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Abstract—In the context of the IEEE 1588 Precision Time
Protocol (PTP), estimating the delay’s bias is a problem that
appears in both one-way (using transparent devices) or two- way
message exchange mechanisms. For estimating the offset via the
two-way message exchange mechanism, it is usually assumed that
the expected value of delays in forward and reverse directions
are equal. However this is not a realistic assumption for packet-
based wide area networks, where delays in down-link and up-
link directions may have a significant difference. In this work
we propose a solution to estimate the random delay’s bias and
improve the synchronization accuracy of IEEE 1588. Our method
is easy to implement and is compatible with the current version
of the protocol. We compared our results with no bias correction
and the Boot-strap method. In addition to the improvement
in synchronization accuracy, our method allows us to update
the slave clock recursively. The proposed method works well
even in the presence of large frequency offsets and can also be
implemented by using different filters.

Index Terms—IEEE 1588, clock synchronization, two-way
message exchange mechanism, asymmetric delays, Boot-strap
method, Gamma PDV.

I. INTRODUCTION

The IEEE 1588 PTP standard specifies a clock synchroniza-
tion protocol to synchronize nodes in a distributed network
[1]. The synchronization process consists of two tasks. First,
to synchronize the nodes to one common time by estimating
their offset with respect to a reference time (phase offset).
The second task is to correct the nodes’ clock frequency drift
relative to a reference frequency (frequency offset). Synchro-
nization happens by exchanging timing information between
nodes in a network and a master node. Using the two-way
message exchange mechanism, the master clock periodically
sends its local time to the slave clock as a Sync message.
The arrival time of the Sync message is recorded at the slave
node. Then, the slave node sends its local time as a Delay-
Req signal to the master. The arrival time of the Delay-Req
message is recorded by the master node and is sent back
as a Delay-Resp message to the slave node [1]. The offset
in the slave local clock is adjusted based on these collected
values. This method works well only under the assumption
of symmetrical delays, which means that the down-link (from
master to slave) and up-link (from slave to master) delays are
equal. Although this assumption is not true in practice, for
some applications it is sufficient to assume that the expected
value of delays in the forward and reverse direction are equal

with each other. This assumption reduces the synchronization
process to an unbiased estimation problem and has been
studied widely, for example in [2]-[5]. In [6], Freris et al.
proposed a method to estimate the relative speedup of clocks
in a network and subsequently estimating the pairwise offset
of them. However, for estimating the offset it is still required
to be assumed that delays are symmetric. To provide an
accurate synchronization in a multihop wireless network a
distributed algorithm is presented in [7] and [8]. Although
the aforementioned algorithm forces the summation of all the
nodes’ offsets to zero, each node may still have non-zero offset
due to asymmetric delays. Unfortunately, in packet-based wide
area networks such as metro Ethernet, it happens frequently
that delays in one direction are dominant and even the expected
value of delays in down- link and up-link directions are not
equal. As a result we deal with a biased estimation problem.

The synchronization process can also be modeled as a
filtering problem. Bias-aware filters like those which have been
studied in [9] and [10] would appear to be a straightforward
solution. Unfortunately, in the synchronization problems, bias-
aware filters cannot estimate the value of the bias successfully.
This inability is because of existing dependencies among
equations. In other words, there are not enough independent
equations to estimate the bias. This issue has thoroughly been
discussed in [11]-[13]. For instance, the first theorem from
[11] provides a ranked-based proof to exhibit the fundamental
indeterminacy in estimating the offset, when delays in the
down-link and up-link directions are not equal.

One approach to the problem of inequality in the down-
link and up-link delays is to use packet filtering techniques.
This group of solutions tries to find some ”good” packets
based on specific conditions. The definition of a good packet
is subjective and varies from one paper to another. In a
number of papers such as [14] and [15], after collecting a
number of received messages (this number is determined by
the window size) the good packet is the one with the least
delay. Such algorithms are usually referred to as sample-
minimum filters. In [16], instead of minimum or maximum, the
mode is the criterion for selecting good packets. The authors
of [17] proposed using a train of probing packets following
the Sync and Delay-Req messages. The aim of using probing
packets is to estimate the occurrence of delay in timing packets
by measuring the relative time difference between packets.
The packets with large value of delays then will be filtered
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out. Although using packet filtering methods can improve
the synchronization accuracy, none of these methods actually
estimates the value of bias (or provide an unbiased estimator
of the phase offset). One other problem with this group of
solutions is that we need to filter a large number of packets.
Dropping packets means losing information and also causes
more delay before correction (or alternatively requires more
network traffic overhead to collect a window’s worth of data
within a single correction interval).

Another approach is to directly estimate the bias or in other
words to provide an unbiased estimator of the offset. In [18]
and [19], Jesk et al. used the Boot-strap method to find the
order statistic-based best linear unbiased estimator (o-BLUE)
of the clock offset under the assumption that Packet Delay
Variations (PDV) have exponential or Pareto distributions.
But more recent papers such as [20] and [21] show that the
Gamma distribution is a better choice for modeling the PDVs
in networks. The authors of the Boot-strap method also have
not provided any solution for estimation and correction of the
frequency offset concurrently with the phase offset.

The results of [20] and [21], modeling the network delay
by Gamma distributions, is the main motivation and one key
assumption of this work. In this paper we introduce a solution
to estimate the bias and we compare our results with the case
with no bias correction and also with the Boot-strap method.
Our method is easy to implement and is also compatible with
the current version of the IEEE 1588 PTP.

II. IEEE 1588 OVERVIEW

The IEEE 1588 PTP enables us to estimate the phase offset
and the frequency offset of a so called slave clock with
respect to a master clock. The master clock is assumed to be
synchronized with the reference time, which may come from
GPS signals. The synchronization process using the two-way
message exchange mechanism happens by exchanging timing
packets between master and slaves. Each timing message
arrives at its destination after a delay. This delay can be divided
into fixed and random parts. The fixed part of the delay comes
from the processing time of the devices in the network and also
the propagation time. The random part of the delay usually
comes from the random queuing delays due to the network
traffic load [14]. At the nth synchronization interval, a master
sends the nth Sync message which includes its local time at
tn. A slave receives this message at C(tn + dms + xn). The
term C(t) represents the local time of the slave clock when the
master time is t and dms+xn is the time that a packet takes to
travel from master to slave or the down-link delay. Here dms
is the fixed part and xn is the random part of the delay. Then
the slave node sends its local time as a Delay-Req message at
C(t′n− dsm− yn) and the master receives this message at t′n,
where dsm + yn is the up-link delay. Similar to the down-link
delay dsm is the fixed part and yn is the random part of the
delay. Finally all these numbers are collected at the slave side.
Fig. 1 shows the above process.

From Section 7.4.2 of [1], messages from master to slave
and slave to master traverse the same path in order to minimize
the asymmetry. As a result it can be assumed that the fixed

Fig. 1. Two-way message exchange mechanism

parts of the delays in the down-link and up-link directions
are equal. If for any reason the fixed parts of the delays in
the down-link and up-link directions differ significantly, then
they need to be measured. Because the fixed parts of the
delays do not change during the synchronization process, this
measurement can be done once at the beginning. Knowing
the process time of the devices between the master and slave
nodes, or measuring the delay when the traffic load is at the
minimum might be some possible ways for estimating the
fixed parts of the delays. In this work, we assume that fixed
parts of the delays in the down-link and up-link directions are
equal. Consequently, dms and dsm can be replaced with the
term d. The phase and frequency offsets can then be estimated
by the following equations:

θm(n) =
[C(tn + d+ xn)− tn]− [t′n − C(t′n − d− yn)]

2
(1)

fm(n) =
θm(n)− θm(n− 1)

tn − tn−1
(2)

The denominator of (2) represents the time difference
between two successive synchronization interval. Master and
slave clocks are perfectly synchronized if C(t) = t, but if
we assume that the phase offset at the nth synchronization
interval is θ(n), we would have:

C(tn) = tn + θ(n)

For short enough intervals (the size depends on how large
the frequency offset is) it is possible to assume that the phase
offset is unchanged, so:

C(tn + ∆) = tn + ∆ + θ(n)

By expanding the slave clock’s terms in (1) by using the
above equation, (1) can be rewritten as:

θm(n) = θ(n) +
xn − yn

2
(3)

From (3) it is clear that (1) is a good estimation of θ(n)
only if xn and yn are equal. This condition is typically
not true, specially in packet-based wide area networks where
even the expected value of these delays may not be equal.
Inequality in the expected values of these delays causes a bias
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in the convergence point of the estimated offset that should be
removed.

The synchronization process can also be modeled as a
filtering problem. For this purpose we should firstly determine
the state and the measurement equations. By using the results
of [22], the state equations can be written as:

θ(n) = θ(n−1)−uθ(n−1)+[f(n−1)−uf (n−1)].∆T+ωθ(n−1)

and

f(n) = f(n− 1)− uf (n− 1) + ωf (n− 1)

The terms ωθ(n) and ωf (n) are the process noises for
the phase offset and frequency offset respectively. The terms
uθ(n) and uf (n) are the estimated values for the phase
and frequency offsets. ∆T is the time difference between
two successive synchronization intervals and is the same as
the denominator of (2). The above equation means that the
next phase offset would be the previous one, minus the last
estimated phase offset, plus the drift that happens between two
successive corrections, plus a process noise. For the frequency
offset, the next offset is the previous one, minus the last
estimated frequency offset plus a process noise. From (1) (or
(3)) and (2) the measurement equations can be written as:

θm(n) = θ(n) + νθm(n)

fm(n) = f(n) + νfm(n)

Where νθm(n) and νfm(n) are the measurement noises for
the phase offset and the frequency offset respectively. The
measurement noise for the phase offset from (3) is determined
by xn−yn

2 . As we already explained, the mean value of the
down-link and up-link delays are not necessarily equal and as
a result the mean value of the measurement noise for the phase
offset in general is not zero. In contrast, since in the numerator
of (2) there is a subtraction of two successive phase offsets,
in terms of the bias, they cancel each other out and therefore
(2) provides an unbiased estimator for the frequency offset.
The state and measurement equations can be written in matrix
form as follows:

χ(n) = Aχ(n− 1) + Bu(n− 1) + w(n− 1) (4)

z(n) = Hχ(n) + ν(n) (5)

Where χ(n) = [θ(n) f(n)]T , u(n − 1) =
[uθ(n− 1) uf (n− 1)]T , w(n− 1) = [wθ(n− 1) wf (n− 1)]T ,
z(n) = [θm(n) fm(n)]T and ν(n) = [νθm(n) νfm(n)].
Matrices A, B and H are:

A=

[
1 ∆T

0 1

]
, B=

[
−1 −∆T

0 −1

]
, H=

[
1 ∆T

0 1

]
Equations (4) and (5) are a linear pair of state and measure-

ment equations that can be solved using different filters such
as a Kalman filter [22]. A summary of [22] is as follow. At

the nth synchronization interval, the slave node receives z(n).
This vector is passed into the filter. The output of the filter is
the vector u(n). The vector u(n) is subtracted from the slave
clock in order to correct the phase and frequency offsets. In
the simulations section, we call the method of using such a
filter to estimate and correct the offset, the Basic 1588 method.
The non zero mean value of the measurement noise for the
phase offset creates a bias in the estimated phase offset by
the filter. As it has been shown in [11]-[13], for asymmetric
delays, equations (4) and (5) are not sufficient to estimate
the offset. As a result, in order to remove the bias from the
estimated offset, another solution needs to be developed. In
the next section we study the random characteristics of the
delays.

III. PACKET DELAY VARIATION IN NETWORKS

In [20] and [21], it was shown that Packet Delay Variation
(PDV) in multi-hop Ethernet networks and for strict priority
queuing can be modeled by a Gamma distribution. The pa-
rameters of the PDF are a function of the traffic load and also
the number of hops. The PDF of a Gamma distribution is:

fX(x) =

{
xα−1

Γ(α)βα e
−x
β x > 0

0 x < 0
(6)

where α and β are called the shaping and scale parameters
respectively. The exponential distribution is a special case of
the Gamma distribution for the case that the shaping parameter
is equal to one. In [18], Jesk et al. used a Boot-strap solution
to provide an unbiased estimator of the phase offset, under the
assumption that the PDV can be modeled by an exponential
distribution, but the results of [20] and [21] show that the
shaping parameter is not always close to one. For example for
80% traffic load, over a 5 hops network, the shaping parameter
in [21] is determined as 11. This difference causes an error in
the estimated value of phase offset for the Boot-strap method.

In the next section, we introduce a recursive method for
estimating the bias and correcting the slave clock. We call
our method the Gamma Based Bias-Correcting 1588 (G-BC
1588) method. We have developed our method for a Gamma
distributed PDV. In Section VI, we compare our solution with
Basic 1588 and the Boot-strap method.

IV. PROPOSED SOLUTION: GAMMA BASED
BIAS-CORRECTING 1588 METHOD

In this section we develop our solution for estimating the
bias. For the sake of simplicity, we first assume that the
frequency offset is zero and a fixed phase offset is the only
source of inaccuracy which needs to be estimated. It is worth
to note that higher orders of error which can be captured by
the process noise have not been considered here. The reason
is that phase and frequency offsets are the two main sources
of inaccuracy and higher orders of error can be avoided if
the synchronization process is repeated fast enough. From the
last section, we know that the random delays from master to
slave and from slave to master can be modeled by a Gamma
distribution. Following Section II, we denote the subtraction of
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a master time from the slave time at the nth synchronization
interval by δDL(n). Similarly, for the up-link direction we
denote the subtraction of a slave time from the master time
by δUP (n). So for the down-link direction we have:

δDL(n) = C(tn + d+ xn)− tn = θ + d+ xn (7)

and for the up-link:

δUP (n) = t′n − C(t′n − d− yn) = −θ + d+ yn (8)

Where xn and yn represent the down-link and up-link delays
respectively and θ is the phase offset. Our method estimates
the bias for the down-link and up-link separately and similarly,
so at this point let us just consider the down-link delay. If the
random variable X represent the down-link delay, then its PDF
is determined by (6). The CDF of the Gamma distribution is:

FX(x) =


γ(α, xβ )

Γ(α) x > 0

0 x < 0
(9)

Where γ(α, xβ ) is an incomplete Gamma function and is
determined by:

γ(α,
x

β
) =

∫ x
β

0

yα−1e−ydy (10)

The expected value of the Gamma distribution is determined
by the multiplication of α and β, so:

E(X) = αβ (11)

It needs to be emphasized that the values of α and β are
unknown, so we are not able to calculate the expected value
of the delay using (11).

Now assume that instead of one Gamma random variable,
we consider the minimum of two successive random variables.
In the context of IEEE 1588, this means that when the receiver
receives the (2i−1)th Sync message, it waits for the next one,
then takes the following minimum:

δ′DL(i) = min [ (C(t2i−1 + d+ x2i−1)− t2i−1)

, (C(t2i + d+ x2i)− t2i)]

= min[(θ + d+ x2i−1), (θ + d+ x2i)]

= θ + d+min(x2i−1, x2i) (12)

Where DL stands for down-link.
It is known from stochastic text books (for example [18])

that if W = min(X,Y ), where X and Y are independent
random variables, then the distribution of W is:

fW (w) = fX(w) + fY (w)− [fX(w)FY (w) + fY (w)FX(w)]
(13)

Where f and F represent the PDF and CDF of the random
variables respectively. If we assume that X and Y are from a

Gamma distribution, then by using (6) and (9), the distribution
of W is determined by:

fW (w) =
2wα−1e

−w
β

Γ(α)βα

[
1−

γ(α, wβ )

Γ(α)

]
(14)

For finding the mean value of W , we expand γ(α, wβ ) by
the following series [24]:

γ(α,
w

β
) = (

w

β
)αΓ(α)e

−w
β

∞∑
0

(wβ )k

Γ(α+ k + 1)
(15)

By substituting (15) in (14), we can rewrite (14) as:

fW (w) =
2wα−1e

−w
β

Γ(α)βα
−
∞∑
0

[
e
−w

(β/2)w2α+k−1

(β/2)2α+kΓ(2α+ k)

Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)
] (16)

Now by taking the mean value, we finally have:

E(W ) = 2αβ −
∞∑
0

(2α+ k)(β/2)Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)
(17)

So the expected value of W can be determined by (17).
Let us assume that the slave node just uses the sequence of

data that comes from (7) to estimate the value of θ. The slave
node passes the data into a filter (for example a Kalman filter).
Since the expected value of the random delay is not zero (in
this case it is the mean value of the Gamma distribution), the
convergence point of the filter is:

∆DL = θ + d+ αβ (18)

Now assume that the slave clock uses (12) to estimate the
value of θ. So it passes the result of (12) into a filter. As a
result, the new convergence point would be:

∆′DL = θ + d+ E(W ) (19)

where E(W ) is determined by (17). By subtracting (19)
from (18):

∆DL −∆′DL = αβ − E(W )

∆DL−∆′DL = αβ−

[
2αβ −

∞∑
0

(2α+ k)(β/2)Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)

]

∆DL −∆′DL = −αβ +
β

2

∞∑
0

(2α+ k)Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)︸ ︷︷ ︸
f(α)

∆DL −∆′DL = −αβ +
β

2
f(α) (20)

where f(α)is:

f(α) =

∞∑
0

(2α+ k)Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)
(21)
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From (20) the following expression for estimating the mean
value can be concluded:

α̂β =
∆̂DL − ∆̂′DL
f(α)
2α − 1

(22)

where ∆̂DL, ∆̂′DL and α̂β are the estimated values for ∆DL,
∆′DL and the mean value of the Gamma distributed delay. In
other words, equation (22) provides an explicit equation for
estimating the bias. The problem with this equation however,
is the unknown value of α.

To proceed, we first focus on f(α) to study its characteris-
tics. Fig. 2 shows f(α)/α versus α:

Fig. 2. f(α)/α versus α

As we observe in Fig. 2, as α decreases, f(α)/α changes
more rapidly. For large values of α, this ratio gets closer to a
constant number. By trial and error, we notice that:

f(α)

α
' 2(1 +

0.56√
α+ 0.3

) (23)

Equation (23) provides an equation much simpler than (21)
for calculating the denominator of (22).

In order to estimate the shaping parameter, in addition to
(22) one more independent equation is needed This equation
can be found from the variance of the delay. So in the follow-
ing, we first develop a method for estimating the variance of
the delay.

The bias estimator which is discussed above, updates the
slave clock not at each iteration, but after two iterations. This
characteristic provides for us a simple solution for estimating
the variance of the noise. Fig. 3 shows two typical signal
exchanges between a master and a slave for the down-link
direction. We compute the following expressions:

(δ(2i)− δ(2i− 1))2 = ((θ + x2i + d)− (θ + x2i−1 + d))2

= (x2i − x2i−1)2

= x2
2i + x2

2i−1 − 2x2ix2i−1

Fig. 3. Two successive message exchanges for the down-link direction

where δ(i) = C(ti + d + xi) − ti. By taking the expected
value:

E[(δ(2i)− δ(2i− 1))2] = E[x2
2i + x2

2i−1 − 2x2ix2i−1]
x2i and x2i−1 are i.i.d∼X−−−−−−−−−−−−−−−−−−→ = 2(E(X2)− E2(X)) = 2σ2

As a result, the above expected value can give us an estimate
of the down-link delay variance. A similar approach is then
taken for the up-link delay. Note that because we correct the
slave clock after two iterations, the phase offset (θ) in these
two iterations is almost constant, so they cancel each other
out.

On the other hand, the variance of the Gamma distribution
is equal to:

σ2 = αβ2 (24)

where αβ2 is the expression for the variance of a Gamma
distribution. By combining (22), (23) and (24), we end up
with the following closed form equation for estimating α:

α̂ =
0.3(

0.56σ̂

∆̂DL−∆̂′
DL

)2

− 1

(25)

where α̂ and σ̂ are the estimated values for the shaping
parameter and variance respectively. All the variables on the
right hand side of (25) can be estimated recursively.

The synchronization process can be summarized as follows.
After two successive synchronization intervals, the estimated
values for σ, ∆DL and ∆′DL are updated. These new estimated
values are plugged into (25) to update the estimate of α. Then
the new estimated value for α is substituted in (22) in order
to give us a new estimation of the bias. This process is done
for the down-link and up-link directions separately.

One problem with (25) is that the denominator of this
equation may get very close to zero. To see the reason, we
rewrite (25) as follow:(

0.56σ̂

∆̂DL − ∆̂′DL

)2

− 1 =
0.3

α̂

As we observe, specially for larger values of α the above
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expression is a small number. Consequently, during the esti-
mation process, it is possible that the estimated values for σ,
∆DL and ∆′DL make the denominator of (25) very close to
zero which can cause computational problems.

In order to solve this problem, we apply two additional
mechanisms to the algorithm. The first mechanism is to define
a reasonable neighborhood for α. By defining a neighborhood
for α, we can filter out all the bad estimated values of α before
using them for estimating the bias. This neighborhood should
not be necessarily very tight and is just for preventing very
poor estimates of α. For example let us denote the estimated
value of α from (25) for the down-link direction as α̂DL. If
the value of α̂DL is more than a lower boundary αlDL and
less than an upper boundary αuDL, then it would be used for
estimating the bias. The second mechanism that we use is to
take the average of the estimated values for α. Taking the
average smooths the results and will reduce the effect of bad
estimated values. The first few estimated values may not be
accurate enough, so we start to take the average of estimated
values after a predetermined number of iterations. A summary
of these two additional mechanisms is as follows. First we
update our estimates of α using (25). If the estimated value
falls between αlDL and αuDL, it can be used for the estimation
of the bias. For a few initial estimated αs, we use them directly
to update the bias (in the algorithm bellow, we consider the
ten first iterations). After a predetermined number of iterations
we start to average the estimates.

For estimating the frequency offset, since the bias correction
happens after receiving two timing packets, equation (2) needs
to be changed slightly as follow:

fm(n) =
θm(2n)− θm(2n− 1)

T2n − T2n−1
(26)

Which means the estimation of the frequency offset should be
updated after two successive synchronization interval.

In the context of the IEEE 1588, bias correction needs to be
done for the down-link and up-link separately. One important
feature is that this method can be implemented recursively.
We define CBC(t) as the bias free version of the slave time.
So CBC(t) is equal to the C(t) minus the estimated bias. To
see how to implement this method recursively, a summary of
this algorithm is given by Algorithm 1.

Algorithm 1 :G-BC 1588

f(α)
α = 2(1 + 0.56√

α+0.3
) %by knowing an approximation of α

%eight auxiliary variables to keep the summations
sumDL ← 0, sum′DL ← 0, sumUL ← 0, sum′UL ← 0,
sumσ

UL ← 0, sumσ
UL ← 0, sumα

DL ← 0, sumα
UL ← 0

iDL ← 1, iUL ← 1 %counters

For n = 1, 2, ...

δDL(n) = C(tn + xn)− tn
δUL(n) = t′n − C(t′n − yn)

θm(n) = δDL(n)−δUL(n)
2

If n is even

k = n/2
δ′DL(k) = min(δDL(n), δDL(n− 1))
δ′UL(k) = min(δUL(n), δUL(n− 1))

sumDL = sumDL + δDL(n) + δDL(n− 1)
sum′DL = sum′DL + δ′DL(k)
sumUL = sumUL + δUL(n) + δUL(n− 1)
sum′UL = sum′UL + δ′UL(k)
sumσ

DL = sumσ
DL + (δDL(n)− δDL(n− 1))2

sumσ
UL = sumσ

UL + (δUL(n)− δUL(n− 1))2

∆̂DL = sumDL/n

∆̂′DL = sum′DL/k

∆̂UL = sumUL/n

∆̂′UL = sum′UL/k

σ̂2
DL = sumσ

DL/2k

σ̂2
UL = sumσ

UL/2k

%estimate the value of α
α̂DL = 0.3(

0.56σ̂DL

∆̂DL−∆̂′
DL

)2

−1

α̂UL = 0.3(
0.56σ̂UP

∆̂UL−∆̂′
UL

)2

−1

%the estimated α should be in the proper neighborhood
If αlDL < α̂DL < αuDL
%Start to take the average after a number of iterations

If iDL > 10
sumα

DL = sumα
DL + α̂DL

ᾱ = sumα
DL/(iDL − 10)

else
ᾱ = α̂DL

end If
iDL = iDL + 1

end If
If αlUL < α̂UL < αuUL

If iUL > 10
sumα

UL = sumα
UL + α̂UL

ᾱ = sumα
UL/(iUL − 10)

else
ᾱ = α̂UL

end If
iUL = iUL + 1

end If

%expected value for the down-link delay

EDL =
∆̂DL−∆̂′

DL
f(ᾱ)
2ᾱ −1

%expected value for the up-link delay

EUL =
∆̂UL−∆̂′

UL
f(ᾱ)
2ᾱ −1
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B = EDL−EUL
2 %total bias

fm(k) = θm(n)−θm(n−1)
tn−tn−1

%θm(n) and fm(k) would be passed into the filter
[uθ(k), uf (k)] = Kalman(θm(n), fm(k))

C(t) = C(t)− uθ(k) %C(t) is the slave time

f(t) = f(t)− uf (k) %f(t) is the slave frequency

%The total bias is subtracted from the slave clock
CBC(t) = C(t)−B

end If
end For

In many practical problems, we may not be able to know
the exact value of the delay parameters, but it is possible
to estimate a neighborhood of it. For example in the busy
hour, when the traffic is at its maximum, or during the night,
when the traffic is at its minimum, we may have different
expectations for the traffic load. When any information about
the network traffic load is available, the neighborhood that
we defined for α in order to prevent those large spikes can
also be used as a tool for improving the synchronization
accuracy. For example, if we know that the traffic load is
more or less than a specific value, then we can adjust a
tighter neighborhood for α. In the simulation results section we
will see that this knowledge can improve the synchronization
accuracy noticeably.

V. VARIANCE ANALYSIS

In order to carry out the variance analysis, in (22) it is
assumed that the value of α is known. This simplifying
assumption, although unrealistic, allows us to have an insight
about the variance of the estimation. To this end, from equation
(22) we have:

var(α̂β) = E[(α̂β − αβ)2] =
var(∆̂) + var(∆̂′)(

f(α)
2α − 1

)2 (27)

To find the variance of ∆̂ we have:

var(∆̂) = E[(∆̂− E(∆̂))2]

= E[

(∑n
i=1 δi
n

− (θ + d+ αβ)

)2

]

=
1

n2
E[

(
n∑
i=1

(δi − (θ + d+ αβ))

)2

]

=
1

n2
E[

n∑
i=1

n∑
j=1

(δi − (θ + d+ αβ))(δj − (θ + d+ αβ))]

=
1

n2

n∑
i=1

E(δi − (θ + d+ αβ))2 =
var(δ)

n
=
αβ2

n

Similarly, it can be shown:

var(∆̂′) =
var(δ′)

k
=

2var(δ′)

n

where k = n
2 . In Appendix A, it is shown that:

var(δ′) ≤ 2αβ2(2 + f(α))− β2

2
f(α)2

by substituting the found expressions for var(∆̂) and
var(∆̂′) in (27), the following upper bound is obtained:

var(α̂β) ≤

(
1

f(α)
2α − 1

)2(
9α+ 4αf(α)− f(α)2

n

)
β2

(28)
where f(α) can be approximated using (23).

From [18] it is known that the variance of the Boot-strap
method converges to zero with 1

n2 whereas (28) indicates that
the order of convergence for G-BC 1588 is 1

n . Consequently
it is observed although our method provides an unbiased
estimator for the offset, but in terms of the variance of the
estimator, Boot-strap method is superior.

VI. SIMULATION RESULTS

To evaluate our method, PDVs are generated using the
results of [20] and [21]. The value of α in a network, differs for
different traffic loads. A coarse knowledge about the interval
of α is assumed to be available at the slave node. This assump-
tion, as discussed in Section IV, prevents the denominator of
(25) to get close to zero. The authors of the Boot-strap method
did not provide any algorithm for estimating the frequency
offset, so we first assume that the frequency offset is zero
and compare the performance of our method with the Boot-
strap method. Then we take the frequency offset into the
consideration and evaluate the performance of our method in
the presence of a frequency offset. Finally, as was described in
Section IV, the calculated values for the phase and frequency
offsets are passed into a filter. In the following simulations, a
Kalman filter is used for this purpose.

It is first assumed that αlDL=αlUL=1 and αuDL=αuUL=15.
From [20] and [21] the value of α for 20 percent and
80 percent traffic loads in a 5 hops network is 2 and 11
respectively. So the interval that is considered for the shaping
parameter is loose and is just based on a very approximate
knowledge about the range of α.

In Fig. 4 a 20% traffic load from master to slave and 60%
traffic load from slave to master is considered. PDVs are
generated based on the results of [20] and [21], so the values of
α for 20 and 60 percent traffic loads are 2 and 8 respectively.
The synchronization interval is 1 sec, the frequency offset is
assumed to be zero and the phase offset is set to 1 sec. The
time axis starts from t=15 sec.

From the result of the Basic 1588 method it can be seen
that the existence of a bias in the estimated phase offset can
degrade the synchronization accuracy. It also can be observed
that because the PDVs are following the Gamma distribution
instead of the exponential distribution, the Boot-strap method
is not very accurate. Our method, however, can provide a more
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Fig. 4. Error in the estimated phase offset for 20 percent down-link and 60
percent up-link traffic loads.

accurate synchronization. G-BC 1588 estimates the shaping
parameters along with the bias. In Fig. 4, the estimated shaping
parameters for the down-link and up-link directions are 2.34
and 8.39 respectively. We also observe that although G-BC
1588 has better results compared to the Boot-strap method, it
still suffers from a noticeable level of error.

In Fig. 5, the up-link and down-link traffic loads are
assumed to be 80 and 20 percents respectively. The value of
α for 80 percent traffic load from [21] is 11. By increasing
the traffic load, and as a result, increasing the value of α, the
PDV becomes less exponential. Consequently, as can be seen
in Fig. 5, the Boot-strap method suffers from a larger error.
The estimated shaping parameters from G-BC 1588 for the
down-link and up-link directions are 2.1 and 9.2 respectively.

Fig. 5. Error in the estimated phase offset for 20 percent down-link and 80
percent up-link traffic loads.

In both Fig. 4 and Fig. 5 we observe that during the initial
iterations G-BC 1588 does not have a good performance. The
reason is that this method, in addition to the bias, estimates
the variances and the shaping parameters of the down-link and

up-link delays. As a result it takes some time/iterations for the
method to obtain good estimates for each of these variables.

So far we assumed that the frequency offset is zero. In Fig.
6 we set all the initial settings the same as in Fig. 5, except
that the frequency offset of the slave clock is 10−6 per second.
As it was mentioned before, because the authors of the Boot-
strap method have not provided any method for estimating the
frequency offset, we just compare our method to Basic 1588.

Fig. 6. Error in the estimated phase offset for 20 percent down-link and 80
percent up-link traffic loads, with a frequency offset of 10−6.

Comparing the results in Fig. 6 with the results in Fig.
5, we observe that the existence of a frequency offset does
not degrade the results of our method. The estimated shaping
parameters for the down-link and up-link delays in Fig. 6, are
3.2 and 11.2 respectively.

As it was mentioned, when information about the network
traffic load is available, our method is flexible enough to
provide better results. For this purpose we can readjust the
values of αlDL, αuDL, αlUL and αuUL based on the available
information. In Fig. 7 we compare the performance of G-BC
1588 with a looser neighborhood for α with G-BC 1588 with
a tighter neighborhood. Consider a 20 percent down-link and
60 percent up-link traffic load. For the looser neighborhood,
we consider the same neighborhood as in previous figures.
So αlDL = 1, αuDL = 15, αlUL = 1 and αuUL = 15. For
the tighter neighborhood, assume that the receiver just knows
that the down-link traffic load is somewhere between 10 to
40 percent and the up-link traffic load is between 40 and 80
percent. So αlDL = 1, αuDL = 6, αlUL = 6 and αuUL = 11.

The experiment is repeated for 20 times and the average
is depicted. The vertical lines show the standard deviation
of error around the average values. It can be observed that
considering a tighter neighborhood makes the average error
closer to zero and also make the standard deviation of error
smaller. This flexibility is one of the advantages of our method
over the Boot-strap method.

Although the results of [20] and [21] show that the PDVs
can be modeled by Gamma distributions, we also examined
the robustness of our method against a non-Gamma distributed
PDV. A rule of thumb is that even if the PDVs do not follow
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Fig. 7. Error in the estimated phase offset for 20 percent down-link and 60
percent up-link traffic loads, with a frequency offset of 10−6.

the Gamma distribution, as long as there are some values
for the shaping and scale parameters to make the Gamma
distribution similar to the non-Gamma distributed PDVs, our
method still can provide good results. However, if the PDVs
are very different from the Gamma distribution, then our
method may have a large amount of error. The reason is
that for G-BC 1588 method we also estimate the shaping
parameters. In order to estimate the shaping parameters, we
first estimate the variance of the delays. When the estimated
variances do not follow the Gamma distribution, then the
estimated values for the shaping parameters would not be
accurate anymore. Estimating the bias using a poor estimation
of the shaping parameters will result in a bad estimate of the
bias.

Fig. 8 illustrates the result of using the Weibull distribution
to generate the PDV for the down-link delay. The shape and
scale parameters for Weibull distribution are assumed to be
6.5 and 0.5 respectively. The generated random number is
multiplied by 10−6 to keep the random delay in the order
of micro-seconds. The up-link delay is generated using the
results of [21] for 80 percent traffic load. We assumed that
αlDL = 1, αuDL = 6, αlUL = 6 and αuUL = 11. As we observe
in Fig. 8, although the distribution of the delay for the down-
link direction does not follow the Gamma distribution, G-BC
1588 can estimate the bias successfully.

To make the comparison easier, in Fig.9 we compare the
performance of G-BC 1588 when the down-link delay is
generated using Weibull and uniform distributions. The up-
link delay is the same as in Fig. 8. The random numbers from
the uniform distribution are generated between 0 and 1, then
are multiplied by 10−6 to keep the numbers in the order of
micro-seconds.

We observe that changing the distribution from Weibull
to uniform degrades the result. This was predictable because
there is less similarity between the Gamma and uniform distri-
butions compared with the Weibull and Gamma distribution.

So far we have assumed that we have a constant traffic load
in the network. Clearly this assumption is not valid and traffic

Fig. 8. Error in the estimated phase offset for the Weibull distributed down-
link and Gamma distributed up-link delays.

Fig. 9. Comparison between the error in the estimated phase offset for the
Weibull and uniform distributed down-link and Gamma distributed up-link
delays.

loads and as a result PDVs change with time. When the traffic
load changes, the previous estimated values act as a wrong
memory. It means that, until after a long time when the effect
of the wrong memory fades, we are unable to obtain accurate
estimates. One simple solution to this problem is to restart the
synchronization process periodically. The process needs to be
restarted often enough to catch significant changes in network
traffic load. For example, in [25], traffic loads change never
faster than every 12 minutes, and sometimes at an even slower
frequency. In reality, changing the traffic load does not usually
happen very fast, rather it happens gradually. However, in this
section, the extreme case has been considered. It is assumed
that the traffic load changes instantly and significantly. In Fig.
10 the traffic load from master to slave and from slave to
master is 20 percent and 60 percent respectively. At t=500
sec, the up-link traffic load suddenly changes from 60 to 80
percent. Then, at t=3000 the up-link traffic load changes from
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80 to 40 percent. The values of α for the 40, 60 and 80 percent
traffic loads from [20] and [21] are 6, 8 and 11 respectively. We
assumed that αlDL = 1, αuDL = 6, αlUL = 6 and αuUL = 11.
The Basic 1588 and G-BC 1588 are restarted with a period of
1000 sec. It means that when the time is a multiple of 1000,
we restart all the summations and matrices that are involved in
Kalman filtering and bias estimation processes. The red line in
Fig. 10 shows the zero line, in order to make the comparison
easier.

Fig. 10. Error in the estimated phase offset. The down-link traffic load is 20
percent. The up-link traffic load changes from 60 to 80 percent at t=500 sec
and changes form 80 to 40 percent at t=3000 sec. The period of restart is
1000

Whenever the process is restarted, previous estimated values
are assigned to be zero. As a result when traffic load changes
with time, in comparison with the case that the process is
not restarted, there is less outdated and potentially misleading
memory in the estimation equations. We observe that G-BC
1588 with Periodic Restart, between two successive restart
points, has a better performance than Basic 1588. However, a
serious problem with this approach are the random spikes that
happen, for the first initial iterations, whenever the synchro-
nization process is restarted.

In order to mitigate the effect of random spikes, the follow-
ing solution can be applied. At the beginning of each periodic
restarting of synchronization process, a temporary slave clock
sets its time and frequency to the slave clock. Whenever the
synchronization process is restarted, the temporary slave clock
starts to work and acts as the slave clock for a predetermined
interval. Meanwhile, the slave clock updates its estimates.
When the interval is finished, the time again is read from the
slave clock. In Fig. 11 all the initial settings are the same as in
the Fig. 10. The predetermined interval in Fig. 11 is assumed
to be 1/10 of the restart period so it is 100 sec.

As we observe in Fig. 11, using this strategy mitigates
the effect of random spikes significantly. Consequently, G-
BC 1588 with Periodic Restarts, provides good results without
severely getting affected by changing traffic loads.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced G-BC 1588 as a recursive
method for estimating and correcting the delay’s bias in the
synchronization process of the packet-based networks. this
method is compatible with the current version of the IEEE
1588 protocol and allows us to correct the slave’s clock

Fig. 11. Error in the estimated phase offset. The down-link traffic load is 20
percent. The up-link traffic load changes from 60 to 80 percent at t=500 sec
and changes form 80 to 40 percent at t=3000 sec. The period of restart is
1000. The interval for working the temporary clock is 100 sec

recursively. If any knowledge about the network traffic load
is available at the slave clock, G-BC 1588 is flexible enough
to use this knowledge in order to improve the synchronization
accuracy. This method also allows us to use different filters
for processing data. Given the fact that PDV in networks does
not follow a Gaussian distribution, trying other filters such
as Particle filters may provide more improvement in the syn-
chronization accuracy. Comparison between the performance
of different filters can be an interesting subject for the future
works.
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APPENDIX A

From equation (12) it can be observed that the variance for
δ′ is the same as the variance for the random variable W .
From equation (16) we have:

E(W 2) = 4α(α+ 1)β2 − (
β2

4
)

∞∑
k=0

(
Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)

)2

(2α+ k)(2α+ k + 1)

≈ 4α(α+ 1)β2 − (
β2

4
)

∞∑
k=0

(
(2α+ k)Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)

)2

≤ 4α(α+ 1)β2 − (
β2

4
)

( ∞∑
k=0

(2α+ k)Γ(2α+ k)

22α+k−1Γ(α)Γ(α+ k + 1)

)2

= 4α(α+ 1)β2 − (
β2

4
)f(α)2

On the other hand, from (17) we have:

E(W ) = 2αβ − β

2
f(α)

as a result, the variance of ∆′ is bounded by:
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V ar(∆′) = σ2
W = E(W 2)− E2(W )

≤ 2αβ2(2 + f(α))− β2

2
f(α)2

(29)
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