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Abstract

Over the last decade, the world has entered into the age of “big data” and new
ways to represent and reason on enormous amounts of data are required. Work
in developing ontologies and sophisticated reasoning approaches partly addresses
these needs. However, ontology development is currently more of an art than
an engineering activity. Fundamental questions and concerns of ontology design
are often overlooked by developers and an ad hoc “one-time use” mentality has
emerged. Consequently, resulting ontologies are often difficult to modify, extend,
and reuse. To address this lack of design consideration in the ontology develop-
ment life-cycle, we propose an architecture based on a variant of the model-view-
controller (MVC-II) architectural style, thereby giving a new engineering view for
ontology design. The proposed architecture provides a step towards an ontology
design framework that can supplement existing development methodologies.

Keywords: ontology design, ontology engineering, MVC-II architecture,
knowledge representation, reasoning, separation of concerns
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1 Introduction and Motivation

As the world continues to push towards new technologies and as the amount of information
that is collected and transferred continues to grow, new ways to represent and reason on
copious amounts of data are required. The reasoning needs of today’s world are not the same
as they once were with the development of expert systems in the 1980s. The old classification
systems [50] are now outdated. With such enormous amounts of data, there is an evolving
need for concurrent and distributed reasoning that gives the ability to reason about different
parts of information or on different concerns or viewpoints in parallel.

The emergence of ontologies and sophisticated reasoning approaches has led to improve-
ments in the ability to reason on large amounts of information. However, there are still many
difficulties in appropriately developing ontologies that can be used for the emerging reasoning
needs in the age of “big data”. The process of developing an ontology is more of an art rather
than an engineering activity [21]. It is often the case that development teams follow their own
set of development phases and design principles and criteria. Because of this, there does not
exist a set of agreed-upon guidelines and methods for designing and developing ontologies [14].
This leads to development teams making leaps from knowledge acquisition phases straight to
implementation phases, often overlooking fundamental questions and concerns of ontology de-
sign. Consequently, development teams quickly reach a number of roadblocks in their quest
to develop ontologies that are modifiable, extendable, and reusable (see, for example, [10]).

Perhaps the most significant issue plaguing the development of ontologies is the sparse
availability of methodologies that seriously consider design concerns [39]. Geller et al. [19]
suggested that this problem can be addressed by establishing and using better methodologies
when developing ontologies from scratch, or from smaller ontologies. The standardisation
and adoption of a generally accepted methodology and notation for designing and developing
ontologies is needed [14, 21]. Such a methodology that everyone accepted, understood, and
used in practice would undoubtedly increase the modifiability, extendability, and reusability
of ontologies. Furthermore, it is well-known that at the heart of many ontologies is the need to
specify knowledge and to automatically draw conclusions or information from the knowledge
and data sets. As such, related investigations into ontology development aim to tackle the
well-known trade-off between semantic expressivity and computational feasibility. However,
due to the distributed nature of most of their applications, ontologies require the integration of
multiple knowledge sources and the need to relate heterogeneous ontological specifications [27].
Although there has been some work in the area of concurrent and distributed reasoning (e.g., |2,
42]), the current state-of-the-art for ontology development (e.g., [11, 15, 21, 44]) largely reflects
a perspective that fails to recognise its need in many modern application domains.

Throughout this paper, an ontology is viewed as a complete system that gives an under-
standing of a world. With this understanding, we propose an ontology design architecture
based on a variation of the model-view-controller (MVC-II) architectural style in an effort to
address the lack of design effort put forth in current ontology development life-cycles. This
use of the MVC-II architectural style is inspired from the area of software engineering. The
proposed architecture aims to provide a clear separation of concerns with respect to the knowl-
edge representation and reasoning abilities of the developed ontologies. Furthermore, it looks
to separate the domain-independent and domain-specific knowledge required of an ontology
to capture particular viewpoints of the possible worlds that it needs to consider.



We do not claim to provide a new methodology for developing ontologies from start to
finish, or that existing methodologies are not important. Rather, we target a framework that
supplements the development phases in existing methodologies. We seek to enrich current
development methodologies by injecting a more systematic and dedicated design phase into
the currently established life-cycle. Our goal is to offer an architectural design framework that
practitioners can adopt in order to develop ontologies that are modifiable, extendable, and
reusable, and that also fit a particular purpose. It should also be noted that we do not claim
to solve every issue with regard to ontology design. Instead, the views in this paper intend
to break down the current convention of developing ontologies in an ad hoc manner without
sufficient assessment of the questions and concerns required for a design that permits practical
use and reuse. We therefore propose to establish a new engineering view of ontology design
and development. In this paper, we take a few steps in this new direction and we indicate
what the next steps should be.

The remainder of this paper is organised as follows. Section 2 provides a discussion of the
related work. Section 3 articulates the proposed ontology design architecture. Section 4 dis-
cusses the benefits and drawbacks of the proposed architecture. Section 5 gives an illustrative
example to show how to design an ontology using the proposed architecture and to highlight
the benefits of the resulting design. Finally, Section 6 gives concluding remarks and points to
the highlights of our current and future work.

2 Related Work

In this section, we point to the lack of design considerations in ontology development as
motivation for the need for an appropriate design architecture. We survey the literature
related to existing methodologies for ontology development, archetypes, and ontology design
patterns.

2.1 Existing Methodologies for Ontology Development

The characterisation of the ontology development life-cycle has received much attention in
the past [22]. Perhaps one of the first methodologies for building ontologies resulted from the
experience in building the Cyc knowledge base [28]. Later, Uschold and King [48] proposed
a method based on the experience in developing the Enterprise Ontology and Griininger and
Fox [23] proposed a methodology inspired by the construction of knowledge-based systems
using first order logic. Next, a methodology based on a bottom-up approach involving the
abstraction of an application knowledge base was proposed while working on the KACTUS
project [6] and a methodology based on a top-down approach involving the derivation of
domain-specific ontologies from large monolithic ontologies resulted from work on the Sensus
ontology [45]. Then, the On-To-Knowledge [44] and METHONTOLOGY [15, 16] methodolo-
gies appeared and have since become the most prevalent. A detailed summary of each of the
above mentioned approaches can be found in [11] and [21].

Arguably the most popular methodology for developing ontologies is METHONTOLOGY
where the ontology development life-cycle closely resembles a software development life-cycle.
Specification, Conceptualisation, Integration, Implementation phases are performed sequen-
tially, while Knowledge Acquisition, FEvaluation, and Documentation phases are carried out
throughout the entire life-cycle. While METHONTOLOGY outlines many of the phases re-
quired in ontology development, it is missing the notion of a design phase. Our observation



aligns with what is found in [21] where it is stated that development teams often leap from
knowledge acquisition and conceptualisation phases straight to implementation phases. It is
well known, in the engineering field, that a good design reduces risks in product development,
helps development teams work together in an orderly fashion, and leads to products that have
higher quality attributes [41]. By omitting design phases, resulting ontologies are often poorly
thought-out in terms of their maintainability, modifiability, extendability, and reusability. As
with the development of any other engineering system, a proper design phase is required in
the development life-cycle to ensure that the developed ontology is fit for purpose, and that
it meets its requirements and objectives.

2.2 Archetypes

The notion of archetypes has recently gained popularity in the area of semantic interoper-
ability and in the healthcare domain, particularly with the rise of electronic health records
and the advent of the openEHR framework [36]. In the current literature, archetypes are
commonly used and discussed within the healthcare domain. As such, in that domain, an
archetype refers to a detailed and domain-specific definition of a clinical concept in the form
of structured and constrained combinations of the data entities, such as blood pressure, heart
rate, and diagnosis [33]. However, there does not appear to be any reason why the notion of
archetypes should be limited to the healthcare domain. If we consider the idea of archetypes
in a more domain-independent context, then an archetype refers to a knowledge-level model
that defines valid information structures [5]. In this way, archetypes can offer general and
reusable terminologies that can be adapted to many domains. For instance, in [29] the notion
of archetypes has been adapted to an emergency response domain in order to define emergency
concepts such as tsunami, nuclear accident, and evacuation mission. Generally speaking, an
archetype can include other archetypes and can be used in combination with one another
to define complex conceptual structures’. Archetypes enable information systems to guide
and validate user input during the creation and modification of information, to guarantee
interoperability, and to establish a well-defined basis for efficient querying of complex data.

In this paper, we use the idea of archetypes to provide characterisations of general concepts
with the attributes most commonly associated with them. For instance, we can think of a
Person archetype that specifies the general concept of a person with attributes name, address,
phone number, and e-mail address. We may also have a Name archetype which further specifies
the general concept of a name with a first, middle and last name, represented as string literals.
For the remainder of this paper, we assume this understanding of the term archetype.

2.3 Ontology Design Patterns

An ontology design pattern is a reusable successful solution to a recurrent modelling prob-
lem [7, 18, 24, 25, 40, 43]. As such, it serves the same purpose as design patterns in other
fields of engineering where the intention is to provide modular, reusable, and replaceable build-
ing blocks for larger systems. While much research into the development of ontology design
patterns has been done in recent years, there is yet to be a wide adoption of the design pattern
approach by practitioners. At the time of writing, there are 172 design patterns submitted to

In the openEHR community, the encapsulation of the combination or inclusion of archetypes is typically
called a template [35]. However, throughout this paper, we elect to use the term archetype in a more general
sense, and we do not introduce new terminology to distinguish this kind of archetype inclusion or combination.



the primary repository for ontology design patterns [34]. To date, not a single ontology design
pattern has graduated from the submitted to published status. This is largely due to poor
documentation [25]. Many ontology design patterns do not provide adequate descriptions of
intents and purpose, consequences of use, or illustrative use cases. Consequently, it is often
quite difficult for a practitioner to select and adapt a design pattern that models the concepts
and phenomena that are relevant to their needs. Furthermore, some of the currently proposed
ontology design patterns appear to be too specific to be widely applicable for different situa-
tions. Design patterns aim to provide solutions to classes of problems. When the specificity
of the proposed design pattern reduces the class of problems that it solves to a singleton set,
the design pattern loses its meaning. The question of whether there is a need for new design
patterns specific to ontologies arises. To the best of our knowledge, there does not appear to
be any evidence against adapting the current, widely-used engineering design patterns, such
as those found in the software engineering field, for ontologies.

3 An Ontology Design Architecture

We propose to design and develop an ontology from an engineering perspective as one would
approach the design and development of any other engineering system, such as a bridge, a
building, or a software system. The proposed architecture is based on a variation of the
MVC-IT architectural style adapted from the area of software engineering and architectural
design. MVC-II is a variant of the model-view-controller (MVC) architecture where the view
and controller components are separated. It is best suited for interactive applications where
multiple viewpoints are required for a single data model and where its interfaces are prone to
frequent changes [41]. The MVC-II architectural style consists of three primary components.
The model is responsible for providing all of the core functional services and for encapsulating
all data details, independent of the other components in the system. The wview is responsible
for providing particular viewpoints of the model. Finally, the controller is responsible for
managing all of the initialisation, instantiation, and registration of the other components in the
system and is responsible for selecting desired viewpoints and managing user input requests.
Because an ontology can be perceived as an interactive system where multiple viewpoints of
the knowledge representation are required in order to complete reasoning tasks, it fits the
application domain of the MVC-II architectural style. Moreover, when thinking about an
ontology as a complete system that gives an understanding of a world, we can identify a
clear division between the model, view, and controller components. Due to its modularity, the
MVC-IT architectural style can offer enhanced modifiability, extendability, and maintainability
of the developed ontology. Additionally, it is effective for use in collaborative development
environments which can better support reusability and shareability.

We propose a nested MVC-II architecture, shown in Figure 1. It consists of two instances of
the MVC-II architectural style. The inner instance, referred to as the Knowledge Instance (de-
noted by the elliptical components in Figure 1), provides an MVC-II-based architecture for the
knowledge representation of the ontology and offers separation between domain-independent
and domain-specific knowledge. The outer instance, referred to as the Ontology Instance
(denoted by the rectangular components in Figure 1), provides an MVC-II-based architec-
ture offering separation between the knowledge representation and reasoning concerns of the
ontology.
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Figure 1: A nested MVC-II architecture for ontology development and design

3.1 An Example Ontology Design Scenario

Suppose that after performing a requirements and specification phase of ontology development
similar to what is proposed by METHONTOLOGY, we are required to design an ontology
that is capable of representing and reasoning on knowledge related to students, teachers, and
the grades that have been achieved in the courses in which they are enrolled, or in which they
teach, respectively. One of the ways in which we can outline the requirements of an ontology
is to identify a list of questions that the knowledge contained within the ontology ought to
answer. These questions are commonly called competency questions [23]. For the purpose of
this example, assume that we are given the following competency questions:

1. Which student has the highest grade in Science 1017
2. Which teacher has the highest achieving students?

3. How many students have consistently maintained their grades each semester?

Using these requirements as a basis for illustration, we describe each of the components of
the proposed MVC-II-based ontology design architecture in the following sections. Note that
this simple example is purposely designed to highlight particular aspects and features of the
proposed architecture.



3.2 The Knowledge Instance of the Proposed Architecture

The Knowledge Instance provides an MVC-II-based architecture for the knowledge represen-
tation of the ontology being developed. As such, it facilitates the separation of the domain-
independent and domain-specific knowledge. The Archetypes Component, Data Component,
and Interpretations Component constitute the Knowledge Instance model which encompasses
the domain-independent knowledge representation of the ontology being developed. The col-
lection of Domain-Specification Components constitutes the Knowledge Instance view which
provides the domain-specific interpretations of the knowledge, thereby offering different view-
points of the model component. Lastly, the Knowledge Coordinator constitutes the Knowledge
Instance controller which manages the communication between the components representing
the domain-independent and domain-specific knowledge in order to comprise a knowledge
representation that models the worlds considered by the ontology.

3.2.1 Archetypes Component

The Archetypes Component is concerned with identifying a set of concepts and their respective
attributes required to model the world dictated by the requirements of the ontology being
developed. In this way, this component is related to identifying and developing archetypes
that capture the conceptual knowledge contained within the ontology. It provides the general
structural representation of the required concepts and their corresponding attributes in the
form of a conceptual skeleton. This involves specifying the types of attributes that describe
each concept. Such a conceptual skeleton is suitable for use or reuse in many domains as the
archetypes for the required concepts are persistent in many possible worlds.

With respect to the design scenario outlined in Section 3.1, we identify the archetypes
shown in Table 1 that have a role in modelling the world dictated by the requirements and
competency questions. Each of these archetypes can be viewed as a module of the Archetypes
Component. It should be noted that the level of granularity at which to identify the required
archetypes is dependent on the requirements of the ontology being developed. We need to
choose a granularity that appropriately captures the required knowledge in order to answer
the given competency questions. For example, if we do not require a distinction between the
first name and last name of a Person, then we can simply consider a PersonName as a String
and we need not further articulate the concept PersonName with its own archetype capturing
its finer-grained attributes.

3.2.2 Data Component

The Data Component is concerned with the data or information provided by the problem and
requirements of the ontology being developed. It is responsible for providing a collection of
facts by identifying instances (individuals) of the concepts and their attributes provided by
the Archetypes Component. One can think of the Data Component as an interface to the data
sources that are providing the facts for the given problem.

Assume that for the design scenario outlined in Section 3.1, we have a number of data
sources resulting from a knowledge acquisition phase. The first collection of data represents
student-filled data sheets of their own personal records of their grades. The second collection
of data represents the grade sheets for the courses that each teacher teaches. A sample of each
of these data sources is shown in Table 2 and Table 3, respectively.



Table 1: Concepts and attributes corresponding to the archetypes identified for inclusion in
the Archetypes Component

’ Concept ‘ Attributes

Person name : PersonName;
id : Integer;

PersonName first : String;;
last : String;;

Course name : String;
code : Integer;

Grade grade : GradeType;

Semester season : oneOf{Spring, Summer, Fall, Winter};
year : Integer;
coursesOffered : ltemsType(Course);

Table 2: Course and grade data provided by student John Smith

’ Student ‘ Semester ‘ Course ‘ Grade ‘ Teacher ‘
John Smith | Fall 2014 English 101 | A- Hank Jones
Math 101 | B+ William Taylor
Science 101 | A- Alice Brown
Winter 2015 | English 102 | A Bill Thompson
Math 102 | B- Rhonda Wilson
Science 102 | A+ Alice Brown

Table 3: Course and grade data provided by teacher Alice Brown

Teacher ‘ Semester ‘ Course ‘ Student ‘ Grade ‘

Alice Brown | Fall 2014 Science 101 | John Smith A-
Sally McHugh | B
Anne Rickman | C-
Harvey Walker | B
Scott Baker F
Winter 2015 | Science 102 | John Smith A+
Sally McHugh | B
Anne Rickman | C+
Harvey Walker | B-
Stacey Nelson | A




The idea with the Data Component is to have the ability to “plug-in” new data sources
as they become available or as they are needed. It is through these data sources that we
are able to instantiate the concepts defined in the Archetypes Component and the Domain-
Specification Components with assertions about the domain of interest and the data that is
collected through knowledge acquisition.

3.2.3 Interpretations Component

The Interpretations Component is concerned with providing concrete interpretations for the
abstract types that are specified in the Archetypes Component and instantiated by the Data
Component. It allows the ontology being developed to contain concepts and relationships
that have different embodiments in different possible worlds. Moreover, it separates these
possible interpretations of the concepts and relationships from the concepts and relationships
themselves. The notion of concepts and relationships having different embodiments is not
currently considered in the existing literature.

Consider the design scenario given in Section 3.1. Depending on the context of the compe-
tency questions and the requirements of the ontology being developed, the abstract GradeType
identified in Table 1 can have different interpretations. For example, a grade can be repre-
sented as a letter-grade (e.g., B+), as a percentage (e.g., 85%), or as a grade-point-average
normalised to some standard (e.g., 3.5/4.0). Similarly, the design scenario suggests that a
Semester offers a collection of courses. Again, depending on the context, this abstract col-
lection type (denoted by ItemsType in Table 1) can be concretely interpreted as a list, set,
bag, or sequence, for instance. There are plenty of other examples of potential abstract types
that may be considered and that require interpretations to be included in the Interpretations
Component. For instance, we can have a numeric type that can be concretely interpreted as a
real number, integer, or natural number, or even something more exotic like an abstract type
that allows a concept of Apple to be concretely interpreted as a fruit, company, or computer
model.

The purpose of the Interpretations Component is to provide the definitions of the possible
concrete interpretations of the abstract types that ought to be considered so that one (or more)
may be selected for instantiation in the overall knowledge representation of the ontology. It
is important to note that each of the possible interpretations defined in the Interpretations
Component is independent of any particular domain and can be used in many different ap-
plication domains. Furthermore, we conjecture that through the design of the Interpretations
Component, the issue of multiple inheritance (e.g., [4, 12, 46]) can be avoided by allowing a
concept to realise multiple interpretations and by deferring the choice over which interpre-
tation to employ to later stages in the design and usage of the developed ontology, perhaps
based on some user input.

3.2.4 Domain-Specification Components

The Domain-Specification Components are concerned with providing domain-specific knowl-
edge in order to give specific viewpoints of the domain-independent knowledge contained
within the Archetypes Component, Data Component, and Interpretations Component. Each
viewpoint is encapsulated in a single Domain-Specification Component responsible for provid-
ing the particular interpretations of concepts and relationships within its specific viewpoint
based on the requirements and application domain of the ontology being developed. For exam-



ple, given a data set related to information collected from a “smart city”, different viewpoints
such as transportation, public health, and education can be identified and encapsulated in
individual Domain-Specification Components in order to focus on different concerns related
to the data. Moreover, the Domain-Specification Components are concerned with identifying
specialisations of the archetypal concepts identified in the Archetypes Component. In this
way, a collection of Domain-Specification Components can allow for different viewpoints or
domains of application to be considered while using the same Archetypes Component, Data
Component, and Interpretations Component.

Concerning the design scenario from Section 3.1, we have a domain involving students,
teachers, courses, and grades. We can develop two domain viewpoints, a student viewpoint
and a teacher viewpoint, by considering the competency questions for the desired ontology.
These viewpoints can be seen as specialisations of the Person archetype from the Archetypes
Component. In this way, each of these viewpoints will inherit the attributes of the Person
concept defined by the Person archetype and will extend it with domain-specific attributes. A
similar extension is made for the Course archetype. These Domain-Specification Components
are shown in Table 4 and Table 5, respectively. It can be seen from these domain-specific
viewpoints that a number of domain-specific relationships are implicitly specified between the
concepts identified in the Archetypes Component and Domain-Specification Components. For
example, it is easy to see that a Student is enrolled in a collection of Courses, a Teacher teaches
a collection of Courses, and a Student has a grade for each Course in which they are enrolled.

Table 4: Domain specification of the student viewpoint as specialisations of the Person and
Course archetypes from the Archetypes Component

’ Concept ‘ Attributes ‘

Student student : Person;

coursesEnrolled : IltemsType(EnrolledCourse);
EnrolledCourse | course : Course;

gradeEarned : Grade;

Table 5: Domain specification of the teacher viewpoint as specialisations of the Person and
Course archetypes from the Archetypes Component

’ Concept ‘ Attributes
Teacher teacher : Person;
coursesTaught : ltemsType(TaughtCourse);
TaughtCourse course : Course;
students : ltemsType(Student);

3.2.5 Knowledge Coordinator

The Knowledge Coordinator is responsible for coordinating the domain-independent knowledge
contained within the Archetypes Component, Data Component, and Interpretations Compo-
nent and the domain-specific knowledge contained within the Domain-Specification Compo-
nents. It maintains a registry of the possible concepts, data, and interpretations, as well as



possible domains through the registration and initialisation of the other components in the
Knowledge Instance. In essence, this component is a controller that coordinates the interpreta-
tion of data from the Data Component as concepts from the Archetypes Component, possibly
specialised by the domain-specific interpretations from the Domain-Specification Components,
along with concrete type interpretations from the Interpretations Component.

With respect to the design scenario in Section 3.1, the functionality of the Knowledge
Coordinator allows for the ability to state that John Smith is a Student enrolled in the Course
Science 101 taught by the Teacher Alice Brown and in the Fall 2014 Semester and has earned
a Grade of A- which is interpreted as a letter-grade. Through this example, it is easy to see
that the Knowledge Coordinator manages all of the domain-independent and domain-specific
knowledge so that it can be used to capture a particular view of the world which can, in turn,
be used for particular reasoning tasks in the developed ontology.

3.3 The Ontology Instance of the Proposed Architecture

The Ontology Instance provides an MVC-II-based architecture for the overall ontology being
developed and provides separation of the knowledge representation and reasoning concerns.
The Knowledge Instance (denoted by all of the elliptical components in Figure 1) constitutes
the Ontology Instance model which provides the knowledge representation of the ontology. The
Reasoning Engine constitutes the Ontology Instance view which provides an interface to ex-
isting reasoning tools and enables the consideration of various configurations of the knowledge
representation with respect to different possible worlds in the form of different interpreta-
tions and/or viewpoints. Finally, the Ontology Coordinator constitutes the Ontology Instance
controller component which encompasses the initialisation, instantiation, registration, and co-
ordination of the Ontology Instance model and view components to facilitate the interaction
between the reasoning tasks and the knowledge representation for the ontology.

3.3.1 Reasoning Engine

The Reasoning Engine is concerned with the reasoning tasks that are required of the ontology
being developed and is responsible for interfacing with existing reasoning tools. It allows for the
specification of different reasoning approaches based on given theories, allowing the proposed
architecture to handle complex reasoning tasks in a variety of ways. Since the Reasoning
Engine represents a view component of the MVC-II architectural style, we can have many
different Reasoning Engine components, each representing a different kind of reasoning or a
different reasoning task. This allows us to use the same kind of reasoning to perform different
reasoning tasks or similarly, different kinds of reasoning to perform the same reasoning task.
As an example of one possibility, we may have one component responsible for association rule
mining, and one component responsible for data cleansing, where each may use tableau-style
reasoning, for instance. In this case, each component is responsible for performing a particular
reasoning task based on a specified theory and using the same kind of reasoning. Consider
the design scenario from Section 3.1. We can design a Reasoning Engine component to mine
association rules from the data of students and teachers using a specified kind of reasoning and
a given theory. In this way, this component is responsible for identifying relationships among
the given set of values. The association rules that are identified can be then be used with
another Reasoning Engine component designed to perform a data cleansing task. The use of
association rule mining to facilitate data cleansing is common in the literature (e.g., [26]).
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The specification of knowledge and information management approaches that should be
considered in order to address inconsistent or conflicting information contained in the ontology
are also defined in the Reasoning Engine. Once again, consider the design scenario given in
Section 3.1. It is possible that in the Data Component, we have conflicting information from
each of the given data sources. For instance, a teacher for a particular course may report a
grade for a student, while that student may report a different grade that they achieved in the
same course reported by the teacher. There are a number of existing approaches for handling
such situations, including belief revision (e.g., [3, 13, 17]), among others (e.g., [8, 30, 31, 47]).
Which to use and how to handle each case of conflicting information is ultimately dependent
on the requirements and competency questions of the ontology being developed. For instance,
we can choose to take the grade assigned and reported by the teacher to be the actual data,
since it may be the case that we trust the teacher more than the student. In another case,
we may mark the data with the source from which it came in order to keep track of both
possibilities.

3.3.2 Ontology Coordinator

The Ontology Coordinator is concerned with handling the reasoning tasks from the Reasoning
Engine and the knowledge representation of the ontology from the Knowledge Instance of
the proposed architecture in order to ensure that the ontology being developed is fit for its
purpose. In this way, it is responsible for selecting the appropriate domain-specific viewpoints,
concrete interpretations, data sources, etc., that are required to perform the reasoning tasks
from the Reasoning Engine. In simple terms, the Ontology Coordinator provides the bridge
between the knowledge representation and the reasoning concerns of the developed ontology.

Concerning the design scenario from Section 3.1, consider the question: “Which student
has the highest grade in Science 1017”7 For this example, suppose that the user indicates that
it only wishes to consider the set interpretation of the collection of students enrolled in Science
101 since it provides a sufficient level of expressivity in order to answer the question. Also,
assume that the user only wishes to consider the data provided by the teacher of Science 101.
In this case, the Ontology Coordinator is responsible for handling the user input passed from
the Reasoning Engine in order to decide how to communicate the requirements of the reasoning
task to the Knowledge Coordinator. This communication allows the student domain-specific
viewpoint, and the set interpretation of the collection of students enrolled in Science 101 to
be selected and used to find the name of the Student with the maximum grade using the data
provided by the Teacher of Science 101.

4 Merit of the Proposed Ontology Design Architecture

In this section, we discuss the benefits and drawbacks of the proposed MVC-II-based ontology
design architecture.

4.1 Benefits of the Proposed Architecture

In the area of software engineering, separation of concerns is a principle that emphasises the
separation of design decisions that are likely to change, thereby protecting the other parts of a
system from extensive modification if a design decision is changed [20]. In general, adherence to
the principle of separation of concerns leads to modular systems which yield benefits in terms of
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the flexibility of the system, including the ability to handle modifications and extensions [38].
Furthermore, by expressing concerns in an architectural model, the qualities of interest are
built into a framework that can later be mapped to in order to address different needs, while
inheriting the characteristics of the architectural model [37]. For these reasons, we conjecture
that a number of beneficial qualities inherited from the proposed architectural framework will
be exhibited in the developed ontology. A dedicated user study is required in order to fully
evaluate and assess the effectiveness of the proposed architecture and is left as future work.

The proposed architecture provides a separation of concerns at multiple levels. First, the
Ontology Instance separates the knowledge representation and reasoning concerns of the ontol-
ogy being developed. Second, the Knowledge Instance separates the domain-independent and
domain-specific knowledge which enables the relatively stable domain-independent knowledge
to be designed and developed independent of the more volatile domain-specific knowledge.
Finally, the Knowledge Instance view component separates the different possible viewpoints
of the domain-independent knowledge. Because of the separation of concerns provided by
the proposed architecture, the developed ontology will exhibit enhanced modifiability, extend-
ability, and maintainability. A developer only needs to identify the concern of a required
modification or extension in order to locate which component(s) require changes. For exam-
ple, if a new domain-specific viewpoint of the knowledge is required for an existing ontology
developed using the proposed architecture, then the developer needs simply to add a new
Domain-Specification Component in the Knowledge Instance view component that can be
registered with the Knowledge Coordinator. The rest of the components remain intact. This
enables the developed ontology to be maintained over an extended period of time. Also, the
developed ontology can benefit from enhanced reusability. For example, the Archetypes Com-
ponent, Data Component, and Interpretations Component from the Knowledge Instance model
component can be reused in a variety of application domains driven by the requirements and
context of the ontology to be developed. Moreover, the knowledge representation of the devel-
oped ontology can be reused in order to address a number of different reasoning concerns and
to answer different questions in the domain of interest. These are just some of the many ways
in which the components of the proposed architecture can be reused in the development of
new ontologies or in the modification and extension of existing ontologies. Further discussion,
along with examples that illustrate the qualities exhibited by an ontology designed using the
proposed architecture are provided in Section 5.3.

4.2 Drawbacks of the Proposed Architecture

While there exists a number of benefits resulting from the adoption of the proposed archi-
tecture, there are drawbacks related to the amount of communication overhead and the com-
plexity of the controller components. The design of the Knowledge Coordinator and the
Ontology Coordinator is a tricky problem. In general, the design of the controller components
is not necessarily straightforward. Much effort is required in order to adequately handle the
amount of communication necessary to facilitate the coordination of the other components
in the system. This additional controller complexity is an inherent drawback of the use of
the MVC-II architectural style [41]. Furthermore, much care needs to be taken in designing
the controller components to ensure that the correct knowledge and information are available
to, and communicated by, the Knowledge Coordinator and the Ontology Coordinator so that
queries can be answered properly. A poorly designed controller component can effectively
render the system unusable and is a problem that must be investigated. To address this issue,
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a robust framework to support and facilitate the practical implementation of ontologies using
the proposed architecture is needed. The development of such a framework is left as future
work.

When it comes to engineering design, there is often a trade-off between the benefits of
separation of concerns and the drawback of the amount of communication and complexity
required to manage and coordinate the system components. Since the existing literature
of ontology development finds so many issues with respect to the ability to easily reuse,
extend, modify, and maintain ontologies, we conjecture that the proposed architecture makes
an appropriate trade-off in this regard. It should be noted that while a significant amount
of effort may be required in order to design and implement the controller components of
the proposed architecture, it is the case that once these components are developed, they are
relatively stable and are not prone to frequent changes, meaning that they can be reused for
a long time afterwards.

5 Designing an Ontology Using the Proposed Architecture

In order to further illustrate the usage and benefits of the proposed architecture, consider
redesigning the well-known Wine Ontology [1|. The Wine Ontology has been developed as a
simple illustrative example of an ontology used for answering questions about particular wines,
their characteristics, and the regions and wineries in which they are made. For the purpose
of this section, suppose that we are given the requirements and competency questions for the
Wine Ontology as a result of the requirements and specification phase of ontology development.
In what follows, we outline how to design the Wine Ontology using the proposed architectural
framework. For simplicity and brevity, we will keep the design of the Wine Ontology at a
coarse granularity in order to highlight the benefits of designing ontologies using the proposed
architecture.

5.1 Designing the Knowledge Instance of the Proposed Architecture

We begin the process of designing the Wine Ontology by designing the inner Knowledge
Instance of the nested MVC-II architecture.

5.1.1 Designing the Archetypes, Data, and Interpretations Components

We start by designing the Archetypes Component. We identify a number of archetypes that
play a role in modelling the world in which we are interested in capturing. The identification is
based on the requirements and competency questions for the Wine Ontology. The archetypes
are shown in Table 6.

Next, we design the Data Component as an interface to the possible data sources that may
be available for the Wine Ontology. For the purpose of the example, suppose that we simply
have a database containing various wine data obtained through the knowledge acquisition
phase of ontology development. A fragment of such a database may resemble what is given in
Table 7.

Then, with consideration to the Interpretations Component and the Wine Ontology, it is
possible that we may need to consider different interpretations of collection of wines that are
made by a particular winery, or the collection of wineries that exist in a particular region. For
instance, the collection of wines that are made by a particular winery can be interpreted as
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Table 6: Concepts and attributes corresponding to the archetypes identified for inclusion in
the Archetypes Component for the Wine Ontology

’ Concept Attributes ‘
Wine body : someOf{Full, Medium, Light};

colour : oneOf{Red, Rose, White};

flavour : someOf{Strong, Moderate, Delicate};
sugar : oneOf{Dry, OffDry, Sweet};

grape : Grape;

Grape name : String;
Region name : String;
Winery name : String;

winesMade : ltemsType(Wine);

Table 7: A fragment of wine data for the Data Component of the Wine Ontology

’ Wine Body | Colour ‘ Flavour ‘ Sugar ‘ Grape ‘ Region ‘
Zinfandel Full, Red Moderate, Dry Zinfandel —
Medium Strong
Sweet Riesling Full White | Moderate, | Sweet Riesling —
Strong
St. Emilion — Red Strong Dry Cabernet | French
Sauvignon

a set, list, or bag, depending on the context in which this knowledge needs to be used. For
example, in a context where the collection of wines made by a particular winery needs to
be ordered, then the list interpretation is appropriate as it allows for the order of the items
to be captured. Similarly, in a context where we are interested in only the unique wines
made by a particular winery, then the set interpretation is appropriate as it will remove any
duplicate wines from the collection. Therefore, the Interpretations Component for the Wine
Ontology must contain these possible interpretations so that they are available for selection
by the Knowledge Coordinator for use in addressing different reasoning concerns based on
different contexts. Note that current versions of the Wine Ontology found in the literature
do not consider this notion of concepts and relationships having different interpretations in
different possible worlds and contexts.

5.1.2 Designing the Domain-Specification Components

With respect to the Wine Ontology, there can be a number of different Domain-Specification
Components. The selection of the Domain-Specification Components that need to be designed
depend on the requirements, competency questions, and overall purpose of the ontology. For
brevity, suppose that we are interested in providing three domain-specific viewpoints for the
Wine Ontology. The first view pertains to the French regions in which a wine may be made,
the second view pertains to the American regions in which a wine may be made, and the
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third view pertains to the definition of table wines. The first two of these viewpoints can
be seen as specialisations of the Region archetype, and the third viewpoint can be seen as a
specialisation of the Wine archetype. The Domain-Specification Components corresponding to
each of these viewpoints are shown in Table 8, Table 9, and Table 10, respectively. From these
domain-specific viewpoints, a number of domain-specific relationships are implicitly being
specified between each of the concepts identified in the Archetypes Component and in the
Domain-Specification Components. For example, it is easy to see that a Winery is located in a
particular Region, and that a TableWine has sugar corresponding to Dry.

Table 8: Domain specification of the French region viewpoint

’ Concept Attributes
FrenchRegion region : Region;
region.name := “French”;
wineries : ltemsType(Winery);

Table 9: Domain specification of the American region viewpoint

’ Concept Attributes
USRegion region : Region;
region.name := “US”;
wineries : ltemsType(Winery);

Table 10: Domain specification of the table wine viewpoint

’ Concept Attributes

TableWine wine : Wine;
wine.sugar := Dry;

5.1.3 Guidelines for Designing the Knowledge Coordinator

With respect to the Wine Ontology, the Knowledge Coordinator is responsible for coordi-
nating the Knowledge Instance components in order to instantiate concepts with facts and
domain-specific relationships. For instance, the functionality of the Knowledge Coordinator
must be designed to allow for statements to be constructed from the knowledge contained
in the Knowledge Instance components. For example, with a properly designed Knowledge
Coordinator, we ought to be able to say that St. Emilion is a TableWine located in the FrenchRe-
gion. Through this example, it is easy to see that the Knowledge Coordinator manages the
domain-independent and domain-specific knowledge to be used for particular reasoning tasks.

5.2 Designing the Ontology Instance of the Proposed Architecture

The process of designing the Wine Ontology continues with the design of the outer Ontology
Instance of the nested MVC-II architecture.
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5.2.1 Guidelines for Designing the Reasoning Engine

Suppose that we have a reasoning task related to data cleansing for the Wine Ontology. The
goal of this reasoning task is to identify any contaminated data entries in the data contained
within the knowledge representation of the ontology (i.e., the Knowledge Instance). For the
purpose of this example, suppose that we have the following fragment of a theory about wines?:

o All Zinfandel wines have a Moderate or Strong flavour.

o If a wine is Strong, Red, and Dry, then it is made with a Cabernet Sauvignon grape and
it is a Table Wine.

o All Sweet Riesling wines are White and are not Table Wines.

This theory is specified (using any suitable formalism) within the Reasoning Engine component
and is used to identify any contaminated data entries. For instance, if we have a data entry
that stated that a Zinfandel wine had a Delicate flavour, then with respect to the given theory,
the data cleansing reasoning task would identify this entry as being contaminated.

The current form of the Wine Ontology used in this example does not contain any threat
of conflicting information from the data sources in the Data Component. Therefore, the Rea-
soning Engine does not require any specification of knowledge and information management
approaches. However, it should be noted that such approaches could easily be incorporated if
and when they are required. For this example, the Reasoning Engine can provide hints based
on the user input to aid reasoners in obtaining answers to the questions that the ontology is
designed to answer. For instance, to answer the question “What are the three most popular
wineries in the American region?”, we can specify that the knowledge representation should
be configured to indicate that we only wish to consider the world in which the collection of
wineries in the American region is interpreted as a list since the question indicates that it is
necessary to order the wineries according to some pre-defined criteria (which are not currently
represented in this example). In this way, the reasoner does not need to consider any of the
other possible interpretations of this collection. We conjecture that these kinds of hints based
on the user input can offer savings in terms of the time and computation power required to
answer the query by removing the need to consider worlds that are not deemed possible in
the current context.

5.2.2 Guidelines for Designing the Ontology Coordinator

With respect to the Wine Ontology, the Ontology Coordinator is responsible for coordinat-
ing the reasoning tasks from the Reasoning Engine and the knowledge representation of the
ontology from the Knowledge Instance of the proposed architecture. For example, consider
using the Wine Ontology to answer the question “How many table wines are produced in the
French region?”” The Ontology Coordinator is responsible for managing the user input and
configurations specified in the Reasoning Engine and for communicating with the Knowledge
Coordinator. Through this communication, the table wine and French region domain-specific
viewpoints and the set interpretation of the collection of wineries can be selected in order
to reason on and determine the number of wines satisfying the criteria in order to obtain an
answer to the question. This is an example where more than one domain-specific viewpoint
is required to answer a query.

2The authors apologise to those readers that are wine connoisseurs for their ignorance to the factual cor-
rectness of the statements captured in the proposed theory. It is meant strictly for illustrative purposes.
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5.3 Discussion

It is important to emphasise that the proposed architecture and its corresponding design pro-
cesses do not interfere with the existing tasks in current ontology development methodologies
such as METHONTOLOGY. It is meant to complement the current conceptualisation phase
in order to provide additional structure in the form of an architectural design framework. By
adopting this design architecture, the resulting ontology can exhibit a number of desirable
qualities as mentioned in Section 4. We discuss the benefits of designing an ontology using
the proposed architecture by using the design of the Wine Ontology developed above.

5.3.1 Support for Modifiability

Suppose that the definition of a table wine needs to be updated so that a table wine is not
only dry, but that it can only be red. In order to make this modification, we simply need to
identify that the proposed modification needs to occur in the Domain-Specification Component
pertaining to table wines. Specifically, we modify the domain-specific details shown in Table 10
to provide a modified table wine Domain-Specification Component as shown in Table 11 where
the modification is highlighted in boldface.

Table 11: Domain specification of the modified table wine viewpoint

’ Concept Attributes

TableWine wine : Wine;
wine.sugar := Dry;
wine.colour := Red;

Consider making this modification in the Wine Ontology found in the literature. Because
there is no clear separation of concerns, it can be quite difficult to locate where the modification
needs to be made. Furthermore, it can be even more difficult to ensure that the modification
is complete since it is possible that the modification needs to be made in more than one
area of the ontology. The lack of guidelines for modifying existing ontologies is noted as
an issue in the current ontology development literature [15]. However, with the proposed
architecture, the identification of the component(s) in which a modification needs to be made
is rather straightforward and proceeds in a systematic way by examining the constituent
components of the ontology design. Moreover, when performing this modification, all of the
other components in the design of the Wine Ontology remain intact and do not require any
additional modifications.

5.3.2 Support for Extendability

Suppose that after we have developed our design of the Wine Ontology, new competency
questions arise that must be handled. For the sake of illustration, suppose that the Wine
Ontology also needs to address the following questions:

1. How many types of grapes grow in a Canadian region?

2. What is the chemical composition of a Table Wine?
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The introduction of these new competency questions indicate a change in the requirements
of the ontology being developed. To satisfy these new requirements, we need to iterate the
design process and extend our current design.

In order to address the first of the newly introduced competency questions, we need to
represent and reason on knowledge related to the kinds of grapes that grow in a Canadian
region. This can be done with the addition of a new domain-specific viewpoint that captures
this requirement. This new Domain-Specification Component is shown in Table 12. In this
case, this new component simply needs to be included and registered with the Knowledge
Coordinator in order to be used for the required reasoning tasks. Once again, all of the other
components in our design remain intact. However, considering the Wine Ontology found in the
literature, it may be difficult to determine where to make the required updates and changes
in order to perform the same extension in a straightforward manner.

Table 12: Domain specification of a Canadian region viewpoint concerned with the kinds of
grapes that grow in the region

’ Concept Attributes
CanadianRegion | region : Region;
region.name := “Canadian”;
grapesGrown : ltemsType(Grape);

The introduction of the second competency question involves more changes. It requires
the introduction of new archetypes, data, and interpretations, each pertaining to chemical
compositions of wines. Since every wine has a chemical composition, we first extend the
Archetypes Component with archetypes pertaining to the general concepts and attributes
related to the chemical composition of wines. The extended Archetypes Component is shown
in Table 13 where the newly added concepts and attributes are highlighted in boldface. In
this case, we add a chemicals attribute to a Wine which indicates the collection of chemical
compounds and the percentage of each that form the chemical composition of the wine. For
simplicity, we consider the concept of Chemical to represent a chemical compound. Once
again, depending on the specific context in which this concept needs to be used, a much finer
granularity can be articulated. Additionally, we consider a Percentage as a concept with an
abstract numeric type.

Continuing with the required extension, we need to update the Data Component in order to
include data related to the chemical composition of particular wines. For example, such data
may indicate that a St. Emilion wine has the following chemical composition: {(water, 86.0),
(ethanol, 12.0), (glycerol, 1.0), (organic acids, 0.4), (tannins, 0.1), (other, 0.5)}. Similarly, the
Interpretations Component needs to be extended to include the additional interpretations that
are required in the extended version of the Wine Ontology. For example, the changes made in
the Archetypes Component introduce a new abstract NumericType. In this case, the numeric
type represents a percentage and can be concretely interpreted as a real number (e.g., 15.0%),
an integer (e.g., 15%), or a rational number (e.g., 3/20). The Interpretations Component
needs to be updated to reflect these possible interpretations of the composition percentage of
the chemicals in a wine.

As shown by the above example, extensions to ontologies can have crosscutting concerns
that require changes to be made in different components of the ontology. Due to the separation
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Table 13: Extended Archetypes Component for the Wine Ontology

Concept Attributes ‘
Wine body : someOf{Full, Medium, Light};

colour : oneOf{Red, Rose, White};

flavour : someOf{Strong, Moderate, Delicate};
sugar : oneOf{ Dry, OffDry, Sweet };

grape : Grape;

chemicals : ltemsType((Chemical, Percentage));

Grape name : String;
Region name : String;
Winery name : String;
winesMade : ltemsType(Wine);
Chemical name : String;
Percentage num : NumericType;

of concerns offered by the proposed architecture, we have a systematic way of performing the
required extension. The architectural design of the ontology provides a guide that enables the
consideration of each concern, one at a time, by examining the changes that are required in
each component. This is in contrast to how such an extension would proceed in the Wine
Ontology found in the literature. Because of the crosscutting nature of the required extension,
in the Wine Ontology found in the literature, it is difficult to be sure which areas of the
ontology are affected by the extension and if the extension is even complete, resulting from
the absence of guidelines for extending and maintaining existing ontologies [15].

5.3.3 Support for Reusability

Consider the Wine Ontology found in the literature. It is not clear which parts can be reused
in the development of other ontologies or how they can be reused. In current approaches for
developing ontologies found in the literature, the search for parts of ontologies that can be
reused is difficult, time-consuming, and often fruitless [49]. However, consider our design of
the Wine Ontology. A number of the components that exist in the design can be reused,
either as is, or with moderate modifications in other ontology designs. For example, much
of the domain-independent knowledge contained in the Archetypes Component, such as the
Region archetype and Wine archetype — although relatively simple in the given example
— may be reused in other ontologies that are concerned, for instance, with geography or
food, respectively. Similarly, the Data Component can be reused with different data sources
“plugged-in” to offer different sets of facts for another ontology design. The same can be said
for the Knowledge Coordinator and Ontology Coordinator as these components can be largely
reused with moderate modifications in other ontology designs.

5.3.4 Support for Collaborative/Parallel Development

Due to the separation of concerns and the resulting modularity of the proposed architecture,
it is possible to develop an ontology in a collaborative environment. This enables a number of
different components to be developed in parallel provided that a kind of interface (i.e., the con-
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cepts and attributes that are registered with the controller components) is agreed upon among
the different development teams before development. This sort of interface can often be fleshed
out of the existing conceptualisation phase of existing ontology development methodologies
like METHONTOLOGY. With respect to the Wine Ontology, this is particularly apparent
when considering the design and development of the Domain-Specification Components. To
be clear, we do not claim that every component of the ontology design can be developed in
parallel with one another, since it is the case that the design of some components depends on
the design of others. However, we conjecture that with parallel and collaborative development
for some components, when compared to sequential development, the development time for
an ontology can be reduced (e.g., |9, 32]). Furthermore, the reusability and shareability of the
developed ontology and its components can be improved.

5.3.5 Support for Concurrent and Distributed Reasoning

For simplicity of presentation, we discussed an MVC-II-based ontology design architecture
for use in cases where concurrent and distributed reasoning is not required. However, in
order to handle cases where these kinds of reasoning are needed, such as those faced by “big
data” applications, the proposed architecture can be extended to a presentation-abstraction-
control (PAC) architectural style. The PAC architectural style was developed as an extension
of MVC-II to support multiple agents each with their own functionalities with data and
interactive interfaces. It is best suited for interactive systems that can be divided into many
cooperating agents in a hierarchical structure [41].

To illustrate the idea of extending the proposed architecture to a PAC architectural style
supporting concurrent and distributed reasoning, let us consider a simple example. Suppose
that when designing the Wine Ontology, we are faced with a “big data” scenario where we
have an enormous amount of information corresponding to wines, regions, wineries, chemical
compositions, etc.® Once again, consider a reasoning task related to data cleansing using the
Wine Ontology where the goal is to identify any contaminated entries in the data set with
respect to a given theory (see Section 5.2.1 for an illustrative theory that can be used for data
cleansing in the Wine Ontology). In order to support concurrent and distributed reasoning in
this case, we can divide the problem into multiple fragments and employ a PAC architectural
style. By designing different agents to work with different problem fragments, each agent
can accomplish the data cleansing task using its own specified theory and viewpoint. For
instance, we can have one agent that approaches the problem from the viewpoint of the
chemical composition of wines. In this case, this agent can be designed with a given theory
about the chemical composition of wines that it can use for a data cleansing task. Other
agents can be given a similar task with respect to a region viewpoint, or a grape viewpoint,
each with its own given theory. In this way, each agent works with the entire data set to identify
contaminated entries with respect to their given theory and particular viewpoint. This is in
contrast to having a single agent with a large, monolithic, and complicated theory. Since each
agent is designed using the proposed MVC-II-based architecture, the Ontology Coordinator of
each agent represents the agent controller for the PAC architectural style. Higher-level agents
can then be designed and arranged in a hierarchy in order to coordinate each agent to work
on their designated tasks. In this way, for the data cleansing reasoning task, each agent can

3The authors would like to remind the reader that while this example does not define “big data” in the
traditional sense, it is meant for the sake of illustration and to demonstrate the scalability the proposed
architecture.
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Legend

control and/or
data exchange

Figure 2: An illustration of extending the proposed MVC-II architecture to a PAC architecture
to support concurrent and distributed reasoning

work independently on their fragment of the problem and report its results to the high-level
agents which will work together to combine the results to give a final answer. This idea can be
extended further by considering agents that use different reasoning approaches or that have
different ways in which they handle conflicting information in the given data set.

It is important to note that it is not necessary that each agent in the PAC architecture does
the same job. For instance, we may have one agent responsible for data cleansing, and another
agent responsible for data mining. However, another way to use the PAC architectural style
to deal with “big data” applications is to employ it in a fashion similar to that of a Master-
Slave architectural style. In this case, the data set is divided into separate fragments based on
different dimensions and where each agent does the same job on its given fragment. Suppose
that we divide the data set into fragments based on regions. For the purpose of illustration,
assume that we have five data fragments denoted as French, American, Canadian, Australian,
and German. To employ a PAC architectural style for this scenario, we can design an agent
using the proposed MVC-II-based architecture to work with each data fragment. For our
example, we will have one agent responsible for working with each of the five aforementioned
data fragments. Here, each agent performs the same job, working independently of each other
on their fragment of data to identify contaminated entries. Once the tasks are completed,
each agent will report its results to be combined into a final answer by the higher-level agents.

The general idea of extending the proposed MVC-II architectural style to a PAC archi-
tectural style is shown in Figure 2 where the arrows represent the exchange of control and/or
data. Each agent of the hierarchy represents a copy of the proposed MVC-II architecture (see
Figure 1) responsible for working with each fragment of the problem according to its particular
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viewpoint. The hierarchy of controller components for the PAC architectural can be layered as
deeply as needed. A deeper hierarchy can allow for smaller tasks to be performed or a smaller
data set to be handled. In this way, we can have a divide-and-conquer approach, either in
terms of the task to be performed or the data set with which we need to work, that can help
deal with “big data” scenarios.

The support for concurrent and distributed reasoning comes at the cost of development
complexity. In fact, we have two kinds of complexity that play a role when considering
concurrent and distributed reasoning. The first is related to the overall size of the data
that needs to be considered in the reasoning. There is a trade-off between communication
complexity and the size of data or problem fragments that are considered. The higher the
number of fragments, the more communication complexity that is introduced in order to
coordinate all of the PAC agents and to combine and return the results of the reasoning
tasks. This is a problem that needs to be considered and evaluated before dividing the task or
fragmenting the data sets when designing the ontology and its reasoners. The second is related
to the inherent complexity of the theory with which we need to work in order to complete
the given reasoning tasks. This becomes even more difficult to manage when the theory is
divided among components and when dependencies among each part of the theory need to be
dealt with. This problem is a consequence of the current issues and difficulties in dealing with
modularisation in ontology design. Managing all of this complexity is not an easy problem
to solve and the balance of the communication among the PAC agents with respect to the
load, both in terms of size and theoretical complexity, for a given reasoning task needs to
be addressed and examined further. Despite this additional complexity, we conjecture that
extending the proposed architecture to support concurrent and distributed reasoning allows
us to alleviate some of the burden of reasoning on very large data sets. This is a result of the
fact that the effort for designing the controller components needs to be done only one time for
each individual domain of interest and can then be reused for tasks within the same domain
afterwards.

6 Conclusion and Future Work

Motivated by the lack of design consideration in ontology development and the need to repre-
sent and reason on vast amounts of data, we proposed an ontology design architecture. The
proposed architecture adopts a nested MVC-II-based architectural style inspired by the soft-
ware engineering field. It supports the principle of separation of concerns with respect to the
knowledge representation and reasoning abilities of the developed ontologies, as well as with
respect to the domain-independent and domain-specific knowledge required of an ontology to
capture particular viewpoints of the possible worlds that it needs to consider. As a result,
ontologies designed using the proposed architecture exhibit a number of desirable qualities,
such as enhanced modifiability, extendibility, and reusability. They also have the potential
to support collaborative/parallel development, and concurrent and distributed reasoning as
discussed and illustrated in Section 5.3. These benefits address aspects of a number of the
criticisms found in the literature with respect to the current state-of-the-art for ontology de-
velopment, and the proposed architecture helps to eliminate the current ad hoc “one-time use”
mentality of ontology development.

Currently, the proposed architecture outlines a framework that can be adopted in order
to systemically design ontologies in a structured way. This leads to a more refined engi-
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neering approach to ontology development. However, the details of practically adopting and
using the proposed architecture as a framework to design real-world ontologies requires fur-
ther investigation. A user study is required in order to evaluate and assess the effectiveness of
the proposed architecture and its impact on ontology development. Furthermore, the use of
the PAC architectural style to design ontologies with support for concurrent and distributed
reasoning to address “big data” concerns needs to be investigated further. Also, the details
of practically designing and implementing the controller components of the proposed archi-
tecture, namely the Knowledge Coordinator and Ontology Coordinator, require much more
attention. The development of a robust framework capable of supporting and facilitating the
practical implementation of ontologies using the proposed architecture is needed. This is the
basis of our current and future work. We aim to create an infrastructure that shows how to
practically use the proposed architecture, and we intend to explore how existing technologies
can be employed in order to realise this goal.
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