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Abstract
One of the goals of Network Service Providers (SP) is to provision efficiently
value-added networking services to their end users. The services may have
different duration, connectivity, and Quality of Service (QoS) requirements. An SP
meets such requirements by exploiting various routing and management
mechanisms for edge and core networks. We focus on network services that
require the establishment of Virtual Networks (VN’s). This paper considers a VN
creation architecture based on Multi-protocol Label Switching (MPLS). MPLS is
one approach for implementing VN's that enables programmability for network
infrastructure and hence the creation of value-added services. An analytic
performance model is developed to assess the scalability of the architecture as the
underlying physical network infrastructure evolves. The model we present
describes only coarse features of the architecture, yet offers insights regarding its
performance and scalability. In particular we assess the impact of a flat versus
hierarchical MPLS mechanism on the response time of service creation.

Keywords
Virtual Networks, Service Provisioning, Performance modeling, QoS, MPLS,
Layered Queuing Networks.

1. Introduction
Virtual networks (VN) offer the opportunity to treat a collection of geographically
remote devices as if they are part of a private network. Group communication,
workflow management, and commerce applications can all benefit from VN's.
From an end-user's perspective VN's simplify application development and
management. They enable legacy applications to operate across corporate
boundaries.
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   Provisioning VN's is an important objective for the telecommunications and
computing industries. A competitive differentiator between Network Service
Providers (SP) will be the ability to provision virtual network services efficiently
[1]. These services may have different duration, connectivity, and Quality of
Service (QoS) requirements. An SP meets such requirements by exploiting various
routing and management mechanisms for edge and core networks.
   In [8] we built an analytical performance model for the whole process of
provisioning VN-based services, and found that the software bottleneck for the
system is the establishment of VN. In this paper, we study an architecture for
creating VN-based services using Multi-Protocol Label Switching (MPLS). The
architecture is based on the Traffic Engineering extensions to RSVP [7]. It offers a
flat approach that implements VN's using core network connections directly.
Furthermore we also consider the effect of aggregating RSVP messages as
described in [3]. This represents a hierarchical approach for allocating VN's that
multiplexes multiple VN's onto core network connections.
   An analytical performance model is developed for service creation within the
architecture and used to assess performance as the underlying physical network
evolves. The model should help answering the following questions: a) How do
increases in size of physical networks and VN's affect the service creation
performance under different loads? b) How sensitive is service creation
performance to various architectural parameters? These parameters include the
number of Autonomous Systems (AS) and the average number of routers within an
AS. Section 2 describes a taxonomy of VN creation models and provides scenarios
for flat MPLS-based VN creation. Section 3 uses the scenarios to develop a
performance model for MPLS-based service creation architecture. Section 4 offers
comparative results along with concluding remarks in the following section.

2. Network services and Virtual Networks
2.1. IP VN creation models

Internet Protocol-based VN’s are created using the following models:
• Flat models: where a set of end-to-end tunnels is established among different

end devices.
• Hierarchical models: which allocate VN's within other VN's [2], [5].
The flat models are further sub-divided into two categories depending on which
part of the infrastructure is responsible for provisioning the VN. In premise-based
flat models, a VN is created at the user's premises, for example at an individual's
PC or behind a corporate firewall. The network is unaware of the VN, it acts only
as a raw transport mechanism. For the network-based flat model, the status of the
VN is maintained in the network. The network may provide QoS and security
mechanisms as part of its transport services.
   L2TP [14], MPLS [9] and IPSec [10] are standard protocols that follow the flat
model. They operate at Layer 2, Layer 2.5, and Layer 7 of the OSI reference



model, respectively. L2TP establishes tunnels that enable remote users to access
remote sites privately. It relies on the negotiation between two processes that run at
either the customer premises or at edge routers. MPLS tunnels are established
between edge routers. The IETF has proposed RSVP extensions to MPLS [7] that
enable the allocation and reservation of network resource for specific flows, thus
providing QoS guarantees for the whole VPN. In IPSec, all data packets are
encrypted at the user premise and will be decrypted only at the destination points.
Others use firewalls to provide private access to important data.

2.2. MPLS-based VN provisioning

   In this paper we focus on MPLS because it has the following advantages:
• It provides QoS guarantees through allocating the required network resources

using signaling protocols (e.g. RSVP [13, 4], LDP-CR [15]).
• MPLS tunnels can be multiplexed together into other larger tunnels [6]. This

is an aspect of hierarchical VN provisioning. Thus, we consider a "bundled"
MPLS tunnel to have aspects of both VN creation models.

• It supports and enables the network infrastructure programmability.
• MPLS integrates layer 2 switching and layer 3 routing and consequently it

supports multi-protocols networks (e.g. IP, ATM or Frame Relay).
   A VN is created by setting up one or more MPLS tunnels. Each tunnel is known
as a Label Switched Path (LSP). A request for setting up an LSP is received at an
ingress router of an AS. The request is forwarded through Label Switching Routers
(LSR) downstream all the way to an egress router.
   In order to support QoS guarantees, ingress routers specify an Explicit Route
(ER) [7] that the MPLS path setup messages follow. An ER is the best candidate
route that meets specific QoS constraints (e.g. delay, jitter and bandwidth
requirements). To calculate the ER, the ingress router should have information
about the current status of the network (e.g. topology and utilization). This
information can be piggy-packed in status-update messages exchanged among
routers. MPLS setup messages allocate required network resources in the routers
along the ER and, consequently, establish a QoS-capable LSP. Two proposals for
standards for these setup protocols are: 1) Constraint-Based Routing Label
Distribution Protocol (CR-LDP) [15] and 2) Traffic Engineering (TE) extensions
to the Resource reSerVation Protocol (RSVP).
   Figure 1 shows the scenario to create an MPLS path for the MPLS + RSVP case.
The figure includes numerical estimates for the mean execution time of each
operation (in msec). The scenario is as follows:
1. A VN management process, at the premises of the VN provider, receives a

request to establish a VN. The request specifies the connectivity of the end-
points (e.g. access points of the end users) of the VN.

2. The VN process selects the AS's to be traversed by each LSP (using a shortest
path algorithm, for example). Here we assume the best-case scenario of having
enough resources available in each AS.



3. Bandwidth brokers of the selected AS's are consulted to check resource
availability. AS’s are consulted in parallel.

4. Within each AS, an ingress router calculates the ER, and starts sending PATH
messages to LSR’s.

5. Each involved LSR checks if it has enough resources for that LSP, and if so
(which is the case we assume here), it forwards another PATH message to the
next LSR in the ER.

6. Step 5 is repeated till the PATH message reaches the egress router.
7. At the egress router, the PATH message is processed, resource availability is

checked and a new label is allocated. This label is used to construct a VN ID.
8. The egress router sends back RESV messages to its preceding LSR's.
9. Each LSR processes its RESV message and allocates a new label for that LSP.

It confirms the resource reservation for the LSP, and forwards a RESV
message to the LSR from which it received the PATH message related to this
flow.

10. Receiving the RESV message at the ingress router indicates that the creation
of the LSP was completed.

11. Steps 2- 10 are repeated for all the LSP’s that connect the end points.
12. The provisioning of the service is completed and the users can start sending

data.

Afterwards, the functions of service management have to be applied for the
duration of the ser vice to ensure the conformance of both the user and the service
provider to the Service Level Agreement.

2.3. Related Work

The criteria for evaluating VN implementations involve their connectivity,
management, QoS, and security features. Here, we present a layered queuing
model (LQM) [4] for an MPLS-based architecture that creates VN’s. The

Figure 1: UML Scenario Diagram for creating an LSP
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architecture exhibits features of flat VN provisioning and hierarchical VN
provisioning via the bundling of MPLS paths.
In [12], issues related to the switchlets-based automatic creation of VN's are
examined. The author considers how users should specify their requests for a VN
and how a VN provider may maximize his/her resource usage. She shows that
automated VN creation is a feasible procedure that is well suited for both the end
user and the VN provider. The author also investigates the performance of the
search of network topology and how it may be enhanced using a simple heuristic.
   In [7], the performance of RSVP-based flow creation using a mathematical
model is studied. The model is validated against a simulation model. A Fast
Establishment Mechanisms that aims at speeding up the creation of these flows is
proposed and evaluated.
   In [16], the authors examined the end-to-end delay bounds incurred by a data
packet traversing the access and core networks. Schemes to reduce that delay are
proposed and evaluated. Also, the author studied a flow aggregation scheme and
analyzed its blocking probability.

3. System Modeling for Performance Analysis
3.1. Performance Metrics & Models

In this paper we are concerned with the mean response time of the service creation
processes involved in creating a service as performance measures. The response
time includes the response time of the network and of the software processes that
participate in the service.
   There are two widely applied approaches to analyze the performance of a system:
a) use performance measurements from a controlled testbed, or b) use predictive
models. Measurements techniques are more accurate, but usually consume more
time and costs, and presume that the system or a substantial prototype exists. On
the other hand, estimates from performance models can often reveal performance
blunders [4] and provide feedback for making system design decisions even before
prototypes exist. We follow the latter approach. Analytic and simulation models
are complementary alternatives for predictive models. We focus on analytic models
to gain some insights into system behavior prior to the development of more
detailed simulation models.
   In this paper, we develop a Layered Queuing Model (LQM) [4] for the creation
of a VN. The model takes into account the impact of user connectivity and LSP
creation based on MPLS + RSVP (as described in section 3). The model includes
mean resource demand estimates for every operation (as given in Figure 1). Layers
of software processes that consume network, processor, and disk resources process
user requests. Memory and buffer resources are not considered in the model.
   An LQM modeling tool [4, 17] was used to model the VN creation scenario,
described in Section 2.2 and Figure 1. The models rely on the tool's ability to
describe the organization of system components (hardware and software) as
hierarchical packages. The number of replicates of each package is easily



controlled as a parameter of the model. For example an ingress router and its
underlying hardware can be a package. As the workload for a system increases we
can increase the number of these servers by increasing the replicates of this
server's package. The visits to the server are divided equally across the replicates.
The tool is computationally efficient; increasing the number of replicates does not
actually increase the size of the model to be solved [4] so that solution times
remain small – a few seconds for each of the models considered in this paper.
   The solution of LQMs is beyond the scope of this paper. In general the layered
model is decomposed into a series of queuing network models (with servers
representing hardware resources and software processes) that are solved iteratively
using the Mean Value Analysis technique to provide performance measures for the
system as a whole [17, 4]. The results we present rely mainly on the LQM tool's
ability to sum up resource demands for scenarios and to compute utilizations in the
presence of package replication. Response time measures for scenarios are largely
affected by a computation for the expected maximum of the response time of
parallel activities. The tool relies on standard methods for computing this value. In
this paper we focus more on the challenge of describing an appropriate and useful
model rather than on the underlying analytic solution mechanisms. Furthermore
the LQM model could be solved by using discrete event simulation.

3.2. LQM Performance Model for MPLS-based VN

Figure 2 shows the LQM model for an MPLS-based flat model for creating a VN.
It represents the software architecture of the system and its demands for hardware
resources (in our case, for network and processor resources). It shows how the
LQM is used to model the Traffic Engineering extensions to RSVP as a set of
packages and software processes.
   The components of the model are organized in hierarchical packages. This
provides a modeling abstraction that aggregates related subsystems, nodes,
networks and processes together. The model consists of a parent package System
that groups all other packages. It contains a SP node and the federated_network
package.
   The SP node models the behavior of the service provider. The SP node contains
a user process for modeling the arrival of requests for VN creation and a VN
management process for accepting such requests. The federated_network_package
contains a network_manager node and several AS packages each representing
different autonomous systems. The network_manager node is responsible for
maintaining a DB that characterizes   the topology and performance of the
network. Its network mgmt process interacts with each AS to get timely
performance information about the AS and forwards it to the VN management
processes so they can make provisioning decisions directly. Note this approach is
more scalable than the simple scenario of Figure 1.The Replication Factor (RF)
represents the number of AS's in the system and controls the aggregate size of the
physical network under study.



   An AS package contains the physical Edge_Router and LSR packages. The
number of LSR packages controls the physical size of each AS. The interactions
among these packages are carried through networks that are represented by the
two entities net1 and net2. An Edge_ router provides its functionalities through
the following server processes: 1) Bandwidth Brokerage (BB) 2) Ingress, 3)
Egress, and 4) and RSVP_Agent. Each LSR runs an RSVP_Agent process that
processes and exchange RSVP messages.
   Each of the nodes (entities) is characterized in terms of the CPU processing
speed and the speed of Input/Output operations. Each of the processes has an
average service demand for the scenario. The effect of the delays caused by
network latencies for communication among the subsystems is also taken into
consideration. Network latencies are parameters for the model; we assume per byte
latencies of  0.0001 msec that correspond to 10 Gbps links.
   One of the most difficult tasks when building predictive performance models is
to estimate the resource demands for each process per scenario. Our estimates are
based on measurement results reported by other researchers for the OSPF protocol
and the label allocation mechanism in MPLS [13]. We have used these results to
estimate the CPU service demands for processing the PATH and RESV messages
as 2 ms and 3.6 ms, respectively.
   In [13], the authors give estimates for the label allocation time (based on
simulation experiments) for different MPLS label allocation mechanisms. In our
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model, we used the average value for the downstream on-demand label allocation
mechanism, which is approximately 0.285 ms.
   The purpose of this paper is to describe our overall modeling approach. Our goal
with parameter estimates has been to capture order of magnitude differences.
Actual parameter values will be different for different product configurations.
Even the ratios of CPU demand to network latency will change as technology
evolves. We have the intention to validate these estimates through detailed
simulation experiments and measurement of a prototype implementation of TE
extensions to RSVP. Regardless, the models can be used to study the sensitivity of
system behavior to the CPU service demand and network latency estimates.
   The requests among processes are shown in Figure 2. The user node visits the
VN management process once per each VN creation request. The latter uses the
information periodically received from the Network mgmt process to decide which
AS will be used for the VN.  Then, the VN management process visits the Ingress
process of each EdgeRouter in each chosen AS (these visits are done in parallel).
The Ingress process forwards a PATH message to the first LSR in the Explicit
Route (ER). Each LSR in the ER will forward a PATH message to the next LSR,
and so on. The last LSR forwards a PATH message to the RESV_agent of the
egress router. That agent processes the message and visits the Egress process of
the same router. The Egress process forwards a RESV message to the preceding
LSR. Each RSVP-agent of each LSR processes the RESV message it receives and
forwards another one to the LSR preceding it. This is repeated till we reach the
RESV_Agent of the ingress router. The latter process visits the Ingress process of
the edge router. Then, the VN management process is notified of the admission of
the request for VN creation. We are assuming that no critical resources (such as
operating system threads) are held by a process while waiting for a reply for a
forwarded message.
The time taken to create an LSP is the summation of the main processes described
in the above scenario. That is, the time for VN creation is equal to the time taken
to model user connectivity plus the time taken to establish the resulting LSP in the
AS's. We consider the processing performed in different AS's to be asynchronous
(i.e., performed in parallel). LSP establishment time for the VN is the maximum
establishment time over all the AS involved in the VN.
   Computing end-to-end user connectivity depends on the number of AS in the
physical network. We have assumed that a network management process
maintains a database that reflects the status of the network. The database is
populated and its contents updated through the BB processes of the different AS's.
Computing connectivity uses a routing algorithm to determine the AS's to be
traversed by the LSP.
   The time to establish an LSP in an AS consists of the time to calculate the ER
within each AS plus the time to send and process PATH and RESV messages. The
response time to calculate the ER depends on the response time of a shortest path
routing algorithm (e.g. Dijkstra's). The complexity of the algorithm is O(n.log(n)),
where n is the number of physical routers in an AS. The algorithm determines the



number of LSR's (hops) in the ER. This affects the time of establishing intra-AS
LSP as it determines the number of RSVP messages exchanged to build the LSP.
Consequently, we have considered the following architectural parameters as
experimental factors:
• The number of AS traversed by an LSP, taking the levels of 2, 4 and 6. This

value grows with the size of the physical network.
• The average number of LSR's traversed by an LSP within an AS, with levels of

6, 10, and 20. This also grows with the size of the physical network.
We have set the total number of LSR's in an AS to be 40 routers. That is because
we considered an AS to be an OSPF domain. The OSPF literature advises not to
have more than 50 routers per such domain. We have, also, considered a physical
network of 10 AS's.
The service times we have shown in Figure 1 are calculated for the final values of
these factors (i.e. 6, and 10, respectively).
   In order to represent workload intensity, we have considered the number of user
nodes to be the third experimental factor. It takes the levels 2, 25, and 50 nodes
with 60 users per node. Users are service provider entities that alternate between
requesting VNs and thinking for 60 seconds. Each corresponding ingress router
receives VN creation requests at that intensity. Furthermore, the net mgmt process
acquires state information from each BB every 60 seconds and forwards it to all
VN processes so they can make their selection of AS when establishing a VN.
   We solve the model for all factor combinations and calculate the effect of the
experimental factors on different parts of the model. The changing factors reflect
the scaling of the network. The resource demands of the various subsystems
depend on the above factor levels. For example they affect the service demand of
Dijkstra's algorithm.
   The model assumes that all LSP's are statistically identical in terms of the
number of physical routers. Also, it assumes that each path within an AS traverses
the same number of routers, and that each router is visited, on average, by an equal
number of paths. We divide the visits among replicas of software processes for the
AS's and their routers. Therefore, each process will receive, on average, an equal
number of messages. This is a best-case scenario for the network in that load is
evenly divided across routers and its processes.
   Another assumption is that we consider only the scenario where resources are
always available to admit new requests for VN creation. This is also optimistic.
Future work will model in more detail the problems of resource allocation and
admission control with the help of simulation models.

3.3. Hierarchical Tunnels

MPLS tunnels can be multiplexed (i.e., "bundled" together) into larger tunnels [6].
We consider "bundled" MPLS tunnel to have both flat and hierarchical properties
of VN creation models. First, network resources are allocated using RSVP to



establish the larger tunnel; smaller tunnels are then allocated appropriate portions
of these resources [16].
   Bundling should enhance the scalability of LSP establishment and reduce the
response time to establish new VN's. This is because the RSVP mechanisms within
an AS are only exploited to create the larger tunnel. Establishing smaller
embedded tunnels does not result in the extensive message exchange of the
original RSVP proposal.
   RSVP does not provide mechanisms to aggregate individual reservation sessions
into a single reservation [11] so alternative approaches are needed. In [3], an
approach is proposed to solve this problem. An aggregation region is defined as "a
contiguous set of RSVP routers that are capable of performing RSVP aggregation
along any possible route through this contiguous set." An aggregation region has
two LSR routers known as aggregator and deaggregator that operate as its ingress
and egress routers, respectively. The "aggregating" router is the first router that
processes the PATH message as it enters the aggregation region. The
"deaggregating" router is the last router to process the PATH as it leaves the
aggregation region. Interior routers perform neither aggregation nor
deaggregation.
   An aggregate reservation is established between the aggregator and the
deaggregator. The aggregate reservation is a larger reservation that carries the
traffic of a large number of smaller flows. Only the aggregator and the
deaggregator maintain state about the flows that are carried by the interior routers.
In [3], the authors described a mechanism to identify the aggregator and the

deaggregator within an AS. They also described a signaling scenario to establish
an aggregate reservation between them (i.e. a tunnel).
   The aggregation of messages is accomplished by having the aggregator router
change the IP Protocol Number in the PATH message from RSVP to RSVP-E2E-
IGNORE. This causes interior LSR routers to forward these messages as normal IP
packets (no router control-plane message processing required). The deagregator
router restores the IP Protocol Number in the PATH message to RSVP and
forwards it to other LSR's outside the aggregation area. Thus, the aggregator
router considers the deaggregator router to be the next RSVP hop, regardless of the

 

Figure 3: Software representation of the TE-extensions to RSVP 

Aggregation Area  

Net1 

LSR 

FE 

RF =# interior routers 

Aggregator 

Deaggregator 

LSR 

RSVP agent 

Aggregator 

Deaggregator 

LSR 

RSVP agent 

LSR 

FE 

LSR 

FE 

Aggregation Area  

Net1 

LSR 

FE 

LSR 

FE 

RF =# interior routers 

Aggregator 

Deaggregator 

LSR 

RSVP agent 

Aggregator 

Deaggregator 

LSR 

RSVP agent 

LSR 

FE 

LSR 

FE 

LSR 

FE 

from 
Ingress 



number of interior LSR's between them. As the deaggregating router receives a
RESV message, it makes the same changes described above, causing the interior
routers to forward the RESV message as an IP packet. Only the aggregator router
processes the RESV messages. That is, the deaggregating router perceives the
previous RSVP hop to be the aggregating router.
   In this paper we consider the scenario where aggregate reservations (tunnels) are
pre-established by ASs between all aggregator and deaggregator routers within
their aggregation areas and that they have enough resources to admit requested
VNs, as described in appendix 2 in [3].
   To represent message aggregation in the LQM, shown in Figure 3, we added the
aggregation_area package as a child package of the AS package. We have added
three new processes that run on LSR nodes. These are: the aggregator,
deaggregator and Forwarding Engine (FE) processes. We assumed the time to
forward a packet to be negligible with respect to message processing. Other
assumptions are as follows: the aggregation and deaggregation processes take the
same time as an RSVP-agent in the above scenario; an aggregation area cannot
span more than one AS. We have considered two other cases: one with four
aggregation areas where each area covers one quarter of an AS, and one with a
single aggregation area that covers the AS completely. These cases are considered
in addition to the case with no aggregation, as discussed in section 4.2.
   Aggregating several end-to-end reservations that cross an aggregation region
into one larger reservation has potential for better scalability, but it also presents
disadvantages. Only the aggregator and deaggregator maintain state for the
different tunnels. This increases the probability of call blocking at the aggregator
routers and of inefficient bandwidth assignment. It also increases the load on these
routers because they have to process more state refresh messages. In our model we
assume that each BB sends refresh messages to its AS’s aggregator routers every
60 seconds. Another disadvantage is that a centralized aggregator/ deaggregator
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for an entire aggregation region may constitute a single point of failure in the
system.

4. Results and Conclusions
Figure 4, 5, and 6 show the results of solving the LQM models for creating an LSP
with the three different configurations of aggregation areas. These are 1) the LSP
must choose between all LSRs (no aggregation area) within an AS; 2) the LSP
exploits tunnels of 4 aggregation areas; and 3) the LSP exploits one tunnel to span
the entire AS. The figures shows the results as the three experimental factors,
represented along the x-axis of each figure, change.
    Figure 4 shows the response time for creating an LSP as perceived by the user
process. The response time depends a great deal on the number of network
elements traversed by an MPLS path; it increases with the number of LSR's and
the number of AS's. The experimental factor LSR (i.e., the number of routers
traversed by an LSP) affects the performance dramatically. From Figure 4, for the
case of 4 AS's and 25 user nodes the response time grows from 194, to 264, to 627
msec as the number of LSR's increases from 6, to 10 and to 20 for the no
aggregation area configuration.
   Also in Figure 4, the number of AS's traversed by a path affects the response
time, but in a lesser way than the number of LSR’s. For the case of 6 LSR's and 25
user nodes, the response time grows from 139, to 194, to 237 msec as the number
of AS's grows from 2 to 4 to 6 for the no aggregation area configuration. This
demonstrates the sensitivity of VN creation time to the number of AS. It is
governed by the expected maximum of LSP creation times within each chosen AS.
As global networking connectivity for the Internet grows one can only expect SP’s
to require support from multiple AS causing longer VN creation times.
   Aggregating MPLS paths pays off for larger networks under high workload. This
is expected due to the reduction in the number of messages exchanged. For
example, for the case of 20 LSR's, 6 AS's, and 50 user nodes the response time is
reduced from 2483 msec with no aggregation involved to 1054 msec if the LSP
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traverses four aggregation areas (tunnels) per AS. It is further reduced to 595 msec
when each AS is an aggregation area (one tunnel is used).
   As the resource demands grow, increasing the arrival intensity of requests causes
increases in queuing for physical and logical resources leading to larger response
times. The performance model helps to illustrate how such combinations affect
service performance.
   Detailed performance results show the edge router CPU is the system bottleneck
(it has the highest utilization). Software process threading levels of 10 were
adequate to avoid software bottlenecks for the experimental factors considered. As
shown in Figure 5, the utilization of the edge router CPU is dependent only on the
number of user nodes (and almost independent of other factors). It is almost
independent of the number of AS chosen for the VN. It increases from 5%, to
40%, to 80% as the number of user nodes increases from 2, to 25, to 50 nodes.
Next we consider introducing two CPU in each edge router. As expected this
reduces the CPU utilization by approximately 50% of the values shown in Figure
5. This has a substantial impact on the response time of the user process as is
shown in Figure 6. This shows how important processor queuing can be in such
systems. Note also that with two CPUs, the per thread utilization of the edge router
processes also decreased because less time was spent waiting in the CPU queue. As
a result the same number of threads can serve a greater workload intensity.
   To summarize, these results comply with the well-known fact that the RSVP
reservation does not scale well. We modeled the aggregation (or "bundling") of
several end-to-end reservations that cross an aggregation region into one larger
reservation. The LQM results show that such aggregation enhances the scalability
of the path establishment and reduces the response time to establish new VN's, due
to the fact that the RSVP mechanisms within an AS are only exploited
infrequently to create the larger tunnels.
In our future work we plan to introduce further detail into the models and validate
them through simulating the process. Simulations will help us to represent cases in
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which the resources required for an LSP are not always available; to compare
different resource allocation algorithms; and to explore the impact of hierarchical
VNs on call blocking and the inefficient use of network resources. We plan to use
the analytic models to narrow the experimental design space for simulation.
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