

Spline-Based Motion Vector Encoding Scheme

by

Parnia Farokhian

A thesis submitted to the

Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Applied Science in Electrical Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

August, 2012

Oc Copyright

Parnia Farokhian, 2012

ii

Abstract

We present a new motion vector encoding scheme based on a curve fitting algorithm; the motion

vectors of collocated blocks in a video sequence are represented by a set of keypoints that are the

coefficients of the best fitted curve into the motion vectors. Motion vectors are mapped into four

different categories; each corresponding to the condition for recovering each motion vector from

the curve losslessly. Using a proposed adaptive motion estimation method, rather than selecting

the motion vector corresponding to the block of minimum residual energy, a set of motion

vectors is chosen such that each candidate set contains motion vectors of residual blocks of a

number of bits less than a threshold. We utilize a rate-distortion technique to estimate the number

of bits per candidate residual block to avoid computational complexity for selecting the best key

point for the curve in terms of residual data. Experimental results show a significant bitrate

reduction up to 43% for encoding the motion vector data for the curves’ and block residuals in

comparison to the H.264/AVC codec.

iii

Acknowledgments

I would like thank my supervisor, Professor Chris Joslin, for his assistance during the course of

this research. His advice and suggestions have consistently helped to steer this work in a

productive direction.

I have also been privileged enough to have supportive and motivating colleagues and friends.

Two of my most supportive colleagues have been, Omar Hesham and Sina Firouzi. I couldn't

have made it without you.

Last but not least I would also like to extend my deepest gratitude to Mohammad Shahsavari

Goughari. Without his encouragement and support, I would not have a chance to be at Carleton

University. Finally, I would like to thank my parents, Mehri Rasekh and Keykhosro Farokhian

for all her invaluable support.

iv

Table of Contents

Abstract .. ii

Acknowledgments .. iii

Table of Contents ... iv

List of Figures .. vii

List of Tables .. ix

Chapter 1 ... 1

Introduction ... 1

1.1 Temporal Model and Regulating Factors of Motion Vector Bitrate 4

1.2 Spatial Model and Regulating Factors for Residual Block Bitrate ... 7

1.3 Motivation and Problem Description .. 8

1.4 Research Contributions ... 10

1.5 Thesis Organization .. 11

Chapter 2 ... 12

Literature Review ... 12

2.1 Motion Vector Pre-Encoding Techniques ... 12

2.1.1 Lossy Motion Vector Pre-encoding Techniques ... 12

2.1.2 Lossless Motion Vector Pre-Encoding Techniques .. 14

2.1.2.1 Spatial Motion Data Prediction .. 15

2.1.2.2 Temporal Predictive Motion .. 17

2.1.2.3 Spatio-Temporal Motion Vector Predictive ... 19

2.1.3 Applied Motion Vector Encoding Techniques in H.264/MPEG-4 AVC 20

v

2.1.3.1 Predictive Motion Vectors with Available Motion Vector from Motion Estimation

Process 21

2.1.3.2 Predictive Motion Vector for Skip and Direct Mode Macroblocks 22

2.2 Motion Vector Entropy Encoding Methods .. 24

Chapter 3 ... 26

Encoding of Motion Vectors Using Splines .. 26

3.1 Determining Motion Vectors through Adaptive Motion Estimation Process 28

3.2 Optimum Motion Vector Selection ... 30

3.2.1 Ordering MV Candidates .. 30

3.2.2 Optimum MV Selection .. 31

3.3 Curve Fitting Algorithm .. 37

3.3.1 Cubic Hermite Curve Fitting .. 38

3.3.2 Appling Hermite Curve Fitting to Motion Vector Encoding .. 41

3.4 Coded Data Format ... 43

3.4.1 Video Coding Layer (VCL) .. 44

3.4.2 Slice Layer .. 45

3.4.3 Macroblock Layer ... 48

3.5 Entropy Encoding Process .. 49

3.5.1 Exponential-Golomb Encoding Technique ... 50

3.5.2 Context-Based Adaptive Variable Length (CAVLC) Entropy Encoding 52

Chapter 4 ... 57

A New Adaptive Motion Estimation Process .. 57

4.1 Rate Control Concept and its Application in Video Coding Standards 58

4.1.1 Rate Distortion Models Based on Rate Distortion Theory ... 61

4.1.3 Mathematically-Based Rate Distortion Models .. 65

vi

4.1.4 ρ-Domain Rate Modeling Scheme .. 65

4.2 Determining the Threshold for Selecting Candidate Blocks ... 66

Chapter 5 ... 73

Simulation and Results ... 73

5.1 Adaptive Motion Estimation Process Evaluation .. 74

5.1.1 Residual Data Bitrate Comparison .. 75

5.1.2 Picture Quality Evaluation Using AME System ... 79

5.2 Selecting the Two Optimum Categories Based on Category Statistics 83

5.3 Bitrate Improvement Evaluation of Proposed Method .. 90

Chapter 6 ... 96

Conclusion and Future Directions ... 96

6.1 Concluding Remarks ... 96

6.2 Future Research Directions ... 97

List of References .. 98

vii

List of Figures

Figure 1.1: Video Encoder Block Diagram .. 2

Figure 1.2: Two Adjacent Frames and the Residual Frame. ... 4

Figure 1.3: Fractional motion estimation. ... 5

Figure 1.4: 4×4 residual blocks compensation. .. 7

Figure 3.1: Case 1.2.1 optimum motion vector selection for the second data point. 33

Figure 3.2: Case1.2.2 optimum motion vector selection for the second data point. 34

Figure 3.3: Case 1.2.3 optimum motion vector selection for the second data point. 35

Figure 3.4: Case 1.2.4 optimum motion vector selection for the second data point. 36

Figure 3.5: Hermite Basis Functions. ... 38

Figure 3.6: Assigning data point set control points. .. 40

Figure 3.7: Piecewise Hermite spline fitted to the set {-3, 0, 2, 5, 3, 2, -3, -3, -3, -4, 0}. 41

Figure 3.8: Sequence of NAL units. ... 44

Figure 3.9: Example showing a sequence of RBSP elements .. 44

Figure 3.10: Slice syntax... 47

Figure 4.1: Increasing distortion and decreasing quality. ... 59

Figure 4.2: Open and Close loop encoding. .. 60

Figure 5.1: Percentage of the average bitrate estimation error versus quantization parameter. ... 78

Figure 5.2: The average Δ(PSNR)% resulting from AME method for different block sizes. 82

Figure 5.3: Distribution of Motion Vector Categories for Foreman Sequence 86

Figure 5.4: Distribution of Motion Vector Categories for Carphone Sequence 86

viii

Figure 5.5: Distribution of Motion Vector Categories for Miss America Sequence 87

Figure 5.6: Distribution of Motion Vector Categories for Suzie Sequence 87

Figure 5.8: Average Motion Vector Bitrate Improvement Versus Quantization parameter......... 92

Figure 5.9: Average motion vector bitrate improvement versus Block size................................. 92

Figure 5.10: Percentage of bitrate saving versus quantization parameter, using Forman sequences

... 93

Figure 5.11: Percentage of bitrate saving versus quantization parameter, using Carphone

sequences .. 93

Figure 5.12: Percentage of bitrate saving versus quantization parameter, using Miss America

sequences .. 94

Figure 5.13: Percentage of bitrate saving versus quantization parameter, using Suzie sequences94

ix

List of Tables

Table 3.1: Categorizing motion vectors based on their reconstructed data points 43

Table 3.2: Brief descriptions about different type of RBSP units .. 46

Table 3.3: New motion information placement in the bitstream .. 48

Table 3.4: Exp-Golomb codewords .. 51

Table 3.5: Choice of look-up table for coeff_token .. 53

Table 3.6: Thresholds for determining whether to increment suffixLength 55

Table 4.1: The rate models based on different probability distributed source models 63

Table 4.2: Residue bits comparison using Foreman test video ... 69

Table 4.3: Residual bits comparison using Carphone test video .. 69

Table 4.4: Residual bits comparison using Miss America test video ... 69

Table 4.5: Residual bits comparison using Suzie test video ... 70

Table 4.6: Residual bit increase threshold values for Forman test video 71

Table 4.7: Residual bit increase threshold values for Carphone test video 71

Table 4.8: Residual bit increase threshold values for Miss America test video 71

Table 4.9: Residual bit increase threshold values for Suzie test video ... 72

Table 5.1: Experimental conditions. ... 74

Table 5.2: Comparison of Residual Bits Using Foreman Test Video ... 76

Table 5.3: Comparison of Residual Bits Using Carphone Test Video ... 77

Table 5.4: Comparison of Residual Bits Using Miss America Test Video 77

Table 5.5: Comparison of Residual Bits Using Suzie Test Video .. 77

Table 5.6: Picture quality comparison using Foreman test video ... 80

x

Table 5 . 7: Picture quality comparison using Carphone test video .. 80

Table 5 . 8: Picture quality comparison using Miss America test video 81

Table 5 . 9: Picture Quality comparison using Suzie test video ... 81

Table 5.10: Distribution of category indices among the Motion Vectors of Foreman sequence . 84

Table 5.11: Distribution of category indices among the Motion Vectors of Carphone sequence 84

Table 5.12: Distribution of category indices among the Motion Vectors of Miss America

sequence .. 84

Table 5.13: Distribution of category indices among the Motion Vectors of Suzie sequence 85

Table 5.15: Number of motion vectors versus block size using Foreman sequence 88

Table 5.16: Number of motion vectors versus block size using Carphone sequence 89

Table 5.17: Number of motion vectors versus block size using Suzie sequence 89

Table 5.18: Performance of the proposed method in terms of BDBR (Bjontegarred Delta Bit

Rate) .. 95

1

1

Chapter 1

Introduction

With the increasing volume of communication data such as video and image signals carried over

the transmission and storage environments have been making the field of image and video

compression a very active throughout the past 20 years. Data compression is referred to as

encoding, which involves transforming a series of bits into a new set of code words that conveys

the same information, but in a smaller size. The compression process may be implemented by

removing redundancy from the information-carrying signal. In a lossless compression system the

original signal can be perfectly reconstructed at the receiver by removing the statistical

redundancy, however, this results in only a modest amount of compression for image and video

signals. Lossy video compression schemes that are based on removing temporal and/or spatial

redundancy are more practical in achieving greater compression at the expense of a certain

amount of information loss (distortion) such that the decoded signal is not identical to the

original. Therefore the goal of a video encoder is to achieve efficient data compression while

minimizing the distortion generated by the compression process. A typical video encoder

consists of three main functional units: a temporal model, a spatial model and an entropy

2

encoder, as shown in Figure 1.1. The input to the temporal model is an uncompressed video

sequence. The temporal model exploits the temporal redundancy between adjacent frames (or the

frames captured at around the same time) to reduce the video data. A set of model parameters

containing typically motion vectors and header data, describing the motion of the video objects

(e.g. blocks of pixels) and a residual frame (created by subtracting the prediction from the actual

current frame) are the output of the temporal model unit. The residual frames are the input to the

spatial model which makes use of similarities between neighbouring samples in the residual

frame by applying a transform to the residual samples and quantizing the results.

Figure 1.1: Video Encoder Block Diagram

The transform maps the samples into a set of transform coefficients. The coefficients are

quantized to remove insignificant values (e.g. high frequency details), leaving a small number of

significant coefficients that provide a more compact representation of the residual frame. The

parameters of the temporal model (typically motion vectors) and the spatial model (coefficients)

Spatial

model
Temporal

model

Stored

frames

Encoded Output Entropy

encoder

Input Video

3

are compressed by the entropy encoder. This removes statistical redundancy in the data (for

example, representing commonly-occurring vectors and coefficients by shorter binary codes) and

produces a compressed bit stream or file that may be transmitted and/or stored. Therefore, a

compressed sequence consists of three main parts; coded motion vector parameters, coded

residual coefficients, and header information. The number of bits required to encode each part of

the video bitstream is affected by different factors which depend on the adjustments of the three

model units. In particular motion vectors form a significant portion of the bitstream especially

when trying to achieve a lower amount of distortion; in this case a more precise temporal model

is applied for generating smaller residual data by using smaller block sizes. Therefore, if the

number of bits for representing the motion vectors is decreased, while maintaining the

performance of the temporal model, the compression efficiency can be increased significantly.

The motion vectors of collocated blocks in consecutive frames of a video may produce a motion

field with the potential of being represented by a curve in a more compact way than representing

each discrete motion vector value separately. However, representing a sequence of motion

vectors belonging to collocated blocks along the video sequence by curve coefficients will only

result in data compression if the number of coefficients is less than the number of actual motion

vectors. Therefore, based on the curve fitting process the smoother the motion vector field is the

lower the number of curve coefficients are needed to represent the motion vectors. Motivated by

the fact that, smooth motions along the video sequence may be generated by either objects

moving across the screen, or cameras moving in a controlled manner (as is popular in TV and

cinema), we propose a lossless encoding technique for preprocessing motion vectors via a curve

fitting algorithm which results in the reduction of the bitrate. However, in order to generalize the

4

curve fitting1 algorithm to variety of motion types not only necessarily homogenous motions, an

adaptive motion estimation process is proposed in this work such that the selected motion vectors

finally results in a minimum number of curve coefficients while maintaining the encoding of the

residual data.

 Temporal Model and Regulating Factors of Motion Vector Bitrate 1.1

The temporal model operates as a motion compensated-estimation [1] process that in its simplest

form the previous frame is used as the predictor, for the current frame and the residual, as shown

in Figure 1.2, is formed by subtracting the predictor from the current frame.

Figure 1.2: Two Adjacent Frames and the Residual Frame.

A practical and widely-used method of motion compensation is to compensate for the movement

of a rectangular section or “block” of the current frame. The following procedure is carried out

for each block of M × N samples in the current frame where M and N are the number of

horizontally and vertically situated pixels per block width and length respectively. For each M×N

block in the current frame the best matching block is found in the reference frame within a

predefined search window which is usually centred at the same spatial address of the current

block (Figure 1.3). The energy of the residual block is usually used as a measurement of

similarity between the current block and the candidate matching blocks in the search window.

1 Curve fitting is the process of finding a curve which is best fitted to set of data points. The curve fitting algorithm will be
explained in more detail in Chapter 3.

(b) Current frame

(c) Residual (a) Predictor

5

The best matching block among the candidates is the block which results in minimum energy

residual block. The energy of the residual block may be defined as Sum of Absolute Differences

(SAD) or Mean Square Error (MSE), which are the most popular energy definitions. The chosen

candidate region (best matching block) becomes the predictor for the current M × N block and is

subtracted from the current block to form a residual M × N block (motion compensation). The

spatial offset of a block in the current picture to the prediction block in the reference picture is

determined by a 2-dimensional motion vector which is used to reconstruct the current block from

the spatially processed residual block at the decoder side.

Figure 1.3: Fractional motion estimation.

There are many variations on the basic motion estimation and compensation process. The

reference frame may be a previous frame (in temporal order), a future frame or a combination of

predictions from two or more previously encoded frames. It is necessary to encode the reference

frame before the current frame (i.e. frames must be encoded out of order). Where there is a

significant change between the reference and current frames (for example, a scene change), it

may be more efficient to encode the macroblock without motion compensation and so an encoder

may choose intra mode (encoding without motion compensation) or inter mode (encoding with

motion compensated prediction) for each macroblock. A macroblock of 16×16 pixels may

contain more than one moving object, especially when the macroblock belongs to the detailed

parts of the frame, so choosing a smaller block size and/or variable block size for motion

6

estimation and compensation [2] may be more efficient in terms of reducing the residual block

data. However, variable block size motion estimation requires encoding the header information

to signal the macroblock mode (the way macroblock is divided into smaller blocks) plus the

motion vector for each sub-macroblock which itself results in a large amount of motion data. On

the other hand, fixed block size motion estimation with a smaller block size, compared to the

macroblock, is not an efficient method for areas in the frame that contain homogenous texture

such as backgrounds. Therefore, a video coding algorithm should make a balance between the

number of bits and the accuracy of the motion estimation process. Sub-pixel motion

compensation [3] is another option when a better prediction may be formed by predicting from

interpolated sample positions in the reference frame. Figure 1.3 shows the concept of ‘quarter-

pixel’ motion estimation. In the first stage, motion estimation finds the best match on the integer

sample grid (circles). The encoder searches the half-sample positions immediately next to this

best match (squares) to see whether the match can be improved and if required, the quarter-

sample positions next to the best half-sample position (triangles) are then searched. The final

match (at an integer, half- or quarter-sample position) is subtracted from the current block or

macroblock. The residual data shown in Figure 1.4a and Figure 1.4b are produced using an

integer pixel and half pixel motion estimation systems respectively. This approach may be

extended further by interpolation onto a quarter-sample grid to give a still smaller residual

(Figure 1.4c). In general, ‘finer’ interpolation provides better motion compensation performance

(a smaller residual) at the expense of increased complexity. The performance gain tends to

diminish as the interpolation steps increase. Half-sample interpolation gives a significant gain

over integer-sample motion compensation, quarter-sample interpolation gives a moderate further

7

improvement, and eighth-sample interpolation gives a small further improvement again and so

on.

Figure 1.4: 4×4 residual blocks compensation.

 Spatial Model and Regulating Factors for Residual Block Bitrate 1.2

The obvious problem with single temporal prediction is that a lot of energy remains in the

residual frame and this means that there is still a significant amount of information to compress

after temporal prediction. The function of the spatial model is to decorrelate the residual data

further and to convert it into a form that can be efficiently compressed using an entropy coder.

Practical spatial models typically have three main components, transformation, quantisation and

reordering. The purpose of the transform stage in an image or video codec2 is to convert image

or motion-compensated residual data into another domain (the transform domain) in which

samples are less correlated. In the transform domain, data is divided into vision-sensitive data

(low-frequency components) and vision-insensitive data (high frequency components). Many

transforms have been proposed for image and video compression and the most popular

transforms tend to fall into two categories; block-based and image-based (such as Discrete

Wavelet Transforms) An example of block-based transforms includes the ever-popular Discrete

Cosine Transform (DCT) scheme which is a fundamental component of many image and video

2 A video codec is a device or software that enables video compression or decompression for digital video

(c) quarter-pixel (b) half-pixel (a) integer

8

compression standards including JPEG [4], H.263 [5], MPEG [6], MPEG-2 [7], and MPEG-4

[8].The block-based transforms operate on square blocks of M×N image or residual samples and

hence the image is processed into units of a block. Block transforms have low memory

requirements and are well-suited to the compression of block-based motion compensation

residuals but tend to suffer from artefacts at block edges due to the correlation among spatially

adjacent blocks3. The DCT features in MPEG-4 Visual and a variant of the DCT is incorporated

in H.264 [8].

 Motivation and Problem Description 1.3

The increasing popularity of the use of motion estimation schemes, such as choosing smaller

block sizes and variable block sizes (as described in Section 1.1), has led to an increase in the

proportion of motion vectors (MV) data in the bitstream. This, coupled with the significant

proportion of the motion vectors in the bitstream in low bitrate communication (as seen in

Section 1.2), means that if the number of bits required for representing motion data is decreased

while maintaining the performance of the motion compensation, the compression efficiency can

be increased proportionally. To minimize the MV data, various MV encoding methods have been

so far proposed in literature that are mostly based on applying predictive coding schemes before

entropy encoding of motion vectors. The predictive preprocessing schemes make use of

redundancy between motion vectors of temporally and/or spatially neighboring blocks to extract

a smaller motion data from the motion vectors of the video sequence. For instance H.264/AVC

standard applies a predictive coding method by using predictive motion vector (PMV) which is

calculated by the median of three spatially neighboring MVs. The median PMV is effective in

3 Tow general approaches have been proposed in literature to reduce the blocking artifact (blockiness). The first approach is
based on dealing with blockiness at the encoder side ([9]-[10]) and the second one is post-processing the decoded video signal at
the decoder side by improving the visual quality ([11]-[13]).

9

reducing the MV data, since neighboring blocks tend to move in a similar manner, and thus the

error between the actual movement and the prediction is usually small.

An obvious challenge that arises from previously defined predictive techniques that utilise the

spatial redundancy between motion vectors, is that the neighboring blocks do not always belong

to a single object or they may belong to a single object with a complex motion so that it might

turn out the neighboring blocks in a video frame do not move with the same rate and velocity.

Therefore, extracting motion data out of motion vectors of neighboring blocks does not

necessarily lead to decreasing the bitrate. Temporal predictive techniques also do not contribute

to the improvement of the motion vector bitrate for the video sequences containing scenes

changes.

In this work a new PMV concept is introduced which does not depend on a possible redundancy

between neighboring motion vectors. Despite previous schemes the proposed method in this

thesis is based on the true motion that exists in the video sequence as the new PMVs are a subset

of motion vectors, not only a set of motion vector derivatives (e.g. the median predictor in

H.264). The proposed method is based on a curve fitting algorithm such that the curve control

points (new PMVs) and some header information are sufficient for recovering the motion vectors

at the decoder side from the curve’s formula. The concept behind fitting motion vectors to a

curve is that as long as a curve is relatively smooth data can be represented by a set of control

points (that are used to determine the curve itself) in a much more compact way than labelling

each discrete point. As a great deal of motion in video is from either objects moving across the

screen, or cameras moving in a controlled manner, smooth curves are easy to come by if we were

to map the motion vectors to a curve. In order to generalize the method for the video sequences

of not only smooth motions an adaptive motion estimation system is proposed such that the

10

output motion vectors are fitted to a curve with a minimum number of control points in addition

compression efficiency increases by restricting the number of candidate matching blocks by a

residual block rate control model (see Chapter 4).

 Research Contributions 1.4

In order to achieve the objectives described, different contributions are proposed in this research:

a) An automated curve fitting algorithm by which the minimum motion data bitrate for

reconstructing motion vectors are generated.

We proposed a new motion vector encoding technique based on a curve fitting algorithm which

leads to saving bitrate up to amount of 42.7% in comparison with H.264 standard. The main

difference between the new motion vectors encoding scheme and previously proposed methods

is that in the previous methods for any inter-mode encoded block corresponding to a non-skipped

macroblock a single 2-dimensional motion vector plus macroblock modes (in the case of variable

block size motion estimation) are encoded in the bit stream, however in the new method only the

motion vectors which are recognised as the curve control points are encoded and the rest of

motion vectors (non-control point motion vectors) are recovered from the curves using the

control points and the header information that contains a small amount of data.

b) Increasing the number of skipped blocks

A new skipped block definition is presented for which, similar to the original skipped

macroblock definition, no motion information is encoded. It will be shown that the number

skipped macroblocks increases as the new skipped blocks are the blocks of zero residual energy

that have non-control point motion vectors while based on the general skipped macroblock

definition the blocks of zero residual energy and zero predictive motion vector are recognized as

skipped macroblocks. The motion vector of the new skipped blocks is reconstructed from the

11

curves while the motion vectors of the originally defined skipped macroblocks are estimated

from the motion vectors of previously decoded blocks.

 c) Determining bitrate threshold for selecting matching block based on the motion type

In order to optimise the encoding of the motion vector curve, in conjunction with the resulting

block residual, we have proposed a novel update to the rate control model that takes into

consideration both elements based on the thresholds in order to obtain the lowest bitrate.

 Thesis Organization 1.5

This document is organized as follows: Chapter 2 provides a review of existing work on motion

vector pre-encoding techniques in block-based motion compensated hybrid video coding, along

with an overview of motion vector entropy encoding methods. Chapter 3 introduces the proposed

motion vector encoding scheme that is structured as a 3-step algorithm containing our proposed

adaptive motion estimation system, curve fitting algorithm, and entropy encoding process.

Chapter 4 describes a new adaptive motion estimation process by first describing the rate control

concept and then determining the bitrate threshold for selecting candidate blocks. In Chapter 5,

the compression performance of the proposed motion vector encoder is evaluated in detail via

simulation of the method using four standard test video sequences under different test conditions.

Finally, Chapter 6 concludes the thesis and discusses potential future research directions.

12

Chapter 2

Literature Review

In order to reduce the number of bits required to transmit motion vectors, so far, typically two

different aspects of data compression have been considered in literature. The first aspect is based

on decreasing the entropy of the motion vectors which itself is divided into two sub-procedures;

lossy techniques which are regarded as motion vector quantization methods and lossless methods

that are more widespread and are based on generating predictive motion vectors (PMVs) out of

motion vectors. All the pre-processing methods aim to reduce the motion data via removing the

redundancy between motion vector values while the second aspect of motion vector

compression, entropy encoding scheme, reduces the information by removing statistical

redundancy between the generated motion data from the entropy reduction process.

 Motion Vector Pre-Encoding Techniques 2.1

2.1.1 Lossy Motion Vector Pre-encoding Techniques

Lossy encoding methods are based on mapping the set of all possible motion vectors within the

search window in the motion estimation process, into a subset of the original motion vector set.

The process of finding the optimal subset of motion vectors is called motion vector quantization

13

(MVQ). In this method the subset of motion vectors is called a codebook and the motion vectors

selected as the element of the codebook are called codevectors. In a general MVQ algorithm first

the motion estimation process is implemented using the original motion vector set; therefore, all

the blocks within the search window are checked to find the best matching block in the reference

frame for the block in the current frame. Based on the statistical characteristics of these motion

vectors an initial codebook is defined. For instance the motion vectors with higher frequencies

are selected as the codevectors. At the next step each motion vector found from the motion

estimation process is approximated by a codevector in the codebook which results in minimum

average distortion between the block in the current frame and the block in the reference frame

with the reference of the codevector. In other words, each motion vector from motion estimation

process is quantized into one of the codevectors in the initial codebook. Each set of motion

vectors that are quantized into each codevector called a motion vector cluster. In each cluster the

codevector is updated such that the new codevector results in lower distortion. This whole

process is repeated until the distortion converges. In the method presented by Lee [14], updating

the codebook is implemented only at the encoder side and from one video sequence to another

video sequence the codebook may change. In the method presented by Cruz and Woods ([15],

[16]), low complexity adaptive MVQ algorithms involve backward adaptive motion vector

quantization (BAMVQ) and forward adaptive motion vector quantization (FAMVQ)

respectively, which use a general motion vector codebook which is updated periodically in order

to make it better suited for coding future motion data. The adaptation algorithm is based on the

assumption that if some of the codevectors of the codebook have low use (Least-Frequently-

Used strategy or LFU), or have not been used for a significant period of time (Least-Recently-

Used strategy or LRU); they may be replaced by new codevectors with higher potential

14

usefulness resulting in an expected decrease in average distortion. The BAMVQ algorithm [15]

presented results in a 10% and 20% bitrate saving for the test sequences Mobile and Tennis

respectively; while for the same video sequences, FAMVQ [16] achieved a 14.83% and 21%

bitrate saving for Mobile and Tennis test videos compared with the MPEG-2 standard. The

motion vector quantization techniques achieve slightly better overall coding results at the cost of

higher encoder complexity. The major problem associated with these methods is that larger

codebooks would make the motion estimation too slow and complex while smaller sizes restrict

the number of possible estimates decreasing motion estimation effectiveness which results in

larger block errors. Therefore, these methods are not generally of great interest in practical video

coding applications.

2.1.2 Lossless Motion Vector Pre-Encoding Techniques

In the conventional block-based coding scheme, the motion vector of each block is predicted as a

function of one or more of its neighboring motion vectors, and then the difference between the

current motion vector (MVcur) and predicted motion vector (PMV), motion vector differences

(MVD), is compressed using a variable-length coder (VLC) as illustrated in Figure 2.1.

Figure 2.1: Motion vector pre-encoding scheme.

The candidate neighboring motion vectors are spatial and/or temporal neighboring motion

vectors. The efficiency of these methods strongly depends upon the accuracy of the PMV.

 +
+

MVC

MV1

MVn

-

Generating
PMV

VLC
MVD

15

However, selecting an optimal PMV requires such extensive searches that the increased

complexity cannot be ignored. On the other hand, the correlation between neighboring motion

vectors is directly related to the motion type in the video sequence; for the video sequences

containing complex motions or scene changes the PMV cannot be a proper solution for reducing

the motion data since the spatial and temporal correlations between neighboring motion vectors

are low for these types of motions respectively. Therefore, the selected PMV is not necessarily

close enough to the true motion vector to reduce the motion data. In the following subsections

the three main approaches of lossless pre-encoding techniques are described and evaluated in

terms of their coding efficiency.

2.1.2.1 Spatial Motion Data Prediction

The correlation between motion vectors corresponding to spatial neighbouring blocks is utilized

to generate a spatial predictive motion vector. The main idea of predicting a motion vector of a

block from the motion vectors of its neighbouring blocks in the same frame is that it is assumed

these blocks belong to a single object in the frame therefore they produce similar motion vectors,

but this assumption alleviates the efficiency of this method since a typical video sequence may

contain different camera motions and scene changes. Also, in the case where objects are moving

along the video sequence, they may have complex motions that mean neighbouring blocks are

not necessarily moving with the same velocities. However, besides the formerly mentioned

deficiency, spatial PMV has been accepted by the video coding standards because the method

provides a balance between the computational simplicity and its capability in reducing the

number of bits needed to encode motion vectors better than temporal PMV and spatio-temporal

PMV which are described in two following sections respectively. MPEG-1 and MPEG-2 use

16

first-order intra-frame differential coding of motion vectors to compress motion data ([17], [18]).

In H.264/MPEG-4 AVC [19] the PMV of the current block is the median of the MVs of

neighbouring blocks in the same frame. The PMV of the current block, MVcur as defined in

Equation 2.1, is the median of the three available candidate MVs of neighbouring blocks, which

are blocks to the left (A), above (B) and up-right (C) respectively as shown in Figure 2.2.

(2.1))),max(,max()),min(,min(MVCMVBMVAMVCMVBMVAMVCMVBMVAcurPMV ++−−=

The up-left (D) is used when the block C is not available (e.g. if it is outside the current slice), if

other blocks shown in Figure 2.2 are not available, the choice of PMV is modified accordingly,

and that is described in Section 2.2. The median prediction is very simple and accurate enough

for sequences with a relatively uniform motion therefore, it is also obvious that the median PMV

is not the optimal PMV in all cases. To improve the predictive motion vector, Kim and Ra [21]

proposed to select the motion vector of the block among the same neighbouring blocks as H.264

which results in a minimum MVD. To determine which neighboring motion vector is selected as

the predicted one, the mode information (MODE) has to be prepared and sent to the decoder.

This method achieved up to a 9.9% motion vector bitrate reduction in comparison with H.264.

To improve the selection of spatial the PMV further, Yong et al [20] proposed an encoder that

estimates the optimal PMV among a wider set of neighbouring motion vectors (Equation 2.2)

without additional information for indicating which predictor is to be used at the encoder side.

(2.2)))}(MVCx,MVByVCx,MVBy),MVBy),…,(My), (MVAx,{(MVAx,MVAtor Set = Motion Vec
The proposed method decreases the number of bits compared with the H.264/AVC standard by

about 2.97% on average. However, as the bitrate improves the number of searches to find the

optimal PMV increases and also the bitrate reduction decreases.

17

2.1.2.2 Temporal Predictive Motion

The predictive motion vector defined in this method is exploited from the motion vectors of

temporal neighbouring blocks of the current block which can be the motion vector of block in the

previous frame with the same spatial location, called the collocated block, or a function of

several temporal neighbouring motion vectors. Using these methods achieved up to 19.09% [22]

saving in the motion vector bitrate in comparison with the MPEG-2 standard; however,

according to the results presented by Yeh et al [22] there are constraints that limit its efficiency

to only specific types of video sequences which contain a moving object with a slow and simple

motion along the video sequence. To show the limit of using temporal PMV this work is

described as follows: first, it is assumed that the objects in the scene are moving with a constant

velocity, e.g. the rectangular object in the first row of Figure 2.2, therefore the motion vector

field in the each frame, V [n], can be found from the motion vector field of the previous frame V

[n-1]. With this assumption, the motion vector field at the (z + k) location in the nth frame is

found, through an operation called autocompensation, from the motion vector field at the

location (z) in the previous frame (n-1):

(2.4) 1](Z)n-+ k) = V[V' [n] (z

Where

(2.5)](z)k = V [n

Therefore, the knowledge of V[0] (the first motion vector field) is sufficient to generate the

entire sequence. However, in most cases, the velocity of objects is not constant and the error

between the compensated motion field V’[n] and the true motion field V[n] is computed as MVD

and encoded:

18

(2.6) [n] V [n] -V' A [n] =

The energy of A[n] is not necessarily smaller than the energy of V[n], because the acceleration

can be due to the change in the direction and not the magnitude of the motion vector field, hence

encoding the error is not optimal for all video sequences with complex motions. On the other

hand, further refinement of V’[n] in Equation (2.4) in order to reduce the energy of A[n] leads to

a decrease in the bitrate at the cost of high complexity which is not desirable for online

applications. The results show this method resulted in a 19.09% bitrate saving for encoding

motion vectors of the upper left 256x256 quadrant of a 512x512 video sequence which contains

a camera panning and zooming on a stationary photograph, and represented simple motion and

also the lower right 256x256 quadrant of the same video as a test video sequence with complex

motion which led to a 0% improvement in bitrate saving for motion vector encoding.

(a) Hypothetical images of a video sequence (b) Extracted motion sequences (c) Compensated field
V’ [3] and its difference from V

Figure 2. 3: Temporal predictive motion.

(c)

V
’
[n]

(b)

 I[n-2] I[n-1]

 (a)

 I[n]

V[n-1] V[n]

A[n]

19

Figure 2.4: Candidate PMV Set.

2.1.2.3 Spatio-Temporal Motion Vector Predictive

Where the simple spatial or temporal coding techniques fail to provide the optimum PMV

candidate, there are methods taking advantage from the use of the spatial and temporal

redundancies in the motion vector fields. In several works [23-26] the best PMV is chosen out of

a set of spatially and temporally selected PMV candidates. However, the extra data transmitted to

the decoder to indicate which PMV is selected by encoder decreases the efficiency of the

methods with a larger set of candidate PMV. To avoid the transmission of extra signalling data

for PMV data recognition at the decoder, the methods proposed by Yang et al [27], select a

predictive motion vector which can be automatically selected by the decoder among the

candidate predictive motion vectors. To obtain a more precise PMV, by the proposed scheme,

both encoder and decoder organize the same candidate set (CS) which consists of all possible

distinct candidate PMVs for a current block. As shown in Figure 2.3 CS which is composed of

three spatially neighboring MVs, MVA, MVB, MVC and, one temporally neighbouring MV

MVcol, and the median MV of the H.264/AVC standard PMV is defined as:

(2.7) Vcol, PMV}VB, MBC, MCS={MVA, M

Reference Picture

MVcol

MVA

Current Picture

MVD

MVB

MVC

MVcur

20

For each motion position i within the search range, a PMV can be selected automatically by the

decoder and a template matching error function T is applied which is given by:

(2.8) minarg VDi) T(PMV | MPMVi =

where PMVi is a selected PMV for a tested search position i and its MVDi. By using the template

matching error function, all candidate PMVs in the CS are tested with known information of

MVDi. For each candidate PMV, the template matching error function T calculates the sum of

absolute differences (SAD) of neighbouring pixels included in the template matching set (TMS)

between the current and reference blocks. In the calculation of the template matching error, a

position of the reference block is obtained by a candidate MV, PMV + MVDi. Finally, a PMV

having the minimum template matching error is selected as a decoder selectable PMV for the

tested search position. Applying this method for encoding motion vectors contributes a bitrate

saving of about 3.21% on average compared to the H.264 standard.

2.1.3 Applied Motion Vector Encoding Techniques in H.264/MPEG-4 AVC

As mentioned previously, a PMV is formed based on previously calculated motion vectors and

the MVDs, the difference between the current vector and the predicted vector, is encoded and

transmitted. The method of forming a PMV depends upon the motion compensation partition

size and on the availability of nearby vectors and macroblock type which can be a macroblock

with a motion vector from the motion estimation process or with the SKIP mode in predictive (P)

slices and the two DIRECT modes in bi-predictive (B) slices.

21

2.1.3.1 Predictive Motion Vectors with Available Motion Vector from Motion

Estimation Process

Let E be the current macroblock, macroblock partition, or sub-macroblock partition, let A be the

partition or sub-partition immediately to the left of E, let B be the partition or sub-partition

immediately above E and let C be the partition or sub-macroblock partition above and to the

right of E; as shown in Figure 2.4. If there is more than one partition immediately to the left of E,

the topmost of these partitions is chosen as A. If there is more than one partition immediately

above E, the leftmost of these is chosen as B. Figure 2.4 illustrates the choice of neighboring

partitions when all the partitions have the same size (e.g. 16×16) in this case the PMV is

computed as below:

1. For the leftmost blocks, PMV is 0.

2. For the rightmost blocks, PMV is computed from modified Equation 2.1 that MVC is

replaced by MVD.

3. For the topmost blocks, but not leftmost, PMV is equal to MVA.

4. For other blocks within the frame the PMV is computed from Equation 2.1.

Figure 2.4 shows an example of the choice of prediction partitions when the neighboring

partitions have different sizes from the current partition E.

22

 B
4X8

 C
16X8

A
8X4

E
16x16

Figure 2.2: Variable block size macroblock partitioning.

1. For transmitted partitions excluding 16×8 and 8×16 partition sizes, PMV is the median

of the motion vectors for partitions A, B and C, as shown in Equation 2.1.

2. For 16×8 partitions, the PMV for the upper 16×8 partition is predicted from B and the

PMV for the lower 16×8 partition is predicted from A.

3. For 8×16 partitions, the PMV for the left 8×16 partition is predicted from A and the

PMV for the right 8×16 partition is predicted from C.

If one or more of the previously transmitted blocks, shown in Figure 2.4, is not available (e.g.

if it is outside the current slice), the choice of PMV is modified accordingly. At the decoder,

the predicted vector PMV is formed in the same way and added to the decoded MVD.

2.1.3.2 Predictive Motion Vector for Skip and Direct Mode Macroblocks

These modes, when signaled, could in effect represent the motion of a macroblock (MB) or

block without having to transmit any additional motion information required by other inter-MB

types. Motion for these modes is obtained by exploiting either spatial or temporal correlation of

the motion of adjacent MBs or pictures. In the case of skipped macroblocks in P slices, in

Extended, Main and Baseline profiles, there is no decoded MVD and a motion-compensated

23

macroblock is produced using PMV as the motion vector which is generated as the median of

three spatial neighbouring blocks, case (1) above for fixed size blocks and variable size blocks

respectively.

Skipped macroblocks existing in B slices, in Extended and Main profiles, are predicted using

Direct Mode macroblocks or sub-macroblock partitions, either fixed size partitions (blocks) or

variable size partitions. No motion vector is transmitted for a B slice macroblock or macroblock

partitions encoded in Direct Mode. Instead, the decoder calculates list 0 and list 1 vectors based

on previously-coded vectors and uses these to carry out bi-predictive motion compensation of the

decoded residual samples. A flag in the slice header indicates whether a spatial or temporal

method will be used to calculate the vectors for Direct Mode macroblocks or partitions. In spatial

Direct Mode, list 0 and list 1 predicted motion vectors are calculated using the process described

in Section 2.1.4.1 If the collocated MB or partition in the first list 1 reference picture has a

motion vector that is less than ±1/2 luma samples in magnitude (and in some other cases), one or

both of the predicted vectors are set to zero; otherwise the predicted list 0 and list 1 vectors are

used to carry out bi-predictive motion compensation. In temporal Direct Mode, the decoder

carries out the following steps (Figure 2.5):

Figure 2.3: Direct-Mode block motion vector estimation.

B RL0
MVC

MV0

MV1

Collocated

Direct-Mode

TDD

T

RL1

24

1. Find the list 0 reference picture for the collocated MB or partition in the list 1 picture.

This list 0 reference becomes the list 0 reference of the current MB or partition.

2. Find the list 0 vector, MV, for the collocated MB or partition in the list 1 picture.

3. Scale vector MV based on the picture order count ‘distance’ between the current and

list pictures: this is the new list 1 vector MV1, Equation 2.9.

(2.9) 1 CMV
DTD
BTD

MV ×=

(2.10) 2 CMV
DTD

DTDBTD
MV ×

−
=

4. Scale vector MV based on the picture order count distance between the current and list

0 pictures: this is the new list 0 vector MV2, Equation 2.10.

These modes are modified when, for example, the prediction reference macroblocks or partitions

are not available or are intra coded.

 Motion Vector Entropy Encoding Methods 2.2

MPEG-4 uses a predefined Huffman-based table to encode pre-coded MVDs. Exponential

Golomb codes [28] (Exp-Golomb) fall into this category. In the H.264 standard, when the

entropy encoding mode is set to 0 (Baseline profile) all variable-length coded units except

residual block data are coded using Exp-Golomb codes. When the picture parameter flag is set

entropy coding mode is set to 1 (Main profile), an arithmetic coding system is used to encode

and decode H.264 syntax elements. In this encoding system, Context-based Adaptive Binary

Arithmetic Coding (CABAC) [29] achieves good compression performance through (a) selecting

probability models for each syntax element according to the element’s context, (b) adapting

25

probability estimates based on local statistics, and (c) using arithmetic coding rather than

variable-length coding.

26

Chapter 3

Encoding of Motion Vectors Using Splines

In this chapter the proposed motion vector encoding scheme is structured as a 3-step algorithm in

order to give an overview of the entire process then it will be explained in more detail in

Chapters 4 and 5. As explained in Chapter 2, predictive coding schemes that utilize the

redundancy between the temporal and spatial neighboring blocks’ motion vectors minimize the

motion vector data which results in a reduction in the bitrate. In this work a new predictive

motion vector (PMV) concept is introduced. The new PMVs are the keypoints4 of the curves that

are fitted to motion vector sets. The concept behind fitting motion vectors to a curve is that as

long as a curve is relatively smooth, data can be represented by a set of keypoints (that are used

to determine the curve itself) in a much more compact way than labeling each discrete point. As

a great deal of motion in video is from either objects moving across the screen, or cameras

moving in a controlled manner – smooth curves are easy to come by if we were to map the

motion vectors to a curve. There are different curves that can be used, depending on the shape

and the control required. Bezier curves [30] are able to produce smooth curves and are used for a

4 In this work keypoint and control point are used interchangeably.

27

wide range of applications from animation to character sets. More generalized NURBS curves

[31] permit even sharp corners if required and are used for smooth surfaces for modeling or

computer aided design. We have selected to use the Hermite spline [32] for its computational and

also compression efficiency over previously named curve fitting schemes; Hermite splines use

two keypoints and two tangent values at the keypoints for forming its polynomial. In terms of

computation, the keypoints sit on the curve; therefore, they can be selected from the original data

set which means they can be easily chosen as the data point set’s critical points such as extrema

values and efficiently being fitted to the data points between each two consecutive keypoints.

Bezier curves use four different control points where only two of them sit on the curve and can

be selected from the original data point set and the other two control points should be computed

such that better curve fitting is achieved. On the other hand, based on the NURBS polynomials

[31] a high level of computation is required to reconstruct a data point from the NURBS

function. In terms of compression the tangent values needed to characterized the Hermite spline

can be automatically computed from the consecutive keypoints which means only two data

points, which are keypoints, are sufficient for presenting the Hermite polynomial while Bezier

curves require four independent control points and to construct a NURBS keypoints, keypoint

weights, and also information about the choice of B-Spline basic function are required in the

NURB equation. The choice of tangents is non-unique and there are several options available

such that they lead to different types of Hermite spline; Finite Difference Spline [33], Cardinal

Spline [34], and Catmull-Rom Spline [35] are three variations of the Hermite Spline. In this

work the Catmull-Rom Spline is chosen as the computation for the tangent is simple and

efficient enough for motion vector interpolation. By using a curve, any discrete y-axis data (the

motion vector) can be extracted at any point by providing the frame number in the x-axis. The

28

proposed PMV production algorithm contains three stages (Figure 3.1 shows the algorithm of the

proposed method);

1. Selecting up to 16 candidate MVs, for each block in each frame in the proposed adaptive

motion estimation (AME) process. The number of MV candidates for each block depends

on two factors: (1) the pre-determined energy threshold which determines if each block

should be encoded in inter or intra mode, to encode a block in inter mode there must exist

at least one matching block within the search window of an energy value less than the

energy threshold, and (2) the computed bitrate threshold based on which the set of

matching blocks selected from previous stage is refined such that only matching blocks of

an estimated bitrate less than the bitrate threshold remain as the curve candidates.

2. Choosing the optimum MV from the MV candidates in each set such that the final MV set

needs the minimum number of keypoints to be represented by a piecewise Hermite spline

curve.

3. Determining keypoints and the header information which are required to reconstruct the

MVs of each data point set from its curve at the decoder.

 Determining Motion Vectors through Adaptive Motion Estimation Process 3.1

In order to improve the efficiency of the curve fitting process and reduce the encoded data, first

for each block up to 16 matching blocks are found depending on the availably of the blocks

which meet an energy threshold and bitrate threshold as explained in the previous section. At the

first step it is determined that each block is to be encoded in the intra or inter mode. To do so

based on an initial threshold, if there exists at least one block of the residual energy less than this

threshold the block is encoded in the inter mode, then all the blocks of an energy value less than

the threshold within the search window are selected to go through the rate control process to

29

meet the second constraint (finding a matching block candidate is implemented via a quarter-

pixel accuracy motion estimation system). Based on a rate control model, the number of bits for

encoding the residual block is predicted using the residual block energy and applied quantization

parameter. Therefore, if the number of predicted bits is less than the bitrate threshold the block is

selected as one of the matching block candidates from the previously selected blocks in the

search window. The threshold value is different for each block and is chosen as the number of

bits required for encoding the best matching block which is chosen as the one with the minimum

energy within the search window. For a block located at (x,y), where x and y are the horizontal

and vertical block references in the fth frame, a set of matching blocks with corresponding set of

motion vectors is found as follows:

{ } (3.1)
2 16k1

 y1 1
 ,,,...,2,,,1,, ,, 








≤≤≤≤

≤≤≤≤
=

Ffand
HandWx

forkyxmvyxmvyxmvfyxMV

where H and W are the vertical block count and horizontal block count respectively, and F is the

number of frames in the video sequence. The frame index, f, is set to be equal to the frame

number 2 to the last frame, since the first frame, f = 1, in each set of frame is encoded in the intra

mode. Finding the candidate motion vectors for each block, the resulting MVs of the collocated

blocks in all the video frames are grouped together to form a set of data points for the curve

fitting process (i.e. data points are the motion vectors of each block). For better illustrating the

initial data point set each set is presented as a matrix in which the row number is equal to the

frame number in the video sequence that block(x,y) is located in it. The number of columns in

each row is showing the number of motion vector candidates found in the motion estimation for

block(x,y) in that row; therefore, the initial motion vector (IMV), set for block(x,y) is:

30

(3.2)
2

161

,,,..,2,,,1,,

::::

,,,

:

3,3,,..

,2,,

:
3,2,,

,1,,

:
3,1,,

2,2,,..2,2,,2,1,,

, ..
:









































≤≤

≤≤
=

Ff
fk

for

FFkyxmvFyxmvFyxmv

ffkyxmv

kyxmv

fyxmv

yxmv

fyxmv

yxmv

kyxmvyxmvyxmv

yxIMV

where kf is the number of matching blocks found for block(x,y) located in frame f. Note that the

number of motion vectors in each row is different, it is chosen to be at most up to 16 matching

blocks, since it depends on the number of matching blocks found for each block in the motion

estimation process based on the number of bits needed for encoding each block’s residual, that is

gained from the rate control model and the threshold value. The threshold value is the number of

bits needed for encoding the best matching block, the matching block of minimum MSE, as

explained previously.

Once the initial motion vector set has been formed, the optimum motion vector candidate should

be selected in each row for the curve fitting process. The selected motion vector in row f, or

mvx,y,i,f where 1≤ i ≤ kf, is the motion vector of the matching block for block(x,y) in frame f,

which is used for motion compensation to reconstruct the block at the decoder.

 Optimum Motion Vector Selection 3.2

3.2.1 Ordering MV Candidates

The MV candidates for each block are ordered in ascending order based on the encoded size of

each residual block. For simplicity, the number of bits required to encode each residual block is

estimated from the same rate control model used in Section 3.1 for selecting the candidate

matching blocks in the motion estimation process. Therefore, the motion vectors in each row of

31

IMVx,y are sorted based on their corresponding residual blocks size, in terms of the number of

bits needed to encoded each residual.

(3.3)
2

161

,,,'..,2,,',1,,'
::::

,,,'
:

3,3,,'

..
:

,2,,'
:

3,2,,'

,1,,'
:

3,1,,'

2,2,,'..2,2,,'2,1,,'

,'

..











































≤≤

≤≤
=

Ff
fk

for

FFkyxmvFyxmvFyxmv

ffkyxmv

kyxmv

fyxmv

yxmv

fyxmv

yxmv

kyxmvyxmvyxmv

yxIMV

Therefore, the residual block bitrate (RBR) of each motion vector, as shown in Equation (3.4),

would be true for the motion vectors in each row in matrix IMV׳x,y:

{ } (3.4) 16,0 |),,,'() ,,,' (≤≤<≤ jijiforfjyxmvRBRfiyxmvRBR

3.2.2 37BOptimum MV Selection

At this stage, matrix IMV׳x,y is transformed into a final motion vector matrix (FMVx,y) which has

only one column and F rows. FMVx,y is in fact the final set of motion vectors of block position

(x,y) in the video sequence frames that are fitted into a Hermite curve and then the curve is

represented by its control points which are used to reconstruct the other motion vectors in

FMVx,y. Therefore, for perfect data compression FMVx,y should be chosen such that the

minimum number of control points for the curve is achieved. According to the Hermite spline

curve fitting algorithm the control points are the critical points in each data point set, data points

are motion vectors in this thesis. Critical points can be the local extrema among the data points.

Note that motion vectors are 2-dimensional therefore IMV׳x,y is 2-dimensional as well and

IMV׳x,y,H and IMV׳x,y,V are the components of IMV׳x,y that contain the horizontal and vertical

motion vector elements. Also, FMVx,y containing vertical motion vector elements is represented

32

by FMVx,y,V and FMVx,y containing horizontal motion vector elements is represented by

FMVx,y,H. When notations IMV’x,y or FMVx,y are used both vertical and horizontal components

of the motion vectors are considered identically.

In order to choose the best motion vector among the candidates first an initial trends (ITH and

ITV) (which can be increasing, unchanged, or decreasing) is determined for each IMV׳x,y. To do

so the first motion vector in the first row of IMV׳x,y, IMV׳x,y[0,0] is selected as the first data point

in the FMVx,y, FMVx,y[0,0]. The first motion vector on each row is the one that results in the

minimum number of bits for encoding its residual blocks based on the motion vector ordering

process as described in the previous section.

(3.5)]0,0[y,x'IMV]0,0[y,xFMV =

Figure 3.1 depicts the motion vector candidates of block(x,y) in the first three video frames. The

first data point, that corresponds to the block(x,y) in the second frame, is the one with a smaller

column number which is the one that results in the minimum number of bits for encoding its

residual block and in this example it is equal to (2,2):

 2]0,0[,,']0,0[,,

2]0,0[,,']0,0[,,
) (3.6

==

==

VyxIMVVyxFMV

HyxIMVHyxFMV

Then in order to determine the initial trends FMVx,y,V[0,0] and FMVx,y,H[0,0] are compared with

0, described as follows:

Case 1: ITV and ITH are equal:

• Case 1.1.14F

5: Both are larger than zero, ITV and ITH are increasing.

• Case 1.1.2: Both are smaller than zero, ITV and ITH are decreasing.

5 Cases 1.1 and Cases 1.2 correspond to selecting the first data point and the second data point respectively.

33

• Case 1.1.3: Both are zero, ITV and ITH are equal.

To determine the second data point (FMVx,y[1,0]) in Case 1, the current trends (CTH and CTV)

between FMV[0,0] and the motion vectors on the second row of IMV׳x,y are computed. Based on

ITH (or ITV as in Case 1 ITV and ITH are equal) four cases may occur for selecting the next data

point:

• Case 1.2.1: There exists a motion vector for which CTH and CTV are equal to the ITH

(ITV), therefore motion vector is selected.

In Figure 3.1, comparing FMVx,y,V[0,0] and FMVx,y,H[0,0] with zero, ITH and ITV are

both increasing (Case 1.1.1). Therefore, for choosing the second data point corresponding

to the block(x,y) in the third frame (the first frame is encoded in inter-mode), if there is a

motion vector that CTH and CTV are both increasing that motion vector is selected (e.g.

for the motion vector candidates in Figure 3.1, the motion vector on the second column of

IMV’x,y meets the condition provided in Case 1.2.1).

(a) Horizontal motion vector component (b) vertical motion vector component

Figure 3.1: Case 1.2.1 optimum motion vector selection for the second data point.

 First
Column Second

Column Third
Column Fort

Column

34

4]2,1[,,']0,1[,,

(3.7)

4]2,1[,,']0,1[,,

==

==

VyxIMVVyxFMV

HyxIMVHyxFMV

• Case 1.2.2: There may be more than one such motion vector as in Case 1.2.1 therefore the

motion vector with the least number of bits for encoding its residual block is selected, or

in other words, the motion vector with the smaller column number is selected, as in

Figure 3.2.

3]2,1[,,']0,1[,,

(3.8)

5]2,1[,,']0,1[,,

==

==

VyxIMVVyxFMV

HyxIMVHyxFMV

 (a) Horizontal motion vector component (b) vertical motion vector component

Figure 3.2: Case1.2.2 optimum motion vector selection for the second data point.

 First
Column Second

Column Third
Column Fort

Column

• Case 1.2.3: There is a motion vector for which only CTH (CTV) is equal to ITH (ITV) and

there is no motion vector matching any of the above cases, in this situation this motion

vector is selected. If there is more than one such a motion vector then the one with the

lower column number is selected. As in the example presented in Figure 3.3, among the

motion vectors on the second column only CTV is equal to the ITV and there is no motion

(a) (b)

35

vector matching Cases 1.2.1 and 1.2.2. In this case the motion vector on the second

column is selected.

 (a) Horizontal motion vector component (b) vertical motion vector component

Figure 3.3: Case 1.2.3 optimum motion vector selection for the second data point.

 First
Column Second

Column Third
Column Fort

Column

4]2,1[V,y,x'IMV]0,1[V,y,xFMV

(3.9)

0]2,1[H,y,x'IMV]0,1[H,y,xFMV

==

==

• Case 1.2.4: There is no motion vector that matches any of the above conditions, therefore

the first motion vector on the row is selected since in this situation all the motion vectors

on the row are equal in terms of their property for the curve fitting, they do not affect the

number of control points, since to maximize the compression efficiency the motion vector

with minimum number of bits for encoding its residual block is selected, as shown in

Figure 3.4.

0]2,1[V,y,x'IMV]0,1[V,y,xFMV
(3.10)

4]2,1[H,y,x'IMV]0,1[H,y,xFMV

==

==

(a) (b)

36

 (a) Horizontal motion vector component (b) vertical motion vector component

Figure 3.4: Case 1.2.4 optimum motion vector selection for the second data point.

 First
Column Second

Column Third
Column Fort

Column

Case 2: ITV and ITH are different:

• Case 2.1.1: ITV is larger than zero, ITV is increasing.

o Case 2.1.1.1: ITH is smaller than zero, ITH is decreasing.

o Case 2.1.1.2: ITH is zero, ITH will be equal.

• Case 2.1.2: ITV is smaller than zero, ITV is decreasing.

o Case 2.1.2.1: ITH is larger than zero, ITH is increasing.

o Case 2.1.2.2: ITH is zero, ITH will be equal.

• Case 2.1.3: ITV is zero, ITV will be equal.

o Case 2.1.3.1: ITH is larger than zero, ITH is increasing.

o Case 2.1.3.2: ITH is smaller than zero, ITH is decreasing.

To determine the second data point (FMVx,y[1,0]) in Case 2, the current trends (CTH and CTV)

between FMV[0,0] and the motion vectors on the second row of IMV׳x,y are computed. Based on

ITH and ITV following cases may occur for selecting the next data point:

• Case 2.2.1: There exists a motion vector for which CTH and CTV are equal to the ITH and

ITV respectively, therefore this motion vector is selected.

(a) (b)

37

• Case 2.2.2: There may be more than one such a motion vector as in Case 2.2.1 on the

second row of IMV’x,y, the motion vector with the least number of bits for encoding its

residual block is selected (the motion vector with smaller column number is selected).

• Case 2.2.3: There is a motion vector for which only CTH is equal to ITH and there is no

motion vector as in Case 2.2.1. The algorithm checks to see if there is a motion vector

that its corresponding CTV is equal to ITV, if there is such a motion vector, between the

motion vector that has met the condition: CTH = ITH and motion vector that has met the

condition: CTV = ITV, the one with the smaller column number is selected.

• Case 2.2.4: There is no motion vector that matches none of the above conditions,

therefore the first motion vector on the row is selected since in this situation all the

motion vectors on the row are equal in terms of their property for the curve fitting, they

do not affect the number control points, since to maximize the compression efficiency the

motion vector with minimum number of bits for encoding its residual block is selected.

At the end of this process matrix FMV is formed such that its motion vectors (the curve data

points) are the best selected points for the curve fitting process and their residual block

compression. In order to choose the next data points among the motion vector candidates on the

other rows of IMV’x,y, the same algorithm is implemented but the ITH and ITV for each row are

replaced by the trend between the last two data points in FMVx,y .

 Curve Fitting Algorithm 3.3

Curve fitting is the process of constructing a curve, or mathematical function, which has the best

fit to a series of data points. In other words, the curve control points (or the coefficients of its

mathematical function) are sufficient to reconstruct the data points fitted into the curve from the

curve polynomial. Therefore, if proper data points and also proper curve type are chosen there is

38

a high probability that the number of control points is less than the number of data points, using a

smaller set of control points to represent the data points results in data compression. Selecting

proper data points is done in the proposed adaptive motion estimation process (Section 3.2.2) in

which motion vectors are determined such that the final motion vector sets (FMVx,y,V and

FMVx,y,H) contain motion vectors that need a minimum number of control points to be

reconstructed by a curve. As explained, the Hermite spline is chosen since it is very easy to

calculate, but also very powerful and is used to smoothly interpolate between two key points. In

the following sections first a typical Hermite curve fitting algorithm is explained, Section 3.3.1,

and then in Section 3.3.2 the method of reconstructing the data points (motion vectors) from the

control points of the curve is explained.

3.3.1 Cubic Hermite Curve Fitting

A cubic Hermite spline is a third-degree polynomial that consists of four Hermite basis

functions, Figure 3.5, each multiplied by a coefficient.

Figure 3.5: Hermite Basis Functions.

The basis functions’ coefficients are chosen as a set of two control points and two control

tangents. A typical Hermite polynomial is defined as:

0
0.2
0.4
0.6
0.8

1

0 0.5 1
0

0.2
0.4
0.6
0.8

1

0 0.5 1
0

0.2
0.4
0.6
0.8

1

0 0.5 1 -1

-0.8

-0.6

-0.4

-0.2

0
0 0.5 1

39

(3.13))2t3t(11h

(3.12))2t33t2(01h

(3.11))t2t23t(10h

(3.10))12t33t2(00h

)9.3(11h1m01h1P10h0m00h0P)t(H

−=

+−=

−−=

+−=

+++=

where h00, h10, h01 and h11 are the Hermite basis functions and, p0 and p1 are the start and end

control points respectively, and m0 and m1 are the control tangents defining how the curve enters

and leaves a control point (e.g. direction and speed).

As explained in Section 3.2.2, control points are the local maximum and minimum of each data

point set in including the end points (first and the last data points). Therefore, if there exist more

than two local extrema in a set of data points, more than one Hermite spline (or piece wise

Hermite spline) is used for fitting to the data points. For instance, Figure 3.6 depicts the set of

data points, {-3, 0, 2, 5, 3, 2, -3, -3, -3, -4, 0}, which contains six local extrema, the crossed

points on the figure, containing two end points (-3) and (0) and one maximum (5) and one

minimum (-4) and two critical points the first (-3) and the third (-3). To fit a Hermite curve to

such a data point set, six curves are used for the subsets {-3, 0, 2, 5}, {5, 3, 2, -3}, {-3, -3, -3}, {-

3, -4} and {-4, 0}. As we can see the second control point of each part is the first control point of

the next part. In order to calculate the tangents at the control points of each subset as it was

explained in the chapter introduction, the choice of tangents is non-unique and there are several

options available such that they lead to different types in the Hermite spline family.

40

Figure 3.6: Assigning data point set control points.

In this work the Catmull-Rom Spline is chosen as the computation of the tangent as it is simple

and also the tangent of each control point is directly computed from its neighbouring control

points;

 (3.14))pp(5.0m 1i1ii −+ −×=

where mi is the tangent at the ith control point (pi) and pi-1 and pi+1 are the prior and next control

points of pi. For computing the first control point tangent the equation of the tangents would be:

(3.15))pp(5.0m i1ii −×= +

and the last control point tangent is equal to:

(3.16))pp(5.0m 1iii −−×=

Considering the data point set in Figure 3.6, with control point set equal to {-3, 5, -3, -3, 4, 0},

and the tangent set would be {8, 0, -4, 3.5, -1.5, 4}. Therefore, except the control points no extra

data is needed for the tangent values for reconstructing the data points from the curve. In order to

reconstruct data points in each subset, interval [0, 1] is divided into the number of data points in

the subset including the control points, then by assigning each value (t) in the interval to each of

the data points in the subset in order, data points are reconstructed using Equation (3.9). For

-3

0

2

5
3

2

-3 -3 -3
-4

0

-6

-4

-2

0

2

4

6

0 2 4 6 8 10D
at

a
po

in
t

Data point oredering

41

example, for the first subset of the previous example which contains four data points, the

reconstructed data points from the curve are computed by assigning t to 0, 1/3, 2/3 and1 for each

data point in the subset respectively. Figure 3.7 illustrates the piecewise Hermite curve

consisting of five Hermite splines corresponding to the five subsets of the data point sets in the

previous example with Equations (3.17.a-3.17.e):

) (3.17.e)t(t4t) t 2(t5.1) 1t 3t 2(4(t)H

(3.17.d)) t(t5.1)t 3t 2(4t) t 2(t5..3) 1t 3t 2(3(t) H

(3.17.c)) t(t5.3)t 3t 2(3t) t 2(t4) 1t 3t 2(3) 3(H

(3.17.b)) t(t4) t 3t 2(3)1t 3t 2(5(t)H

(3.17.a)) t 3t 2(5t)t 2(t8)1t 3t 2(3(t)H

232323
5

23232323
4

23232323
3

232323
2

232323
1

−×+−−×−+−×−=

−×−+−×−−−×++−×−=

−×++−×−−−×−+−×−=

−×−+−×−+−×=

+−×+−−×++−×−=

Figure 3.7: Piecewise Hermite spline fitted to the set {-3, 0, 2, 5, 3, 2, -3, -3, -3, -4, 0}.

3.3.2 Appling Hermite Curve Fitting to Motion Vector Encoding

Column matrices FMVx,y,H and FMVx,y,V obtained from the previous step of the algorithm,

respectively contain the horizontal and vertical components of the motion vectors of block(x,y)

along the video sequence, where (x,y) is the temporal address of the collocated blocks which are

the xth horizontal and yth vertical blocks located in the frames of the video sequence. Based on

the proposed curve fitting algorithm, while elements on the same row of these matrices belong to

-3

0
2

5
3

2

-3

-3 -3

-4

0

-6

-4

-2

0

2

4

6

0 2 4 6 8 10

R
ec

on
st

ru
ct

ed
 d

at
a

po
in

ts

Data points ordering

H1(t)
H2(t)

H3(t)

H4(t) H5(t)

42

the same matching block, the motion vectors of each FMVx,y,H and FMVx,y,V are treated as two

separate data point sets to be fitted into a curve. Therefore, assuming each frame contains M×N

blocks (where M and N are the horizontal and vertical number of blocks in the video frame)

there would be M×N FMVx,y,V and M×N FMNx,y,H matrices that each matrix is fitted into a

separate curve. The same curve fitting algorithm is applied for FMVx,y,H and FMVx,y,V and they

are called the data point set in the curve fitting algorithm. Based on the Hermite curve fitting

algorithm (Section 3.3.1) the control points of each data point set (FMNx,y,H, FMVx,y,V) are

found, that are the local extrema of motion vectors in each matrix. Since the reconstructed data

points from the curve are not necessarily equal to their original values and the proposed motion

vector encoding is lossless, all the motion vectors should be recovered at the decoder conforming

to their original value. For this purpose, at the encoder side all the data points are reconstructed

using the control points and the tangents of each set. Since the original data points are integer,

four situations (defined as categories) may happen for each data point. Therefore, each set of

data point is mapped into one of these categories:

• Category One: This contains control points.

• Category Two: The non-integer reconstructed data points from the curve that should be

rounded to their upper integer at the decoder side, and also the data points, except keypoints,

that are recovered directly from the curve (any non-control points with integer reconstructed

values from the curve that belong to this category are the real values of the motion vectors).

• Category Three: The non-integer data points reconstructed from the curve that should be

rounded to their lower integer at the decoder side.

43

• Category Four: The motion vectors which the difference between their original value and

their reconstructed data point from the curve is more than one, for such points the original

data are transmitted.

Table 3.1 shows the results of categorizing the motion vectors of the first 15 frames of QCIF

Foreman test video sequence of the 4×4 block size motion estimation and block position (10,

13).

Table 3.1: Categorizing motion vectors based on their reconstructed data points

FMN10,13,H 0 NA NA 1 1 0 -2 -5 -6 -8 0 3 0 -3 -5

Data point 0 - - 1 1 -0.54 -2.91 -
5.40

-
7.33 -8 -

2.37 3 2.2 0.259 -2.3

Category One - - One One Three Three Two Four One Four One Four Four One

FMN10,13,H 0 NA NA 1 1 1 2 3 3 3 0 2 0 1 2

Data point 0 - - 1 1 1 2 3 3.31 3 0 2 0 0.87 2

Category One - - One Four One Two One Two One One One One Two One

Categorizing motion vectors leads to reconstructing them at the decoder based on their original

values; however, based on the coded video sequence format used in H.264 standard it does not

mean that the category index for all the motion vectors should be encoded. In order to describe

which category indices should be encoded and contained in the video data bitstream, the coded

video sequence format used in H.264 is explained in the next section.

 Coded Data Format 3.4

The encoded video signal (a sequence of bits representing the coded video data) consists of three

main layers, the Video Coding Layer, the Slice Layer, and the Macroblock Layer. While the

header and the data units constitute each layer, each of the lower layers is a subset of its upper

layers.

44

3.4.1 Video Coding Layer (VCL)

In order to make use of coding-specific features at the VCL and transport-specific features at

network abstraction layer (NAL), in H.264 they are specified separately. A coded video sequence

at its upper layer level (VCL) consists of NAL units (Figure 3.8) that are transmitted over a

packet-based network, bitstream transmission lines, or stored as a file. Each NAL unit contains

an integer number of bytes; the first byte is the header specifying the type of data in the NAL

unit and the remaining bytes contain payload data of the type indicated by the header. The

sequence of payload data bytes is represented by the Raw Byte Sequence Payload (RBSP). An

example of a sequence of RBSP units is shown in Figure 3.9 each RBSP unit is a NAL data unit.

Table 3.2 gives brief descriptions about different types of RBSP units.

……
NAL
header RBSP NAL

header RBSP NAL
header RBSP …..

Figure 3.8: Sequence of NAL units.

Sequence
parameter
set

SEI
Picture
parameter
set

I slice Picture
delimiter P slice P slice ……

Figure 3.9: Example showing a sequence of RBSP elements

In Figure 3.9 parameters in the sequence parameter set include an identifier (seq-parameter-set-

id), limits on frame numbers, picture order count, the number of reference frames that may be

used in decoding (including short and long term reference frames), the decoded picture width

and height, and the choice of progressive or interlaced coding. While a sequence parameter set

contains parameters to be applied to a complete video sequence (a set of consecutive coded

pictures), a picture parameter set contains parameters which are applied to one or more decoded

pictures within a sequence. A picture parameter set includes an identifier (pic-parameter-set-id),

45

a selected seq-parameter-set-id, a flag to select VLC or CABAC, the header, and the data units

constitute each layer. Therefore, the information stored in the parameter set units remains

unchanged in our proposed method as they represent the information about the aspects of the

video encoding process such as the type of entropy encoder and the structure of each picture or a

sequence of pictures; however, they contain neither the addressing information such as

macroblock index, the frame number, or the encoded macroblock values such as residual data

and the motion data.

3.4.2 Slice Layer

Each video sequence may be sampled as a series of complete frames or as a sequence of

interlaced fields. A field (of interlaced video) or a frame (of progressive or interlaced video) is

encoded to produce a coded picture. A coded picture consists of a number of macroblocks, each

containing 16×16 luma samples and associated chroma samples (8×8 Cb and 8×8 Cr samples in

H.264 standard). Within each picture, macroblocks are arranged into slices, where a slice

contains a set of macroblocks in raster scan order (but not necessarily contiguous)6 and a slice

header (Figure 3.10). Depending on the types of macroblocks that exists in each slice there are

five slice types; an I slice may contain only I macroblock types (I macroblock type refers to an

inter-coded macroblock, covered by the Extended, Main and Baseline profiles in H.264), a P

slice may contain P and I macroblock types (P macroblock type refers to an intra-coded

macroblock which can be predicted based on preceding frames as its prediction reference frames,

6 The Baseline Profile supports Arbitrary Slice Order which means that slices in a coded frame may follow any decoding order.
ASO is defined to be in use if the first macroblock in any slice in a decoded frame has a smaller macroblock address than the first
macroblock in a previously decoded slice in the same picture.

46

Table 3.2: Brief descriptions about different type of RBSP units

RBSP type Description

Parameter Set ‘Global’ parameters for a sequence such as picture dimensions, video
format, macroblock allocation map7. The parameter set may belong to
a picture or a sequence of pictures.

Supplemental
enhancement
information (SEI)

Side messages that are not essential for correct decoding of the video
sequence.

Picture delimiter The boundary between video pictures (optional). If not present, the
decoder infers the boundary based on the frame number contained
within each slice header.

Coded slice Header and data for a slice; this RBSP unit contains actual coded
video data.

Data partition A, B or C Three units containing Data Partitioned slice layer data

End of sequence Indicates that the next picture (in decoding order) is an IDR8 picture
(Not essential for correct decoding of the sequence).

End of stream Indicates that there are no further pictures in the bitstream. (Not
essential for correct decoding of the sequence).

Filler data Contains ‘dummy’ data (may be used to increase the number of bytes
in the sequence). (Not essential for correct decoding of the sequence).

also covered by Extended, Main and Baseline profiles in H.264), and a B slice may contain B

and I macroblock types (B macroblock type refers to an intra-coded macroblock which can be

predicted based on both the preceding and following frames as its prediction reference frames,

covered by Extended and Main profiles in H.264). There are two further slice types, SI and SP,

7 The allocation of macroblocks is determined by a macroblock to slice group map that indicates which slice group each MB
belongs to.
8 An encoder sends an IDR (Instantaneous Decoder Refresh) coded picture (made up of I- or SI-slices) to clear the contents of the
reference picture buffer. On receiving an IDR coded picture, the decoder marks all pictures in the reference buffer as ‘unused for
reference’. All subsequent transmitted slices can be decoded without reference to any frame decoded prior to the IDR picture.
The first picture in a coded video sequence is always an IDR picture.

47

which are supported by the Extended profile in H.264. SP and SI slices are specially-coded slices

that enable (among other things) efficient switching between video streams and efficient random

access for video decoders [36]. Slices of a video frame may be arranged into one or more slice

group(s). Multiple slice groups make it possible to map the sequence of coded MBs to the

decoded picture in a number of flexible ways (further details on the applications and the slices to

slice group map types are represented may be found [36]).

Slice header
(Partition A)

Slice data
(Partition B or C)

MB MB Skip_ru
n

MB ….. MB MB

 MB_type MB_pred Coded

residual

Figure 3.10: Slice syntax.

As a typical encoded video signal layer, the slice layer also contains a header and data units

(Figure 3.11) which divide each slice into three partitions: partition A contains the slice header

and header data for each macroblock in the slice. The slice header (or partition A) conveys

information common to all macroblocks in the slice, such as the slice type which determines

which macroblock types are allowed, the frame number that the slice corresponds to, reference

picture settings, and default quantization parameter (QP); therefore, if portion A is highly

sensitive to the transmission errors since it is lost it would be difficult (or at some points

impossible) to decode the related slice. Partition B contains coded residual data for Intra and SI

slice macroblocks and coded residual data for inter coded macroblocks (forward and bi-

directional) are referred to as Partition C. Partitions B and C can (with careful choice of coding

parameters) be made to be independently decodable and so a decoder may (for example) decode

A and B only or A and C only, lending flexibility in an error-prone environment.

48

3.4.3 Macroblock Layer

The macroblock layer contains all the information necessary for decoding the macroblock,

Figure 3.2, the header unit mb_type contains the macroblock type, I, P, B, SI or SP, and mode

information showing whether or not the macroblock is partitioned into smaller partitions (sub-

partitions) and how it is partitioned as in H.264 a macroblock can be partition into variable block

size sub-macroblocks. Each macroblock can be divided into two 16×8, two 8×16 or four 8×8

sub-macroblocks and also each 8×8 sub macroblock can be divided into four 4×4 blocks,

depending on the macroblock block mode and type signaled in mb_type. Other necessary

information such as P and B macroblocks’ and sub-macroblocks’ motion vector differences

(MVDs) and reference frames’ indices which are needed to reconstruct the macroblock from its

residual data, are contained in mb_pred header unit. The residual data is contained in coded

residual units in the macroblock layer (further details are available [34])

Based on the data arrangement in an encoded video bitstream, explained in the previous section,

we discuss how the motion information from the proposed method are embedded in the encoded

video bit stream and the motion information in the mb_pred unit (motion vector differences (or

MVDs)) in the macroblock layer is replaced by the new motion information from proposed

method.

Table 3.3: New motion information placement in the bitstream

Motion information placed in mb_pred unit Motion vector category

Motion vector Control Points One

No data Encoded Two

Category Index Flag Three

Motion Vector with Category Index Flag Four

49

The new motion information contains motion vectors which correspond to Category One (control

points) and Category Four and also the Category indices (explained in Section 3.3.2) for all the

motion vectors. Therefore, only for a subset of blocks there exist motion vectors in each block’s

header; however, in order to distinguish whether or not the encoded motion vector existing in the

mb_pred unit in replacement of MVD is a control point of the corresponding curve or it is just a

motion vector of Category Four. The motion vector for one of these two motion vector types the

category indices are encoded and placed in mb_pred. For the rest of the block with motion

vectors of Categories Two and Three no motion vector is encoded only for distinguishing which

category the reconstructed motion vector belongs to, for one these two motion vector types the

category indices are encoded and placed in mb_pred unit instead of MVD data as well (as shown

in Table 3.1). In order to choose between Categories One and Four, and between Categories Two

and Three, extensive searches on different video sequences has been implemented and based on

their results it would be more beneficial to encode Category Four and Three in terms of bitrate

(more details on the statistics of the results are presented in Chapter 5).

 Entropy Encoding Process 3.5

The resulting motion information, control points, and category indices, are Exponential-Golomb

(Exp-Golomb) entropy encoded since the proposed method is compared with the Baseline profile

in H.264 standard in which all the syntax elements except residual data are encoded based on

Exp-Golomb encoding scheme. The residual data is always encoded by the CAVLC encoding

technique.

50

3.5.1 Exponential-Golomb Encoding Technique

Exp-Golomb codes are variable length universal9 codes with regular constructions. The first 9

codewords for the first 9 positive integers (code_num) are given in Table 3.4 from examining the

codewords in Table 3.4 it is clear that there is a logical way in constructing Exp-Golomb codes:

(3.18)]Info][1][zeros M[

INFO is M-bit field carrying information. The first codeword has no leading zero or trailing

INFO. The first two codewords have a single-bit INFO field; codewords 3–6 have a two-bit

INFO field, and so on. The length of each Exp-Golomb codeword is (2M + 1) bits and each

codeword can be constructed by the encoder based on its index code_num:

(3.19)])1num_code[2log (floorM +=

(3.20) M2 - 1num _code Info +=

The algorithm of constructing an Exp-Golomb code contains three steps:

1. Add 1 to the code_num mathematically.

2. Convert the added code_num into it binary representation.

3. Count the number of bits from the step 2, subtract one, and write that number of starting

zero bits preceding the previous bit string.

9 A universal code for integers is a prefix code that maps the positive integers onto binary code words with the
additional property that whatever the true probability distribution on integers, as long as the distribution is
monotonic (i.e., p(i) ≥ p(i + 1) for all positive i), the expected lengths of the code words are within a constant factor
of the expected lengths that the optimal code for that probability distribution would have assigned.

51

Table 3.4: Exp-Golomb codewords

Code_num Code word
0 1
1 010
2 011
3 00101
4 00110
5 00111
6 0001000
7 0001001
… …

A codeword can be decoded as follows:

1. Read in M leading zeros followed by 1.

2. Read M-bit INFO field.

3. Code_num = 2M+ INFO – 1.

(For codeword 0, INFO and M are zero.)

Since the Exp-Golomb maps only positive integers into a their binary representation, and motion

vectors can be negative integer, in H.264 all the motion vector differences are mapped into

positive integers as follow;

1. code num = 2|k| (k ≤ 0)

2. code num = 2|k|−1 (k> 0)

This mapping is designed to produce short codewords for frequently-occurring values and longer

codewords for less common parameter values. For example, the commonly-occurring motion

vector difference (MVD) value of 0 maps to code_num 0 whereas the less-common MVD= −3

maps to code_num 6. In this work, the same method is used for sign mapping the control points

into positive integers (Note: if the motion estimation is of the fractional pel accuracy, as in this

52

work ¼ pel motion estimation, the integer parts and the non-integer part of the motion vector are

considered as two separate integers)

The category indices that should be encoded, the forth and the third categories, are also Exp-

Golomb encoded while for saving bitrate the most occurring category indices are mapped to zero

and the other is mapped to one as in Table 3.4 the number of bits needed to encode zero and one

are one bit and three bits respectively. Therefore, in order to decide which category indices

should be encoded by a single bit based on the statistics of the test results on different video

sequences proved that category index forth is most rare occurring category among other

categories that will be explained in details in Chapter 5.

3.5.2 Context-Based Adaptive Variable Length (CAVLC) Entropy Encoding

The zig-zag ordered 4×4 blocks of quantized transformed coefficients are CAVLC entropy

encoded. CAVLC encoding scheme takes advantage of several characteristics of quantised 4×4

blocks; after motion estimation (prediction), quantized transformed blocks typically contain

mostly zeros. A run-level encoding technique applied in CAVLC improves the coding efficiency

by representing the strings of zeroes compactly. After the zig-zag scan ±1 are the highest

nonzero coefficients CAVLC signals the number of high-frequency ±1 coefficients (‘Trailing

Ones’) in a compact way. The neighbouring blocks’ number of nonzero coefficients is

correlated; therefore, the number of coefficients is encoded based on a look-up table which

varies for a different number of nonzero coefficients in the neighbouring blocks. The magnitude

of nonzero coefficients (level) tends to be larger at the start of the reordered array (near the DC

coefficient) and smaller towards the higher frequencies. CAVLC takes advantage of this by

adapting the choice of VLC look-up table for the level parameter depending on recently-coded

level magnitudes. CAVLC encoding of a block of transform coefficients proceeds as follows:

53

1. Encode the number of coefficients and trailing ones (coeff-token)

1.1 Compute the coeff-token which is equal to the total number of nonzero coefficient

(TatolCoeffs) and the number of trailing ±1 values

• TotalCoeffs can be anything from 0 (no coefficients in the 4×4 block) to 16 (16 nonzero

coefficients)

• TrailingOnes can be anything from 0 to 3. If there are more than three trailing ±1s, only

the last three are treated as ‘special cases’ and any others are coded as normal coefficients

1.2 Select the look-up table based on variable nC as a function of the number of nonzero

coefficients in the left-hand and upper previously coded blocks (nA and nB respectively) and

using Table 3.5 in order to determine the look-up table.

• If upper and left hand previously coded blocks are both available, B and A are both

 available: nC = round ((nA + nB)/2

• Else if only the upper is available, nC = nB;

• Else if only the left block is available, nC= nA;

• Else if neither is available, nC = 0

Table 3.5: Choice of look-up table for coeff_token

nC Table for coeff-token

0,1 Table 1

2,3 Table 2

4,5,6,7 Table 3

8 or more Table 4

54

1. Encode the sign of each TrailingOne

2.1 For each TrailingOne (trailing ±1) signaled by coeff-token, the sign is encoded with a single

bit (0 = +, 1 = −) in reverse order, starting with the highest-frequency TrailingOne.

2. Encode the levels of the remaining nonzero coefficients

The level (sign and magnitude) of each remaining nonzero coefficient in the block is encoded in

reverse order, starting with the highest frequency and working back towards the DC coefficient.

2.1 The code for each level is made up of a prefix (level prefix) and a suffix (level suffix). The

length of the suffix (suffixLength) may be between 0 and 6 bits and suffixLength is found as

follows:

• Initialise suffixLength to 0 (unless there are more than 10 nonzero coefficients and less

than three trailing ones, in which case initialise to 1).

• Encode the highest-frequency nonzero coefficient.

• If the magnitude of this coefficient is larger than a predefined threshold, increment

suffixLength. (If this is the first level to be encoded and suffixLength was initialised to 0,

set suffixLength to 2).

The thresholds are listed in Table 3.6; the first threshold is zero which means that suffixLength is

always incremented after the first coefficient level has been encoded.

55

Table 3.6: Thresholds for determining whether to increment suffixLength

Current sffixLenght Threshold to increment
suffixLenght

0 0

1 3

2 6

3 12

4 24

5 48

6 N/A

3. Encode the total number of zeros before the last coefficient. The sum of all zeros preceding

the highest nonzero coefficient in the reordered array is coded with a VLC, total zeros. This

approach means that zero-runs at the start of the array need not be encoded.

4. Encode each run of zeros

5.1 The number of zeros preceding each nonzero coefficient (run before) is encoded in reverse

order. A run before the parameter is encoded for each nonzero coefficient, starting with the

highest frequency, with two exceptions:

• If there are no more zeros left to encode (i.e.[run before]=total zeros), it is not necessary

to encode any more run before values.

• It is not necessary to encode run before for the final (lowest frequency) nonzero

coefficient.

5.2 The VLC for each run of zeros is chosen depending on:

• (a) the number of zeros that have not yet been encoded (ZerosLeft)

56

• (b) the run before. For example, if there are only two zeros left to encode, run before

can only take three values (0, 1 or 2) and so the VLC need not be more than two bits

long. If there are six zeros still to encode then run before can take seven values (0 to 6)

and the VLC table needs to be correspondingly larger.

57

Chapter 4

A New Adaptive Motion Estimation Process

In Chapter 1 the function of a typical motion estimation system was demonstrated and it was

seen that for each inter-mode block in the current frame the best matching block is selected

within a search window in its reference frame(s) based on the energy of the block (e.g. The Mean

Square Error - MSE, Mean Absolute Difference - MAD, Sum of Absolute Differences - SAD, or

cross-correlation). Therefore, at the end of the motion estimation process for each inter-mode

block there exists only one matching block that results in a residual block of minimum energy

and a single two-dimensional motion vector. In our proposed method, in order to benefit a wider

range of options for motion vector curve fitting as described, instead of generating only one best

matching block with one motion vector, a set of matching blocks are chosen to form a set of

matching block candidates for each block. The elements of each matching block set are the

blocks within the search window in the reference frame(s) that the energy of each of the blocks is

less than a predefined threshold. In other words, in the motion estimation process for an inter-

mode block a set of matching block candidates are found within the search window that each

candidate has an energy value (e.g. MSE, MAD, SAD, cross-correlation) less than a predefined

58

mode energy threshold and also has an estimated bitrate less than a determined bitrate threshold.

The value of the bitrate threshold affects the operation of the proposed method in terms of the

number of bits needed to encode the residual data block. The number of bits for encoding the

residual block directly or indirectly depends on the energy of the block. Therefore, if the

threshold is not chosen properly it may lead to the selection of a matching block candidate that

results in large number of bits required to encode the residual block even if the motion vector of

this block is a potential motion vector to be used for the motion vector curve fitting algorithm. In

the next sections the following will be discussed: (1) the rate control problem that deals with

estimating the number of bits required for encoding a quantized-transformed block as a function

of the quantization parameter and the block characteristics such as its energy or the number of

non-zero quantized-transformed coefficients; (2) the optimum threshold value is investigated

based on a rate control model in order to bound the bitrate of the selected matching block

candidates to approximately the bitrate needed to encode the residual block candidate with the

minimum energy.

 Rate Control Concept and its Application in Video Coding Standards 4.1

A rate control algorithm dynamically adjusts encoder parameters to achieve a target bitrate. It

allocates a budget of bits to each group of pictures, individual picture, and/or sub-picture in a

video sequence. Rate control is not a part of the H.264 standard, but the standards group has

issued non-normative guidance to aid in implementation. Block-based hybrid video encoding,

schemes such as the MPEG [38] and H.26* [19] families, achieve compression not only by

removing truly redundant information from the bitstream, but also by making small quality

compromises in ways that are intended to be minimally perceptible. In particular,

the quantization parameter (QP) regulates how much spatial detail is retained. When the QP is

59

very small, almost all that detail is retained. As QP is increases, some of that detail is aggregated

so that the bit rate drops – but at the cost of an increase in distortion and a decrease in quality ,

Figure 4.1a. As source complexity varies during a sequence, we move from one such curve to

another, Figure 4.1b.

Figure 4.1: Increasing distortion and decreasing quality.

The diagram in Figure 4.2a illustrates the open loop (or variable bit rate) operation of a video

encoder. The user supplies two key inputs: the uncompressed video source and a value for QP.

As the source sequence progresses, compressed video of a fairly constant quality is obtained, but

the bitrate may vary dramatically; this is because the complexity of the pictures is continually

changing in a real video sequence, it is not so obvious what value of QP to select. If we fix QP

for an "easy" part (i.e. slow motion and uniform areas) of the frame sequence then the bit rate

will go up dramatically when the "hard" (i.e. frame sequences with more motion) parts are

reached. In reality, constraints imposed by the decoder buffer size and network bandwidth force

us to encode video at a nearly constant bitrate. The diagram in Figure 4.2b suggests that we must

dynamically vary QP based upon estimates of the source complexity, so that each picture (or

group of pictures) receives an appropriate allocation of bits to work with. Rather than specifying

QP as input, the user specifies their required bitrate instead. Therefore, rate control is a technique

to achieve the target bitrate by regulating the quantization parameter.

QP
(a)

 B
itr

at
e

QP
(b)

Increasing source complexity

B
itr

at
e

60

(a) Open loop encoding (b) Close loop encoding

Figure 4.2: Open and Close loop encoding.

In our case we want to make use of the rate control concept to predict the number of bits needed

for encoding a residual block for a specific QP, therefore another aspect of the rate control model

is used in this work. Since we are encoding the whole picture with a fixed quantization

parameter, therefore based on the rate control model we can predict the number of bits needed to

encode the block using the block’s complexity and the value of the quantization parameter.

Therefore, we define a way to set the threshold for selecting the blocks with the motion vectors

that are the motion vector curve fitting process candidates. We choose blocks where their

estimated number of bits for encoding their residual blocks is close enough to the actual number

of bits needed for encoding the block with minimum MSE that is selected as the H.264 motion

estimation selection. The method of setting the threshold based on rate control model is

described in detail in Section 4.2.

The methods of predicting the number of bits to encode a data block is mainly based on the

statistical model chosen for the block’s elements. Three main procedures, linear, mathematical,

and the rate distortion model (based on the rate distortion theory) are used to predict the number

Bitrate QP

Encod

Uncompressed video Compressed video

 Rate controller

Complexity estimate

Bitrate QP

Encod

Uncompressed video

Demanded bitrate

Compressed video

61

of bits needed to encode a quantized-transform block data before transformation and

quantization. Although these methods are different in terms of their linearity of the distortion

procedures, they all depend upon the Probability Distribution Function (PDF) that is selected for

the block data. It should be noted that the concept of the number of bits needed to encode only a

block can be expanded to the number of bits needed to encode a larger unit such as a slice or

frame; however the only difference is the statistical characteristic of the selected PDF, such as

the data variance and mean, relate to the whole unit.

4.1.1 Rate Distortion Models Based on Rate Distortion Theory

Based on the rate distortion theory [39] for a given source model distribution and specific

distortion definition there exists a rate model that is a function of total distortion and the source

statistical characteristics such as its variance or mean:

{ }∑ ≤≡Λ

∑+=

u
vusdeuQuus

u
uuQsDDR

1),()()(:)(

(4.1)

]))(ln()(max[)(

λλ

λ

Where R(D) is the estimated number of bits needed to encode the source samples after distortion,

Q(u) is a given source distribution model, D is the distortion function, Equation (4.2), λ(u) is a

Lagrangian function, Equation (4.3), d(u,v) is a measure of distortion (e.g. |u-v| or |u-v|2 or

quantization parameter), and s is the model parameter.

(4.2)),()()(∑∑=
u v

vusdevpuD λ

 (4.3)
1

)),()(()(
−

∑=
v

vusdevpuλ

62

where p(v) is the source model distribution after distortion, for instance source model

distribution after quantization, which can be the same as the original source model distribution

with different statistical characteristics.

Based on Equation (4.1), so far various rate control models have been proposed for different

source distribution models; for example some of the proposed rate control functions are based on

modeling the source samples as Gaussian distributed variables [40, 41, and 42] or as Laplacian

distributed samples [43 and 44]. The exponential distribution is exploited in work by Tian et al

[45] and Li et al [46] to present the relationship between bitrate and distortion. Table 4.1 shows

the rate control modeled formulas that have been proposed based on the three main source model

distributions. The distortion, D, in the formulas in Table 4.1 is replaced by a factor of squared

quantization step size [41, 43], or by a combination of quantization step sizes with distortion

measures such as MAD, [44, 45, 47]. In some applications the direct forms of the rate models in

Table 4.1 are used to predict the rate; however, in some applications they are transformed into

more applicable and practical forms [45, 42]. In the H.264/AVC [19] video coding, the quadratic

R-D model has been employed based on the assumption that the residual signal after DCT

transformation obeys a Laplacian distribution.

63

Table 4.1: The rate models based on different probability distributed source models10.

Probability density
function Q(u) Bit rate

formulation

Gaussian 22
2

2
1 σ
σπ

u
e
−

 D
DR

2
ln

2
1

)(
σ

=

Laplacian σ
µ

σ

u
e

−− 2

2
1

 D
DR

2
log

2
1

)(
σ

=

Exponential µ
µ

u
e
−

2
1

)ln()(

µ
D

DR −=

It is derived according to Taylor’s series expansion which removes the high-order infinitesimally

small values. The current rate control proposal [54] for H.264/AVC is composed of a quadratic

model and a linear tracking model. The quadratic model is described as: (as described in Section

4.1.2). The quadratic model is described as:

(4.4) 2
21)(

stepQ

sa

stepQ

sa
DR +=

where R denotes the number of bits, a1 and a2 are model parameters, Qstep indicates the

quantization step, and S is the MAD of the current block.

4.1.2 Linear Rate Distortion Model

Assuming that each of the transform coefficients (xl,k) in a m×n transformed residual block is

Laplacian distributed; therefore, each element (k, 1) of the DCT block will have the following

PDF:

(4.5) ,m ,

,

,2
1

),(nlkforlk
lkx

e
lk

lkxf <<
−

=
α

α

10 μ and σ are mean and variance respectively.

64

The entropy of the entire block is given as the sum of the entropies of each coefficient

separately:

(4.6)

, ,2ln
, ,)(∑=∑=

lk lke
lk lkHxH α

where the parameter αk,l is estimated by calculating the mean absolute value of a number of

samples (e.g. taken from a series of DCT blocks in a slice) of each coefficient. Based on

information theory, entropy is usually expressed as the average number of bits needed to store or

communicate one symbol, based on this fact the entropy of the block can be used as an estimator

for the number of bits required to encode quantized-transformed residual data block. Instead of

considering only one block we can expand the block entropy to the slice entropy, however, the

slice length entails a trade-off between PDF uniformity for the slice and the αk,l reliability. The

number of bits for encoding a block of data after quantization can be estimated as:

(4.7))()()()(sbxHsmsR +=

where m(s) is a measure of distortion caused by quantization which can be the quantization step

(s) of a block and b(s) is the number of bits needed for encoding the block header information. In

some rate models the quantization step is chosen as the distortion measure because of its

computational simplicity. The MSE or MAD can be used and the same formulation is still valid

since they are also a function of quantization.

The principle Equation (4.3) means that for every block a linear model predicts the rate as a

function of the parameter H(x) for every possible quantization step size s. The parameters of the

linear models [m(s) and b(s)] are experimentally determined for a representative set of video

sequences, coded at all possible step sizes. The rate model in H.261 and H.263 [5] is based on

Equation (4.3) which is equal to:

65

(4.8))(L
QP
X

QR +=

Where X and L are the model parameters, where L is a constant. Here we can see that the

distortion measure is chosen as the quantization step size and X represents the entropy of the

residual data block.

4.1.3 Mathematically-Based Rate Distortion Models

In these schemes generally a mathematical model is proposed and the model parameters are

found from implementing an extensive series of tests, then the model with its parameters is

generalized to video sequences with the same characteristics. For instance a curve-fitting method

based on experimental data can be applied [48] to design the rate model and the distortion

models separately as a function of the energy of the residual block which is the block variance.

In other methods [49], two simple linear functions for rate (R) and distortion (D) as function of e

quantisation step size are proposed and the functions’ parameters are estimated by using Kalman

filtering.

4.1.4 ρ-Domain Rate Modeling Scheme

These methods are based on modeling the rate and distortion as a function of the number zeros

among a DCT block after quantization [50-55]. The basis of this idea is that after the DCT

coefficients are quantized with a quantization parameter q, let ρ be the percentage of zeros

among the quantized coefficients, ρ monotonically increases with q. Therefore, assuming that the

distribution of the transform coefficients is continuous and positive [50], there is a one-to-one

mapping between ρ and q. This implies that, mathematically, rate (R) and distortion (D) are also

functions of ρ, denoted by R (ρ) and D (ρ). A study of the rate and distortion as functions of ρ is

called ρ-domain analysis.

66

 Determining the Threshold for Selecting Candidate Blocks 4.2

For selecting the candidate matching blocks based on the number of bits needed for encoding

their corresponding residual blocks we use the rate control model based on the model presented

in Equation(4.4), but for simplicity it is modified as Equation (4.9).

Nj0 and Mi 0 for
NM

j,i j,isidualRe
MAD

(4.9)
stepQ
MAD1a

 R

<<<<
×

∑
=

=

Where M and N are the height and width of the residual block respectively; i and j are the block

references. For selecting the candidate blocks we propose a 6-step motion estimation algorithm

as follows:

1. Find the best matching block within the search window (the best matching block is

considered as the one that has the least MSE).

2. Encode its quantized-transformed residual block and compute the number of bits used to

encode the block (Rthreshold).

3. Solve Equation (4.9) using Rthreshold, Qstep and MAD of the best matching block found in

Step 1 (MADthreshold), to find the model parameter a1.

(4.10) 1
thresholdMAD

atepQthresholdR
a

×
=

4. Compute the MAD of each candidate block within the search window (MADcurrent), if it is

equal or less than Threshold×MADthreshold (Threshold is determine in the next step) it

shows that the estimated bitrate Restimate, Equation (4.9), for this block is less than

Threshold×Rthreshold (the variables MAD and R are in direct relation to the values in

67

Equation(4.9)) this block is selected as a candidate since it is based on the rate model it

shows that the selected block needs a lower number of bits to be encoded than the

number of bits needed to encode the selected block with the minimum MSE multiplied by

the amount of threshold.

(4.11) 1
stepQ

currentMADa
estimateR =

thresholdR)(ThresholdR MAD)(Threshold < MAD If estimate thresholdcurrent ×<⇒×

In order to find the Threshold the following steps are required:

1. Four test video sequences Foreman, Carphone, Miss America and Suzie are encoded

via the same proposed curve fitting algorithm, except in the adaptive motion estimation

system the matching block candidates are selected based only on their MSE values (for

each block in the current frame up to 16 matching blocks are selected while the selected

matching blocks have the least MSE values and below a predefined threshold), see Tables

(4.2-4.5).

2. The difference between the number of bits used to encode the curve fitting algorithm

motion data (MVBit_Curve) and the number of bits required for encoding the motion

vector differences (encoded motion vectors via the H.264 algorithm), MVBit_H.264, are

computed via actually entropy encoded data.

(4.12) _264._ CurveMVBitHMVBitMVBit −=∆

3. The difference between the number of bits for encoding residual data which results

from the proposed curve fitting algorithm (DCTBit_Curve) and the H.264 standard

(DCTBit_H.264) are computed using Equation 4.13.

68

 (4.13) 264.__ HDCTBitCurveDCTBitDCTBit −=∆

(Note that the residual blocks of the minimum MSE value are expected to have a lower

number of bits than the blocks selected via the curve fitting algorithm; therefore, it is

expected that the ΔDCTBit is a positive value).

4. In order to improve the total bitrate via the curve fitting algorithm it is obvious that the

amount of decrease in the motion vector bitrate (ΔMVBit) should be larger than the

increase in the DCT residual bitrate (ΔDCTBit);

7)(4.1
α1

Δ(DCTBit)% Threshold else

(4.16) Δ(DCTBit)% Threshold 1α if

(4.15)
Δ(MVBit)
Δ(DCTBit)α

(4.14) 100
.264)(DCTBit_Η

Δ(DCTBit)Δ(DCTBit)%

+
=

=<

=

×=

Therefore, in situations where the increase in the number of residual bitrate counteracts the

decrease in the number motion vector bits, the maximum allowed residual bitrate (Threshold) is

set to the ratio defined in Equation (4.17). Examining Table 4.2 to Table 4.5, it is observed that,

for encoded test video sequences that correspond to α > 1.0, (the underlined bolded α values in

the tables) the decrease in motion vector bits, (ΔMVBit), is smaller than the increase in the

residual bitrate, (ΔDCTBit).

Therefore, the percentage of the increase in the number of residual bits (ΔDCTBits%) should be

decreased and it is bounded by the threshold value equal to Threshold as defined in Equation

(4.17) .

69

Table 4.2: Residue bits comparison using Foreman test video

 Block size(4×4)
(ΔMVBit) = 223715

Block size(8×8)
(ΔMVBit) = 33334

Block size(16×16)
(ΔMVBit) = 3291

QP H.264 AME (ΔDC
TBits)

Α H.264 AME (ΔDC
TBits)

α H.264 AME (ΔDC
TBits)

α

6 5455039 5647927 3.536 0.9 3396256 3423393 0.799 0.8 1736212 1737840 0.094 0.5

12 3342859 3545316 6.056 0.9 2095411 2124996 1.412 0.9 1069958 1072704 0.257 0.9

18 1450721 1599572 10.26 0.7 950393 970549 2.121 0.6 486946 489300 0.483 0.8

24 983133 995537 1.262 0.1 613108 617085 0.649 0.1 322200 322951 0.233 0.2

Table 4.3: Residual bits comparison using Carphone test video

 Block size(4×4)
(ΔMVBit) = 1071862

Block size(8×8)
(ΔMVBit) = 162980

Block size(16×16)
Δ(MVBit) = 12971

Q
P H.264 AME Δ(DC

TBits) Α H.264 AME Δ(DC
TBits) α H.264 AME Δ(DC

TBits) α

6 6316374 6564304 3.925 0.2 5475438 5561072 1.56 0.5 3993394 4024014 0.767 2.4

12 3432054 3700127 7.812 0.2 3132453 3225412 2.968 0.6 2323899 2357615 1.451 2.6

18 1555587 1707540 9.768 0.2 1368746 1437196 5.001 0.4 1023770 1050563 2.617 2.0

24 1313102 1329019 1.212 0.0 1053221 1066190 1.232 0.1 760322 766013 0.748 0.4

Table 4.4: Residual bits comparison using Miss America test video

 Block size(4×4)
Δ(MVBit) = 688639

Block size(8×8)
Δ(MVBit) = 180347

Block size(16×16)
Δ(MVBit) = 20041

Q
P H.264 AME Δ(DC

TBits) Α H.264 AME Δ(DC
TBits) α H.264 AME Δ(DC

TBits) α

6 5409512 5629296 4.239 0.3 6217240 6285657 1.100 0.4 6200332 6217248 0.273 0.8

12 2706479 2927952 8.183 0.3 3456479 3538578 2.375 0.5 3598931 3615149 0.45 0.8

18 1476772 1537731 4.128 0.0 1548893 1600314 3.320 0.3 1528618 1555695 1.77 1.3

24 1277041 1283841 0.532 0.0 1226833 1234861 0.65 0.0 1163818 1169975 0.561 0.3

70

Table 4.5: Residual bits comparison using Suzie test video

 Block size(4×4)
Δ(MVBit) = 640177

Block size(8×8)
Δ(MVBit) = 28446

Block size(16×16)
Δ(MVBit) = 2359

Q
P H.264 AME Δ(DC

TBits) α H.264 AME Δ(DC
TBits) α H.264 AME Δ(DC

TBits) α

6 4374307 4554773 4.126 0.3 3788567 3854270 0.799 2.3 3133122 3180306 1.5 20.0

12 2328214 2513811 7.972 0.3 1999850 2076152 1.412 2.7 1626424 1681157 3.37 23.2

18 1149917 1215167 5.674 0.1 977783 1009292 2.121 1.1 821638 843767 2.69 9.3

24 941351 951020 1.027 0.0 797427 803107 0.649 0.2 671317 675622 0.64 1.8

In order to make the curve fitting algorithm independent of the video sequence type the

thresholds for each block size and quantization parameter are computed as the mathematical

mean of the threshold values of all tested video sequences. Evaluating the threshold values in

Table 4.6 to Table 4.9 the following are observed:

1. It is observed that larger block size motion estimation results in smaller threshold

values since as the block size increases the number of motion vectors decreases leading to

a smaller ΔMVBit or a larger α value.

2. The threshold values increases as the quantization parameter increases for the first

three quantization parameters for the tested video sequences and three block sizes. This is

justified by the fact that as the quantization parameter increases the number of residual

bits decreases which leads to a smaller ΔDCTBit.

71

Table 4.6: Residual bit increase threshold values for Forman test video

QP
Block size(4×4)

Threshold value%

Block size(8×8)

Threshold value%

Block size(16×16)

Threshold value%

6 3.5360 0.7990 0.0938

12 6.0564 1.4119 0.2566

18 10.2604 2.1208 0.4834

24 1.2617 0.6487 0.2331

Table 4.7: Residual bit increase threshold values for Carphone test video

QP
Block size(4×4)

Threshold value%

Block size(8×8)

Threshold value%

Block size(16×16)

Threshold value%

6 3.925 1.5640 0.2282

12 7.8109 2.9676 0.4031

18 9.7682 5.0009 0.8537

24 1.2122 1.2314 0.7485

Table 4.8: Residual bit increase threshold values for Miss America test video

QP
Block size(4×4)

Threshold value%

Block size(8×8)

Threshold value%

Block size(16×16)

Threshold value%

6 4.2392 1.1004 0.2728

12 8.1831 2.3752 0.4506

18 4.1279 3.3198 0.7534

24 0.5325 0.6544 0.5606

72

Table 4.9: Residual bit increase threshold values for Suzie test video

QP
Block size(4×4)

Threshold value%

Block size(8×8)

Threshold value%

Block size(16×16)

Threshold value%

6 4.1256 0.5240 0.0717

12 7.9717 1.0361 0.1390

18 5.6743 1.5289 0.2594

24 1.0271 0.71229 0.2270

73

Chapter 5

Simulation and Results

In Chapters 3 and 4 the proposed method was described and we saw that the motion vectors of

collocated blocks along a video sequence are fitted into a curve such that the curve’s control

points (Category One), “non-reconstructable” motion vectors from the curve (Category Four),

and Category Three and Four indices are enough to reconstruct the motion vectors at the decoder

side. In the present chapter the potential of collocated blocks for being encoded via our curve

fitting scheme is examined and the results of the simulations on several video sequences are

presented in detail. The efficiency of the proposed method in comparison with a previously

proposed method in the widely used H.264 scheme is explained in terms of the bitrate saving in

encoding motion vectors is evaluated. To evaluate the coding performance of the proposed

method the test conditions listed in Table 5.1 are applied in the simulations using four test video

sequences: Foreman, Carphone, Miss America and Suzie. These sequences are chosen as they

contain different types of motion; Foreman and Carphone sequences represent relatively

complex motions, the Foreman sequence specifically has mainly little background motion and a

lot of foreground motion. Suzie and Miss America sequences contain moderate and slow motions

74

respectively. Three block sizes, (4×4), (8×8) and (16×16) were used for the motion estimation

process. The smallest block size, (4×4), has been chosen in order to evaluate the performance of

proposed method for small block size motion estimation which generates a significant amount of

motion vectors while providing higher video quality. We make use of the ¼ pel motion accuracy

motion estimation conforming to the H.264 Baseline profile.

Table 5.1: Experimental conditions.

Sequence Size QCIF (176 ×144)

Sequence Name Foreman Carphone Miss America Suzie

Frame Count 200 200 150 150

Frame Rate 30Hz

MV Search Full Search ± 32 pixels

QP 6, 12, 18, 24

Coding Options

1 reference pictures
Fixed block sizes ME; (4×4), (8×8), (16×16)

1/4 –pel ME accuracy
1 picture = 1 slice

 Adaptive Motion Estimation Process Evaluation 5.1

In this section the functionality of the proposed Adaptive Motion Estimation (AME) process

(Chapter 4) is explained by considering the variations in the bitrate of the residual blocks and the

picture quality compared with the reference (H.264 standard). The bitrate in this case is defined

as the number of bits used to encode the residual blocks per second which itself depends on the

75

applied video frame rate (that, in this experiment, is equal to 30fps). A Peak Signal to Noise

Ratio (PSNR) is chosen as the quality measurement metric, Equation (5.2). PSNR is most easily

defined via the mean squared error (MSE) which for two M×N images I and K where one of the

images is considered a noisy approximation of the other is defined as:

 () ()[])1.5 (
1m

0i

1n

0j
i,jKi,jI

nm
1MSE ∑

−

=
∑
−

=
−

×
=

(5.2)
MSE

2
IMAX

1010logPSNR













=

5.1.1 Residual Data Bitrate Comparison

In order to discuss the efficiency of the proposed motion vector encoding scheme compared with

the H.264 standard, it is important to compare the rate of the change in the motion vector bitrate

while the number of bits needed to encode the residual blocks from both methods are the same.

Since, in the proposed method the selected matching blocks in the AME method are not

necessarily the same as the blocks of the minimum MSE (or best matching blocks); therefore, the

number of bits needed to encode the residual blocks resulting from two methods are not equal

(although, as mentioned in Chapter 4, the amount of variation in the number of bits for encoding

residual blocks in the AME is limited by applying a rate control technique). Hence, the amount

of increase or decrease in the residual block bits is considered in computing the motion vector

bitrate. For example, if the matching block selected from the AME method leads to an increase

of 20 bits, this amount is added to the number of bits required for encoding motion data by the

proposed encoding method so the motion vector bitrates are compared by the same number of

bits needed to encode residual blocks. The residual blocks have been chosen constrained by two

criteria: (1) the initial energy threshold which determines the block mode, inter or intra, and (2)

76

the bitrate threshold which is compared with the estimated bitrate for the residual block. Table 5.2

to Table 5.5 show the variation of the number of residual bits for the four tested video sequences;

the Δ(Bits)% is the amount of increase in the number of bits for encoding residual blocks via our

AME method in comparison with the number of bits needed to encode the residual via the H.264

algorithm such that this increase in the number of bits would be compensated by the motion

vector bitrate improvement. The thresholds determined based on the tests results are explained in

Chapter 4. As the results show, the variations of the actual bitrates are bound to less than the

determined bitrate thresholds with precision to the first decimal place. It will be shown in Section

5.3 that a precision to the first decimal place was obtained in the bitrate estimation of residual

blocks by the rate control model is sufficient, as it leads to a total bitrate decrease in encoding

motion vectors via our proposed curve fitting scheme.

Table 5.2: Comparison of Residual Bits Using Foreman Test Video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(Bits)% H.264 AME Δ(Bits)% H.264 AME Δ(Bits)%

6 5455039 5647927 3.536 3396256 3423393 0.799 1736212 1737840 0.0938

12 3342859 3545316 6.056 2095411 2124996 1.412 1069958 1072704 0.257

18 1450721 1599572 10.260 950393 970549 2.121 486946 489300 0.483

24 983133 995537 1.262 613108 617085 0.649 322200 322951 0.233

77

Table 5.3: Comparison of Residual Bits Using Carphone Test Video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(Bits)% H.264 AME Δ(Bits)% H.264 AME Δ(Bits)%

6 6316374 6564304 3.925 5475438 5561072 1.564 3993394 4001917 0.213

12 3432054 3700127 7.812 3132453 3225412 2.968 2323899 2333194 0.400

18 1555587 1707540 9.768 1368746 1437196 5.001 1023770 1032587 0.861

24 1313102 1329019 1.212 1053221 1066190 1.23 760322 766013 0.7485

Table 5.4: Comparison of Residual Bits Using Miss America Test Video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(Bits)% H.264 AME Δ(Bits)% H.264 AME Δ(Bits)%

6 5409512 5629296 4.239 6217240 6285657 1.100 6200332 6217248 0.273

12 2706479 2927952 8.183 3456479 3538578 2.375 3598931 3615149 0.451

18 1476772 1537731 4.128 1548893 1600314 3.320 1528618 1538620 0.654

24 1277041 1283841 0.532 1226833 1234861 0.654 1163818 1169975 0.560

Table 5.5: Comparison of Residual Bits Using Suzie Test Video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(Bits)% H.264 AME Δ(Bits)% H.264 AME Δ(Bits)%

6 4374307 4554773 4.126 3788567 3808441 0.525 3133122 3135171 0.065

12 2328214 2513811 7.972 1999850 2020600 1.038 1626424 1628697 0.140

18 1149917 1215167 5.674 977783 989603 1.209 821638 823818 0.265

24 941351 951020 1.027 797427 803107 0.647 671317 672817 0.223

78

The average bitrate estimation errors versus the quantization parameters are presented in Figure

5.1 for the four video sequences. The average error is computed as the mathematical mean of the

errors resulting from estimating the bitrates for three tested block sizes for each quantization

parameter:

)1.5(
4

1

3

1

j
)

i i(errorError ∑
=

∑
=

=

where errori is equal to:

0 else

(5.2) 0 if

=

−=>−

ierror

Δ(Bit)%ThresholdierrorΔ(Bit)%Threshold

where i and j are the block size and video sequence indexes respectively. Since the blocks are

chosen such that their estimated bitrates should be less than the threshold, the error is only

considered for the block sizes which result in the actual bitrate larger than the threshold. The

maximum average error is less than 0.0045% of the total bitrate in all cases.

Figure 5.1: Percentage of the average bitrate estimation error versus quantization parameter.

0.0003 0.0005

0.0045

0.0000
0

0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045
0.005

6 12 18 24

A
ve

ra
ge

 b
itr

at
e

er
ro

r(
%

)

Quantization parameter

79

5.1.2 Picture Quality Evaluation Using AME System

Motion estimation systems with dissimilar decision making criteria generate coded videos of

different picture quality values; therefore, it is necessary to evaluate each system in terms of the

quality it leads to rather than the system itself. Table 5.6 to Table 5.9 contain the average PSNR

values of four encoded test video sequences from H.264 and our AME motion estimation method

using block sizes (4×4), (8×8) and (16×16). The average PSNR is computed only for inter coded

parts of the video sequences. It is important to consider that the intra coded areas in the videos

coded via the standard and AME method are the same since, as explained in Chapter 3, it is

based on the same predetermined MSE threshold in both algorithms; it is determined whether

each block should be encoded in intra or inter modes. Therefore, for intra coded parts of the

videos the PSNR value remains the same as those areas are encoded with the same method.

Examining the results from Tables (4.6-4.9), the question may be asked as to why the average

PSNR of the larger block size motion estimations are larger than the average PSNR values

resulting from smaller block sizes. The answer lies in the fact that in this case they are not

comparable because the number of frames encoded in intra mode for different block size motion

estimations are not equal since the average PSNR is computed by dividing the total PSNR values

of the inter coded frames by the number of these frames in the video sequence. However, the

reason that the PSNR is larger for larger block sizes is that as the block size increases the MSE

between the current block and the blocks in the reference frames within the search window

increases. Therefore, the MSE values are larger than the MSE threshold and the block is encoded

in intra mode and the number of intra mode blocks may be increased to cover the entire frame.

Hence, the number intra coded frames increases for larger block sizes and as a result the PSNR

related to inter coded areas is divided by a smaller number leading to a larger PSNR.

80

Table 5.6: Picture quality comparison using Foreman test video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)%

6 57.43 57.18 0.43 58.92 58.93 -0.00 61.80 61.82 -0.04

12 50.97 50.89 0.15 53.30 53.30 0.00 56.23 56.24 -0.03

18 47.72 47.47 0.52 49.94 49.84 0.19 52.63 52.64 -0.02

24 46.95 46.25 1.49 48.38 48.19 0.40 48.70 48.42 0.57

Table 5 . 7: Picture quality comparison using Carphone test video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)%

6 57.71 57.69 0.03 58.95 58.95 0.00 61.816418 61.820 -0.00

12 51.39 51.29 0.20 53.47 53.46 0.02 56.33 56.34 -0.02

18 49.82 49.53 0.58 50.66 50.55 0.21 53.35 53.30 0.09

24 48.92 48.09 1.68 49.73 49.34 0.78 52.28 52.05 0.43

81

Table 5 . 8: Picture quality comparison using Miss America test video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)%

6 57.54 57.32 0.38 58.93 58.93 0.00 56.98 56.98 0.00

12 51.88 51.69 0.36 53.54 53.53 0.00 51.59 51.61 -0.03

18 50.10 49.75 0.70 48.71 48.64 0.15 48.50 48.51 -0.01

24 49.53 48.80 1.47 50.53 50.19 0.66 52.47 52.30 0.32

Table 5 . 9: Picture Quality comparison using Suzie test video

 Block size(4×4) Block size(8×8) Block size(16×16)

QP H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)% H.264 AME Δ(PSNR)%

6 57.46 57.46 0.00 58.99 58.98 0.02 61.87 61.87 0.01

12 51.51 51.33 0.35 53.72 53.71 0.01 56.67 56.67 0.00

18 49.81 49.34 0.93 51.92 51.76 0.30 54.97 54.84 0.23

24 49.28 48.49 1.60 51.24 50.90 0.65 54.24 54.01 0.42

Analysing the results presented in the above tables showed the following conclusions:

• For larger block sizes the rate of decreasing picture quality resulting from encoding video

sequences, using the AME method, decreases; the highest PSNR decrease is related to

encoding the Carphone sequence ((4×4) block size AME (1.68% dB)), that is considered

as a video sequence with more complex motions. Figure 5.2 depicts the average rate of

82

Δ(PSNR)% computed as the mean of Δ(PSNR)% for four quantization parameters versus

the block size for the four tested video sequences.

• Using the (16×16) block size the AME method showed an improvement in PSNR of in

the test results, up to 0.04514% dB for (16×16) block size AME using Foreman sequence

Therefore, better performance of the AME method is achieved for smaller quantization

parameters with larger block sizes in comparison with the general motion estimation scheme.

However, the PSNR variations are insignificant as the increase and decrease in PSNR resulting

from the AME method are bounded to 0.823dB and 0.0279 dB respectively for the (4×4) block

size AME using Carphone and for (16×16) block size AME using Foreman sequences

respectively.

Figure 5.2: The average Δ(PSNR)% resulting from AME method for different block sizes.

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

(4×4) (8×8) (16×16)

ΔP
SN

R
(%

)

Block size

Suzie test video

Carphone test video

Miss America test video

Foreman test video

83

 Selecting the Two Optimum Categories Based on Category Statistics 5.2

In Section 3.3 it was explained that to reconstruct the motion vectors at the decoder side one of

category indexes between One and Four and also between Two and Three should be selected and

encoded and the other two categories due to the encoded video signal bitstream format are

recognized automatically. Also, it mentioned that the least-occurring categories are chosen in

order to save bitrate. The test results presented in Table 5.10 to Table 5.13 provide information

about how the motion vectors (MV) of the four tested video sequences for three block sizes are

distributed among the four categories after reconstruction from the curves. In other words it

shows the percentage of the control points (key motion vectors belonging to Category One), the

motion vectors that cannot be reconstructed from the curves (Category Four) and the motion

vectors for which in order to generate their original values they should be rounded to their upper

integer after reconstruction from the curve (Category Two), and vice versa (Category Three).

This information is of great importance since it gives an overview of the functionality of the

curve fitting algorithm for encoding motion vectors; examining the percentage of motion vector

categories illustrates, by reduction of the number of motion vectors, that should be encoded after

mapping motion vectors into a set of control points, Category Four motion vectors, and category

indices.

84

Table 5.10: Distribution of category indices among the Motion Vectors of Foreman

sequence

Block
size

Four Three Two One

MV
number Percentage MV

number Percentage MV
number Percentage MV

number Percentage

(4×4) 155932 24.088 28240 4.362 90748 14.019 372416 57.531

(8×8) 16876 17.265 3952 4.043 51864 53.059 25056 25.633

(16×16) 1216 9.632 332 2.630 7796 61.755 3280 25.98

Table 5.11: Distribution of category indices among the Motion Vectors of Carphone

sequence

Block
size

Four Three Two One

MV
number Percentage MV

number Percentage MV
number Percentage MV

number Percentage

(4×4) 166560 19.210 32220 3.717 122916 14.177 545336 62.897

(8×8) 31672 18.565 8768 5.140 81024 47.494 49136 28.802

(16×16) 3388 10.951 832 2.690 19600 63.357 7116 23.002

Table 5.12: Distribution of category indices among the Motion Vectors of Miss America

sequence

Block
size

Four Three Two One

MV
number Percentage MV

number Percentage MV
number Percentage MV

number Percentage

(4×4) 195824 23.0971 28096 3.314 113176 13.349 510732 60.240

(8×8) 67084 33.319 10308 5.10 72436 35.978 51508 25.583

(16×16) 5052 10.661 1668 3.520 23020 48.578 17648 37.242

85

Table 5.13: Distribution of category indices among the Motion Vectors of Suzie sequence

Block
size

Four Three Two One

MV
number Percentage MV

number Percentage MV
number Percentage MV

number Percentage

(4×4) 132116 21.23 24548 3.944 125728 20.203 339948 54.62

(8×8) 14632 11.293 5036 3.887 76144 58.768 33756 26.052

(16×16) 2428 9.007 748 2.775 19664 72.959 4112 15.257

Based on the results presented in Tables (5.10-5.13), the number of motion vectors belonging to

Category Three, is less than the number of Category Two motion vectors for all test video

sequences and all tested block sizes. On the other hand, the number of motion vectors belonging

to the Category One (control points) is more than the Category Four motion vectors for all the

test conditions except block sizes (8×8) in the video sequence Miss America. Figure 5.3 to

Figure 5.6 illustrate the trends of the distribution of motion vectors for each video sequence and

the tested block sizes. Therefore, one option would be to select Categories Four and Three as the

selected category indices for (8×8) and (16×16) block size motion estimation methods and

Categories Four and Two as the selected category indices for (4×4) block size motion estimation

methods. However, we can choose the category indices based on the average percentage of each

category proportion over the entire test conditions (as can be seen in Figure 5.7). On average

27.68% of motion vectors correspond to Category One and 13.02% of motion vectors correspond

to Category Four (as shown in Figure 5.8). Therefore, the category indices for motion vectors of

Category Four are encoded. On the other hand, on average, 31.48% and 2.82% of the motion

86

vectors belong to Category Two and Three respectively, as shown in Figure 5.1, which means

encoding index category for the Category 3 motion vectors leads to more efficient compression.

Figure 5.3: Distribution of Motion Vector Categories for Foreman Sequence

Figure 5.4: Distribution of Motion Vector Categories for Carphone Sequence

0

10

20

30

40

50

60

one Four Two Three

Pe
rc

en
ta

ge
(%

)

Category index

(4x4)
(8x8)
(16x16)

0

10

20

30

40

50

60

one Four Two Three

Pe
rc

en
ta

ge
(%

)

Category index

(4x4)

(8x8)

87

Figure 5.5: Distribution of Motion Vector Categories for Miss America Sequence

Figure 5.6: Distribution of Motion Vector Categories for Suzie Sequence

0

10

20

30

40

50

60

70

one Four Two Three

Pe
rc

en
ta

ge
(%

)

Category index

(4x4)

(8x8)

(16x16)

0
10
20
30
40
50
60
70
80

one Four Two Three

Pe
rc

en
ta

ge
(%

)

Category index

(4x4)

(8x8)

88

Table 5.14: Number of motion vectors versus block size using Miss America test video

sequence.

Total
number
of MVs

First and
Forth

category
MVs

Δ %

647336 528348
81.6188

2

97748 41932
42.8980

6

12624 4496 35.6147

Table 5.14: Number of motion vectors versus block size using Foreman sequence

Total
number
of MVs

First and
Forth

category
MVs

Δ %

867032 711896 82.10

170600 80808 47.36

30936 10504 33.95

0

200

400

600

800

0 1 2 3 4

N
um

be
r o

f m
ot

io
n

ve
ct

or
s

Blokc size

H.264

Curve

(4×4) (8×8) (16×16)

0

200

400

600

800

1000

0 1 2 3 4

N
um

be
r o

f m
ot

io
n

ve
ct

or
s

Block size

H.264

Curve

(4×4) (8×8) (16×16)

89

Table 5.15: Number of motion vectors versus block size using Carphone sequence

Total
number
of MVs

First and
Forth

category
MVs

Δ %

847828 706556 83.33

201336 118592 58.90

47388 22700 47.90

Table 5.16: Number of motion vectors versus block size using Suzie sequence

Total
number

of
MVs

First
and

Forth
category

MVs

Δ%

622340 472064 75.85

129568 48388 37.34

26952 6540 24.26

0

200

400

600

800

0 1 2 3 4

N
um

be
r o

f m
ot

io
n

ve
ct

or
s

Block size

H.264

Curve

(4×4) (8×8) (16×16)

0

200

400

600

0 1 2 3 4

N
um

be
r o

f m
ot

io
n

ve
ct

or
s

Block size

H.264

Curve

(4×4) (8×8) (16×16)

90

 Bitrate Improvement Evaluation of Proposed Method 5.3

The percentage of bitrate saving via encoding motion vectors using our curve fitting algorithm in

comparison with H.264 differential motion vector encoding scheme, explained in Chapter 2, has

improved by up to 42.7%. The total bitrate differences, Δ(Bitrate), the average PSNR

differences, Δ(PSNR), and the coding performances of the proposed scheme in terms of BDBR

(Bjontegarred Delsta Bit Rate)[54], are provided in Table 5.18 . The bitrate values comprise the

number of bits for encoding residual data and the motion data in both methods. The motion data

in the proposed method contains the number of bits required for encoding the curve control

points, Category Four motion vectors, and the Category index information while the motion data

resulting from the H.264 encoding scheme contains the motion vector differences. The motion

vector bitrate is computed as:

(5.2) 100)
264
()(

)%(×
−

=∆
MVBit_H.

DCTBitΔMVBitΔ
MVBit

where the difference between the number of bits required for encoding motion data and residual

data from the proposed method and H.264 is equal to:

(5.3) 264 e MVBit_CurvMVBit_H.ΔMVBit −=

(5.4) 264. DCTBit_HveDCTBit_CurΔDCTBit −=

The proposed methods provide better results (or a higher percentage of bitrate saving) for larger

quantization parameters for all the tested video sequences (Figure 5.10-Figure 5.13). Figure 5.8

shows the average bitrate saving versus the quantization parameter over all the tested video

sequences. The bitrate saving follows an increasing trend for the last three larger quantization

91

parameters while there is a decreasing trend from the smallest quantization parameter to the

second smallest quantization parameter. All the result of every single test condition follows the

same exact trend as the average bitrate trend shown in Figure 5.8.

Figure 5.9 shows the average bitrate saving versus the block size over all test conditions. The

performance of the proposed method increases for smaller block sizes motion estimation

methods for two reasons: (1) as it was shown in Section 5.2, the difference between the actual

number of motion vectors and the amount of data that should be encoded via our curve fitting

algorithm decreases as the block size increases, and (2) larger block size motion estimation

generates larger residual data in both systems, AME and H.264 based motion estimation

schemes, that itself leads to generating larger differences between residual data bits, Δ(DCTBit).

Therefore, this decreases the performance of the proposed motion vector encoding scheme by

decreasing Δ(MVBit)% based on Equation (5.2). Therefore, the best performance of the

proposed method is achieved for smaller block size motion estimation with higher quantization

parameters while for larger block sizes motion estimations and smaller quantization parameters

the curve fitting encoding scheme still results in bitrate saving. We should consider that the role

of the selected matching blocks is of great importance since the more precise they are chosen the

higher bitrate saving is gained from encoding motion vectors via the proposed algorithm.

92

Figure 5.7: Average Motion Vector Bitrate Improvement Versus Quantization parameter

Figure 5.8: Average motion vector bitrate improvement versus Block size

14.86
12.91

18.61

27.18

0

5

10

15

20

25

30

1 2 3 4

A
ve

ra
ge

 b
itr

at
e

er
ro

r(
%

)

Quantization Parameter

25.39

19.62

10.16

0

5

10

15

20

25

30

35

4x4 8x8 16x16

A
ve

ra
ge

 Δ
(M

V
B

itr
at

e)
%

Blokc size

93

 .

Figure 5.9: Percentage of bitrate saving versus quantization parameter, using Forman sequences

Figure 5.10: Percentage of bitrate saving versus quantization parameter, using Carphone

sequences

-1

9

19

29

39

49

0 6 12 18 24

B
itr

at
e

sa
vi

ng
%

Quantization Parameter

Block size (4x4)

Block size (8x8)

Block size (16x16)

0
5

10
15
20
25
30
35
40
45

0 6 12 18 24

B
itr

at
e

Sa
vi

ng
 %

Quantization Parametere

Block size (4x4)

Block size (8x8)

Block size (16x16)

94

Figure 5.11: Percentage of bitrate saving versus quantization parameter, using Miss America

sequences

Figure 5.12: Percentage of bitrate saving versus quantization parameter, using Suzie sequences

0

5

10

15

20

25

30

35

40

0 6 12 18 24

B
itr

at
e

Sa
vi

ng
%

Quantization Parametere

Block size (4x4)

Block size (8x8)

Block size (16x16)

0
5

10
15
20
25
30
35
40
45

0 6 12 18 24

B
itr

at
e

sa
vi

ng
%

Quantization Parametere

Block size (4x4)

Block size (8x8)

Block size (16x16)

95

Table 5.17: Performance of the proposed method in terms of BDBR (Bjontegarred Delta

Bit Rate)

Vide Sequence 4x4 8x8 16x16

Foreman 36.3396 33.5782 11.1576

Carphone 48.4641 35.7377 15.4813

Miss America 21.6846 25.9364 28.674

Suzie 41.3587 8.523 3.9947

96

Chapter 6

Conclusion and Future Directions

 Concluding Remarks 6.1

The main objective of the research was to decrease the motion vector bitrate which forms a

significant portion of the video bitstream especially in low bitrate communication. Indeed, the

previously proposed pre-processing motion vector encoding schemes discussed in the literature

are based on generating smaller motion data from motion vectors while for every single motion

vector motion data should be computed and encoded. In this research, we have proposed to

reduce the amount of motion data by extracting key motion vectors that represent the keypoints

of the best fitted curve into the motion vectors. Therefore, the motion vectors are pre-processed

in order to reduce the motion data via reducing the number of motion vectors needed to be

encoded using a curve fitting algorithm which results in reconstructing the motion vectors

conforming to their original values at the decoder side. We showed that selecting the motion

vectors of collocated blocks along the video sequence as an independent curve fitting data point

sets results in a significant reduction in the number of motion vectors that need to be encoded as

the curve keypoints and non-reconstructed motion vectors from the curve especially in smaller

97

block size motion estimation systems. The subsequent implementation of the motion vector

encoding based on the proposed curve fitting algorithm confirmed the bitrate saving for video

sequences containing complex and homogenous motion up to 42.7% and 41.84% respectively.

 Future Research Directions 6.2

One of the challenges in this work was determining the proper threshold for selecting candidate

residual blocks such that encoding motion vectors via curve fitting algorithm reduces the bitrate.

Determining the threshold values via the proposed method, discussed in Chapter 4, depends on

three factors: block size, quantization parameter, and the type of motion that should be encoded

in the video sequence under each test condition. Therefore, a future work on automated threshold

determination a strong potential future direction for the current research such that an equivalence

between selecting the best motion vector for curve fitting algorithm and residual bitrate increase

in comparison with selecting residual block of minimum energy is achieved. Also, as mentioned,

the number of motion vectors reduces significantly via mapping them into a smaller set of

keypoints and non-reconstructed motion vectors from the curve; however, the increase in the

residual data and also header information counteracts the effect of the number of motion vectors

that are reduced. Therefore, an optimization on the curve fitting algorithm, in order to reduce the

header information as well as an optimum automated threshold determination will result in

achieving a higher bitrate saving.

98

List of References

[1] Golwelkar, A.; Woods, J. W. “Motion-Compensation Temporal Filtering and Motion

Vector Coding Using Biorthogonal Filters”. IEEE Transactions on Circuits and Systems

for Video Technology, 17(4), 417-28, (2007).

[2] Chen, C.-yeh, Chien, S.-yi, Huang, Y.-wen, Chen, T.-chien, Wang, T.-chih, et al.

“Analysis and architecture design of variable block-size motion estimation for

H.264/AVC”. IEEE Transactions on Circuits and Systems, 53(2), 578-593, (2006).

[3] Zhibo C.; Jianfeng X.;Yun H.; Junli Z. “Fast integer-pel and fractional-pel motion

estimation for H.264/AVC”. Journal of Visual Communication and Image

Representation, 17(2), 264-290, (2002).

[4] Gregory K. Wallace. “The JPEG still picture compression standard”. Communications of

the ACM - Special issue on digital multimedia systems, 34(4), 30-44, (1991).

[5] Côté G.; Erol B.; Gallant M.; Kossentini F. H.263 + : Video Coding at Low Bit Rates.

IEEE Transactions on Circuits and Systems, 8(7), 849-866, (1998).

[6] MPEG. "MPEG standards - Full list of standards developed or under development".

chiariglione.org. (2009).

[7] Haskell B.G.; Puri A.; and Netravali A.N. Digital video: an introduction to MPEG-2.

Chapman & Hall, (1997).

[8] Richardson I.E.G. “H.264 and MPEG-4 Video Compression”, (pp. 45-51). Wiley, (2003).

[9] Malvar H.S.; Staelin D. H., “The LOT: Transform coding without blocking effects,”

IEEE Trans. Accoust., Speech, Signal Processing, vol.37, 553–559, (1989).

99

[10] H. S. Malvar, “Biorthogonal and non-uniform lapped transforms for transform coding

with reduced blocking and ringing artifacts,” IEEE Trans. Signal Processing, vol. 46, pp.

1043–1053, (1998).

[11] Jarske T.; Haavisto P.; Defe’e I. “Post-filtering methods for reducingblocking effects

from coded images,” IEEE Trans. Consumer Electron., 521–526, (1994).

[12] H. C. Reeve and J. S Lim, “Reduction of blocking artifacts in image coding,” Opt. Eng.,

vol. 23, 34–37, (1984).

[13] Meier T.; Ngan K. N.; Crebbin G. “A region-based algorithm for enhancement of

images degraded by blocking effects”. Proc. IEEE Tencon’96, vol. 1, 405–408, (1996)

[14] Luis A. da Silva Cruz and John W. Woods. “Adaptive motion vector quantization for

video coding”. IEICE of Japan, E83-A(7), 1486-1492, (2000).

[15] Luis A. da Silva Cruz and John W. Woods. “Backward adaptive motion vector VQ for

video coding”. Proceedings of the Picture Coding Symposium (25-28).

[16] Lee Y.Y. “Motion vector quantization for video coding”. IEEE Transactions on Image

Processing, 378 – 382, vol.4, (1995).

[17] Joshi, R.L.; Fischer T.R.; Bamberger R.H. “Lossy encoding of motion vectors using

entropy-constrained vector quantization”. IEEE Comput. Soc. Press., Proceedings

International Conference on Image Processing, 109-12, vol.3, (1995).

[18] Yeh J.; Vetterli M.; Khansari M. “Motion compensation of motion vectors”. IEEE

Comput. Soc. Press. Proceedings, International Conference on Image Processing, 574-7,

vol.1, (1995).

[19] ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC Std. (2005).

100

[20] Heechul Y.; Jungyoup Y.; Kwanghyun W.; Byeungwoo J. “Motion Vector Coding

with Decoder Selectable PMV”. Proceedings of the 2010 2nd International Conference

on Signal Processing Systems, 447-50 vol. 3, (2010).

[21] Kim S.D.; Beom Ra.J. “An efficient motion vector coding scheme based on minimum

bit rate prediction”. IEEE transactions on image processing : a publication of the IEEE

Signal Processing Society, 1711-vol. 8, (1999).

[22] Yeh, J.  ; Vetterli, M. ; Khansari, M. “Motion compensation of motion vectors”.

Proceedings. International Conference on Image Processing (Cat. No.95CB35819) (pp.

574-7 vol.1). IEEE Comput. Soc. Press, (1995).

[23] Psannis, K. E. “Motion-based competitive spatio-temporal technique with multi-frames

references for efficient H.264/AVC motion information prediction”. IEEE Int. Symp.

Broadband Multimedia Syst. Broadcast., BMSB - Conf. Programme, (2010).

[24] Tourapis, A.M.; Wo F.; Li S. “Direct mode coding for bipredictive slices in the H.264

standard”. IEEE Transactions on Circuits and Systems for Video Technology, 15(1), 119-

26, (2005).

[25] Chen, M.C.  ; Willson, A.N. Jr. “A spatial and temporal motion vector coding algorithm

for low-bit-rate video coding”. IEEE Comput. Soc. Proceedings. International

Conference on Image Processing, 791-4 vol.2, (1997).

[26] Laroche, G.; Jung j.; Pesquet-Popescu B. “A spatio-temporal competing scheme for the

rate-dstortion optimized selection and coding of motion vectors”. 14th European Signal

Processing Conference. (2006).

101

[27] Yang J.; Won K.; Yung-Lyul Lee Y.-L. ; Jeon B. “Motion vector coding using optmal

prediction”. Proceedings of the 2009 16th IEEE International Conference on Image

Processing, 1033-6, (2009).

[28] Golomb S.W. “Run-length encoding”. IEEE Trans. on Inf. Theory, 399-401, (1966).

[29] Marpe D.; Schwarz H.; Wiegand T. “Context-Based Adaptive Binary Arithmetic

Coding in the H.264/AVC Video Compression Standard”. IEEE Transactions on Circuits

and Systems for Video Technology, 7(13), 620-7, (2003).

[30] Farm G. “Curves and Surfaces for Computer Aided Geometric Design”: A practical

Guide. Academic Press,(1996).

[31] Mettke, H. “Convex cubic Hermite-spline interpolation”. Journal of Computational and

Applied Mathematics, 11(3), 377-8, (1994).

[32] Iyengar, S.R.K.; Jain, P. “Spline finite difference methods for singular two point

boundary value problems”. Numerische Mathematik, 50(3), 363-76, (1987).

[33] Boor da B.; Schoenberg I. J. “Cardinal interpolation and spline functions VIII. The

Budan-Fourier Theorem for splines and applications”. Applied and Computational

Harmonic Analysis, 1-79, vol. 501(1976).

[34] Yuksel C.; Schaefer S. ; Keyser J. “Parameterization and applications of Catmull-Rom

curves”. Computer Aided Design, 43(7), 747-55, (2011).

[35] Catmull E.; Rom R. “A class of local interpolating splines. In Computer Aided

Geometric. Design, R. E. Barnhill and R. F. Reisenfeld, Eds. Academic Press, New York,

317–326, (1976).

[36] Karczewicz M.; Kurceren R.; “A proposal for SP-frames, ITU-T SG16/6 document

VCEG-L27”, Eibsee, Germany, (2001).

102

[37] Cover T.M.; Thomas J.A. “ELEMENTS OF INFORMATION THEORY”. Wiley (2006).

[38] Hang H.-ming; Chen, J.-jone. “Source Model for Transform Video Coder and Its

Application”. IEEE Transactions on Circuits and Systems, 7(2), 287-298, (1997).

[39] Ma S.; Gao W.; Lu Y. “Rate-Distortion Analysis for H.264/AVC Video Coding and its

Application to Rate Control”. IEEE Transactions on Circuits and Systems, 15(12), 1533-

1544, (2005).

[40] Ribas-corbera J.; Lei S. “Rate Control in DCT Video Coding for Low-Delay

Communications”. IEEE Transactions on Circuits and Systems, 9(1), 172-185, (1999).

[41] Lee H.-ju; Chiang T.; Zhang Y.-qin. “Scalable Rate Control for MPEG-4 Video”. IEEE

Transactions on Circuits and Systems, 10(6), 878-894, (2000).

[42] Vetro A.; Sun H.; Wang Y. “MPEG-4 Rate Control for Multiple Video Objects”. IEEE

Transactions on Circuits and Systems, 9(1), 186-199, (1999).

[43] Makai B.; Engelhardt T.; Mehlan R. “A New Rate Control Scheme Using Quadretic

Rate Distortion Model”. IEEE Transactions on Circuits and Systems, 7(1), 246-250,

(1997).

[44] Tian L.; Sun Y.; Zhou Y.; Xu X. “ANALYSIS OF QUADRATIC R-D MODEL IN

H.264/AVC VIDEO CODING”. College of Computer Science & Engineering, University

of Electronic Sci. & Tech. of China Department of Computer Science , University of

Central Arkansas , USA. Image Processing, 2853-2856, (2010).

[45] Lin L.-jin; Ortega A.; Kuo C.J. “Rate Control Using Spline-Interpolated R-D

Characteristics”. SPIE 2727, 111, Vol. 2727, pp. 111-122, (1996).

103

[46] Webb J.L.H.; Oehler K. “A simple rate-distortion model, parameter estimation, and

application to real-time rate control for DCT-based coders”. Proceedings of International

Conference on Image Processing, Vol. 0, pp. 13-16, (1997).

[47] He Z.; Mitra S.K.; Fellow L. “Optimum Bit Allocation and Accurate Rate Control for

Video Coding via -Domain Source Modeling”. IEEE Transactions on Circuits and

Systems, 12(10), 840-849, (2002).

[48] He Z.; Mitra S. K. “A Unified Rate-Distortion Analysis Framework for Transform

Coding”. IEEE Transactions on Circuits and Systems, 11(12), pp. 46-49, (2001).

[49] Kim Y. K.; He Z.; Matra S. K. “A novel linear source model and a unified rate control

algorithm for h.263 / mpeg-2 / mpeg-4”. IEEE International Conference on Acoustics,

Speech, and Signal Processing,. Proceedings, pp. 1777-1780, (2001).

[50] He Z.; Kim Y. K.; Mitra S. K.; “Low-Delay Rate Control for DCT Video Coding via ρ-

domain source modeling”. IEEE Transactions on Circuits and Systems, 11(8), 928-940,

(2001).

[51] Shen M.; Kuo C.J. “Rate Control for H.264 Video with Enhanced Rate and Distortion

Models”. IEEE Transactions on Circuits and Systems, 17(5), 517-529, (2007).

[52] Liao K.-ying; Yang J.; Sun M. “Rate-Distortion Cost Estimation for H.264/AVC”. IEEE

Transactions on Circuits and Systems for Video Technology, 20(1), 38-49, (2010).

[53] Z. G. LI, F. Pan, K. P. Lim and G. N. Feng, “Adaptive Basic Unit Layer Rate Control

for JVT,” Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, JVT-G012, Pattaya,

Thailand, pp. 7-14, Mar. 2003.

[54] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves,” ITU-T

SG16/Q6 Doc. VCEG-M13, April 2001.

104

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	1.1 Temporal Model and Regulating Factors of Motion Vector Bitrate
	1.2 Spatial Model and Regulating Factors for Residual Block Bitrate
	Motivation and Problem Description
	1.4 Research Contributions
	1.5 Thesis Organization

	Chapter 2
	Literature Review
	Motion Vector Pre-Encoding Techniques
	2.1.1 Lossy Motion Vector Pre-encoding Techniques
	2.1.2 Lossless Motion Vector Pre-Encoding Techniques
	2.1.2.1 Spatial Motion Data Prediction
	2.1.2.2 Temporal Predictive Motion
	2.1.2.3 Spatio-Temporal Motion Vector Predictive
	2.1.3 Applied Motion Vector Encoding Techniques in H.264/MPEG-4 AVC
	2.1.3.1 Predictive Motion Vectors with Available Motion Vector from Motion Estimation Process
	2.1.3.2 Predictive Motion Vector for Skip and Direct Mode Macroblocks

	2.2 Motion Vector Entropy Encoding Methods

	Chapter 3
	Determining Motion Vectors through Adaptive Motion Estimation Process
	3.2 Optimum Motion Vector Selection
	3.2.1 Ordering MV Candidates
	3.2.2 Optimum MV Selection
	3.3 Curve Fitting Algorithm
	3.3.1 Cubic Hermite Curve Fitting
	3.3.2 Appling Hermite Curve Fitting to Motion Vector Encoding

	3.4 Coded Data Format
	3.4.1 Video Coding Layer (VCL)
	3.4.2 Slice Layer
	3.4.3 Macroblock Layer

	3.5 Entropy Encoding Process
	3.5.1 Exponential-Golomb Encoding Technique
	3.5.2 Context-Based Adaptive Variable Length (CAVLC) Entropy Encoding

	Rate Control Concept and its Application in Video Coding Standards
	4.1.1 Rate Distortion Models Based on Rate Distortion Theory
	Mathematically-Based Rate Distortion Models
	4.1.4 ρ-Domain Rate Modeling Scheme

	4.2 Determining the Threshold for Selecting Candidate Blocks

	Chapter 5
	Simulation and Results
	Adaptive Motion Estimation Process Evaluation
	5.1.1 Residual Data Bitrate Comparison
	5.1.2 Picture Quality Evaluation Using AME System
	5.2 Selecting the Two Optimum Categories Based on Category Statistics
	Bitrate Improvement Evaluation of Proposed Method

	Chapter 6
	Conclusion and Future Directions
	Concluding Remarks
	6.2 Future Research Directions

	List of References

