-response specification for the Buffer agent as shown in Table 3.

Table 3: Stimulus-Response Specification for Buffer
◦Buffer n in out error

empty empty full underflow empty
full full overflow empty full
underflow underflow overflow underflow underflow
overflow overflow overflow underflow overflow

λBuffer n in out error

empty n n n n

full n n n n

underflow n n n n

overflow n n n n

Below, we give an example computation showing the behaviour of the Buffer agent in
response to the external stimulus in.

in ◦Buffer

= 〈 Definition of Buffer 〉
in ◦

(
(P1 + P2) ; (Q1 +Q2)

)
= 〈 Definition 5(i) 〉(

in ◦ (P1 + P2)
)
;
(
λ
(
in, (P1 + P2)

)
◦ (Q1 +Q2)

)
= 〈 Definition 3(i) for

(
SK,+

)
〉(

in ◦ P1 + in ◦ P2

)
;
(
λ
(
in, (P1 + P2)

)
◦ (Q1 +Q2)

)
= 〈 Definition 3(ii) for

(
SK,⊕

)
〉(

in ◦ P1 + in ◦ P2

)
;
((
λ
(
in, P1

)
⊕ λ

(
in, P2

))
◦ (Q1 +Q2)

)
= 〈 Definition 3(ii) for

(
SK,+

)
〉(

in ◦ P1 + in ◦ P2

)
;
(
λ
(
in, P1

)
◦ (Q1 +Q2) + λ

(
in, P2

)
◦ (Q1 +Q2)

)
= 〈 Definition 3(i) for

(
SK,+

)
〉(

in ◦ P1 + in ◦ P2

)
;
(
λ
(
in, P1

)
◦Q1 + λ

(
in, P1

)
◦Q2 + λ

(
in, P2

)
◦Q1 + λ

(
in, P2

)
◦Q2

)
= 〈 Distributivity of ; over + 〉(

in ◦ P1 + in ◦ P2

)
;
(
λ
(
in, P1

)
◦Q1

)
+
(
in ◦ P1 + in ◦ P2

)
;
(
λ
(
in, P1

)
◦Q2

)
+(

in ◦ P1 + in ◦ P2

)
;
(
λ
(
in, P2

)
◦Q1

)
+
(
in ◦ P1 + in ◦ P2

)
;
(
λ
(
in, P2

)
◦Q2

)
= 〈 Distributivity of ; over + 〉
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in ◦ P1 ;
(
λ
(
in, P1

)
◦Q1

)
+ in ◦ P2 ;

(
λ
(
in, P1

)
◦Q1

)
+

in ◦ P1 ;
(
λ
(
in, P1

)
◦Q2

)
+ in ◦ P2 ;

(
λ
(
in, P1

)
◦Q2

)
+

in ◦ P1 ;
(
λ
(
in, P2

)
◦Q1

)
+ in ◦ P2 ;

(
λ
(
in, P2

)
◦Q1

)
+

in ◦ P1 ;
(
λ
(
in, P2

)
◦Q2

)
+ in ◦ P2 ;

(
λ
(
in, P2

)
◦Q2

)
= 〈 Definition 5(ii) & Identity of + 〉

in ◦ P1 ;
(
λ
(
in, P1

)
◦Q1

)
+ in ◦ P1 ;

(
λ
(
in, P1

)
◦Q2

)
+

in ◦ P2 ;
(
λ
(
in, P2

)
◦Q1

)
+ in ◦ P2 ;

(
λ
(
in, P2

)
◦Q2

)
= 〈 Definition of ◦P & Definition of λP 〉
P2 ; (n ◦Q1) + P2 ; (n ◦Q2) + P2 ; (error ◦Q1) + P2 ; (error ◦Q2)

= 〈 Definition of ◦Q 〉
P2 ;Q1 + P2 ;Q2 + P2 ;Q2 + P2 ;Q2

= 〈 Idempotence of + 〉
P2 ;Q1 + P2 ;Q2

= 〈 Definition of the Behaviours of Buffer 〉
full + overflow

From this example computation, we see that when the Buffer agent is subjected to the
the external stimulus in, it responds by behaving as a full buffer or as an overflow er-
ror which can be seen by the column corresponding to the external stimulus in in Ta-
ble 3 for ◦Buffer. Furthermore, with regard to the specification of the Buffer agent, we
can compute the orbits of each of the buffer behaviours. For instance, Orb(empty) =
{empty, full, underflow, overflow}. It is plain to see, for example, that the be-
haviour underflow is induced by the behaviour empty via the external stimulus out and the
behaviour overflow is induced by the behaviour empty via the external stimulus in � in.
In the specification of the Buffer agent, we can also see that we have two strong orbits,
namely, those given by {empty, full} and {underflow,overflow} which represent the
behaviours from agents P and Q, respectively. This is to say that we have (empty ∼K full)
and (underflow ∼K overflow). Finally, we can compute the stabilisers of each of the
buffer behaviours from the specification of the Buffer agent. For example, Stab(empty) is
generated by {error , in � out}.

5.3 Abstract Behaviour Specification

The second level of specification gives a specification of the abstract behaviour of each system
agent along with the external stimuli that it needs to respond to. Whereas at the stimulus-
response specification level, we specified all possible responses to all external stimuli for each
agent, at the abstract behaviour specification level, we restrict the specification to the desired
behaviour of an agent in the communicating system by computing the responses to the external
stimuli that can be introduced into the system in the given context.

For the purpose of this example, consider a context in which we only consider the Buffer
agent as behaving either as an empty buffer or as a full buffer. Furthermore, assume that
the behaviour of the Buffer agent may only be influenced by the introduction of in and out
stimuli since these are the only stimuli that another external agent may have control over.
This is to say that an external agent cannot issue an error since this is an uncontrollable
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stimulus which cannot be issued at will. Continuing with our illustrative example with this
context, we specify the abstract behaviour of the one-place buffer as follows:

Buffer

= 〈 Definition of Buffer in the given context 〉
(in ⊕ out) ◦ (empty + full)

= 〈 Definition 3(i) for
(
SK,+

)
〉

(in ⊕ out) ◦ empty + (in ⊕ out) ◦ full

= 〈 Definition 3(ii) for
(
SK,+

)
〉

in ◦ empty + out ◦ empty + in ◦ full + out ◦ full

= 〈 Definition of ◦Buffer 〉
full + underflow + overflow + empty

It is important to note that the specification of the Buffer agent at the abstract behaviour
specification level is a subset of the specification of the next behaviour and next stimulus
mappings for the Buffer agent given at the stimulus-response specification level. Additionally,
an interesting observation can be made at this level of specification, namely that even though
the specification in the given context makes no mention of the Buffer agent’s error behaviour,
through the mathematics of C2KA, we find that the Buffer agent does indeed have behaviours
for its underflow and overflow error states resulting from the influence of the external stimuli
that can be introduced into the system.

At the abstract behaviour specification level, C2KA can be viewed as an event-based model
of communication. In C2KA, the left S-semimodule

(
SK,+

)
and the rightK-semimodule

(
SK,⊕

)
allow us to specify how the external stimuli influence the behaviour of each agent in a given
system. For this reason, this level is specification is best suited for describing message pass-
ing communication where agents transfer information explicitly through the exchange of data
structures, either synchronously or asynchronously.

5.4 Concrete Behaviour Specification

The last level of specification involves providing the state-level specification of each agent
behaviour. The state-level behaviours of agents are represented as programs which are defined
over a set of events and that can be executed by the system (i.e., the set of basic behaviours {P1,
P2, Q1, Q2, 0, 1}). At this level, we define the concrete programs for each of the CKA terms
which specify each agent behaviour.

The concrete behaviour specification provides the following state-level programs for each
behaviour of the Buffer agent.

empty def
= flag1 := off ; flag2 := off

full def
= flag1 := on ; flag2 := off

underflow def
= flag1 := off ; flag2 := on

overflow def
= flag1 := on ; flag2 := on
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When considering the concrete behaviour specification level, C2KA can be viewed as a
state-based model of communication. Since C2KA extends concurrent Kleene algebra, it in-
herits this model of communication from CKA. Just as in CKA, the instantiation of a low-level
model of programs and traces for C2KA affords the ability to specify communication through
shared events and the dependencies between them. Because of this, this level is specification
is best suited for shared-variable communication where agents transfer information through a
shared medium such as variables, memory locations, etc.

C2KA provides a hybrid mathematical framework which is able to capture both the in-
fluence of external stimuli on agent behaviour as well the communication and concurrency
of agents at the abstract algebraic level in systems of communicating agents. Depending on
which level of specification we are working at, the model can be viewed as either event-based
or state-based. This gives flexibility in allowing us to choose which level is most suitable for
the given problem. The context of the given problem will help to dictate at which level we
need to work.

6 Related Work and Discussion

Existing state-based and event-based formalisms for communication and concurrency such
as LTL [27], CTL [2], CTL∗ [4], labelled transition systems [16], Petri nets [26], process
calculi (e.g., CCS [22], CSP [6], ACP [1], and π-calculus [24]), Hoare traces [7], Mazurkiewicz
traces [20], synchronisation trees [22], pomsets [28], and event structures [32] are primarily
interested in modelling the behaviour of a system either in terms of the properties of its states
or in terms of the observability of events. However, they do not directly, if at all, provide
a hybrid model of communication and concurrency which encompass the characteristics of
both state-based and event-based models. Concurrent Kleene algebra is perhaps the closest
formalism to providing such a hybrid model. While CKA can be perceived as a hybrid model
for concurrency, the same cannot be said for communication since communication in CKA is
not directly evident.

C2KA offers a powerful algebraic setting which can capture both the influence of external
stimuli on agent behaviour as well the communication and concurrency of agents at the ab-
stract algebraic level. It uses notions from classical algebra to extend the algebraic foundation
provided by CKA. If we consider a C2KA with a trivial stimulus structure (i.e., S = {n}),
then the next behaviour and next stimulus mappings are trivial and the C2KA reduces to a
CKA.

Furthermore, C2KA supports the ability to work in either a state-based or event-based
model for the specification of concurrent and communicating systems. It gives us the ability
to separate the communicating and concurrent behaviour in a system and its environment.
This separation of concerns allows us to consider the influence of stimuli from the world in
which the agent resides as transformations of agent behaviour and yields the three levels of
specification offered by C2KA. With these levels of specification, C2KA is able to capture the
notions of message passing communication and shared-variable communication consistent with
the hybrid view of agent communication depicted in Figure 1. Specifically, at the abstract
behaviour specification level, we are interested only in the behaviour of an agent as dictated by
the stimulus-response relationships that exist in the given system. In this way, the behaviour
of an agent is dictated by its responses to external stimuli without the need to articulate the
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internal state-based system of each behaviour. On the other hand, by instantiating a concrete
model of agent behaviour, such as that of programs and traces similar to what is done with
CKA [8, 9, 10, 11] at the concrete behaviour specification level, we have the ability to define
the state-based model of agent behaviour. In this way, if the given problem requires insight
into how external stimuli are processed by an agent, the concrete behaviour specification level
affords the ability to specify such internal states of agent behaviours in terms of programs
on concrete state variables. Because of this, C2KA is flexible in allowing the context of the
given problem to dictate which level of abstraction is most suitable. For example, if the given
problem need not worry about the internal states of agent behaviours, then we can specify the
system at the abstract behaviour specification level without any modifications to the proposed
framework. Moreover, C2KA inherits the algebraic foundation of CKA with all of its models
and theory.

7 Conclusion and Future Work

In this paper, we proposed a mathematical framework for communication and concurrency
called Communicating Concurrent Kleene Algebra (C2KA). C2KA extends the algebraic
setting of concurrent Kleene algebra with semimodules in order to capture the influence of
external stimuli on the behaviour of system agents in addition to the communication among
agents through shared variables and communication channels. C2KA supports the ability to
work in either a state-based or event-based model for both the specification of communicating
and concurrent behaviour by providing three levels of specification which reflect different levels
of abstraction for the behaviour of agents in a given system. To the best of our knowledge, such
a formalism does not currently exist in the literature and is required for dealing with problems
such as studying the necessary conditions for covert channel existence [15]. A hybrid view of
communication among agents and the influence of external stimuli on agent behaviour needs to
be considered when examining the potential for communication condition for covert channels.
Because of the separation of communicating and concurrent behaviour, we expect that C2KA
can aid in designing and analysing systems which are robust against covert communication
channels. Since it provides a means for specifying systems of communicating agents, C2KA
can be an integral part of verifying the necessary conditions for covert channels [15]. We are
using it to formalise and verify the potential for communication condition for covert channel
existence. We also aim to examine the ability to adapt C2KA for use in solving interface
equations (e.g., [29]) which can allow for implicit agent behaviour specifications in a variety
of application domains. Furthermore, we intend to further investigate the theory and use of
C2KA to capture and explain the influence of external stimuli on agent behaviour in social
networking environments.
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A Detailed Proofs of Propositions

A.1 Detailed Proof of Proposition 2

For all a ∈ K, a ;© ≤ a *©.

a ;© ≤ a *©

⇐⇒ 〈 Right Identity of ; 〉
a ;© ; 1 ≤ a *©

⇐= 〈 Definition 1(iii) for ; 〉
1 + a ; a *© ≤ a *©

⇐⇒ 〈 Definition 1(i) for *© 〉
1 + a ; a *© ≤ 1 + a ∗ a *©

⇐⇒ 〈 Proposition 1(iii) 〉
true

A.2 Detailed Proof of Proposition 3

Let
(
S,K

)
be a C2KA. For all a, b ∈ K and s, t ∈ S:

(i) a ≤K b =⇒ s ◦ a ≤K s ◦ b

s ◦ a ≤K s ◦ b
⇐⇒ 〈 Definition of ≤K 〉
s ◦ a+ s ◦ b = s ◦ b

⇐⇒ 〈 Definition 3(i) for
(
SK,+

)
〉

s ◦ (a+ b) = s ◦ b
⇐= 〈 Hypothesis: a ≤K b 〉
s ◦ b = s ◦ b

⇐⇒ 〈 Reflexivity of = 〉
true

(ii) s ≤S t =⇒ s ◦ a ≤K t ◦ a

s ◦ a ≤K t ◦ a
⇐⇒ 〈 Definition of ≤K 〉
s ◦ a+ t ◦ a = t ◦ a

⇐⇒ 〈 Definition 3(ii) for
(
SK,+

)
〉

(s⊕ t) ◦ a = t ◦ a
⇐= 〈 Hypothesis: s ≤S t 〉
t ◦ a = t ◦ a

⇐⇒ 〈 Reflexivity of = 〉
true
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(iii) a ≤K b ∧ s ≤S t =⇒ s ◦ a ≤K t ◦ b

s ◦ a ≤K t ◦ b
⇐⇒ 〈 Definition of ≤K 〉
s ◦ a+ t ◦ b = t ◦ b

⇐= 〈 Hypothesis: s ≤S t 〉
s ◦ a+ (s⊕ t) ◦ b = t ◦ b

⇐⇒ 〈 Definition 3(ii) for
(
SK,+

)
〉

s ◦ a+ s ◦ b+ t ◦ b = t ◦ b
⇐⇒ 〈 Definition 3(i) for

(
SK,+

)
〉

s ◦ (a+ b) + t ◦ b = t ◦ b
⇐= 〈 Hypothesis: a ≤K b 〉
s ◦ b+ t ◦ b = t ◦ b

⇐⇒ 〈 Definition 3(ii) for
(
SK,+

)
〉

(s⊕ t) ◦ b = t ◦ b
⇐= 〈 Hypothesis: s ≤S t 〉
t ◦ b = t ◦ b

⇐⇒ 〈 Reflexivity of = 〉
true

(iv) s ◦ (a ; b+ b ; a) ≤K s ◦ (a ∗ b)

s ◦ (a ; b+ b ; a) ≤K s ◦ (a ∗ b)
⇐= 〈 Proposition 3(i) 〉
a ; b+ b ; a ≤K a ∗ b

⇐⇒ 〈 Proposition 1(i) & Proposition 1(iii) & Idempotence of + 〉
true

(v) s ◦ a ;© ≤K s ◦ a *©

s ◦ a ;© ≤K s ◦ a *©

⇐= 〈 Proposition 3(i) 〉
a ;© ≤K a *©

⇐⇒ 〈 Proposition 2 〉
true
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(vi) s ◦ a ;© = +(n | n ≥ 0 : s ◦ an ) Recall the definition of a ;©:

a
;© = +(n | n ≥ 0 : an ) (1)

where

a0
def
= 1

an+1 def
= an ; a

s ◦ a ;©

= 〈 Definition of a ;©: Equation (1) 〉
s ◦ +(n | n ≥ 0 : an )

= 〈 Definition 3(i) for
(
SK,+

)
〉

+(n | n ≥ 0 : s ◦ an )

(vii) s ≤S t =⇒ λ(s, a) ≤S λ(t, a)

λ(s, a) ≤S λ(t, a)
⇐⇒ 〈 Definition of ≤S 〉
λ(s, a)⊕ λ(t, a) = λ(t, a)

⇐⇒ 〈 Definition 3(i) for
(
SK,⊕

)
〉

λ
(
(s⊕ t), a

)
= λ(t, a)

⇐= 〈 Hypothesis: s ≤S t 〉
λ(t, a) = λ(t, a)

⇐⇒ 〈 Reflexivity of = 〉
true

(viii) a ≤K b =⇒ λ(s, a) ≤S λ(s, b)

λ(s, a) ≤S λ(s, b)
⇐⇒ 〈 Definition of ≤S 〉
λ(s, a)⊕ λ(s, b) = λ(s, b)

⇐⇒ 〈 Definition 3(ii) for
(
SK,⊕

)
〉

λ
(
s, (a+ b)

)
= λ(s, b)

⇐= 〈 Hypothesis: a ≤K b 〉
λ(s, b) = λ(s, b)

⇐⇒ 〈 Reflexivity of = 〉
true
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(ix) a ≤K b ∧ s ≤S t =⇒ λ(s, a) ≤S λ(t, b)

λ(s, a) ≤S λ(t, b)
⇐⇒ 〈 Definition of ≤S 〉
λ(s, a)⊕ λ(t, b) = λ(t, b)

⇐= 〈 Hypothesis: s ≤S t 〉
λ(s, a)⊕ λ

(
(s⊕ t), b

)
= λ(t, b)

⇐⇒ 〈 Definition 3(i) for
(
SK,⊕

)
〉

λ(s, a)⊕ λ(s, b)⊕ λ(t, b) = λ(t, b)

⇐⇒ 〈 Definition 3(ii) for
(
SK,⊕

)
〉

λ
(
s, (a+ b)

)
⊕ λ(t, b) = t ◦ b

⇐= 〈 Hypothesis: a ≤K b 〉
λ(s, b)⊕ λ(t, b) = λ(t, b)

⇐⇒ 〈 Definition 3(i) for
(
SK,⊕

)
〉

λ
(
(s⊕ t), b

)
= λ(t, b)

⇐= 〈 Hypothesis: s ≤S t 〉
λ(t, b) = λ(t, b)

⇐⇒ 〈 Reflexivity of = 〉
true

(x) λ(s, (a ; b+ b ; a)) ≤S λ(s, (a ∗ b))

λ(s, (a ; b+ b ; a)) ≤S λ(s, (a ∗ b))
⇐= 〈 Proposition 3(viii) 〉
a ; b+ b ; a ≤K a ∗ b

⇐⇒ 〈 Proposition 1(i) & Proposition 1(iii) & Idempotence of + 〉
true

(xi) λ(s, a ;©) ≤S λ(s, a *©)

λ(s, a ;©) ≤S λ(s, a *©)

⇐= 〈 Proposition 3(viii) 〉
a ;© ≤K a *©

⇐⇒ 〈 Proposition 2 〉
true
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(xii) λ(s, a ;©) = ⊕(n | n ≥ 0 : λ(s, an) )

λ(s, a ;©)

= 〈 Definition of a ;©: Equation (1) 〉
λ(s, +(n | n ≥ 0 : an ))

= 〈 Definition 3(ii) for
(
SK,⊕

)
〉

⊕(n | n ≥ 0 : s ◦ an )

A.3 Detailed Proof of Proposition 4

Let
(
S,K

)
be a C2KA. For all a, b, c ∈ K:

(i) a ≤K b =⇒ Orb(a)lK Orb(b)

Orb(a)lK Orb(b)

⇐⇒ 〈 Definition 7 〉
∀
(
x | x ∈ Orb(a) : ∃(y | y ∈ Orb(b) : x ≤K y )

)
⇐⇒ 〈 Trading for ∀ & Trading for ∃ 〉
∀
(
x |: x ∈ Orb(a) =⇒ ∃(y |: y ∈ Orb(b) ∧ x ≤K y )

)
⇐⇒ 〈 Set Membership Axiom 〉
∀
(
x |: ∃(s | s ∈ S : s◦a = x ) =⇒ ∃

(
y |: ∃(s | s ∈ S : s◦b = y ) ∧ x ≤K y

) )
⇐⇒ 〈 Distributivity of ∧ over ∃ 〉
∀
(
x |: ∃(s | s ∈ S : s◦a = x ) =⇒ ∃

(
y |: ∃(s | s ∈ S : s◦b = y ∧ x ≤K y )

) )
⇐⇒ 〈 Interchange of Dummies 〉
∀
(
x |: ∃(s | s ∈ S : s◦a = x ) =⇒ ∃

(
s | s ∈ S : ∃(y |: s◦b = y ∧ x ≤K y )

) )
⇐⇒ 〈 Trading for ∃ 〉
∀
(
x |: ∃(s | s ∈ S : s ◦ a = x ) =⇒ ∃

(
s | s ∈ S : ∃(y | s ◦ b = y : x ≤K y )

) )
⇐⇒ 〈 One-point Rule 〉
∀
(
x |: ∃(s | s ∈ S : s ◦ a = x ) =⇒ ∃

(
s | s ∈ S : x ≤K s ◦ b

) )
⇐= 〈 Monotonic ∃-Body 〉
∀
(
x |: ∀(s | s ∈ S : s ◦ a = x =⇒ x ≤K s ◦ b )

)
⇐⇒ 〈 Definition of =⇒ 〉
∀
(
x |: ∀(s | s ∈ S : s ◦ a 6= x ∨ x ≤K s ◦ b )

)
⇐⇒ 〈 Definition of ≤K 〉
∀
(
x |: ∀(s | s ∈ S : s ◦ a 6= x ∨ x+ (s ◦ b) = s ◦ b )

)
⇐= 〈 Hypothesis: a ≤K b & Proposition 3(i) 〉
∀
(
x |: ∀(s | s ∈ S : true )

)
⇐⇒ 〈 ∀-True Body 〉

true
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(ii) Orb(a)lK Orb(a+ b)

Orb(a)lK Orb(a+ b)

⇐= 〈 Proposition 4(i) 〉
a ≤K a+ b

⇐⇒ 〈 Definition of ≤K & Idempotence of + 〉
a+ b = a+ b

⇐⇒ 〈 Reflexivity of = 〉
true

(iii) Orb((a ∗ b) ; (c ∗ d))lK Orb((a ; c) ∗ (b ; d))

Orb((a ∗ b) ; (c ∗ d))lK Orb((a ; c) ∗ (b ; d))
⇐= 〈 Proposition 4(i) 〉

(a ∗ b) ; (c ∗ d) ≤K (a ; c) ∗ (b ; d)
⇐⇒ 〈 Proposition 1(ii) 〉

true

(iv) Orb(a ; b)lK Orb(a ∗ b)

Orb(a ; b)lK Orb(a ∗ b)
⇐= 〈 Proposition 4(i) 〉
a ; b ≤K a ∗ b

⇐⇒ 〈 Proposition 1(iii) 〉
true

(v) Orb(a ; b+ b ; a)lK Orb(a ∗ b)

Orb(a ; b+ b ; a)lK Orb(a ∗ b)
⇐= 〈 Proposition 4(i) 〉
a ; b+ b ; a ≤K a ∗ b

⇐⇒ 〈 Proposition 1(i) & Proposition 1(iii) & Idempotence of + 〉
true
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(vi) Orb((a ∗ b) ; c)lK Orb(a ∗ (b ; c))

Orb((a ∗ b) ; c)lK Orb(a ∗ (b ; c))
⇐= 〈 Proposition 4(i) 〉

(a ∗ b) ; c ≤K a ∗ (b ; c)
⇐⇒ 〈 Proposition 1(iv) 〉

true

(vii) Orb(a ; (b ∗ c))lK Orb((a ; b) ∗ c)

Orb(a ; (b ∗ c))lK Orb((a ; b) ∗ c)
⇐= 〈 Proposition 4(i) 〉
a ; (b ∗ c) ≤K (a ; b) ∗ c

⇐⇒ 〈 Proposition 1(v) 〉
true

(viii) Orb(a ;©)lK Orb(a *©)

Orb(a ;©)lK Orb(a *©)

⇐= 〈 Proposition 4(i) 〉
a ;© ≤K a *©

⇐⇒ 〈 Proposition 2 〉
true

(ix) Orb(a)lK Orb(c) ∧ Orb(b)lK Orb(c) ⇐⇒ Orb(a) ∪ Orb(b)lK Orb(c)

Orb(a) ∪ Orb(b)lK Orb(c)

⇐⇒ 〈 Definition 7 〉
∀
(
x | x ∈ Orb(a) ∪ Orb(b) : ∃(y | y ∈ Orb(c) : x ≤K y )

)
⇐⇒ 〈 Set Union Axiom 〉
∀
(
x | x ∈ Orb(a) ∨ x ∈ Orb(b) : ∃(y | y ∈ Orb(c) : x ≤K y )

)
⇐⇒ 〈 Range Split 〉
∀
(
x | x ∈ Orb(a) : ∃(y | y ∈ Orb(c) : x ≤K y )

)
∧

∀
(
x | x ∈ Orb(b) : ∃(y | y ∈ Orb(c) : x ≤K y )

)
⇐⇒ 〈 Definition 7 〉

Orb(a)lK Orb(c) ∧ Orb(b)lK Orb(c)
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A.4 Detailed Proof of Stab(a) ∩ Stab(b)lS Stab(a+ b)

For all a, b ∈ K, Stab(a) ∩ Stab(b)lS Stab(a+ b).

Stab(a) ∩ Stab(b)lS Stab(a+ b)

⇐⇒ 〈 Definition 7 for lS 〉
∀
(
x | x ∈ Stab(a) ∩ Stab(b) : ∃(y | y ∈ Stab(a+ b) : x ≤S y )

)
⇐⇒ 〈 Trading for ∃ 〉
∀
(
x | x ∈ Stab(a) ∩ Stab(b) : ∃(y |: y ∈ Stab(a+ b) ∧ x ≤K y )

)
⇐= 〈 ∃-Introduction 〉
∀
(
x | x ∈ Stab(a) ∩ Stab(b) : x ∈ Stab(a+ b) ∧ x ≤K x

)
⇐⇒ 〈 Trading for ∀ & Reflexivity of ≤K 〉
∀
(
x |: x ∈ Stab(a) ∩ Stab(b) =⇒ x ∈ Stab(a+ b)

)
⇐⇒ 〈 Definition 6(iii) 〉
∀
(
x |: x ◦ a = a ∧ x ◦ b = b =⇒ x ◦ (a+ b) = a+ b

)
⇐⇒ 〈 Definition 3(i) for

(
SK,+

)
〉

∀
(
x |: true

)
⇐⇒ 〈 ∀-True Body 〉

true

A.5 Detailed Proof of Proposition 5

Let
(
S,K

)
be a C2KA and let a, b ∈ K.

(i) 0 is a fixed point w.r.t. ◦.

0 is a fixed point
⇐⇒ 〈 Definition 6(iv) 〉
∀(s | s ∈ S : s ◦ 0 = 0 )

⇐⇒ 〈
(
SK,+

)
is zero-preserving (d ◦ a = 0) 〉

∀(s | s ∈ S : s ◦ (d ◦ a) = 0 )

⇐⇒ 〈 Definition 3(iii) 〉
∀(s | s ∈ S : (s� d) ◦ a = 0 )

⇐⇒ 〈 d is multiplicatively absorbing in S (s� d = d) 〉
∀(s | s ∈ S : d ◦ a = 0 )

⇐⇒ 〈
(
SK,+

)
is zero-preserving (d ◦ a = 0) 〉

∀(s | s ∈ S : true )
⇐⇒ 〈 ∀-True Body 〉

true
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(ii) a and b are fixed points =⇒ a+ b is a fixed point

a+ b is a fixed point
⇐⇒ 〈 Definition 6(iv) 〉
∀(s | s ∈ S\{d} : s ◦ (a+ b) = a+ b )

⇐⇒ 〈 Definition 3(i) for
(
SK,+

)
〉

∀(s | s ∈ S\{d} : s ◦ a+ s ◦ b = a+ b )

⇐= 〈 Hypothesis: a and b are fixed points 〉
∀(s | s ∈ S\{d} : a+ b = a+ b )

⇐⇒ 〈 Reflexivity of = 〉
∀(s | s ∈ S\{d} : true )

⇐⇒ 〈 ∀-True Body 〉
true

(iii) a and b are fixed points =⇒ a ; b is a fixed point

a ; b is a fixed point
⇐⇒ 〈 Definition 6(iv) 〉
∀(s | s ∈ S\{d} : s ◦ (a ; b) = a ; b )

⇐⇒ 〈 Definition 5(i) 〉
∀
(
s | s ∈ S\{d} : (s ◦ a) ;

(
λ(s, a) ◦ b

)
= a ; b

)
⇐= 〈 λ(s, a) ∈ S & Hypothesis: a and b are fixed points 〉
∀(s | s ∈ S\{d} : a ; b = a ; b )

⇐⇒ 〈 Reflexivity of = 〉
∀(s | s ∈ S\{d} : true )

⇐⇒ 〈 ∀-True Body 〉
true
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(iv) a is a fixed point ∧
(
S,K

)
is without reactivation =⇒ a ;© is a fixed point

a ;© is a fixed point
⇐⇒ 〈 Definition 6(iv) 〉
∀(s | s ∈ S\{d} : s ◦ a ;© = a ;© )

⇐⇒ 〈 Proposition 3(vi) 〉
∀(s | s ∈ S\{d} : +(n | n ≥ 0 : s ◦ an ) = a ;© )

⇐= 〈 Hypothesis: a is a fixed point ∧
(
S,K

)
is without reactivation (s◦1 = 1)

& Proposition 5(iii) 〉
∀(s | s ∈ S\{d} : +(n | n ≥ 0 : an ) = a ;© )

⇐⇒ 〈 Definition of a ;©: Equation (1) 〉
∀(s | s ∈ S\{d} : a ;© = a ;© )

⇐⇒ 〈 Reflexivity of = 〉
∀(s | s ∈ S\{d} : true )

⇐⇒ 〈 ∀-True Body 〉
true

A.6 Detailed Proof of Proposition 6

Let a, b, c ∈ K be agent behaviours.

(i) a is a fixed point =⇒ ∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : ¬(aC b) )

∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : ¬(aC b) )

⇐⇒ 〈 Definition 8 & Set Membership Axiom 〉
∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : b /∈ Orb(a) )

⇐⇒ 〈 Trading for ∀ 〉
∀(b | b ∈ K : (b 6= 0 ∧ b 6= a) =⇒ b /∈ Orb(a) )

⇐= 〈 Hypothesis: a is a fixed point =⇒ Orb(a) = {0, a} 〉
∀(b | b ∈ K : (b 6= 0 ∧ b 6= a) =⇒ b /∈ {0, a} )

⇐⇒ 〈 b /∈ {0, a} ⇐⇒ (b 6= 0 ∧ b 6= a) 〉
∀(b | b ∈ K : (b 6= 0 ∧ b 6= a) =⇒ (b 6= 0 ∧ b 6= a) )

⇐⇒ 〈 Reflexivity of =⇒ 〉
∀(b | b ∈ K : true )

⇐⇒ 〈 ∀-True Body 〉
true
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(ii) a ∼K b =⇒ aC b ∧ bC a

aC b ∧ bC a

⇐⇒ 〈 Definition 8 & Set Membership Axiom 〉
b ∈ Orb(a) ∧ a ∈ Orb(b)

⇐= 〈 Hypothesis: a ∼K b ⇐⇒ Orb(a) = Orb(b) 〉
b ∈ Orb(b) ∧ a ∈ Orb(a)

⇐⇒ 〈 Definition of Orb(b) & Definition of Orb(a) 〉
b ∈ {s ◦ b | s ∈ S} ∧ a ∈ {s ◦ a | s ∈ S}

⇐⇒ 〈 Set Membership Axiom 〉
∃(s | s ∈ S : s ◦ b = b ) ∧ ∃(s | s ∈ S : s ◦ a = a )

⇐= 〈 ∃-Introduction 〉
n ◦ b = b ∧ n ◦ a = a

⇐⇒ 〈
(
SK,+

)
is unitary (n ◦ a = a) & Idempotence of ∧ 〉

true

(iii) a ∼K b =⇒ (aC c ⇐⇒ bC c)

a ∼K b =⇒ (aC c ⇐⇒ bC c)

⇐⇒ 〈 Mutual Implication 〉
a ∼K b =⇒

[
(aC c =⇒ bC c) ∧ (bC c =⇒ aC c)

]
⇐⇒ 〈 Distributivity of =⇒ over ∧ 〉[

a ∼K b =⇒ (aC c =⇒ bC c)
]
∧

[
a ∼K b =⇒ (bC c =⇒ aC c)

]
⇐⇒ 〈 Shunting 〉[

a ∼K b ∧ aC c =⇒ bC c
]
∧

[
a ∼K b ∧ bC c =⇒ aC c

]
⇐⇒ 〈 Definition of ∼K & Definition 8 〉[

Orb(a) = Orb(b) ∧ c ∈ Orb(a) =⇒ c ∈ Orb(b)
]
∧[

Orb(a) = Orb(b) ∧ c ∈ Orb(b) =⇒ c ∈ Orb(a)
]

⇐⇒ 〈 x ∈ A ⇐⇒ {x} ⊆ A 〉[
Orb(a) = Orb(b) ∧ {c} ⊆ Orb(a) =⇒ {c} ⊆ Orb(b)

]
∧[

Orb(a) = Orb(b) ∧ {c} ⊆ Orb(b) =⇒ {c} ⊆ Orb(a)
]

⇐⇒ 〈 Transitivity of ⊆ & Idempotence of ∧ 〉
true
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B Input File for Prover9

The main purpose of this appendix is to document the extent to which the proofs in this
paper can be automated. For this purpose, we have used the Prover9 [21] automated theorem
proving system. Below, we give the Prover9 input file for C2KA. Using Prover9, we are able
to automatically prove the results given in Proposition 2 and Proposition 3 (except for (vi)
and (xii)). We do not provide the proof outputs from Prover9 in this paper.

% Saved by Prover9-Mace4 Version 0.5B, March 2008 (Dec 2007 LADR).

set(ignore_option_dependencies). % GUI handles dependencies

if(Prover9). % Options for Prover9
assign(max_seconds, 60).

end_if.

if(Mace4). % Options for Mace4
assign(max_seconds, 60).

end_if.

formulas(assumptions).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CONCURRENT KLEENE ALGEBRA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% x,x1,x2,x3,x4 are elements of K
% PK is + -- choice of agent behaviours
% PC is * -- parallel composition of agent behaviours
% SC is ; -- sequential composition of agent behaviours
% PI is (*) -- parallel iteration of agent behaviours
% SI is (;) -- sequential iteration of agent behaviours
% 0k is the inactive agent
% 1k is the idle agent
% RK is the sub-behaviour relation on agent behaviours
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PK(x1,PK(x2,x3)) = PK(PK(x1,x2),x3) # label("associativity of PK").
PK(x1,x2) = PK(x2,x1) # label("commutativity of PK").
PK(x,x) = x # label("idempotence of PK").
PK(x,"0k") = x # label("identity of PK").

PC(x1,PC(x2,x3)) = PC(PC(x1,x2),x3) # label("associativity of PC").
PC(x1,x2) = PC(x2,x1) # label("commutativity of PC").
PC(x,"1k") = x # label("identity of PC").
PC(x1,PK(x2,x3)) = PK(PC(x1,x2),PC(x1,x3)) # label("distributivity of PC over PK").
PC(x,"0k") = "0k" # label("annihilator of PC").

SC(x1,SC(x2,x3)) = SC(SC(x1,x2),x3) # label("associativity of SC").
SC(x,"1s") = x # label("right identity of SC").
SC("1s",x) = x # label("left identity of SC").
SC(PK(x1,x2),x3) = PK(SC(x1,x3),SC(x2,x3)) # label("right distributivity of SC over PK").
SC(x1,PK(x2,x3)) = PK(SC(x1,x2),SC(x1,x3)) # label("left distributivity of SC over PK").
SC(x,"0s") = "0s" # label("right annihilator of SC").
SC("0s",x) = "0s" # label("left annihilator of SC").

RK(SC(PC(x4,x1),PC(x2,x3)),PC(SC(x4,x2),SC(x1,x3))) # label("exchange axiom").

PK("1k",PC(x,PI(x))) = PI(x) # label("right unfold rule of PI").
PK("1k",PC(PI(x),x)) = PI(x) # label("left unfold rule of PI").
RK(PK(x3,PC(x1,x2)),x2) -> RK(PC(PI(x1),x3),x2) # label("left induction rule of PI").
RK(PK(x3,PC(x2,x1)),x2) -> RK(PC(x3,PI(x1)),x2) # label("right induction rule of PI").
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PK("1k",SC(x,SI(x))) = SI(x) # label("right unfold rule of SI").
PK("1k",SC(SI(x),x)) = SI(x) # label("left unfold rule of SI").
RK(PK(x3,SC(x1,x2)),x2) -> RK(SC(SI(x1),x3),x2) # label("left induction rule of SI").
RK(PK(x3,SC(x2,x1)),x2) -> RK(SC(x3,SI(x1)),x2) # label("right induction rule of SI").

RK(x1,x2) <-> PK(x1,x2) = x2 # label("definition of RK").

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% STIMULUS STRUCTURE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% y,y1,y2,y3 are elements of S
% PS is (+) -- choice of external stimuli
% DS is (.) -- sequential composition of external stimuli
% 0s is the deactivation stimulus
% 1s is the neutral stimulus
% RS is the sub-stimulus relation on external stimuli
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PS(y1,PS(y2,y3)) = PS(PS(y1,y2),y3) # label("associativity of PS").
PS(y1,y2) = PS(y2,y1) # label("commutativity of PS").
PS(y,y) = y # label("idempotence of PS").
PS(y,"0s") = y # label("identity of PS").

DS(y1,DS(y2,y3)) = DS(DS(y1,y2),y3) # label("associativity of DS").
DS(y,"1s") = y # label("right identity of DS").
DS("1s",y) = y # label("left identity of DS").
DS(PS(y1,y2),y3) = PS(DS(y1,y3),DS(y2,y3)) # label("right distributivity of DS over PS").
DS(y1,PS(y2,y3)) = PS(DS(y1,y2),DS(y1,y3)) # label("left distributivity of DS over PS").
DS(y,"0s")="0s" # label("right annihilator of DS").
DS("0s",y)="0s" # label("left annihilator of DS").

RS(y1,y2) <-> PS(y1,y2) = y2 # label("definition of RS").

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LEFT S-SEMIMODULE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% f: S x K -> K is the next behaviour mapping o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f(y,PK(x1,x2)) = PK(f(y,x1),f(y,x2)) # label("distributivity of f over PK").
f(PS(y1,y2),x) = PK(f(y1,x),f(y2,x)) # label("distributivity of f over PS").
f(DS(y1,y2),x) = f(y1,f(y2,x)) # label("sequential application of f").
f("1s",x) = x # label("unitary f").
f("0s",x) = "0k" # label("zero-preserving f").

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RIGHT K-SEMIMODULE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% g: S x K -> S is the next stimulus mapping lambda
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g(PS(y1,y2),x) = PS(g(y1,x),g(y2,x)) # label("distributivity of g over PS").
g(y,PK(x1,x2)) = PS(g(y,x1),g(y,x2)) # label("distributivity of g over PK").
g(y,SC(x1,x2)) = g(g(y,x1),x2) # label("sequential application of g").
g(y,"1k") = y # label("unitary g").
g(y,"0k") = "0s" # label("zero-preserving g").
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% COMMUNICATING CONCURRENT KLEENE ALGEBRA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f(y,SC(x1,x2)) = SC(f(y,x1),f(g(y,x1),x2)) # label("cascading axiom").
RK(x3,x1) | SC(f(y,x1),f(g(y,x3),x2)) = "0k" # label("cascading output law").
g(DS(y1,y2),x) = DS(g(y1,f(y2,x)),g(y2,x)) # label("sequential output axiom").

end_of_list.

formulas(goals).

RK(SI(x),PI(x)) # label("Proposition 2").

f(y,"0k") = "0k" # label("Proposition 3(i)").
RK(x1,x2) -> RK(f(y,x1),f(y,x2)) # label("Proposition 3(ii)").
RS(y1,y2) -> RK(f(y1,x),f(y2,x)) # label("Proposition 3(iii)").
RK(x1,x2) & RS(y1,y2) -> RK(f(y1,x1),f(y2,x1)) # label("Proposition 3(iv)").
RK(f(y,PK(SC(x1,x2),SC(x2,x1))),f(y,PC(x1,x2))) # label("Proposition 3(v)").
RK(f(y,SI(x)),f(y,PI(x))) # label("Proposition 3(vi)").

g("0s",x) = "0s" # label("Proposition 3(viii)").
RS(y1,y2) -> RS(g(y1,x),g(y2,x)) # label("Proposition 3(ix)").
RK(x1,x2) -> RS(g(y,x1),g(y,x2)) # label("Proposition 3(x)").
RK(x1,x2) & RS(y1,y2) -> RS(g(y1,x1),g(y2,x1)) # label("Proposition 3(xi)").
RS(g(y,PK(SC(x1,x2),SC(x2,x1))),g(y,PC(x1,x2))) # label("Proposition 3(xii)").
RS(g(y,SI(x)),g(y,PI(x))) # label("Proposition 3(xiii)").

end_of_list.
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