Errata

Authors	:	Jason Jaskolka, Ridha Khedri, and Qinglei Zhang
Title	:	Endowing Concurrent Kleene Algebra with Communication Actions
Errata Date	:	February 5, 2015

Location: Section 4.4, Definition 5(ii), Page 25

Description:

There is an error in Definition 5(ii) that causes unintended consequences of the axiomatisation of C^2KA .

Correction:

Definition 5 (Communicating Concurrent Kleene Algebra). A Communicating Concurrent Kleene Algebra (C²KA) is a system (S, \mathcal{K}) , where $\mathcal{S} = (S, \oplus, \odot, \mathfrak{d}, \mathfrak{n})$ is a stimulus structure and $\mathcal{K} = (K, +, *, ;, ^{\circledast}, ^{\odot}, 0, 1)$ is a CKA such that (SK, +) is a unitary and zero-preserving left S-semimodule with mapping \circ : $S \times K \rightarrow K$ and $(S_{\mathcal{K}}, \oplus)$ is a unitary and zero-preserving right K-semimodule with mapping $\lambda : S \times K \to S$, and where the following axioms are satisfied for all $a, b, c \in K$ and $s, t \in S$:

- (i) $s \circ (a; b) = (s \circ a); (\lambda(s, a) \circ b)$
- (ii) $a \leq_{\mathcal{K}} c \lor b = 1 \lor (s \circ a); (\lambda(s, c) \circ b) = 0$
- (*iii*) $\lambda(s \odot t, a) = \lambda(s, (t \circ a)) \odot \lambda(t, a)$

In Definition 5, Axiom (ii), which is referred to as the cascading output law, states that when an external stimulus is introduced to the sequential composition (a; b), then either the cascaded stimulus must be generated by the behaviour a, or the behaviour b must be the idle agent behaviour 1. It allows distributivity of \circ over ; to be applied indiscriminately and ensures consistency between the next behaviour and next stimulus mappings with respect to the sequential composition of agent behaviours.