Errata

Authors	:	Jason Jaskolka and Ridha Khedri
\mathbf{Title}	:	A Formulation of the Potential for Communication Condition using $\mathrm{C}^{2}\mathrm{KA}$
Errata Date	:	February 5, 2015

Location: Section 2.2, Definition 4(ii), Page 164

Description: There is an error in Definition 4(ii) that causes unintended consequences of the axiomatisation of C^2KA .

Correction:

Definition 4 (Communicating Concurrent Kleene Algebra). A Communicating Concurrent Kleene Algebra (C²KA) is a system $(\mathscr{S}, \mathscr{K})$, where $\mathscr{S} = (S, \oplus, \odot, \mathfrak{d}, \mathfrak{n})$ is a stimulus structure and $\mathscr{K} = (K, +, *, ;, ^{\circledast}, ^{\odot}, 0, 1)$ is a CKA such that $(_{\mathscr{S}}K, +)$ is a unitary and zero-preserving left \mathscr{S} -semimodule with mapping $\circ : S \times K \to K$ and $(S_{\mathscr{K}}, \oplus)$ is a unitary and zero-preserving right \mathscr{K} -semimodule with mapping $\lambda : S \times K \to S$, and where the following axioms are satisfied for all $a, b, c \in K$ and $s, t \in S$:

- (i) $s \circ (a; b) = (s \circ a); (\lambda(s, a) \circ b)$
- (ii) $a \leq_{\mathscr{K}} c \lor b = 1 \lor (s \circ a); (\lambda(s, c) \circ b) = 0$
- (*iii*) $\lambda(s \odot t, a) = \lambda(s, (t \circ a)) \odot \lambda(t, a)$

In Definition 4, Axiom (ii), which is referred to as the cascading output law, states that when an external stimulus is introduced to the sequential composition (a; b), then either the cascaded stimulus must be generated by the behaviour a, or the behaviour b must be the idle agent behaviour 1. It allows distributivity of \circ over ; to be applied indiscriminately and ensures consistency between the next behaviour and next stimulus mappings with respect to the sequential composition of agent behaviours. **Location**: Section 3.1, Proposition 3(ii), Page 166

Description:

There is an error in the proof of Proposition 3(ii) (see below) causing the condition for Proposition 3(ii) to be incorrect.

Correction:

Proposition 3. Let $A = \langle a \rangle$, $B = \langle b \rangle$, and $C = \langle c \rangle$ be agents in \mathscr{C} .

- (i) If $\mathsf{B} \to_{\mathscr{S}} \mathsf{C}$ then $(\mathsf{A} + \mathsf{B}) \to_{\mathscr{S}} \mathsf{C}$.
- (*ii*) If $A \to_{\mathscr{S}} B$ then $A \to_{\mathscr{S}} (B + C)$ if $\forall (s, t \mid s, t \in S_b \land t \leq_{\mathscr{S}} \lambda(s, a) : \neg(t \circ b \leq_{\mathscr{K}} b + c \land t \circ c \leq_{\mathscr{K}} b + c)).$

Proof. The proof of (i) uses the definition of $\rightarrow_{\mathscr{S}}$, the distributivity of λ over +, the definition of $\leq_{\mathscr{S}}$, and the fact that \oplus is left-isotone with respect to $\leq_{\mathscr{S}}$. The proof of (ii) involves the definition of $\rightarrow_{\mathscr{S}}$, involves monotonic \exists -body, anti-monotonic \neg , distributivity of \circ over +, and substitution of = by =.

Location:

Description:

Section 3.3, Proposition 5(i) and (ii), Page 168 As a result of the error in Proposition 3(ii), there is an error in the proof and formulation of Proposition 5(i) and (ii). A slight change in the formulation of Proposition 5 is also made in order to simplify the proofs.

Correction:

Proposition 5. Let $A \rightsquigarrow^* B$ such that $\exists (C \mid C \in \mathscr{C} : A \rightsquigarrow C \land C \rightsquigarrow B)$ where $A = \langle a \rangle$, $B = \langle b \rangle$, and $C = \langle c \rangle$. Let R be the given dependence relation. Suppose C is replaced by another agent $C' = \langle c' \rangle$. Then,

- (i) If c' = (c; d), then $A \rightsquigarrow^* B$ if $\forall (s, t \mid s, t \in S_b \land t \leq_{\mathscr{S}} \lambda(s, c) : \lambda(t, d) = t) \lor (c; d) R b$.
- (*ii*) If c' = (c+d), then $A \rightsquigarrow^* B$ if $\forall (s,t \mid s,t \in S_b \land t \leq \mathscr{S} \lambda(s,a) : \neg(t \circ c \leq \mathscr{K} c+d \land t \circ d \leq \mathscr{K} c+d)).$
- (iii) If $c' = c^{\bigcirc}$, then $A \rightsquigarrow^* B$.
- (iv) If c' = 0 or c' = 1 and the C²KA is without reactivation, then $\neg(A \rightsquigarrow^* B)$.
- (v) If $c' \in Orb_{\mathcal{S}}(c)$, then $\mathsf{A} \rightsquigarrow^* \mathsf{B}$.
- (vi) If c' is a fixed point behaviour, then $A \rightsquigarrow^* B$ only if $a \operatorname{R} c' \land c' \operatorname{R} b$.

Proof. Each of the proofs involve the applications of definitions of $\rightsquigarrow, \rightarrow_{\mathscr{S}}$, and $\rightarrow_{\mathscr{E}}$ as well as the basic axioms of C²KA.

Location:	Appendix A, Detailed Proof of Proposition 3(ii), Page 172
Description:	There is an error in the detailed proof of Proposition 3(ii).
Correction:	Let $A = \langle a \rangle$, $B = \langle b \rangle$, and $C = \langle c \rangle$ be agents in \mathscr{C} .

(ii) If $A \to_{\mathscr{S}} B$ then $A \to_{\mathscr{S}} (B + C)$ if $\forall (s, t \mid s, t \in S_b \land t \leq_{\mathscr{S}} \lambda(s, a) :$ $\neg (t \circ b \leq_{\mathscr{K}} b + c \land t \circ c \leq_{\mathscr{K}} b + c)).$

$$\begin{array}{l} \mathsf{A} \rightarrow_{\mathscr{S}} \mathsf{B} \implies \mathsf{A} \rightarrow_{\mathscr{S}} (\mathsf{B} + \mathsf{C}) \\ \Leftrightarrow \qquad \langle \text{ Definition of } \rightarrow_{\mathscr{S}} \rangle \\ \exists (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : t \circ b \neq b) \implies \\ \exists (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : t \circ (b+c) \neq (b+c)) \\ \Leftarrow \qquad \langle \text{ Monotonic } \exists \text{-} \text{Body} \rangle \\ \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : t \circ b \neq b \implies t \circ (b+c) \neq (b+c)) \\ \Leftrightarrow \qquad \langle \text{ Anti-monotonic } \neg \rangle \\ \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : t \circ (b+c) = (b+c) \implies t \circ b = b) \\ \Leftrightarrow \qquad \langle \text{ Distributivity of } \circ \text{over } + \rangle \\ \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : (t \circ b + t \circ c) = (b+c) \implies t \circ b = b) \\ \Leftrightarrow \qquad \langle \text{ Idempotence of } + \rangle \\ \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : (t \circ b + t \circ c) = (b+c+b+c) \implies t \circ b = b) \\ \Leftrightarrow \qquad \langle \text{ Substitution of } = \text{by} = \rangle \\ \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : (t \circ b = (b+c) \land t \circ c = (b+c) \land (t \circ b + t \circ c) = (t \circ b + t \circ c)) \implies t \circ b = b) \\ \Leftrightarrow \qquad \langle \text{ Reflexivity of } = \& \text{ Identity of } \land \& \text{ Definition of } \Longrightarrow \rangle \\ \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : \neg (t \circ b = (b+c) \land t \circ c = (b+c)) \lor t \circ b = b) \\ \Leftrightarrow \qquad \langle \text{ De Morgan } \rangle \\ \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : t \circ b \neq (b+c) \lor t \circ c \neq (b+c) \lor t \circ b = b) \\ \Leftarrow \qquad \langle \text{ Hypothesis: } \forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,a) : \neg (t \circ b \in b) \\ \end{cases} \end{cases}$$

Location:	Appendix A, Detailed Proof of Proposition 5(i), Page 173
Description:	There is an error in the detailed proof of Proposition 5(i).
Correction:	${\rm Let}\; A \rightsquigarrow^* B \; {\rm such \; that} \;\; \exists \big(C \;\mid\; C \in \mathscr{C} \;:\; A \rightsquigarrow C \;\wedge\; C \rightsquigarrow B \big).$

(i) $C' = \langle c; d \rangle$ $A \rightsquigarrow C' \ \land \ C' \rightsquigarrow B$ \iff \langle Substitution: C' = (C; D) where $C = \langle c \rangle$ and $D = \langle d \rangle \rangle$ $\mathsf{A} \rightsquigarrow (\mathsf{C}\,;\mathsf{D}) \ \land \ (\mathsf{C}\,;\mathsf{D}) \rightsquigarrow \mathsf{B}$ $\langle \text{Hypothesis: } A \rightsquigarrow C \implies A \rightsquigarrow (C; D) \& \text{Identity of } \land \rangle$ \Leftarrow $(C;D) \rightsquigarrow B$ $\langle \text{ Definition of } \rightsquigarrow \rangle$ \iff $(\mathsf{C}\,;\mathsf{D}) \to_{\mathscr{S}} \mathsf{B} \ \lor \ (\mathsf{C}\,;\mathsf{D}) \to_{\mathscr{E}} \mathsf{B}$ $\langle \text{ Definition of} \to_{\mathscr{S}} \quad \& \quad \text{Definition of} \to_{\mathscr{E}} \rangle$ \iff $\exists \left(s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,(a\,;c)) : t \circ b \neq b\right) \lor (c\,;d) \operatorname{R} b$ \iff (Distributivity of λ over ;) $\exists \left(s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(\lambda(s,a),c) : t \circ b \neq b\right) \lor (c;d) \operatorname{R} b$ $\langle \text{Hypothesis:} [\mathsf{C} \rightsquigarrow \mathsf{B} \land (\forall (s,t \mid s,t \in S_b \land t \leq_{\mathscr{S}} \lambda(s,c) :$ \Leftarrow $\lambda(t,d) = t) \lor (c;d) \operatorname{R} b \rangle] \rangle$ true