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Abstract

Aspect-orientation is a promising paradigm for managing the separation of
crosscutting concerns and decomposing a system using more than one criterion.
This paper proposes an aspect-oriented approach at the feature-modeling level
to better handle crosscutting concerns in product families. The implementation
of some features of a product family can be inherently scattered over several
features or tangled within other features. The development of such features
bears the same problems as general crosscutting concerns. The Aspect-oriented
paradigm provides an effective means for handling crosscutting concerns.
Based on the language of Product Family Algebra (PFA), we present a language
AO-PFA (Aspect-Oriented Product Family Algebra) that extends the aspect-
oriented paradigm to feature modeling. The language provides full facilities for
articulating aspects, advices, and pointcuts in feature modeling. Moreover, we
present a formal verification technique of aspectual composition in the context
of AO-PFA. We define a set of validity criteria for aspects with regard to their
corresponding base specifications. The proposed approach enables the detection
of dependency, reference, or definition invalid aspects.

Keywords: Software product families; Feature-modeling; Early aspects; Aspect-
oriented paradigm; Formal methods; Formal specification languages; Require-
ments verification
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1 Introduction

Product Family Engineering is an emerging software development approach which aims to
improve productivity, increase quality, and decrease cost, labour and time to market [40].
In this approach, new products are derived from core assets rather than developed inde-
pendently. The commonality and variability among a product family are captured in terms
of features. Mapping features of a product family to the design and implementation is not
always straightforward. Particularly, there are common and variable features related to
crosscutting concerns that inherently scatter over and intertwine with several other fea-
tures. Consequently, crosscutting concerns impede the extensibility and maintainability of
systems in general and product families in particular. Without appropriate modularisation,
it is difficult to modularly view and reason about the crosscutting concerns. Furthermore,
it is necessary to trace crosscutting concerns from the early analysis stage to the following
design and implementation stages. Identifying and treating crosscutting concerns from
the early feature-modeling stage is the first step to ease the traceability of crosscutting
concerns within the life-cycle of product families.

The aspect-oriented paradigm is a promising technique for managing the separation of
crosscutting concerns and decomposing a system using more than one criterion. Roughly
speaking, the aspect-oriented paradigm encapsulates crosscutting concerns with aspects
and provides an efficient composition mechanism to integrate aspects with base systems.
Earlier techniques that adapt the aspect-oriented paradigm to product family engineering
mainly focus on the implementation stage at the programming level (e.g., [4, 27, 30]).
Recently, several works are articulated around adapting the aspect-oriented paradigm sys-
tematically throughout the whole life-cycle of product family engineering (e.g., [29]).
Similar to adapting aspect-oriented techniques at the early analysis and design stage for
general software development, adapting aspect-oriented techniques at the feature-modeling
level provides an effective way to discover and manage aspects early in the product family
engineering life-cycle. It is important to keep in mind that for early aspects, it is not nec-
essary that they are mapped as aspects at the implementation level. Early aspects help us
to make the early trade-off and provide criteria for design decisions used in the following
development stages.

Our research focuses on adapting the aspect-oriented paradigm to a feature-modeling
technique called product family algebra [15, 16, 17]. While numerous feature-modeling
techniques in the literature are graph-based (e.g., [9, 11, 13, 20, 33]), product family algebra
is a formal technique that specifies product families precisely and compactly. Product
family algebra enables the algebraic specification of product families. With the extension of
mathematical capabilities, product family algebra provides us a ground for further analysis
and the ability to manipulate feature models in a calculative way.

In Section 2, we introduce the related background knowledge of our method. In Sec-
tion 3, we present our specification language that is used to express pointcuts, advices and
aspects at the feature level. Moreover, we propose a classification mechanism for aspects
within the context of product family engineering. In Section 4.1, we establish the crite-
ria for a valid product family algebra specification and propose tests for detecting invalid
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aspects in the context of the proposed language. We exemplify the proposed method by
a case study of a home automation product line. In Section 5, we conclude our approach
and give future work.

2 Background

2.1 Product Family Algebra

Feature-modeling techniques are used to specify and manage the commonality and vari-
ability of product families at the domain stage of product family engineering. In the
literature, several feature-modeling techniques have been proposed, such as FODA [20],
FORM [21], FOPLE [22], FeatuRSEB [13], Generative Programming [9], FORE [38], the
Riebisch Technique [33], the van Gurp Technique [39], PLUSS [11], etc..

In [15, 16, 17], Höfner et al. proposed a formal technique, product family algebra, to
capture a set of different notations and terms found in current feature-modeling techniques.
In [3], we find a thorough discussion on how other feature-modeling techniques can be
easily translated into specifications in the language of product family algebra. Product
family algebra extends the mathematical notations of idempotent semirings to describe
and manipulate product families. A semiring is an algebraic structure consisting of a set S
with a commutative and associative binary operator + and an associative operator ·. An
element 0 ∈ S is the identity element with respect to +, while an element 1 ∈ S is the
identity element in S with respect to ·. In addition, operator · distributes over operator +
and element 0 annihilates S with respect to ·. We say a semiring is commutative if operator ·
is commutative and a semiring is idempotent if the operator + is idempotent.

Definition 1 ([17]). A product family algebra is a commutative idempotent semiring
(S, +, ·, 0, 1), where each element of the semiring is a product family.

Within the context of product family engineering, the operator + is interpreted as
a choice between two product families and the operator · is interpreted as a mandatory
composition of two product families. The element 0 represents the empty product family
and the element 1 represents a product family consisting of only a pseudo-product which has
no features. In product family algebra, optional features are interpreted as a choice between
the features and the pseudo-product 1, which has no features. With these interpretations,
all other concepts in product family engineering can be expressed mathematically.

Moreover, constraints are defined in product family algebra for view reconciliation [16].
Definitions 2, 3, and 4 formally give the related concepts.

Definition 2 ([17]). For elements a and b in a product family algebra, the subfamily
relation (≤) is defined as

a ≤ b ⇐⇒df a + b = b.
The subfamily relation indicates that for two given product families a and b, a is a

subfamily of b if and only if all the products of a are also products of b.
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Definition 3 ([17]). For elements a and b in a product family algebra, the refinement
relation (v) is defined as

a v b ⇐⇒df ∃(c |: a ≤ b · c ).

The refinement relation indicates that for two given product families a and b, a is a
refinement of b if and only if every product in a has at least all the features of some products
in b.

Definition 4 ([17]). For elements a, b, c, d and a product p in product family algebra, the
requirement relation (→) is defined in a family-induction style as:

a
p→ b ⇐⇒df p v a =⇒ p v b

a
c+d→ b ⇐⇒df a

c→ b ∧ a
d→ b

The requirement relation is used to specify constraints in product families. For elements
a, b and c, a

c→ b can be read as “a requires b within c”. The reader can find more details
on the use of this mathematical framework to specify product families in [15, 16, 17, 18].

Jory [2, 3] is a tool to represent and manipulate product families. The specification
language used by Jory is based on product family algebra and called PFA. In PFA, there
are three types of syntactic elements: basic feature declarations, labeled product families
and constraints. A basic feature label preceded by the keyword bf declares a basic feature.
An equation with a product families label at the left-hand side and a product family algebra
term at the right-hand side gives a labeled product family. A triple preceded by the keyword
constraint represents a constraint, which specifies a requirement relation as introduced in
Definition 4. The complete grammar of PFA is given in Figure 1.

Take the example of a computer product family used in [17]. A computer product
family consists of hardware and software. With regard to hardware, computers are built
on hard disks, screens, and printers. With regard software, corresponding drivers for each
type of hardware component should be provided. Therefore, in a PFA specification, basic
feature declarations include:

bf hard disk bf hd drv

bf screen bf scr drv

bf printer bf prn drv

In the computer product family, a basic computer is built on a hard disk and a screen,
whereas a printer may be added as required. Assume only two different software packages
are offered. The product families of hardware and software are specified by labeled product
family algebra terms as below:

hw = hard disk · screen · (1 + printer)

sw = hd drv · scr drv + hd drv · scr drv · prn drv
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PFA:=(〈Basic Feature〉 | %〈comment txt〉\n)+

(〈Labelled Family〉 | %〈comment txt〉\n)+

(〈Constraint〉 | %〈comment txt〉\n)∗

〈Basic Feature〉:=bf 〈base feature id〉%〈comment txt〉\n
〈Labelled Family〉:=〈family id〉 =〈Family Term〉

%〈comment txt〉\n
〈Constraint〉:=constraint(〈Family Term〉, 〈Family Term〉,

〈Family Term〉)%〈comment txt〉\n
〈Family Term〉:=0 | 1 | 〈base feature id〉 | 〈family id〉

| 〈Family Term〉+ 〈Family Term〉
| 〈Family Term〉 · 〈Family Term〉

〈base feature id〉:=String of letters, numbers and “ ”

〈family id〉:=String of letters, numbers and “ ”

〈comment txt〉:=String of letters, numbers , symbols and space

Figure 1: Language of PFA Specifications

Moreover, a requirement that a hard disk requires a hard disk driver is translated in

product family algebra into the constraint (hard disk
hw · sw→ hd drv). We write this con-

straint in PFA as follows:

constraint(hard disk, hw · sw, hd drv)
,

2.2 Aspect-Orientation: Basic Concepts

To better handle crosscutting concerns, the aspect-oriented paradigm encapsulates cross-
cutting concerns by aspects and provides a particular mechanism for composing aspects
with base systems. This paradigm has been adapted to the whole software development
life-cycle. According to different granularities of concern abstractions, the meanings of
aspects vary at different software development stages. However, several terminologies are
widely and commonly used by the community of aspect-oriented software development.
First, a join point refers to a point at the execution of the base program where an aspect
could be introduced. A pointcut selects a set of join points where a certain aspect should
be positioned. An advice defines the behavior which should be introduced at the selected
join points. Lastly, weaving is the process of combining aspects with a base program.

Without loss of generality, we use an example given in Figure 2 to illustrate the above
concepts and the general mechanism of aspect-oriented programming. The base program
in the example is a class type point, while the aspect is related to logging operations.



5

Figure 2: General aspect-orientation mechanism

The pointcut of the logging aspect selects two join points (underlined instructions in the
figure) in the base code, while the advice of the aspect introduces the additional “print”
operations after those selected joint points. The code at the right of Figure 2 shows the
result of weaving the aspect to the base program.

2.3 Other Mathematics

We briefly introduce several required graph concepts.
A graph is a 2-tuple G = (V, E), where V is a set of vertices and E ⊆ V × V is a set of

edges. For an edge (u, v), u is its tail and v is its head. When u = v, we say that (u, v) is
a loop. Moreover, u is called the predecessor of v, while v is called the successor of u. We
denote the set of all successors of a vertex x as N+(x) and the set of all predecessors of a
vertex x as N−(x).

A walk in a graph is a list of vertices and edges, such as v0, (v0, v1), v1, ..., vk−1, (vk−1, vk), vk.
A path is a subgraph which can be represented as a walk without repeated vertices and
edges. We use (u, v)–path ∈ En to denote a path starting with vertex u and ending with
vertex v, where n ≥ 1 is the length of the path. In particular, we say a (u, v)–path is a
cycle when u = v.

3 Aspect Orientation at the Feature Level: AO-PFA

Previous research of product family algebra describes a complete product family feature
model by integrating different views/perspectives of the system with view reconciliation.
Each view partially describes common and variable characteristics of the considered prod-
uct family. View reconciliation [16] is used to exclude products that violate constraints
after view integration. For example, to describe a computer product family, we integrate
feature models that respectively describe the hardware and software views/perspectives.
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The view reconciliation is used to guarantee, for instance, that for each valid computer
product, its hardware components have appropriate software drivers. However, there are
common and variable features related to crosscutting concerns that inherently scatter over
and intertwine with several features from several views of the system. As recognized in
general software development, there is a bottleneck for the classic multi-view integration
approach to separate and compose crosscutting concerns. Our research aims to complement
the multi-view integration approach for feature modeling by providing systematic means
to handle crosscutting concerns. Particularly, we intend to introduce the aspect-oriented
paradigm at the feature-modeling level.

In this section, we extend aspect-oriented notations to product family algebra specifica-
tions. We call the proposed language AO-PFA (Aspect-Oriented Product Family Algebra).
We intend to construct comprehensive specifications of feature models with the proposed
aspect-oriented language. At the feature-modeling level, the crosscutting concerns are in-
tegrated with the base feature models at the granularity of feature/sub-family abstraction.
In product family algebra, all kinds of common and variable characteristics of product
families are described and unified as product family terms. In other words, the basic con-
structs of product family algebra specifications are product family terms. Intuitively, join
points in our technique should be in the form of product family terms and the pointcut
language defines quantification statements over those product family terms. Moreover,
product family terms are also able to express advice, which captures any common and
variable characteristics introduced by aspects. Based on the mathematical setting of PFA
specifications, an aspect in AO-PFA is compactly specified as follows:

Aspect aspectId = Advice(jp)

where jp ∈
(
Pointcut

)
In the the above syntax, aspectId represents product family labels that are named by the
aspect. The body of the advice is represented as a product family term Advice(jp). The
quantification statement for selecting join points is expressed by the pointcut language as
given in Figure 3.

In the remainder of this section, we present a detailed discussion on join points, point-
cuts, advices, and aspects in AO-PFA.

3.1 Case Study: An Elevator Family

To illustrate the benefits of adapting the aspect-oriented paradigm at the feature-modeling
level, we use an example of a simplified elevator system. This elevator example is used
as a running example in the remainder of this section. The elevator product family is
composed of a feature for base functionality and a configure feature for customized con-
figuration. The base functionality includes a mandatory feature move control and an op-
tional feature light display. Included in configure is the optional feature light reset and
the optional feature failure capture. Inherently, the light reset depends on the light display
and the failure capture depends on both the move control and the light display. In other
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POINTCUT:=(base, 〈EXPRESSION BASED, 〈Constraint-related〉)
|(〈SCOPE〉, 〈EXPRESSION BASED〉, 〈Feature-related〉)
| (〈SCOPE〉, 〈EXPRESSION BASED〉, 〈Family-related〉)

〈SCOPE〉:=〈SCOPE〉 ; 〈SCOPE〉| 〈SCOPE〉 : 〈SCOPE〉| base
| within{〈PF label〉}| cflow{〈PF label〉}| protect{〈PF label〉}

〈EXPRESSION BASED〉:=Boolean expression upon PFA

〈Feature-related〉:=declaration{〈PFT〉} | inclusion{〈PFT〉}
〈Family-related〉:=creation{〈PFT〉} | component creation{〈PFT〉}

| component{〈PFT〉} | equivalent component{〈PFT〉}
〈Constraint-related〉:=constraint[〈list〉]{〈PFT〉}
〈list〉:=left〈list’〉 | middle〈list’〉 | right〈list’〉
〈list’〉:=,left〈list’〉 | ,middle〈list’〉 | ,right〈list’〉 | ε
〈PFT〉:=product family terms defined in PFA.

〈PF label〉:=identities of product families.

Figure 3: Pointcut Language

words, the light reset and the light display show crosscutting relations with features in the
base functionality. Figure 4 gives the feature model of the elevator product family using
FODA-like notations. By adapting the aspect-oriented paradigm, the light display and
the failure capture are integrated with the base functionality by composing crosscutting
concerns with the base feature model.

Filman and Friedman [12] identify two important characteristics of the aspect-oriented
paradigm: quantification and obliviousness. Obliviousness stipulates that a base system
should not be prepared or adjusted to accept newly added or removed crosscutting con-
cerns. Quantification indicates that the composition rules of aspects and the base system
are captured by quantification statements. Product family engineering can benefit from the
aspect-oriented paradigm in terms of quantification and obliviousness. In product family
engineering, it is common to add or delete features with accordance to different configu-
rations. At the feature-modeling level, it is also necessary to support such flexibility of
adding or deleting features. With regard to obliviousness, adding or deleting the optional
features failure capture and light reset do not have any impact on the move control and
the light display. With regard to quantification, when the optional feature light display is
added or deleted, the impact is minimized to the compact quantification statement that
defines the composition rule for the light reset.

Specification 1 in Figure 5 gives a PFA specification corresponding to the example of
the elevator product family. In this specification, Lines 1–3 specify three basic features
and Lines 4–9 specify product families by labeled product family algebra terms. Line 10
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Figure 4: Simplified example of a feature model for an elevator system

is a constraint, which indicates that the configure feature requires the light display feature
within the product family elevator product line.

3.2 Join Points in AO-PFA

We have mentioned above that join points in PFA specifications are in the form of product
family terms. However, within a PFA specification, there are two roles for the same form
of product family terms. They are either being defined or being referenced. For example
in Figure 5, the product family base functionality is being defined at the left-hand side
in Line 6, while it is being referenced at the right-hand side in Line 8. Consequently,
there are two types of join points, the definition join points and the reference join points.
Integrating new aspects at the two types of join points corresponds to two different types
of requirements scenarios. Roughly speaking, the specified product family term can be
considered as a white box in the former case whereas it can be considered as a black box
in the latter case. Introducing an advice at the definition join points affects the internal
description of the specified product family term, whereas introducing an advice at the
reference join points affects descriptions of product families including the specified product
family term. Moreover, when it comes to the detailed level of features, introducing advice
at these two types of positions can cause very different results. Therefore, it is necessary
to distinguish the definition or reference positions of a product family term at the abstract
feature-modeling level. The differences between these two types of join points are further
referred for specifying pointcuts, advices, and aspects.
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Specification 1: Base elevator product family specification

1. bf move control

2. bf light display

3. bf configure

4. optional light display = light display+ 1

5. optional configure = configure + 1

6. base functionality = move control · light display

7. optional base functionality = move control

· optional light display

8. full functional elevator = base functionality · configure

9. elevator product line = optional base functionality

· optional configure

10. constraint(configure, elevator product line, light display)

Figure 5: PFA specification of the elevator product family

3.3 Pointcuts in AO-PFA

In existing aspect-oriented techniques, three attributes are generally used to specify a
pointcut: the scope of join points, a predicate that captures dynamic properties, and the
form and position of pointcuts. In AO-PFA, we express the pointcut language as a triple
(scope, expression, kind).

The first component of the triple corresponds to the scope of pointcuts, which bound
the selecting scope of join points in PFA. Two types of scope pointcuts are designed: within
and cflow. A scope of type within captures join points within specified lexical structures,
while a scope of type cflow captures join points within a specified construction flow. Here,
construction flow refers to the hierarchical property of features in the feature models. We
use “:” and “;” to express the combination of two scopes. Separating two scopes by
“:” indicates that eligible join points are within the union of the two specified scopes.
Separating two scopes by “;” indicates that eligible join points are within the intersection
of the two specified scopes. Moreover, we use protect(scope) to specify that eligible join
points are excluded from the scope. In particular, when no scope is specified, the scope
pointcut base is considered by default indicating that the whole base specification is the
scope.

The expression component of the triple is designed to capture dynamic properties of
join points. It works as guards for the selected join points. To specify the expression
component of pointcuts, we use Boolean expressions on the language of product family
algebra. When no expression is specified, the expression true is taken by default.
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The third component of the triple corresponds to the kind of pointcuts, which is used
to specify the exact form and position of join points. Unlike the scope of pointcuts and
the expression of pointcuts, there is no default value for the kind of pointcuts. The kind
of a pointcut must be explicitly specified for each aspect. The scope of a pointcut and
the expression of pointcut only can take effect when combined with a kind of pointcut.
With regard to the three types of specification elements in PFA, we further discuss the
kind of pointcuts in our language as feature-related, family-related, and constraint-related
pointcuts.

3.3.1 Feature-Related Pointcuts

Two kinds of pointcuts, declaration and inclusion, are introduced to select basic feature-
related join points within PFA specifications. The difference between these two kinds of
pointcuts resides in whether or not the feature’s definition can be changed.

Declaration pointcuts capture join points where a specific feature is declared. Take
Specification 1 of an elevator product family given in Figure 5 as our base specification. To
express a new requirement that intends to introduce two optional features to the original
definition of configure, we specify an aspect as follows:

Aspect jp new= (1+failure capture) · (1+ light reset)

where jp ∈
(
base, true, declaration(configure)

)
The pointcut here would capture a join point at Line 3 of Specification 1. Automatically,
as the scope pointcut is base, all references to the original configure should be changed to
the new one. Figure 6 shows Specification 2, which is the result of weaving this aspect to
Specification 1.1 We use bold font to denote join points in the base specification, and use
italic font to denote new specification elements introduced by the aspect.

Inclusion pointcuts capture join points where a specific feature is referenced. Take
Specification 1 given in Figure 5 as our base specification. We specify an aspect as below
to express a new requirement that intends to compose a new feature light reset in any
family including light display.

Aspect jp= jp · light reset

where jp ∈
(
base, true, inclusion(light display)

)
The pointcut would capture join points at both Line 4 and Line 6 of Specification 1.

Figure 7 shows Specification 3 which is the result of weaving this aspect to Specification 1.

3.3.2 Family-Related Pointcuts

We introduce four kinds of family-related pointcuts: creation, component creation, compo-
nent and equivalent component.

1The old feature configure is removed from the specification automatically since there is no reference
to it within the whole specification after weaving.
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Specification 2:

1. bf move control

2. bf light display

3. bf failure capture

4. bf light reset

5. configure new = (failure capture+1) · (light reset +1)

6. optional light display = light display + 1

7. optional configure = configure new + 1

8. base functionality = move control · light display

9. optional base functionality = move control · optional light display

10. full functional elevator = base functionality · configure new

11. elevator product line = optional base functionality

· optional configure

12. constraint(configure new, elevator product line, light display)

Figure 6: Weaving an aspect with a declaration pointcut

Specification 3:

· · ·
bf light reset

· · ·
4. optional light display = light display · light reset +1

· · ·
6. base functionality = move control · light display ·light reset

· · ·

Figure 7: Weaving an aspect with an inclusion pointcut

Creation pointcuts and component creation pointcuts capture join points at the left-
hand sides of labeled families, which indicate the definition of specified product families.
The difference between creation pointcuts and component creation pointcuts resides in
whether we change the definition of the specified families directly or whether we change
the definition of their components.

Creation pointcuts refer to the exact definition of the specified families. We take Spec-
ification 2 (Figure 6) as our base specification and specify an aspect as below to extend a
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new feature log in the definition of the product family configuration new.

Aspect jp new= jp · log

where jp ∈
(
base, true, creation(configure new)

)
The pointcut would capture the left-hand side of Line 5 of Specification 2. Consequently,

the references to configure new in Line 7, Line 10, and Line 12 are automatically changed
to the new one. Figure 8 shows Specification 4 which is the result of weaving this aspect
to Specification 2.

Specification 4:

bf log

· · ·
5. configure new = (failure capture + 1) · (light reset + 1)

configure new new = configure new · log

· · ·
7. optional configure = configure new new + 1

· · ·
10. full functional elevator = base functionality · configure new new

· · ·
12. constraint(configure new new, elevator product line, light display)

Figure 8: Weaving an aspect with a creation pointcut

Component creation pointcuts refer to the definitions of all components in the specified
families. Take Specification 1 (Figure 5) as our base specification and assume we want to
capture any defective behavior in the family base functionality. However, base functionality
is composite and we cannot be sure which component might cause the defective behavior.
Therefore, we should add a failure capture to each of its components, move control and
light display. This requirement can be specified by an aspect as below:

Aspect jp new= jp · failure capture

where jp ∈
(
base, true, component creation(base functionality)

)
The pointcut would capture join points at the left-hand sides of both Line 1 and Line 2

of Specification 1 in Figure 5. Automatically, references to those components in Line 6 are
changed to the new ones. Figure 9 shows Specification 5 which is the result of weaving
this aspect to Specification 1.

Component pointcuts and equivalent component pointcuts capture join points at the
right-hand sides of labeled families, which indicate the reference to the specified product
families. The difference between component pointcuts and equivalent component pointcuts
resides in whether the reference is direct or indirect.
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Specification 5:

1. bf move control

2. bf light display

bf failure capture

move control new = move control · failure capture

light display new = light display · failure capture

· · ·
6. base functionality = move control new · light display new

· · ·

Figure 9: Weaving an aspect with a component creation pointcut

Component pointcuts refer to the appearance of the specified product families within
any other product families as components. Take Specification 2 (Figure 7) as our base spec-
ification. Suppose that a new feature log is required wherever product family configure new
is included. We specify the aspect as below:

Aspect jp= jp · log

where jp ∈
(
base, true, component(configure new)

)
This pointcut would capture join points at Line 7 and Line 10 of Specification 2 in

Figure 6. Figure 10 shows Specification 6 which is the result of weaving this aspect to
Specification 2. Comparing Specification 6 with Specification 4 (Figure 8), the difference
resides in whether or not the definition of family configure has changed.

Specification 6:

bf log

· · ·
7. optional configure = configure new · log + 1

· · ·
10. full functional elevator = base functionality · configure new · log

. . .

Figure 10: Weaving an aspect with a component pointcut

Equivalent component pointcuts refer to the equivalent (or indirect) appearance of the
specified product families as components. Taking Specification 1 (Figure 5) as our base
specification again, suppose that we want to capture any similar defective behavior that
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may happen in the family base functionality. Assume that we are not allowed to make
changes to the definition of base functionality. In this scenario, we specify an aspect as
below:

Aspect jp= jp · failure capture

where jp ∈
(
base, true, equivalent component(base functionality)

)
This pointcut would capture join points whenever base functionality is directly or indi-

rectly referenced. Based on the definition of base functionality given in Line 6 of Specifica-
tion 1, the join points of this aspect are at Line 7 and Line 8 of Specification 1. Figure 11
shows Specification 7 which is the result of weaving this aspect to Specification 1. Besides
the slight difference in meaning, the main difference between Specification 7 and Specifica-
tion 5 (Figure 9) resides in whether or not the definitions of family base functionality (or
its components) have changed.

Specification 7:

· · ·
bf failure capture

· · ·
6. base functionality = move control · light display

7. option base functionality = move control · light display · failure capture

+ move control

8. full functional elevator = base functionality · failure capture · configure

· · ·

Figure 11: Weaving an aspect with an equivalent component pointcut

3.3.3 Constraint-Related Pointcut

With regard to constraints in PFA specifications, we need to introduce a constraint-related
pointcut. As each constraint item consists of three arguments, an extra option in the point-
cut is necessary to specify the position where the aspect should be introduced. Therefore,
the constraint-related pointcut is expressed as constraint[position list]. Three keywords,
left, middle and right, respectively correspond to the first, second and third arguments of
a PFA constraint that is represented by a triple of PFA terms. The keywords are used to
specify the position list.

Take Specification 2 (Figure 6) as our base specification. Since the original feature
configure has been further defined, we intend to extend a “requires” relation to further
specify all constraints upon configure new. For example, we can have an aspect as below:
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Aspect jp= light reset

where jp ∈
(
base, true, constraint[left](configure new)

)
The pointcut would capture the first component of Line 12 in Specification 2 (Figure 6).

Figure 12 shows Specification 8 which is the result of weaving this aspect to Specification 2.

Specification 8:

...

12. constraint(light reset, elevator product line, light display)

Figure 12: Weaving an aspect with an constraint[list] pointcut

Besides default values, the scope of a pointcut and expression of a pointcut also can be
specified with a combination of the kind of a pointcut to express specific requirements. We
use Specification 1 (Figure 5) as the base specification. Suppose we need to add a feature
to capture all defective behaviors with move control in base functionality. A new feature
failure capture is required to be included within the product family elevator product line.
This requirement can be expressed as below:

Aspect jp= jp · failure capture

where jp ∈
(
within(elevator product line) ; cflow(base functionality), true,

inclusion(move control)
)

We specify the scope of eligible join points with two scopes within(elevator product line)
and cflow(base functionality). We specify the kind of the pointcut by inclusion(move control).
The within narrows the scope of join points to only Line 9 of Specification 1 (Figure 5).
Moreover, since cflow specifies that the feature move control should be constructed from
the family base functionality, we do not compose failure capture with the first move control
in Line 9. Figure 13 shows Specification 9 which is obtained by weaving this aspect to Spec-
ification 1.

3.4 Advice and Aspects in AO-PFA

As discussed in the previous section, declaration, creation and component creation cap-
ture definition join points, while inclusion, component, equivalent component, and con-
straint[position list] capture reference join points. Therefore, given the kind of pointcuts,
an aspect either relates to definition join points or to reference join points. There is a
slight difference for specifying aspects that relate to these two types of join points. If the
aspects relate to definition join points, aspectId should specify new labels that define new
product family terms. If the aspects relate to reference join points, aspectId should always
be expressed as variable jp that refers to join points.
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Specification 9:

bf failure capture

· · ·
9. elevator product line = move control + base functionality · failure capture

+ full functional elevator · failure capture

· · ·

Figure 13: Weaving an aspect with scope pointcuts

Additionally, at the requirement level, it is unnecessary to specify the relative intro-
duction time of an aspect against their join points as specified in AspectJ. We discuss
and categorize aspects according to the effects of their advice on the join points, which
indicates that the form of the advice in AO-PFA is always specified by a product family
term; either a ground term or a term with variable jp. In particular, we distinguish aspects
in accordance to their augmenting, narrowing, and replacing effects upon join points.

Augmenting Aspects: With augmenting aspects, the specification related to join
points should still appear in the resulting specification after weaving the aspect. In the
proposed language, the behaviour of augmenting aspects can be specified by a product
family term constructed with a variable that we denote by jp, which is used to represent
an instance of the join points. We further classify augmenting aspects as refine aspects
and extend aspects. Refine aspects augment the original product families where they
are defined, whereas extend aspects augment original product families where they are
referenced.

Narrowing Aspects: Narrowing aspects result in the absence of original join points
in the resulting specification after weaving. Therefore, the behaviour of narrowing aspects
corresponds to the constant element 1 of product family algebra, which represents a pseudo-
product with no features. Furthermore, discard aspects narrow product families or basic
features where they are defined, while disable aspects narrow product families or basic
features where they are referenced.

Replacing Aspects: In this case, after weaving, the original join point is replaced
by arbitrary product family terms that do not refer to the original join point. In other
words, the behaviour of replacing aspects should be in the form of a ground product family
term (i.e., a term constructed without variables). Similarly, we distinguish replace aspects
and substitute aspects to respectively refer to the definition join points and reference join
points.

In summary, we categorize aspects as refine, extend, discard, disable, replace, and sub-
stitute in the context of product family. Given the syntax of an aspect in AO-PFA, we can
directly categorize it according to the form of its advice (i.e., Aspect(jp)) and the kind of
its pointcut, which will help users to understand the aspect and ease the validation of the
aspect.
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3.5 Literature Survey Regarding Aspect Oriented Language at
the Feature-Modeling Level

AspectJ is the most well known aspect-oriented technique applied at the programming
level. Our work mainly adapts several ideas from AspectJ to the product family speci-
fication level. Terms in our research are analogous to terms in AspectJ. In contrasting
with AspectJ, the feature-related pointcuts declaration and inclusion can be respectively
analogized as the field set and field get pointcuts in AspectJ. The two types of family-
related pointcuts creation and component creation can be connected to the class/object
creation pointcuts in AspectJ. The other two types of family-related pointcuts component
and equivalent component can be connected to the method-related pointcuts in AspectJ.
On the other hand, by constructing our language upon the mathematical structure of
product family algebra, we simplify the constructs and notations which would be used in
aspect-oriented techniques.

With regard to the literature of aspect-oriented software development at the early
analysis and design stages, most of the existing approaches describe the system with more or
less structured natural language specifications, use-case models, scenarios and interaction
diagrams. AORE with Arcade [32] is an aspect-oriented requirement engineering approach
that modularises and composes the crosscutting concerns at the requirements level to
produce an XML requirement specification document. AOSD/UC [19] and the aspectual
use-case approach [6] modularise crosscutting functional requirements by extended and
included use-cases. Scenario modeling with aspects [41] is a scenario-based technique
that models aspectual scenarios by Interaction Pattern Specifications. The main challenge
of early aspects is that, unlike at the programming level, specifications of systems tend
to be represented as pieces of text-based or graph-based notations making them more
difficult to be interpreted and quantified for composing aspects. Consequently, automations
of processing specifications and identifying trade-offs early is a non-trivial task. One of
the positive efforts for this challenge is to formalise the specifications of systems. Our
approach formalises the specification of product families in a programming-like style based
on mathematical models, which gives us a more precise and compact representation of a
product family.

At the modeling and specification level for product families, many efforts have been
taken in the literature to manage the common and variable features. Some of those works
are close to our work, which attempts to separate concerns at the early requirement stage
and obtain complete specifications by composing different models. Variability Modelling
Language for Requirement Engineering (VML4RE) [1] presents a requirement specification
language to compose elements from different requirement models. The modeling granu-
larity is at the feature level, which is similar to our technique. The language is based on
concrete models that it supports (i.e., use cases, interaction diagrams, and goal models).
Xweave [14] is a model weaver supporting the composition of different views. It helps
weaving variable parts of architectural models to base models. The weaving mechanism is
similar to our technique by specifying pointcuts and advice of aspects. However, it is un-
able to remove or override existing base model elements. In comparison with VML4RE and
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Xweave, our technique is more generic since it is built upon the abstract feature-modeling
language of product family algebra [15, 16, 17].

As we have shown, another focus of our approach is formalisation. In [5], a feature
algebraic foundation for feature composition is proposed. Similar to product family algebra,
the work captures the basic ideas of features and feature composition at an abstract level in
terms of an algebraic setting. However, the approach for feature composition is more related
to programming languages. Our approach specificity resides in the specification language
at the early analysis and design stages of product family engineering. This enables us to
bridge the gap of formalisations from the requirement stage to the implementation stage.

4 Verification of Aspectual composition in AO-PFA

One of the main challenges that need to be tackled in the aspect-oriented paradigm is the
verification of aspectual composition. A key characteristic of the aspect-oriented paradigm
is the obliviousness of base systems [12]. While this characteristic facilitates the anticipated
extension of systems, it makes reasoning on aspect-oriented specifications more difficult.
Since aspects are implicitly invoked with the aspectual composition mechanism, verifying
the aspectual composition becomes more complicated. Therefore, formal techniques are
needed to ensure the correctness of aspectual composition. Most existing tools for their
verification are tailored for languages at the detailed design and implementation levels [24].
Until now, related researches are at their early stage and are far from being satisfactory.
Moreover, a major type of interference caused by aspectual composition is derived from
early development stages and should be handled earlier [35]. However, the main difficulty
of verifying aspectual composition at the early analysis and design stage is that the speci-
fications of the considered systems tend to be represented either graphically or in natural
language. Unlike at the programming level, the informal or semi-formal specifications make
verification on aspectual composition more difficult at the early stages.

In this section, we address the verification of aspectual composition in AO-PFA spec-
ifications. Weaving an aspect to a base specification may introduce new specification ele-
ments or may modify the base specifications. Intuitively, an aspect should be rejected if
it transforms a valid base specification into an invalid one. Instead of verifying the new
specifications that result from the composition of aspects, our technique intends to detect
invalid aspects w.r.t. the base specification prior to the weaving process.

4.1 Mathematical Setting

4.1.1 Validity Criteria for PFA Specifications

We first establish our mathematical settings to identify what criteria need to be satisfied
for a valid PFA specification representing a product family feature model. In PFA specifi-
cations, the most basic constructs are those labels that either represent features or product
families. Therefore, we abstract validity criteria of PFA specifications at the atomic gran-
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ularity with regard to those labels. Particularly, we consider properties related to the
definitions, references, and dependencies of those basic labels.

Construction 1. Given a PFA specification S, let MS be the multi-set of labels that are
present in S at basic feature declarations or at the left-hand sides of labeled product families.
We call MS the defining label multi-set associated with the specification S.

Definition 5 (Definition-valid specification). We say that a PFA specification S is definition-
valid iff

∀(v | v ∈ MS : +(v | v ∈ MS : 1 ) = 1 )

where MS is the defining label multi-set of S.

Definition 5 indicates that a specification is definition-valid iff all the elements in MS are
unambiguously defined labels. Obviously, the multi-set of a definition-valid specification
actually forms a set. In this case, we denote the set by DS, which contains all elements
of MS. Correspondingly, we call DS the defining label set associated with a specification S.

Construction 2. Given a PFA specification S, let RS be the set of labels that are present
in S at the constraints or at the right-hand sides of labeled product families. We call RS

the referencing label set associated with the specification S.

Definition 6 (Reference-valid specification). We say a specification S is reference-valid
iff RS ⊆ DS, where RS is the referencing label set of S and DS is the defining label set
of S.

Definition 6 indicates that a specification is reference-valid iff all the elements in RS are
defined referencing labels.

Construction 3. Given a PFA specification S, let DS be its corresponding defining label
set and GS = (DS, E) be a digraph. A tuple (u, v) is in E iff u occurs in a product family
term T such that the equation v = T is a labeled product family specified in S. We call GS

the label dependency digraph associated with the specification S.

Definition 7. Let GS = (V, E) be a label dependency digraph associated with a PFA
specification S. For u, v ∈ V , we say that u defines v iff

∃(n | n ≥ 1 : (u, v)–path ∈ En )

Consequently, we say u and v are mutually defined labels denoted by mutdef(u, v) iff

∃(m, n|m, n ≥ 1 : (u, v)–path ∈ Em ∧ (v, u)–path ∈ En).

In particular, if u and v are identical and m = n = 1, we say u is self-defined.

Definition 8 (Dependency-valid specification). We say that a PFA specification S is
dependency-valid iff ∀(u, v | u, v ∈ DS : ¬mutdef(u, v) )

where DS is the defining label set of S.



20

Definition 8 indicates that a valid PFA specification does not have any mutually defined
or self-defined labels.

Lemma 1. Let GS = (V, E) be a label dependency digraph of a PFA specification S. Two
labels u and v are mutually defined iff there is a cycle including u and v in GS. In particular,
a label u is self-defined iff there is a loop through u in GS.

Proof.

u and v are mutually defined

⇐⇒ 〈 Definition 7 〉
∃(m, n | m, n ≥ 1 : (u, v)–path ∈ Em ∧ (v, u)–path ∈ En )

⇐⇒ 〈 Path concatenation 〉
∃(m, n | m, n ≥ 1 : (u, u)–path ∈ Em+n ∧ (v, v)–path ∈ Em+n )

⇐⇒ 〈 Dummy renaming 〉
∃(k | k ≥ 2 : (u, u)–path ∈ Ek ∧ (v, v)–path ∈ Ek )

⇐⇒ 〈 Definition of cycle in digraph 〉
There is a cycle including u and v in GS

u is self-defined

⇐⇒ 〈 Definition 7 & u = v & m = n = 1 〉
∃(m, n|m = n = 1 : (u, u)–path ∈ Em ∧ (u, u)–path ∈ En)

⇐⇒ 〈 One-point rule & Idempotency of ∧ 〉
(u, u)–path ∈ E

⇐⇒ 〈 Definition of loop in digraph 〉
There is a loop through u in GS

According to Lemma 1, the digraph GS associated with a dependency-valid PFA spec-
ification S should be cycle-free and loop-free.

Moreover, since a valid label dependency digraph is a typical digraph that can have a
topological ordering, a walk between two vertices is indeed a path. We define a function
Walk: V × V → ordered-list(V) over a digraph. Walk(u, v) returns the list of all vertices
along a walk from u to v. In the label dependency digraph, the vertex list Walk(u, v) is
sufficient to identify a path from u to v. Particularly, if Walk(u, v) is empty, it indicates
that there is no path from u to v.
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4.1.2 Validity Criteria of Aspects in AO-PFA

In AO-PFA, aspects are composed with base specifications at the granularity of product
family terms. Therefore, weaving an aspect to a base specification may change the defining
label multi-set, the referencing label set, and the label dependency digraph of the original
specification. Consequently, an aspect is invalid if it transforms a valid specification to be
either definition-invalid, reference-invalid, or dependency-invalid.

Precisely, the effects of weaving an aspect can be abstracted with the following con-
struction.

Construction 4. Let S ′ be the new PFA specification obtained by weaving an aspect A to
a valid PFA specification S. With respect to S and S ′, the defining label sets, referencing
label sets and dependency digraphs can be constructed according to Constructions 1–3,
respectively. To discuss the difference between S ′ and S, we denote DA, RA, E addA and
E delA associated with the aspect A as follows:

• Let DA be a set of labels introduced by A which will be present at basic feature declarations
or left-hand sides of labeled product families in S ′. As every element v ∈ DA is a defining
label, the defining label multi-set of S ′ is MS’ = DS t DA where t denotes the multi-set
union. Correspondingly, we denote it by DS’ if all elements in MS’ occur only once.

• Let RA be a set of labels introduced by A which will be present at constraints or right-hand
sides of labeled product families in S ′. As every element v ∈ RA is a referencing label,
the referencing label set of S ′ is RS’ = RS ∪ RA.

• Let E addA be a set of tuples (u, v) such that u is a label that will be introduced by A
at the right-hand side of a labeled product family in S ′ and v is the label present at the
left-hand side of the labeled product family. Let E delA be a set of tuples (u, v) such that
the label u will be removed by A from the right-hand side of a labeled product family in S,
and v is the label present at the left-hand side of the labeled product family. As E addA

and E delA correspond to edge additions and deletions in GS, the dependency digraph
of S ′ is GS’ = (DS’, (ES ∪ E addA)− E delA).

Detection of Definition-Invalid and Reference-Invalid Aspects in AO-PFA

Definition 9 (Definition-valid aspect). We say that an aspect A is definition-valid with
regard to a specification S iff

DS ∩ DA = ∅

Definition 9 indicates that a definition-valid aspect would not lead to a potentially
ambiguous label definition in the specification after weaving.
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Table 1: The effect of pointcut kinds on DA and RA

kind of pointcut DA contains RA contains

inclusion
all newly introduced labels
specified by Advice(jp)

all labels specified by
Advice(jp)component

equivalent component

declaration all newly introduced labels
specified by Advice(jp) and all
labels in aspectId

all labels specified by
Advice(jp) and aspectIdcreation

component creation

constraint[list] empty set all labels specified by Ad-
vice(jp)

Definition 10 (Reference-valid aspect). We say that an aspect A is reference-valid with
regard to a PFA specification S iff

(RS ∪ RA) ⊆ (DS ∪ DA)

Definition 10 indicates that a valid aspect would not lead to any undefined referencing
labels in the specification after weaving.

We construct the defining label set DA and the referencing label set RA associated
with an aspect A to detect definition-invalid and reference-invalid aspects according to
Definitions 9 and 10.

Let an aspect A be given in the general form as described in Section 3. The kind of a
pointcut decides the position of join points, which affects the construction of DA or RA

for an aspect. As mentioned in the previous section, declaration, creation and compo-
nent creation intend to introduce new specifications where the specified product families
are defined, while pointcuts of type inclusion, component, equivalent component and con-
straint[position list] intend to introduce new specifications where the specified product
families are referenced. With regard to different kinds of pointcuts, the corresponding DA

and RA are directly constructed as given in Table 1.
In verifying definition-validity and reference-validity of aspects, the main cost is to con-

struct the defining label set and referencing label set of base specifications. Particularly,
the complexity is O(V ), where V is the number of features in the base specification.
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Detection of Dependency-Invalid Aspects in AO-PFA

Definition 11 (Dependency-valid aspect). Let S ′ be a PFA specification obtained by weav-
ing an aspect A with a valid specification S. We say that A is dependency-valid w.r.t. S
iff S ′ is dependency-valid.

Definition 11 indicates that a valid aspect would not lead to mutually defined or self-
defined labels in the specification obtained by the weaving process. Unlike detecting vio-
lations of definition-validity and reference-validity, detecting the violation of dependency-
validity of an aspect is not straightforward. Instead of examining all edges in E addA

and E delA, we only consider the edges that may introduce loops or cycles in GS’.
In accordance to the pointcut of an aspect, we use the following construction to identify

vertices on the dependency digraph in a base specification, which are directly affected by
weaving an aspect.

Construction 5. Let GS be a dependency digraph associated with a valid specification S.
We denote vertices in GS with regard to an aspect A as follows:

• We denote a vertex in GS corresponding to the term specified by the kind of the pointcut
of A by k. When there is no such vertex, a new vertex is created and named k.

• We denote a vertex in GS corresponding to the label specified by the scope of the pointcut
of A by s.

Prop. 1 (Pointcut Kind Condition). An aspect A is dependency-valid w.r.t. a valid PFA
specification S if the kind of pointcut of A is “constraint [list ]”.

Proof. The kind of pointcut of A is constraint [list ] =⇒ (DA = E addA = E delA =∅ ).
We then prove DA = E addA = E delA = ∅ =⇒ A is dependency-valid w.r.t. S.

A is dependency-valid w.r.t. S
⇐⇒ 〈 Definition 11 〉
∀(u, v | u, v ∈ DS’ : ¬mutdef(u, v) )

⇐⇒ 〈 Definition 7 〉
∀(u, v | u, v ∈ (DS ∪DA) : ¬ ∃(m, n | m, n ≥ 1 :
(u, v)–path ∈ (E addA ∪ ES − E delA)m ∧ (u, v)–path ∈ (E addA ∪ ES − E delA)n ) )

⇐⇒ 〈 Assumption: DA = E addA = E delA = ∅ 〉
∀(u, v | u, v ∈ DS : ¬ ∃(m, n | m, n ≥ 1 : (u, v)–path ∈ (ES)m

∧ (v, u)–path ∈ (ES)n ) )
⇐⇒ 〈 Definition 7 〉
∀(u, v | u, v ∈ DS : ¬mutdef(u, v) )

⇐⇒ 〈 S is dependency-valid (Definition 8) 〉
true
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Therefore, due to the transitivity of =⇒ , when the type of kinded pointcut is constraint [list ],
A is dependency-valid w.r.t. S.

Prop. 2 (Non-cycle Condition). Let S be a valid PFA specification and A be an aspect
that does not satisfy the pointcut kind condition (Prop. 1). Construct the dependency
digraph GS according to Construction 3 and denote or create the vertex k in GS according
to Construction 5. Then A is dependency-valid w.r.t. S if ∀(x | x ∈ DS ∩ RA :
Walk(k, x) = ∅ ).

Proof. Let Adef be a set of new labels assigned to a labeled product family where join points
are present at their left-hand sides. Let JPdef be the set of all labels of a labeled product
family where join points are present at their right-hand sides. Obviously, every join point
should be a vertex x such that there is a path from k to x. As mentioned in Section 4.1.2,
we consider pointcut kinds in two categories that are respectively related to definitions and
references of product families. We say that the kind of a pointcut is definition related if it
is declaration, creation or component creation, whereas the kind of a pointcut is reference
related if it is inclusion, component , equivalent component , or constraint [list ]. Provided
the pointcut kind condition is not satisfied, we have the following:

• The kind of pointcut is definition related, which implies the following condition:

E addA = {(u, v) | u ∈ RA ∧ v ∈ Adef} ∪ {(u, v) | u ∈ Adef ∧ v ∈ JPdef}
∧ E delA = {(u, v) ∈ ES | k defines u ∧ v ∈ JPdef}

• The kind of pointcut is reference related, which implies the following condition:

E addA = {(u, v) | u ∈ RA ∧ v ∈ JPdef}
∧ E delA = {(u, v) ∈ ES | k defines u ∧ v ∈ JPdef}

The edges of E addA generates a path from each vertex u ∈ RA to each vertex v ∈ JPdef

in the amended dependency digraph. Moreover, due to the ordering properties of the
dependency digraph, edges in E delA would not be within a path that starts from a vertex
in JPdef in the original dependency digraph. According to Lemma 1, A is dependency-
invalid w.r.t. S iff

∃(u | u ∈ DS : u ∈ JPdef ∧ u ∈ RA ) ∨
∃(u, v | u, v ∈ DS : u ∈ JPdef ∧ v ∈ RA ∧ ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) ) (1)

In (1), the first exstential quantification before ∨ indicates there are loops in the amended

dependency digraph, while the second existential quantification after ∨ indicates there are

cycles in the amended dependency digraph.
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A is dependency-invalid w.r.t. S

⇐⇒ 〈 Prop. 1 〉
(1)

⇐⇒ 〈 Dummy Nesting & Trading rule 〉
∃(u | u ∈ DS ∧ u ∈ RA : u ∈ JPdef ) ∨ ∃

(
v | v ∈ DS

∧v ∈ RS : ∃(u | u ∈ JPdef : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
)

⇐⇒ 〈 Dummy renaming & Distributivity of ∃ & Axiom of set intersec-
tion 〉

∃
(
v | v ∈ DS ∩ RA : v ∈ JPdef ∨ ∃(u | u ∈ JPdef : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )
)

⇐⇒ 〈 JPdef Property: x ∈ JPdef ⇐⇒ ∃(n | n ≥ 1 : (k, x)–path ∈ (ES)n )
& Trading rule 〉

∃
(
v | v ∈ DS ∩ RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n ) ∨ ∃(u |: ∃(n | n ≥ 1 :

(k, u)–path ∈ (ES)n ) ∧ ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
)

⇐⇒ 〈 Path concatenation & Dummy renaming & Distributivity of ∧
over ∃ 〉

∃
(
v | v ∈ DS ∩ RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n ) ∨

(
∃(m | m ≥ 2 :

(k, v)–path ∈ (ES)m ) ∧ ∃(u | u ∈ DS : ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n ) )
) )

=⇒ 〈 Weakening 〉
∃

(
v | v ∈ DS ∩ RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n ) ∨ ∃(m | m ≥ 2 :

(k, v)–path ∈ (ES)m )
)

⇐⇒ 〈 Dummy renaming & Range split & Idempotency of ∨ 〉
∃

(
v | v ∈ DS ∩ RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n )

)
⇐⇒ 〈 Definition of Walk(u, v) 〉
∃(v | v ∈ DS ∩ RA : Walk(k, v) 6= ∅ )

Therefore,

A is dependency-invalid w.r.t. S =⇒ ∃(x | x ∈ DS ∩ RA : Walk(k, x) 6= ∅ )

If we take its contrapositive form, we have

∀(x | x ∈ DS ∩ RA : Walk(k, x) = ∅ ) =⇒ A is dependency-invalid w.r.t. S

From the above proof, we have the following equation:

A is dependency-invalid w.r.t. S

⇐⇒ ∃
(
v | v ∈ DS ∩ RA : v ∈ JPdef ∨ ∃(u | u ∈ JPdef : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )
)

(2)
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Definition 12. We say that an aspect is potentially dependency-invalid if it does not satisfy
both the point kind condition (Prop. 1) and the non-cycle condition (Prop. 2).

Definition 12 indicates that an aspect is possibly dependency-invalid iff its kind of
pointcut is not constraint [list ] and ∃(v | v ∈ DS ∩ RA : Walk(k, v) 6= ∅ )). Using the
above properties, we verify whether an aspect is potentially invalid in accordance to the
kind of pointcut. If a potentially invalid aspect is detected, we continue to verify whether
it is actually invalid with regard to its base specification in accordance to the scope of its
pointcut.

Prop. 3. Let S be a valid PFA specification and A be a potentially dependency-invalid
aspect. When the scope of the pointcut is “base”, A is always dependency-invalid w.r.t. S.

Proof. When the scope of a pointcut is base, join points are where k is present. Therefore,

JPdef = N+(k).

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Equation (2) & JPdef = N+(k) 〉
∃

(
v | v ∈ DS ∩ RA : v ∈ N+(k) ∨ ∃(u | u ∈ N+(k) : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )
)

⇐⇒ 〈 x ∈ N+(k) ⇐⇒ (k, x)–path ∈ ES 〉
∃

(
v | v ∈ DS ∩ RA : (k, v)–path ∈ ES ∨ ∃(u | u ∈ DS : (k, u)–path ∈ ES∧

∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
)

⇐⇒ 〈 Path concatenation & Distributivity of ∧ over ∃ 〉
∃

(
v | v ∈ DS ∩ RA : (k, v)–path ∈ ES ∨

(
∃(u | u ∈ DS : (k, u)–path ∈ ES )∧

∃(m | m ≥ 2 : (k, v)–path ∈ (ES)m )
) )

⇐⇒ 〈 Prop. 2 does not hold =⇒ ∃(u | u ∈ DS : (k, u)–path ∈ ES ) &
Identity of ∧ 〉

∃
(
v | v ∈ DS ∩ RA : (k, v)–path ∈ ES ∨ ∃(m | m ≥ 2 : (k, v)–path ∈ (ES)m )

)
⇐⇒ 〈 One-point rule & Range split 〉
∃

(
v | v ∈ DS ∩ RA : ∃(m | m ≥ 1 : (k, v)–path ∈ (ES)m )

)
⇐⇒ 〈 Definition of Walk(u, v) & Precondition: Prop. 2 does not hold 〉

true
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Prop. 4. Let S be a valid PFA specification and A be a potentially dependency-invalid
aspect. When the scope of the pointcut is “protect(base)”, A is always dependency-valid
w.r.t. S.

Proof. When the scope of a pointcut is protect(base), the set JPdef is empty.

A is dependency-invalid

⇐⇒ 〈 Equation (2) & JPdef = ∅ 〉
∃

(
v | v ∈ DS ∩ RA : false ∨ ∃(u | false : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )

)
⇐⇒ 〈 Empty range & ∃-False Body: ∃(x | R : false ) ⇐⇒ false 〉

false

Prop. 5. Let S be a valid PFA specification and A be a potentially dependency-invalid
aspect. Construct the dependency digraph GS according Construction 3 and denote or
create the vertices k and s in GS according Construction 5. When the scope of the pointcut
is “within”, A is dependency-invalid w.r.t. S iff

∃(v | v ∈ DS ∩ RA : s ∈ Walk(k, v) ∧ s 6= k ).

Proof. When the scope of a pointcut is within, join points are bound to a labeled product

family whose label is s. Therefore, we have JPdef = s. Besides, there should be a path

form k to s.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Equation (2) & JPdef = s & There is a path from k to s 〉
∃

(
v | v ∈ DS ∩ RA : v = s ∨ ∃(u | u = s : ∃(m | m ≥ 1 : (u, v)–path ∈

(ES)m ) )
)
∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n )

⇐⇒ 〈 Distributivity of ∧ over ∃ & One-point rule 〉
∃

(
v | v ∈ DS ∩ RA : (v = s ∨ ∃(m | m ≥ 1 : (s, v)–path ∈ (ES)m )) ∧ ∃(n |

n ≥ 1 : (k, s)–path ∈ (ES)n )
)

⇐⇒ 〈 Definition of Walk(u, v) & S is dependency-valid ⇐⇒ Walk(x, x) = ∅ 〉
∃

(
v | v ∈ DS ∩ RA : (s = v ∨ (Walk(s, v) 6= ∅ ∧ s 6= v)) ∧ (Walk(k, s) 6= ∅ ∧ k 6= s)

)
⇐⇒ 〈 Absorbing: p ∨ (q ∧ ¬p) ⇐⇒ (p ∨ q) 〉
∃

(
v | v ∈ DS ∩ RA : (s = v ∨ Walk(s, v) 6= ∅) ∧ Walk(k, v) 6= ∅ ∧ k 6= s

)
⇐⇒ 〈 Path concatenation 〉
∃

(
v | v ∈ DS ∩ RA : s ∈ Walk(k, v) ∧ k 6= s

)
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Prop. 6. Let S be a valid PFA specification and A be a potentially dependency-invalid
aspect. Construct the dependency digraph GS according Construction 3 and denote or
create the vertex k in GS according Construction 5. When the scope of the pointcut is
“protect(within)”, A is dependency-invalid w.r.t. S iff

∃(v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k ).

Proof. When the scope of a pointcut is protect(within), if there is a path from k to s, labels

in JPdef should exclude s. Otherwise, the set JPdef is identical with the one specified by

pointcut of type base.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Equation (2) & JPdef properties & Prop. 3 〉(
∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k ) ∧ ∃

(
v | v ∈ DS ∩ RA : ( ∃(n | n ≥ 1 :

(k, v)–path ∈ (ES)n ) ∧ v 6= s) ∨ ∃(u | ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n ) ∧ u 6= s :

∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
))
∨ (¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k )

∧ true)

⇐⇒ 〈 Identity of ∧ & Absorbing: (p ∧ q) ∨ ¬p ⇐⇒ q ∨ ¬p 〉
∃

(
v | v ∈ DS ∩ RA : ( ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n ) ∧ v 6= s) ∨ ∃(u |

∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n ) ∧ u 6= s : ∃(m | m ≥ 1 : (u, v)–path

∈ (ES)m ) )
)
∨ ¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k )

⇐⇒ 〈 Trading rule & Definition of Walk(u, v) & Path concatenation 〉
∃

(
v | v ∈ DS ∩ RA : (Walk(k, v) 6= ∅ ∧ v 6= s) ∨ ∃(u | u 6= s : u ∈ Walk(k, v)

∧u 6= k ∧ u 6= v )
)
∨Walk(k, s) = ∅

⇐⇒ 〈 Trading rule & Generalized De Morgan 〉
∃

(
v | v ∈ DS ∩ RA : (Walk(k, v) 6= ∅ ∧ v 6= s) ∨ ¬ ∀(u | u = s : u ∈ Walk(k, v)

∧u 6= k ∧ u 6= v )
)
∨Walk(k, s) = ∅

⇐⇒ 〈 One-point rule & De Morgan 〉
∃

(
v | v ∈ DS ∩ RA : (Walk(k, v) 6= ∅ ∧ v 6= s) ∨ s /∈ Walk(k, v) ∨ s = k ∨ s = v)

)
∨ Walk(k, s) = ∅

⇐⇒ 〈 Distributivity of ∨ over ∧ & Excluded Middle & Absorbing: p ∧
(p ∨ q) ⇐⇒ p 〉

∃
(
v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k)

)
∨Walk(k, s) = ∅

⇐⇒ 〈 Walk(k, s) = ∅ =⇒ ∃(v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ) &
Distributivity of ∨ over ∃ & (p =⇒ q) =⇒ ((p ∨ q) ≡ q) 〉

∃
(
v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k)

)
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Prop. 7. Let S be a valid PFA specification and A be a potentially dependency-invalid
aspect. Construct the dependency digraph GS according Construction 3 and denote or
create the vertices k and s in GS according Construction 5. When the scope of the pointcut
is “cflow”, A is dependency-invalid w.r.t. S iff

∃(v | v ∈ DS ∩ RA : s ∈ Walk(k, v) ∧ s 6= k ∧ s 6= v ).

Proof. When the scope of a pointcut is cflow , join points are bound to a labeled product

family where s is present at their right-hand sides. Therefore, JPdef = N+(s). Besides,

there should be a path from k to s.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Equation (2) & JPdef = N+(s) & There is a path from k to s 〉
∃

(
v | v ∈ DS ∩ RA : v ∈ N+(s) ∨

(
∃(u | u ∈ N+(s) : ∃(m | m ≥ 1 : (u, v)–path

∈ (ES)m ) )
)
∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n )

⇐⇒ 〈 v ∈ N+(s) ⇐⇒ (s, v)–path ∈ ES & Distributivity of ∧ over ∃ 〉
∃

(
v | v ∈ DS ∩ RA : ((s, v)–path ∈ ES ∨ ∃(u |: (s, u)–path ∈ ES ∧ ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )) ∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n )
)

⇐⇒ 〈 Path concatenation & Dummy renaming & (p =⇒ q) =⇒
(p ∧ q ≡ p) 〉

∃(v | v ∈ DS ∩ RA : ((s, v)–path ∈ ES ∨ ∃(m | m ≥ 2 : (s, v)–path ∈ (ES)m ))

∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n ) )

⇐⇒ 〈 One-point rule & Range split 〉
∃(v | v ∈ DS ∩ RA : ∃(m | m ≥ 1 : (s, v)–path ∈ (ES)m ) ∧ ∃(n | n ≥ 1 :

(k, s)–path ∈ (ES)n ) )

⇐⇒ 〈 Path concatenation & Definition of Walk(u, v) & S is
dependency-valid ⇐⇒ Walk(x, x) = ∅ 〉

∃
(
v | v ∈ DS ∩ RA : s ∈ Walk(k, v) ∧ s 6= v ∧ k 6= s

)

Prop. 8. Let S be a valid PFA specification and A be a potentially dependency-invalid
aspect. Construct the dependency digraph GS according Construction 3 and denote or
create the vertices k and s in GS according Construction 5. When the scope of the pointcut
is “protect(cflow)”, A is dependency-invalid w.r.t. S iff

∃(v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k ∨ s = v ).
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Proof. When the scope of a pointcut is protect(cflow), if there is a path from k to s, labels

in JPdef should not include successors of s. Otherwise, the set JPdef is identical with the

one specified by a pointcut with scope base.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Equation (2) & JPdef properties & Prop. 3 〉(
∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k ) ∧ ∃

(
v | v ∈ DS ∩ RA : ∃(n | n ≥ 1 :

(k, v)–path ∈ (ES)n ) ∧ v /∈ N+(s) ∨ ∃(u | ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n )

∧u /∈ N+(s) : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
)
∨ (true ∧ ¬ ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k ))

⇐⇒ 〈 Distributivity of ∧ over ∃ & Distributivity of ∧ over ∨ & x ∈
N+(s) ⇐⇒ (s, x)–path ∈ ES 〉

∃
(
v | v ∈ DS ∩ RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n ) ∧ ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k ) ∧ (s, v)–path /∈ ES) ∨ ∃(u | ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n )

∧ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k ) ∧ (s, u)–path /∈ ES : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )
)
∨ ¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k )

⇐⇒ 〈 Trading rule & Generalized De Morgan 〉
∃

(
v | v ∈ DS ∩ RA : ( ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n ) ∧ ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k ) ∧ (s, v)–path /∈ ES) ∨ ¬ ∀(u | (s, u)–path ∈ ES : ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k ) ∧ ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n ) ∧ ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )
)
∨ ¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k )

⇐⇒ 〈 Trading rule & Path concatenation 〉
∃

(
v | v ∈ DS ∩ RA : ( ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n ) ∧ ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k ) ∧ (s, v)–path /∈ ES) ∨ ¬( ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n )

∧ ∃(m | m ≥ 2 : (s, v)–path ∈ (ES)m ))
)
∨ ¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k )

⇐⇒ 〈 Definition of Walk(u, v) 〉
∃

(
v | v ∈ DS ∩ RA : (Walk(k, v) 6= ∅ ∧ k 6= s ∧ v /∈ N+(s)) ∨ ¬(s ∈ Walk(k, v) ∧ k 6= s

∧s 6= v ∧ v /∈ N+(s)
)
∨Walk(k, s) = ∅

⇐⇒ 〈 De Morgan 〉
∃

(
v | v ∈ DS ∩ RA : (Walk(k, v) 6= ∅ ∧ k 6= s ∧ v /∈ N+(s)) ∨ s /∈ Walk(k, v) ∨ s = k

∨s = v ∨ v ∈ N+(s)
)
∨Walk(k, s) = ∅)

⇐⇒ 〈 Distributivity of ∨ over ∧ & Excluded Middle & Absorbing 〉
∃

(
v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k ∨ s = v

)
∨Walk(k, s) = ∅)

⇐⇒ 〈 Walk(k, s) = ∅ =⇒ ∃
(
v | v ∈ DS ∩ RA : s /∈ Walk(k, v)

)
〉

∃
(
v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k ∨ s = v

)
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Prop. 9 (Dependency-invalid aspect). Let S be a valid PFA specification and A be a
potentially dependency-invalid aspect. Let a be a vertex that invalidates the condition of
Prop. 2. Vertices k and s are denoted or created in GS according to A as prescribed in
Construction 5. Provided the set of join points is nonempty, the aspect A is dependency-
invalid w.r.t. S if Dep invalid(ts), where ts represents the scope of the pointcut and

Dep invalid(ts)
def⇔



true if ts is base

s ∈ Walk(k, a) ∧ s 6= k if ts is within

s ∈ Walk(k, a) ∧ s 6= k ∧ s 6= a if ts is cflow

¬Dep invalid(ts′) if ts is protect(ts′)

Dep invalid(ts1) ∨ Dep invalid(ts2) if ts is (ts1 : ts2)

Dep invalid(ts1) ∧ Dep invalid(ts2) if ts is (ts1 ; ts2)

Proof.

(1) ts = base

A is dependency-invalid w.r.t. S
⇐⇒ 〈 Prop. 3 & a is a vertex associated to A that invalidates Prop. 2 〉

true

(2) ts = within

A is dependency-invalid w.r.t. S
⇐⇒ 〈 Prop. 5 〉
∃(v | v ∈ DS ∩ RA : s ∈ Walk(k, v) ∧ s 6= k ).
⇐= 〈 Witness: a is a vertex associated to A that invalidates Prop. 2 〉
s ∈ Walk(k, a) ∧ s 6= k

(3) ts = cflow

A is dependency-invalid w.r.t. S
⇐⇒ 〈 Prop. 7 〉
∃(v | v ∈ DS ∩ RA : s ∈ Walk(k, v) ∧ s 6= k ∧ s 6= v )

⇐= 〈 Witness: a is a vertex associated to A that invalidates Prop. 2 〉
s ∈ Walk(k, a) ∧ s 6= k ∧ s 6= a
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(4) ts=protect(ts’)

• ts’=base

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Prop. 4 〉
false

⇐⇒ 〈 Proof item (1) 〉
¬Dep invalid(base)

• ts’=within

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Prop. 6 〉
∃(v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k )

⇐= 〈 Witness: a is a vertex associated to A that invalidates Prop. 2 〉
s /∈ Walk(k, a) ∨ s = k

⇐⇒ 〈 Proof item (2) 〉
¬Dep invalid(within)

• ts’=cflow

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Prop. 8 〉
∃(v | v ∈ DS ∩ RA : s /∈ Walk(k, v) ∨ s = k ∨ s = v )

⇐= 〈 Witness: a is a vertex associated to A that invalidates Prop. 2 〉
s /∈ Walk(k, a) ∨ s = k ∨ s = a

⇐⇒ 〈 Proof item (3) 〉
¬Dep invalid(cflow)

(5) ts = (ts1 : ts2)

Let the set of join points selected by ts1 be JP1
def and the set of join points selected by

ts2 be JP2
def, then the set JPdef = JP1

def ∪ JP2
def.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Equation (2) & JPdef = JP1
def ∪ JP2

def 〉
∃

(
v | v ∈ DS ∩ RA : v ∈ JP1

def ∪ JP2
def ∨ ∃(u | u ∈ JP1

def ∪ JP2
def : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )
)

⇐⇒ 〈 Range split for idempotent operator ∃ 〉
∃

(
v | v ∈ DS ∩ RA : v ∈ JP1

def ∪ JP2
def ∨ ∃(u | u ∈ JP1

def : ∃(m | m ≥ 1 :
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(u, v)–path ) ∈ (ES)m ) ∨ ∃(u | u ∈ JP2
def : ∃(m | m ≥ 1 : (u, v)–path ∈

(ES)m ) )
)

⇐⇒ 〈 Union set axiom & Associativity and Symmetry of ∨ & Distribu-
tivity of ∃ 〉

∃
(
v | v ∈ DS ∩ RA : v ∈ JP1

def ∨ ∃(u | u ∈ JP1
def : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m ) )
)
∨ ∃

(
v | v ∈ DS ∩ RA : v ∈ JP2

def ∨ ∃(u | u ∈ JP2
def :

∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
)

⇐= 〈 Equation (2) & Proof items (1), (2), (3) and (4) 〉
Dep invalid(ts1) ∨Dep invalid(ts2)

(6) ts = (ts1 ; ts2)

Let the set of join points selected by ts1 be JP1
def and the set of join points selected by

ts2 be JP2
def, then the set JPdef = JP1

def ∩ JP2
def, provided that JPdef 6= ∅.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Equation (2) & JPdef = JP1
def ∩ JP2

def 〉
∃

(
v | v ∈ DS ∩ RA : v ∈ JP1

def ∩ JP2
def ∨ ∃(u |

u ∈ JP1
def ∩ JP2

def : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
)

⇐⇒ 〈 Set intersection axiom & Distributivity of ∨ over ∧ 〉
∃

(
v | v ∈ DS ∩ RA :

(
v ∈ JP1

def ∨ ∃(u | u ∈ JP1
def

∩JP2
def : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )

)
∧

(
v ∈ JP2

def ∨ ∃(u | u ∈ JP1
def ∩ JP2

def : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m ) )
) )

⇐= 〈 Witness: a is a vertex associated to A that invalidates Prop. 2 〉(
a ∈ JP1

def ∨ ∃(u | u ∈ u ∈ JP1
def ∩ JP2

def : ∃(m | m ≥ 1 : (u, a)–path ∈ (ES)m ) )
)

∧
(
a ∈ JP2

def ∨ ∃(u | u ∈ JP1
def ∩ JP2

def : ∃(m | m ≥ 1 : (u, a)–path ∈ (ES)m ) )
)

⇐= 〈 JP1
def ∩ JP2

def 6= ∅ & Witness 〉(
a ∈ JP1

def ∨ ∃(m | m ≥ 1 : (u, a)–path ∈ (ES)m )
)
∧

(
a ∈ JP2

def ∨ ∃(m | m ≥ 1 :

(u, a)–path ∈ (ES)m )
)

⇐⇒ 〈 Equation(2) & Proof item (1), (2), (3), and (4) 〉
Dep invalid(ts1) ∧Dep invalid(ts2)

With regard to the previous constructions, definitions, and propositions, besides con-
structing the dependency digraph, the most costly process is to find a walk between two
vertices in the digraph. Finding a walk between vertices in such digraphs can be achieved by
classic graph algorithms with time complexity linear in the size of the digraph. Therefore,



34

verifying the dependency-validity of aspects with the proposed technique has a complexity
of O(V + E), where V and E are the number of vertices and edges in the dependency
digraph of base specifications. In other words, V is the number of features in the product
families, and E is equal to V 2 at the most.

4.1.3 Related Work to Aspects Verification

In the literature of the aspect-oriented paradigm, various aspect-oriented techniques have
been proposed to identify and represent aspects at the early requirement and design
stages [19, 32, 41]. Most of those approaches are informal and their support of valida-
tion and verification are limited. Those informal approaches are easy to understand and
are suited for user validation. But the verification in those approaches is only accomplished
by informally “walking through” the artefacts [8]. On the other hand, the language AO-
PFA provides a formal and compact way to modularise and compose aspects in product
family specifications. The mathematical and formal nature of AO-PFA eases the formal
verification of aspectual composition as discussed in this paper.

With regard to the formal verification of aspectual composition, model checking (e.g.,
[23, 26]) and code static analysis (e.g., [7, 36, 37]) are mainly used in existing approaches
at the programming level. However, due to complex notations that are needed for the
expressiveness of a programming language, most of those researches focus on detecting
interferences caused by one or some types of aspectual composition. Although analogised
from AspectJ [25], the notations used in AO-PFA are simplified and unified with the help
of product family algebra. In this paper, we intend to detect interferences caused by all
types of aspectual composition in AO-PFA.

Our research is inspired by a static code analysis approach described in [34] that charac-
terizes the direct and indirect interactions of aspects with base systems. By considering as-
pects and base systems in the context of AO-PFA, the interaction classification, namely, or-
thogonal, independent, observation, actuation, and interference, help us to extract all nec-
essary validity criteria (i.e., definition-validity, reference-validity and dependency-validity)
for specifications and aspects in our approach.

4.2 Case Study: Home Automation Family

We illustrate our approach with a case study of a home automation product line adapted
from [31]. Basically, a home automation system includes control devices, communication
networks, user interfaces and a home gateway. Different types of devices, network stan-
dards, and user interfaces can be selected for different products. A home gateway offers
different services for overall system management.

To shorten expressions, we use the abbreviations as shown in Table 2. Figure 14 specifies
the feature model of the home automation product line. Figure 15 is a house configuration
based on the home automation product line, i.e., every configuration should be subfamily
of Home Automation product line and satisfy the constraints specified in Figure 14. We are
going to illustrate how a base specification can be amended using aspects. The specification
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Table 2: Basic Features and Families Abbreviation

Feature Abbreviation Feature Abbreviation

time controller tim con luminance sensor lum sen

weather sensor wea sen graphical tv gra tv

web based web bas PDA PDA

cable cable wireless wireless

Internet inter mobile phone network mob net

manual lighting man lig smart lighting sma lig

manual door and window man daw smart door and window sma daw

heating system heat sys stereo system ster sys

Light device Lig dev Door and window device Daw dev

User Interface Usr Int Communication Commun

Lighting control Lig con Door and window control Daw con

Home appliance control HApp con Home gateway Home gateway

Home Automation product line Home Auto PL

in Figure 14 is used in Case 1 and Case 2 as our base specification, while the specification
in Figure 15 is used as our base specification in Case 3.

4.2.1 Specifying Aspects in AO-PFA

Case 1: A new device is added to the product family

An electronic door lock is controlled by the sma daw to open the door. Basically, it uses a
tim con to decide when to open and close a door. Later, a new finger printer reader device,
abbreviated as fin reader, is available. The feature sma daw uses the feature fin reader for
the authentication mechanism instead of the feature tim con to control the door. We write
several aspects to specify changes to the base specification, which correspond to a sequence
of activities for introducing the feature fin reader into the product family.

(a) We intend to deploy new fingerprint reader device in the product family. We use a
family-related creation pointcut to capture the left-hand side of the labeled product
family Daw dev in Specification home automation product line (i.e., Line 19 in Fig-
ure 14), and specify the aspect as follows:

Aspect jp new= jp · (1+fin reader)

where jp ∈
(
base, true, creation(Daw dev)

)
The creation pointcut refers to join points at the exact definitions of labeled product
families. The body of the advice is a product family term with the variable jp, which
indicates an augmenting aspect. According to the aspect classification described in
Section 3.4, the above aspect is a refine aspect. In other words, we compose an aspect
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Specification home automation product line:

1. bf tim con

2. bf lum sen

3. bf wea sen

4. bf gra tv

5. bf web bas

6. bf PDA

7. bf cable

8. bf wireless

9. bf inter

10. bf mob net

11. bf man lig

12. bf sma lig

13. bf man daw

14. bf sma daw

15. bf heat sys

16. bf ster sys

17. bf wat intr

% Device Control

18. Lig dev = 1+lum sen

19. Daw dev = tim con· (1+wea sen)

% User Interface

20. Usr Int = gra tv· (1+web bas) · (1+PDA)

% Communication

21. Commun = (cable+wireless+cable· wireless) · (1+inter) · (1+mob net)

% Application Programmes

22. Lig con = man lig· (1+sma lig)

23. Daw con = man daw· (1+sma daw)

24. HApp con = (1+heat sys) · (1+ster sys) · (1+wat intr)

25. Home gateway = Lig con· Daw con· HApp con)

% Home Automation product line

26. Home Auto PL = Commun· Usr Int· Lig dev· Daw dev· Home gateway

% Constraints

27. constraint(sma lig, Home Auto PL, Lig dev)

28. constraint(sma daw, Home Auto PL, Daw dev)

29. constraint(web bas, Home Auto PL, inter)

Figure 14: The Base Specification for Case 1 and Case 2
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Specification home automation configuration:

import home automation product line.spec

%Predefined configuration:

1. Economic mode = (lum sen· tim con) · cable· gra tv· (man lig· sma lig

· man daw· sma daw· heat sys)

% Customized configuration

2. kitchen = Economic mode

3. Living room = Economic mode· ster sys

4. Bath room = tim con· cable· gra tv· (man lig· sma daw· heat sys· wat intr)

5. Bed room = (lum sen· tim con) · (cable· wireless· mob net) · gra tv

· ster sys· heat sys· man lig· sma lig· man daw· sma daw

6. Reading room = (lum sen· tim con) · (cable· wireless· inter· mob net) ·
(gra tv· web bas) · (man lig· sma lig· man daw· sma daw· heat sys)

7. House = kitchen· Living room· Bath room· Bed room· · Reading room

Figure 15: The Base Specification for Case 3

with the base specification to refine the family of door and window devices.

(b) The next step is to replace the original basic feature sma daw with a new one, e.g.,
sma daw new, which has interactions with the database and the finger print reader.
We use a feature-related declaration pointcut to capture the basic feature declaration of
sma daw in Specification home automation product line (i.e., Line 14 in Figure 14),
and specify an aspect as follows:

Aspect jp new= sma daw with fin reader

where jp ∈
(
base, true, declaration(sma daw)

)
The declaration pointcut refers to join points at the definitions of basic features and
the body of the advice is a ground product family term. Based on the aspect classifi-
cation mechanism again, we compose an aspect to replace the original smart door and
window feature.

(c) After a while, the fin reader mechanism is ensured to be more suitable than the tim con
for the smart control of door. We use a declaration pointcut again to capture the basic
feature declaration of tim con in Specification home automation prod−
uct line (i.e., Line 1 in Figure 14), and specify an aspect as follows:

Aspect jp new= 1

where jp ∈
(
base, true, declaration(tim con)

)
The above poincut is related to definitions of a basic feature, and the body of the advice
is element 1, which indicates a narrowing aspect. Thus, we specify a discard aspect to
completely remove the basic feature tim con from the product line.
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Case 2: A new functionality is introduced in the product family

A sequence of activities are scheduled in the Home gateway for fire detection. This
new functionality, abbreviated as fir det flow would interact with sma lig, sma daw and
HApp con features [31]. Additional devices, fire sen (fire sensor) and alarm are required
as well. The aspects below can be used to specify this scenario.

(a) The new functionality fir det flow can be added to the product family Home gateway
when certain other features are available. We use the scope within to narrow the join
points within the textual structure of Home gateway (i.e., Line 25 in Figure 14). More-
over, we use a family-related component pointcut to capture product families where
sma lig, sma daw and HApp con are all referenced. An aspect is specified as follows:

Aspect jp= jp · fir det flow

where jp ∈
(
within(Home gateway), true,component(sma lig·sma daw· HApp con)

)
The component pointcut refers to join points where specified product families are ref-
erenced. Apparently, the advice of the above aspect has augmenting effects. Based
on our classification mechanism, we use the above aspect to extend the original home
gateway with new functionality.

(b) Next, we want to replace the basic feature fir det flow by a product family that con-
sists of all necessary interactions with other product families. The original declaration
of the basic feature fir det flow is again captured with a poincut declaration and we
specify another replace aspect as follows:

Aspect jp new= sma lig· sma daw· HApp con

where jp ∈
(
base, true, declaration(fir det flow)

)
(c) New devices fire sen and alarm are deployed to enable the fire detection functionality.

Consequently, new operations to cooperate with fire sen and alarm should be added.
We use a family-related component creation pointcut and specify a refine aspect as
follow:

Aspect jp new= jp · fire sen · alarm

where jp ∈
(
base, true, component creation(fir det flow new)

)
Case 3: Support variabilities of the product family

The product family supports the variability of user interfaces. For instance, the optional
feature PDA should be able to be included or excluded with different configurations. We
specify several aspects below to exemplify the support of variabilities.

(a) We want to upgrade all configurations that have all features in Economic mode with
the interface PDA in Specification home automation configuration. We use an equiv-
alent component pointcut to capture the join points at the right-hand sides of Line 5,
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Line 6 and Line 7 in Figure15 and specify an extend aspect as follows:

Aspect jp= jp · PDA

where jp ∈
(
base, true, equivalent component(Economic mode)

)
(b) Assume that the PDA interface requires the support of the wireless network. For

economic reasons, we use wireless instead of cable for the communication. We use a
feature-related inclusion pointcut to capture cable at the right-hand sides of Line 4,
Line 5 and Line 6 in Figure 15. An aspect is specified as follows:

Aspect jp= wireless

where jp ∈
(
base, true, inclusion(cable)

)
The inclusion pointcut refers to join points where basic features are referenced. The
body of advice is in the form of a ground term, which identifies a replacement effect.
Therefore, we categorize the above aspect as a substitute aspect. By composing this as-
pect, we substitute cable communication with wireless communication in all customized
home automation configurations.

(c) Suppose that the PDA interface cannot operate correctly in the Reading room for some
unknown reason. We again use within to specify the scope of join points within Line 6
in the specification of Figure 15, and use the inclusion pointcut to capture PDA at the
right-hand side of Line 6. An aspect is specified as follows:

Aspect jp= 1

where jp ∈
(
within(Reading room), true, inclusion(PDA)

)
The above pointcut is related to the references of a basic feature and the advice indi-
cates a narrowing effect. Therefore, the above aspect is categorized as a disable aspect.
We can disable the PDA interface in the reading room by compositing this aspect.

4.2.2 Verifying Aspectual Composition in AO-PFA

Verification of definition-validity For example, we take the aspect of Case 1(a) to il-
lustrate the evaluation of definition-validity of an aspect w.r.t. its base specification. Using
Construction 1, the defining label multi-set of the base Specification home automation is
as follows:

Mhome automation product line={ tim con, lum sen,wea sen, gra tv ,web bas ,PDA, cable,wireless ,
inter ,mob net ,man lig , sma lig ,man daw , ster sys , sma dawheat sys ,wat intr ,Lig dev ,
Daw dev ,Usr Int ,Commun,Lig con,HApp con,Home gateway ,Home Auto PL,Daw con}

With regard to Definition 5, we claim that the base Specification home automation is
definition-valid. Consequently,

Dhome automation product line = Mhome automation product line.

With regard to the definition-validity of the aspect of Case 1(a), we construct the defining
label set of the aspect according to the row corresponding to creation in Table 1 and obtain



40

Dcase1a aspect = {fin reader ,Daw dev new}.

The intersection of Dhome automation and Dcase1a aspect is empty. Therefore, the considered
aspect is definition-valid w.r.t. the Specification home automation product line according
to Definition 9.

We use another example to show how to detect certain conflicts among aspects using
the proposed criteria. Let Specification home automation one be the resulting specifica-
tion after weaving the aspect of Case 1(a). We can construct the defining label set of
Specification home automation one in accordance to Construction 1. Particularly,

Dhome automation one = Dhome automation product line tDcase1a aspect.

An aspect is specified below to include a new device fin reader as a mandatory feature in
the subfamily Daw dev:

Aspect jp new= jp · fin reader

where jp ∈
(
base, true, creation(Daw dev)

)
According to Table 1, the defining label set of the above aspect is {Daw dev new}, whose
intersection with Dhome automation one is nonempty. Thus, this aspect is definition-invalid
w.r.t. the Specification home automation one, which indicates that weaving such an as-
pect will cause a definition-invalid specification.

Verification of reference-validity We continue to illustrate the evaluation of reference-
validity of an aspect w.r.t. its base specification with the example of Case 1(a). The refer-
encing label set of the Specification home automation product line is constructed according
to Construction 2. In this case, we have

Rhome automation product line = Dhome automation product line.

We construct the referencing label set of the aspect of Case 1(a) using Table 1, which
is the same as its defining label set. We have

Rhome automation product line ∪ Rcase1a aspect = Dhome automation product line ∪Dcase1a aspect.

Based on Definition 10, we verified that the considered aspect is reference-valid w.r.t. its
base specification.

As a further example, we make a minor modification to Daw dev in the original Spec-
ification home automation product line as shown in Figure 16. The new specification is
called Specification home automation two. With this modification, the defining label set
of Specification home automation two remains the same as Dhome automation product line, while
the referencing label set becomes:

Rhome automation two = Rhome automation product line ∪ {fin reader}

According to Definition 6, the modified specification is reference-invalid, while according to
Definition 10, the aspect of Case 1(a) is reference-valid w.r.t. the Specification home auto−
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mation two. In other words, the specification becomes reference-valid after weaving2 the
considered aspect. The above example illustrates how the proposed technique can be
used to ensure safe incrementation of systems with regard to reference-validity, even if the
original specification is reference-invalid.

Specification home automation two:

...

Daw dev = tim con· (1+wea sen) · (1+fin reader)

...

Figure 16: Modified specification of Specification home automation product line

Verification of dependency-validity We apply the propositions given in Section 4.1.2
to verify the dependency-validity criteria of an aspect w.r.t. a given base specification.
Take the several aspects given in the Case 2 of our case study as examples.

Based on Table 1, the referencing label set of the aspect of Case 2(a) is {fir det flow},
whose intersection with Dhome automation is empty. According to Prop. 2, we can conclude
directly that, even without constructing the dependency digraph of the base specification,
the aspect of Case 2(a) is dependency-valid w.r.t. its base specification. Assume Speci-
fication home automation three is the resulting specification after weaving the aspect of
Case 2(a). We construct the dependency digraph of Specification home automation three
in Figure 17(a) according to Construction 3. According to Definition 8, the resulting spec-
ification is dependency-valid, which confirms that the aspect is dependency-valid w.r.t. its
base specification.

Consequently, the base specification for Case 2(b) is Specification home automation three.
In Figure 17(a), gray vertices represent vertices in both the referencing label set of the
aspect of Case 2(b) and the defining label set of the base specification, and the black
vertex corresponds to k denoted according to Construction 5. Since there is no path
from k to any vertex corresponding to sma lig, sma daw and HApp con, Prop. 2 indi-
cates that the above aspect is dependency-valid w.r.t. its corresponding base specifica-
tion. Assuming the resulting specification after weaving the aspect of Case 2(b) is called
Specification home automation four. We construct the dependency digraph of Specifica-
tion home automation four in Figure 17(b), which is loop-free and cycle-free.

We next consider an example illustrating a case where the aspect is dependency-invalid
w.r.t. its base specification. We use an inclusion pointcut to capture join points where
sma lig is being referenced and specify an aspect as follows:

2We assume that the model of product family algebra is set-based, which means the operator · is
idempotent; we do not allow duplication of features.
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(a) Corresponding to Specification home autom-
ation three

(b) Corresponding to Specification home automation four

Figure 17: The dependency digraphs of PFA Specifications

Aspect jp= jp · fir det flow new

where jp ∈
(
base, true, inclusion(sma lig)

)
Take the specification corresponding to Figure 17(b) as the base specification. With regard
to the above aspect, we denote vertices in Figure 17(b) in the same way as in Figure 17(a).
According to the first item in Prop. 9, the aspect is dependency-invalid w.r.t. its base
specification; there is a path from the vertex of sma lig to the vertex of fir det flow new.
However, assume we change the scope of the above pointcut to be within(Lig con) instead
of base. Based on Construction 3, the vertex in Figure 17(b) represented by a bold cir-
cle corresponds to vertex s. Due to the second item in Prop. 9, the modified aspect is
dependency-valid w.r.t. its base specification. In Figure 17(b), the dashed edges represent
new edges that will be introduced by weaving the two aspects that have pointcuts with
scope base and within, respectively. The dashed edges illustrate that the first aspect will
introduce a loop in the dependency digraph, while the second aspect will not.

5 Conclusion and Future Work

In this technical report, we have proposed an aspect-oriented specification language, called
AO-PFA that extends aspect-oriented notations to product family algebra specifications.
The AO-PFA language provides full facilities for formally articulating aspects and base
systems at the feature-modeling level. Moreover, we presented a formal verification tech-
nique of aspectual composition in the context of AO-PFA. We defined a set of validity
criteria for PFA base specifications and aspectual composition. The proposed approach
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enables the detection of definition, reference, and dependency invalid aspects.
We are using the work presented in [18] as the basis for our ongoing work on introducing

finer granularity aspects (at the state level rather than the feature level). The objective
from this work is to get closer to automatic code generation from the specification of
the product family base, the specification of the aspects, and the specification of the
basic features. Höfner et al. [18] demonstrated that it is an achievable objective. They
present the features of a family as requirements scenarios formalised as pairs of relational
specifications of a proposed system and its environment. The result of the weaving aspects
should lead to, among others, the specification of a product given using a slight variation
of Dijkstra’s guarded command [10]. Consequently, the work presented in this paper aims
at detecting interferences caused by aspectual compositions at the syntactic level. In other
words, features are taken as “black-boxes”. To detect interferences caused by aspectual
composition at the semantic level, we consider the work presented in [18] as the basis for
our ongoing work on introducing finer granularity features.

On the other hand from the application perspective, we aim to apply our technique
to larger scale applications. Basically, we intend to focus on applying our approach to
handle security issues in product families of software systems. One major difficulty related
to security concerns is caused by its crosscutting characteristic. As an emerging technique
for handling crosscutting concerns, the aspect-oriented paradigm is naturally recognized as
a promising technique for security. However, most current aspect-oriented techniques are
concentrating on the implementation and detailed design level [28]. Therefore, applying the
proposed method to security would contribute to the early stages of security engineering,
which interest both the security and aspect-oriented development communities.
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[41] J. Whitter and J. Araújo. Scenario modelling with aspects. In IEE Proceedings of
Software Special Issue, 2004.


