
Enhancing Cooperative Multi-agent Reinforcement Learning through the
Integration of R-STDP and Federated Learning

Mohammad Tayefe Ramezanlou1, Howard Schwartz1, Ioannis Lambadaris1, Michel Barbeau2

1. Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
2. School of Computer Science, Carleton University, Ottawa, Canada

Abstract

This paper introduces a novel approach to enhance the stability and efficiency of R-STDP in the context of
federated learning. The primary objective is to stabilize the unbounded growth of R-STDP and make it more
responsive to real-time changes. The methodology involves integrating R-STDP with Spiking Neural Networks
and employing the norm of the neural network model for adjusting weighted aggregation in federated learning
systems. The proposed method incorporates a mechanism where weights decay over time, depending on the
duration since the agent last published its model. Additionally, the sampling time is dynamically adjusted
based on the Euclidean norm, which measures the distance between the weight matrices of the agents and
the server. The results demonstrate that the proposed event-triggered federated learning method significantly
enhances learning speed and performance. At the same time, the dynamic aggregation interval efficiently reduces
communication between the agents and the central server, especially after model convergence. This research
presents a significant advancement in federated learning and offers a more stable, responsive, and efficient
learning process.

Keywords: Spiking Neural Network, STDP, Federated Learning, Consensus Flying, Leader-Follower Flocking

1. Introduction

The consensus problem in flying multi-agent systems, commonly called the “flocking” or “swarming” chal-
lenge, is fundamental to aerial robotics. It involves coordinating and controlling multiple agents to ensure
cooperative behavior, avoid collisions, and align toward a shared goal. Such coordination is crucial for applica-
tions ranging from coordinated surveillance to communication, logistics, and infrastructure monitoring.

Formation control within these systems, especially cost-constrained communication, faces significant chal-
lenges. These include managing limited resources, overcoming communication constraints, and ensuring system
scalability and robustness. Various studies have addressed these issues, demonstrating innovative solutions and
methodologies to enhance adaptability and resilience by leveraging local sensing and communication capabilities,
even on low-cost platforms [1].

Security in multi-agent systems is also a critical concern, particularly in the face of cyber threats. Adap-
tive mechanisms that tune communication link weights to maintain secure consensus have offered resilience in
adversarial conditions [2]. Additionally, hierarchical control mechanisms, such as leader-follower dynamics, are
essential for specific applications, including aerial operations. Recent advancements include finite-time control
protocols that ensure stability and rapid consensus in leader-follower setups [3] and innovative path-guided
control strategies that function effectively in uncertain environments [4].

Moreover, decision-making within these systems has seen enhancements through entropy-based consensus
methods that facilitate more efficient cooperation by employing swarm intelligence principles for local negotiation
and preference updating [5]. These methodologies promise faster convergence and scalability, which are crucial
for diverse operational settings. Overall, the ongoing research in multi-agent systems continues to address the
dual challenges of robust formation control and secure, efficient consensus amidst evolving operational demands
and external threats.

1.1. Decentralized Learning through Federated Learning (FL)

FL is an emerging paradigm in machine learning that allows for decentralized training of models across
multiple agents without centralizing data [6]. Using this approach, robots can benefit from shared experiences
while preserving data privacy and reducing communication overheads [7, 8].

The challenge of optimizing communication efficiency in FL is addressed in [8], where a hierarchical approach
is introduced, leveraging adaptive staleness control. This method emphasizes that system-level and data-level
heterogeneity in FL must be considered. The complexities of wireless network constraints in FL are explored in

Preprint submitted to Elsevier September 8, 2024

mohammadtayeferamez
Highlight

mohammadtayeferamez
Note
The introduction is organized into subsections, and the reviewers' requested references are included.

another study, where the focus is placed on optimizing the convergence time. This research indicates that the
wireless environment introduces a layer of complexity to the FL framework [9].

The practical applicability of FL in real-world scenarios is demonstrated in [10], which focuses on hierarchical
trajectory planning for narrow-space automated parking. This study highlights the vast potential of FL in
automation and robotics. An exciting direction in which neuromorphic learning and FL converge is presented
in [11], suggesting future trends where bio-inspired computing and FL might merge. A holistic view of the
advancements, challenges, and future directions in FL is provided in a comprehensive survey, making it clear
that FL is poised to reshape the landscape of machine learning [12].

FedFa presents a novel FL algorithm that utilizes a double momentum gradient approach and a specialized
weighting strategy to enhance the fairness and accuracy of model training across distributed networks [13].
By incorporating considerations of accuracy and participation frequency in the weighting of client updates,
FedFa significantly improves upon the stability of convergence and fairness in the learning process compared
to traditional methods. These advancements are demonstrated through rigid practical testing on synthetic and
real datasets.

1.2. Decentralized Reinforcement Learning: RL meets FL

Real-time processes are essential for decision-making and adaptability in dynamic environments. The Rein-
forcement Learning (RL) algorithms offer a promising approach to address these challenges by enabling agents to
learn optimal policies through interactions with their environment, enabling them to adapt to dynamic scenarios
and uncertainties. Specifically, they allow agents to autonomously learn from their experiences, making them
well-suited for tasks that require decentralized decision-making and adaptability to unforeseen situations [14].

Evolutionary dynamics provide a novel perspective on agent learning in Multi-Agent Systems (MAS). For
instance, [15] explores the application of replicator dynamics from evolutionary game theory to Q-learning, offer-
ing insights into the exploration-exploitation mechanisms in MAS, which could inform more effective consensus
strategies in aerial robotics.

Further complicating the implementation of RL in MAS, new methodologies suggest deterministic limits to
temporal difference learning, offering potential improvements in learning stability and response to environmental
dynamics in MAS [16].

In addressing the complexities of MAS, recent advances have modeled the regret minimization dynamics
across large populations, offering a robust framework to better understand and predict agent behavior in col-
laborative aerial tasks [17].

In addition to RL, incorporating FL offers a decentralized approach, further advancing learning and adapt-
ability in dynamic and distributed environments. The integration of FL with RL presents opportunities for
drones to learn and update their policies in a distributed manner collaboratively, leveraging the collective in-
telligence of the swarm [18]. The advent of the FL offers a decentralized training paradigm, allowing agents to
learn collaboratively while keeping their data localized.

The FedDSR model combines FL and Deep Reinforcement Learning (DRL) to optimize daily schedule
recommendations while maintaining user privacy, demonstrating superior performance in dynamic and privacy-
sensitive environments through integrating curriculum learning and a novel similarity aggregation algorithm [19].

The opportunity and challenge presented by IoT devices in FL are highlighted in [18], where edge com-
puting and deep reinforcement learning are combined for traffic management in IoT. The evolving nature of
FL applications, branching out from traditional use cases, is demonstrated by this work. Regarding the aggre-
gation methods in FL, robust algorithms that provide guarantees against adversarial attacks are introduced,
underscoring the security aspect of FL [20].

By integrating RL with FL, researchers envision a new era where flying agents learn and adapt in real-time,
making consensus problems more manageable. Fusing these advanced learning techniques can revolutionize
consensus mechanisms in flying multi-agent systems. The application of these integrated learning methods in
multi-agent systems presents various challenges and opportunities, particularly in formation control and security
aspects.

1.3. Spiking Neural Networks in MAS

According to recent research, event-triggering mechanisms in multi-agent systems can improve communica-
tion and computation. This approach operates with predetermined communication patterns, reducing messages
to save resources while ensuring stability and convergence [21]. While optimizing communication in multi-agent
systems, emerging methods like Spiking Neural Network (SNN) offer groundbreaking approaches to robotic
learning and control.

SNNs have gained popularity in robotics due to their ability to replicate the structure and functioning
of networks. One crucial characteristic of SNNs is their capacity to encode and handle information through
spikes, which has been demonstrated as a resource energy-saving approach [22, 23]. The versatility of SNNs is
further expanded through their ability to learn and adapt, which is particularly beneficial in complex tasks like
movement planning and nonlinear system control.

2

One of the remarkable features of SNNs is their ability to learn and adapt. Here, Reward-modulated Spike-
Timing-Dependent Plasticity (R-STDP) plays a key role. R-STDP is a bio-inspired learning rule based on the
relative timing of pre- and post-synaptic spikes. Several studies have elucidated the constraints on Hebbian
and R-STDP learned weights in spiking neurons, revealing the underlying mechanisms that make this learning
paradigm so effective [24]. Furthermore, research has demonstrated that networks trained with local rules, such
as R-STDP, can exhibit continuous learning, showcasing their potential in lifelong learning scenarios [25]. To
fully utilize the potential of SNNs, developing hybrid models and exploring various training methodologies are
crucial in enhancing their adaptability and efficiency.

In robotics, the application of SNNs has shown promise in various tasks, including movement planning within
confined operational spaces. Such applications leverage the temporal dynamics of spiking neurons to achieve
collision-free motion, demonstrating the capability of SNNs to handle complex spatial-temporal challenges [26].
Beyond movement planning, SNNs have also been employed for nonlinear systems control, providing a robust
and adaptive control mechanism [27].

The evolution of SNN has seen the emergence of models that aim to blend the advantages of machine-inspired
approaches. These hybrid systems have enhanced the adaptability of SNNs, making them more suitable for
environments encountered in robotics [28]. The advancements in classification capabilities offered by integrate
and fire models have also expanded the range of SNN applications in robotics [29]. Notably, Deep Spiking Q
Networks, which are trained directly, have shown performance in tasks highlighting the potential of integrating
deep learning techniques with SNNs to achieve human-level control [30]. Exploring direct and indirect training
methodologies for SNNs is vital, particularly in applications such as autonomous vehicle control, where end-to-
end learning is essential.

Direct and indirect training methodologies for SNNs have been extensively explored for achieving end-to-
end control of vehicles in tasks like lane keeping [31]. Furthermore, incorporating meta neurons into SNNs has
further improved their effectiveness in spatial learning tasks [32]. The adaptability of SNNs, enhanced through
reinforcement and evolutionary learning, opens new avenues in robotics, particularly motor control and changing
operational needs. The exploration of learning dynamics in neural networks, particularly in developing neural
units that can learn rules and robot dynamics, represents a significant advancement in the capabilities of SNNs.

In line with research on learning dynamics, there is a growing interest in developing networks consisting of
neural units. When combined together, these units possess the ability to learn both learning rules and spiking
dynamics, thereby enhancing the capabilities exhibited by SNN [33].

The application of reinforcement and evolutionary learning to train SNNs for motor control has opened
new avenues in the field of robotics. Such training methods use SNNs’ adaptability for the changing needs of
robots [34, 35, 36, 37]. Integrating FL with SNNs presents the synergy between decentralized training strategies
and advanced neural network architectures, offering collaborative and privacy-preserving learning opportunities.

Another frontier in applying SNNs in robotics is integrating FL. The FL has been combined with SNNs
to achieve collaborative learning across multiple agents while harnessing the efficiency of SNNs in distributed
settings [38].

Several challenges emerge in exploring integrating SNNs with FL. The transmission of SNN-specific parame-
ters, such as spike timings, introduces considerable communication overhead in the FL setup [39]. Additionally,
aggregating SNN models from diverse devices in a federated context is non-trivial, often leading to challenges
in achieving effective global learning. The unique dynamics of spiking neurons, coupled with the distributed
nature of FL, can also result in training instabilities. Lastly, the inherent complexity and potential size of SNNs
raise concerns about memory requirements and the feasibility of model aggregation in distributed scenarios [40].

The provided literature has set the stage by exploring integrating algorithms such as SNN and FL in
MAS, underscoring their key roles in enhancing robotics’ capabilities. These methods facilitate efficient data
handling and learning in decentralized settings and address the critical challenge of achieving consensus among
autonomous agents in dynamic environments. The paper will elaborate on these themes, presenting novel
methodologies for improving learning processes and network stability and discussing the practical challenges
and solutions encountered in real-world implementations.

1.4. Contributions

This paper employs the SNN model to train a group of swarm agents that follow a leader. Each agent has
its own SNN, trained independently using the R-STDP algorithm. Each agent receives position data from the
agents nearby. The goal is for each agent to keep a commanded distance from the leader agent and the other
agents in the group. The encoding and decoding processes for the input and output layers of the SNN are
considered fuzzy encoding, and a novel method is introduced to stabilize the network dynamics considering the
reward function. This work presents several key contributions:

• The paper presents a comprehensive method for stabilizing and enhancing the learning process in SNN.
This method focuses on controlling the unbounded growth of synaptic weights in SNNs, utilizing a strategy
that dynamically adapts to changes in reward conditions and coefficients. It introduces a decay rate and

3

learning rate adjustment based on the status of synaptic weights and enhances the responsiveness of the
SNN weights to reward change.

• In terms of advancements in FL with R-STDP, the paper addresses the FL challenges in the R-STDP
framework. It introduces an event-triggered mechanism for model publishing and receiving within the
network, improving network traffic. Additionally, the paper implements a novel weighted aggregation
method on the server. This method calculates weights based on the models’ arrival time, effectively
tackling the asynchronous issues in FL.

The remainder of this paper is structured as follows: Section 2, titled “Preliminaries,” provides an overview
of the FL algorithm as it applies to consensus flying, including a discussion of the neuron model employed for
training and key parameters for the algorithms proposed. Section 3, “Proposed Method,” establishes the basis
of our investigation and examines the training algorithm and learning through R-STDP. This section presents
our innovative approach to weight stabilization called Reward-Modulated Competitive Synaptic Equilibrium
(R-CSE) method, outlines the network architecture designed for our study, and discusses the application of
FL in achieving consensus flying, with a comprehensive explanation of how SNN models are aggregated on a
central server. Section 4, “Results and Discussion,” presents the outcomes of various simulations and investigates
the effects of reward change within FL. Finally, Section 5 concludes the paper by summarizing our principal
discoveries and contemplating the implications of our research.

2. Preliminaries

2.1. Consensus Flying Problem

The “Consensus Flying Problem” deals with ensuring drones can work together in real-time to agree on
their flight paths and positions. When many drones are close together, like in swarms, avoiding crashes is vital.
Advanced algorithms and communication methods are needed so drones can exchange information and handle
changing situations and unexpected obstacles.

As shown in Figure 1, a swarm of agents (follower drones) flies around a leader. The leader is controlled
from a remote base station, and the swarm agents should learn to fly safely with the leader. The leader sends
its position to all agents, and each agent only sees two neighboring agents. The swarm aims to learn how to
keep a commanded distance from each other and the leader. The commanded distance is provided from the
leader. Each agent uses the onboard sensors to find the distance and line of sight from neighboring agents.

Leader Drone Follower Drone

Global Model

Commanded distance

from Leader

Local Model 1

Local Model 2

Local Model 3

Local Model n

C
o

m
m

a
n

d
ed

 d
is

ta
n

ce

fr
o

m
 o

th
er

 a
g

en
ts

Figure 1: The central server (the leader) and the surrounding follower agents (white drones). The follower agents learn to fly in
a formation to maintain the commanded distance. The local models trained individually by follower agents are sent to the leader.
The leader aggregates the models and sends back the global model for another round of training on the follower agents.

The follower agents are equipped with an SNN, and their learning algorithm incorporates R-STDP and FL.
Each follower agent trains a local network (Mn

loc) using R-STDP and sends its model to the leader as the central
server. The leader aggregates models and sends back the global model (MGlobal).

4

2.2. Neuron Model

The Leaky Integrate-and-Fire (LIF) neuron model provides a simplified yet powerful representation of neu-
ronal dynamics. Fundamentally, using basic electrical circuit elements, the LIF model captures the behavior
of a neuron’s membrane potential in response to incoming currents. It incorporates membrane potential decay,
realistically simulating how neurons respond to inputs with high frequencies. This enhances the model’s accu-
racy in predicting neuronal behavior under dynamic conditions, offering a more precise tool for neuroscientific
research and computational simulations. Mathematically, the LIF model is characterized by a linear differential
equation that describes the voltage response to a current input as follows [41],

τm
dVm(t)

dt
= Vm(t) + EL + RmIe(t) (1)

where τm is the membrane time-constant, Vm is the membrane potential, EL is the reversal potential, Rm is
the membrane resistance, and Ie(t) is the input current to the neuron. When the neuron’s potential reaches the
threshold potential (Vthreshold), it spikes, and the potential immediately returns to the resting potential (Vrest).

For scenarios with constant input current, the Inter-Spike Interval (tisi) can be analytically determined by
separating variables in the governing differential equation. This allows for the derivation of the tisi as follows [42],

tisi = τm ln

(
El + RmI − Vrest

El + RmI − Vthreshold

)
(2)

It is imperative to note that this solution is dependent on an input current magnitude that induces a
transition of the membrane potential from Vrest to Vthreshold. Through this analytical framework, the LIF
model provides insights into the modulation of neuronal spiking dynamics based on constant input currents.

The neuron does not fire when the input current is minimum and tisi approaches infinity. This occurs when
the input current is insufficient to drive the membrane potential to the threshold potential from its resting
potential. By setting the tisi to infinity, one obtains the condition:

El + RmI − Vthreshold = 0 (3)

or

Imin =
Vthreshold − EL

Rm
(4)

where Imin is the minimum input current that makes the neuron reach the potential below the threshold voltage.
Conversely, the lowest possible tisi defines the maximum input current. In this paper, we consider the tisi to
be one sample time ∆t. By considering ln(1 + z) ≈ z, one can derive the maximum input current that would
drive the neuron to spike on every sample time as follows,

Imax =
τm (Vthreshold − Vrest)

∆tRm
+

Vthreshold − EL

Rm
(5)

These derived equations determine the range of operation for neurons and establish the boundaries for the
maximum weights in the SNN. Specifically, positive synaptic weights indicate the limits of excitement that a
neuron can generate. In this context, the minimum input current (or synaptic weight) represents the stimulating
influence a neuron can exert without triggering an action potential. In contrast, the maximum input current
signifies the most powerful stimulating influence possible. Conversely, considering weight values, these currents
reflect the minimum and maximum inhibitory effects. In this case, the minimum and maximum input currents
determine how much a neuron can inhibit other neurons from firing.

3. Proposed Method

3.1. Network Structure

This paper assumes that each agent detects only two neighboring agents besides the leader. The information
obtained from other agents includes the Line-of-Sight (LOS) angle and the distance. Each agent’s neural
network consists of three sub-layers in the input layer, as shown in Figure 2. Two sub-layers correspond to
the two neighboring follower agents (F1 and F2), and the third is dedicated to the leader (L). Inputs for these
sub-layers are encoded using the Gaussian Receptive Fields (GRF) that use fuzzy membership functions. The
network uses the difference between current and commanded distances within the swarm (rcmd) and between
followers and the leader (Rcmd) to stimulate input neurons.

Every input sub-layer is split into two parts. The first part deals with distances greater than the commanded
distance, while the second focuses on the space between the agent and the commanded distance. Within each
part, the LOS angle is encoded with fuzzy membership functions. The difference between the current and

5

mohammadtayeferamez
Highlight

𝑟
𝑐
𝑚
𝑑

𝜑
1

𝑟1

𝐹2𝑆 Converter

Fuzzy Encoder

𝑟
𝑐
𝑚
𝑑

𝜑
2

𝑟
2

𝐹2𝑆 Converter

Fuzzy Encoder

𝑅
𝑐
𝑚
𝑑

𝜑
𝐿

𝑅
𝐿

𝐹2𝑆 Converter

Fuzzy Encoder

Random action

for x-direction

Random action

for y-direction

Spike Decoder

for x-direction

Spike Decoder

for y-direction

Figure 2: SNN structure with encoding and decoding layers. Each sub-layer consists of a fuzzy encoder and the F2S Converter,
with the output layer receiving inputs from synaptic weights and a random action selector. During the training phase, the output
layer receives input only from the random action selector, which then shifts to synaptic weight inputs after the training.

commanded distance is represented as the error. We transform this difference into an amplitude value using
the tanh function so that it is bounded between 0 and 1. An error of zero leads to an amplitude of zero, and
as the error increases towards infinity, the amplitude approaches one. Consequently, the encoding function for
the input layer is expressed as follows,

µI(ϕi, ri) = |tanh(r − ri)| · exp

(
− (ϕi − ζ)2

2σ2

)
(6)

where ζ and σ are the Gaussian membership functions’ center and standard deviation. The ri is the distance
from the corresponding agent, ϕi is the LOS angle, and µI is the vector of the membership degrees. Here, r is a
placeholder that can either represent rcmd or Rcmd, depending on the context. The firing strengths from fuzzy
encoders are then converted to the spiking input based on the neuron model as follows [43],

Isub−layer =
(
Imax − Imin

)
µI(ϕi, ri) + Imin (7)

or

Isub−layer =
τm (Vth − Vres)

∆tRm
µI(ϕi, ri) +

Vth − El

Rm
(8)

The encoding process is shown in Figure 3. The Fuzzy-to-Spiking (F2S) block uses (8) to calculate the
inputs for the associated sub-layer.

6

Gaussian

Receptive

Fields

F2S Converter

Figure 3: The fuzzy encoding principle for the input sub-
layer.

𝐼𝑖 (𝑛𝐴)

𝑡𝑖𝑚𝑒 (𝑚𝑠)

𝑑𝑉𝑖 𝑡

𝑑𝑡
=

1

𝜏𝑚

𝐸𝑙 − 𝑉𝑖 𝑡 + 𝑅𝑚𝐼𝑖(𝑡)

𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥

pre-synaptic

neurons

post-synaptic

neurons

pre

post

𝜏

𝑑𝑉𝑜 𝑡

𝑑𝑡
=

1

𝜏𝑚

𝐸𝑙 − 𝑉𝑜 𝑡 + 𝑅𝑚𝑊𝑖−𝑜 (𝑡)

Figure 4: Input and output of the SNN

The output layer has two sub-layers, and each sub-layer has two neurons. The first sub-layer determines the
∆x, and the second one determines ∆y. The first neuron of the sub-layers is for negative values, and the second
one is for positive values. Each neuron is associated with the output sign, and the magnitude of the ∆x and
∆y is encoded into the output sub-layers based on the minimum and maximum synaptic weights. Equation (8)
is used to encode the magnitude of the random action into the output sub-layers. The only difference is that a
function called µO is used to normalize the maximum step between 0 and 1 as follows,

µOx =
∆x

∆Xmax
(9)

µOy =
∆y

∆Ymax
(10)

where ∆x and ∆y are selected actions, and ∆Xmax and ∆Ymax are maximum steps (displacements) in X and
Y directions. Two random actions, one for ∆x and one for ∆y, are generated for the training process.

The decoding of the spiking output is determined by the difference in the firing rates of the output neurons
within each sub-layer. Let us denote f(t) as the activity of the output neurons that control the movement in
the x and y-directions:

f(i) =

{
1 if the neuron spikes at time i,

0 otherwise,

The equation for decoding this activity can be expressed as:

∆xdecoded =

[
t∑

i=t−∆T

(
fx+(i) − fx−(i)

)]
∆Xmax (11)

where fx+(i) and fx−(i) are the activities of the two output neurons associated with the x-direction. A similar
process is applied for decoding in the y-direction:

∆ydecoded =

[
t∑

i=t−∆T

(
fy+(i) − fy−(i)

)]
∆Ymax (12)

where ∆T is the time window the network updates weights.
One of the challenges in robotic applications is ensuring smooth transitions in actions to prevent abrupt and

potentially harmful changes. Therefore, the recursive random number generation method is used to produce
correlated random numbers. This method ensures that during training, the current displacements of the robot

7

are influenced by its previous displacements, leading to smoother transitions. The recursive random number
generation can be formulated as,

⨿t = γ · ⨿t−1 + (1 − γ) · Υt (13)

where ⨿t is the random action at time t, γ is a correlation coefficient, and Υt is a random number drawn from
a standard distribution (e.g., Gaussian) at time t. This equation ensures that the random action at any given
time t is a weighted combination of the previous action and a new random number.

3.2. Training algorithm

The R-STDP algorithm is a learning technique inspired by biological processes in the brain, which is be-
lieved to be fundamental to certain learning processes [44]. The algorithm’s core principle is that when a
pre-synaptic neuron activates just before its post-synaptic counterpart, the synapse’s strength connecting them
should increase, and vice versa if the post-synaptic neuron fires first.

Within the SNN framework, pre-synaptic neurons are the input neurons, and post-synaptic neurons function
as the output neurons. The function STDP (τ) can be defined as the firing timelines of both input and output
neurons [45] as,

STDPkl(τ) = A exp

(
− τ

τs

)
for τ ≥ 0 (14)

where A stands as the exponential function’s amplitude, and τ is the difference between the firing time of the
input neuron (k) and output neuron (l). Meanwhile, τs acts as the time constant, setting the decay rate for the
R − STDP function. Should τs approach infinity, the exponential function converges to 1, neutralizing time’s
effect on the R− STDP function.

The adjustment of synaptic weights follows the given equation:

Ẇkl(t) = STDPkl(τ)R(t) (15)

where Ẇkl(t) denotes the rate of change of the synaptic weight that connects neurons k and l. This weight
determines the input that the post-synaptic neuron receives upon the spiking of its pre-synaptic neuron, which
is quantified as I(t). The term R(t) represents the reward that is received at time t.

The reward functions used in this paper are as follows,

RFj
Fi (t) = CFj

Fi

[
rFj
Fi (t− 1) − rFj

Fi (t)
]
tanh(rFj

Fi (t) − rcmd) (16)

RL
Fi(t) = CL

Fi

[
rLFi(t− 1) − rLFi(t)

]
tanh(rLFi(t) −Rcmd) (17)

where, RFj
Fi , r

Fj
Fi , and rcmd denote the reward, distance, and commanded distance between two i and j follower

agents, respectively. Similarly, RL
Fi, r

L
Fi, and Rcmd represent the reward, distance, and the commanded distance

between the follower agent i and the leader (L), respectively. The terms CFj
Fi and CL

Fi are the reward coefficients

and the tanh(rFj
Fi (t) − rcmd) and tanh(rLFi(t) −Rcmd) functions determine the reward’s sign according to the

agents’ relative distance and the commanded distance. The expressions rFj
Fi (t−1)−rFj

Fi (t) and rLFi(t−1)−rLFi(t)
specify the magnitude of the instantaneous reward.

If an agent finds itself farther away from the commanded distance than a neighboring agent or the leader, it
will be rewarded positively for decreasing its distance. Conversely, moving closer results in a negative reward if
the agent is within the commanded distance from a neighboring agent or the leader. This system is designed to
encourage the maintenance of a commanded distance: being too far away from the commanded distance invites
a penalty. At the same time, positive reinforcement is given for closing the gap between the current distance
and the commanded distance.

One of the challenges in R-STDP is the unbounded growth or decay of synaptic weights, which can impede
effective learning in neural networks. The following section introduces a novel weight-stabilization method to
address this challenge and enhance the algorithm’s applicability.

3.2.1. Weight Stabilization using Reward-Modulated Competitive Synaptic Equilibrium (R-CSE)

Controlling the excessive increase of synaptic weights in SNNs is important to maintain network resilience
and function. If not controlled, this growth can lead to saturation, affecting the network’s ability to learn and
adapt. When the network receives fuzzy sets of firing strengths as input, the synaptic weights grow in a pattern
influenced by the Gaussian function’s shape used for fuzzy encoding. Imposing a limit on synaptic weights
disrupts this growth pattern over time, and eventually, all the synaptic weights reach the maximum. Weight
normalization, while preventing excessive growth in one part of the network, can inhibit overall growth; when
a synaptic connection reaches its maximum, its activation subsequently diminishes other weights.

8

mohammadtayeferamez
Highlight

mohammadtayeferamez
Note
This section revised based on the current version of the proposal.

Traditional methods like L1 regularization and weight decay employ a constant decay rate, which can slow
the network’s responsiveness to changes in rewards. Alternatively, a more advanced approach, the Bienenstock,
Cooper, and Munro (BCM) method, dynamically adjusts both a threshold and a decay rate in response to
input variations. However, this method does not provide a control mechanism for the fuzzy inputs. In this
chapter, we introduce a method called R-CSE to manage the unbounded growth of synaptic weights while
maintaining the gradual change in the synaptic weights formed due to differences in firing strength from fuzzy
membership functions. Our method also dynamically adjusts the network when the reward changes by adjusting
the maximum synaptic weight based on the reward.

The enhanced version of the R-STDP method considering the control mechanism from R-CSE algorithm is
expressed as follows,

Ẇ (t) = α⊙ STDP(τ) ⊙R(t) −Θ⊙ sgn(W) (18)

where ⊙ is the Hadamard product, α is the learning rate matrix, and Θ is the decay rate matrix. The primary
distinction between the R-CSE method and the approach detailed in Section 2.4 lies in the decay rate, which
allows the learning system to remain adaptable after the learning phase, and in the learning rate, which is
represented as a matrix rather than a scalar value affecting all synaptic weights uniformly. These modifications
enhance the learning algorithm’s flexibility in responding to reward changes and provide greater control over
synaptic weight adjustments.

Let us define S as the set of input and output neurons that fired at time t in one of the network sections. If
we consider WS

max(t) as the maximum weight among the firing neurons in set S, then we can characterize the
learning rate using a Sigmoid function. The learning rate value (αS(t)) gradually transitions from 1 to 0 as the
learning process advances, as explained below:

αS(t) =
1

1 + exp
[
1
ϵ (|WS

max(t)| − ΨS)
] , (

ΨS =
RS

max

RG
max

Imax

)
(19)

where RS
max is the maximum reward in the network section (e.g., max(RFj

Fi)), RG
max = max(RFj

Fi ,RL
Fi), and

ϵ is a small positive number that controls the curvature of the function around WS
max(t) = ΨS . This model

determines the learning rate by the highest synaptic weight among the active input and output neurons. This
mechanism is similar to the “winner-takes-all” approach. When a synaptic connection reaches its weight limit,
it prevents further changes in the adjacent synaptic weights.

The network contains a variety of reward functions, each with its own maximum and minimum values. The
highest reward value in a specific area of the network sets the limit for the synaptic weight in that area. The
synaptic weight limit is linked to the ratio of the local maximum reward (RS

max) to the global maximum reward
(RG

max). As a result, the network section with the highest local maximum reward (RS
max = RG

max) attains

the maximum allowable synaptic weights because
RS

max

RG
max

= 1, while sections with lower local maximum rewards

reach only a proportional fraction of the maximum weight. The adjustment of the learning rate transforms into
a competitive algorithm that modifies the growth rate of individual synaptic weights by considering network
parameters, like reward and maximum synaptic weight.

A significant challenge in learning algorithms is their capacity to adapt to changes in rewards. Commonly,
once the learning rate reduces to zero, weight adjustments stop. To address this, a variable decay rate is
introduced to prevent weights in each network section from indefinitely remaining at their peak values. In our
method, the decay rate is represented as a matrix, and it is calculated using the SoftPlus function, enabling it
to adjust according to the current stage of learning. This method ensures that weight modifications continue
to respond effectively to changes in the learning environment.

This chapter defines the decay rate as a function of the maximum synaptic weight among neurons in the set
S. This approach is designed to address a critical aspect: when the maximum synaptic weight in S reaches its
peak (|WS

max(t)| = ΨS), it is essential that the learning rate remains above zero. This condition is necessary to
allow weight change and prevent the learning rate from stagnating at zero ((18)). Simultaneously, the learning
rate must not exceed the maximum acceptable rate of weight change, which is A × RG

max. When the reward
coefficients change after training, it can cause |WS

max(t)| to exceed ΨS for set S. With these considerations, we
propose that the decay rate should be set to A/λ × RG

max when |WS
max(t)| = ΨS and increase to λA ×RG

max

when |WS
max(t)| = 2ΨS , where λ is a coefficient that controls the rate of decay when |WS

max(t)| > ΨS .
By applying the mentioned condition and solving for the SoftPlus function, the decay rate function can be

obtained as follows,

ΘS =

(
η

β

)
log
(
1 + exp

[
β
(
|WS

max(t)| − ΨS)]) (20)

where η =
ARG

max ln (2λ
2
−1)

λΨS log (2)
is a scaling parameter that can adjust the output scale of the function, and β =

9

ln (2λ
2
−1)

ΨS controls the curvature of the function. A higher β makes the SoftPlus function approach a step
function, making it closer to the binary behavior. Conversely, a smaller β makes the function smoother and
more gradual. Equation (20) can be represented as,

ΘS =

(
ARG

max

λ log (2)

)
log

(
1 + exp

[(
ln (2λ

2 − 1)

ΨS

)(
|WS

max(t)| − ΨS)]) (21)

The choice of setting the decay rate to λA×RG
max when |WS

max(t)| = 2ΨS is based on the feature of reward
coefficients. Specifically, when the reward coefficients in (16) and (17) increase, leading to new condition where
RS

max or RG
max change, the |WS

max(t)| is allowed to increase. Conversely, a decrease in the reward coefficient,
resulting in |WS

max(t)| > ΨS , necessitates a higher decay rate to reduce the |WS
max(t)| back to ΨS .

When |WS
max(t)| < ΨS , the reward adjusts the synaptic weights, and there is no weight decay to disturb the

learning process. When |WS
max(t)| > ΨS , the decay rate changes the synaptic weights and brings the maximum

weight to the reward zone, where |WS
max(t)| < ΨS and the networks responds to reward change.

Lemma 3.1. The R-CSE method is asymptotically stable in its equilibrium point WS
max(t) = ΨS .

Proof. We consider the dynamical system given by the equation of synaptic weights for WS
max(t) ≥ 0 that

receives a positive reward (R(t) > 0) as,

ẆS
max(t) =

1

1 + exp
[
1
ϵ (WS

max(t) − ΨS)
]STDP (τ)R(t)

−
(
ARG

max

λ log (2)

)
log

(
1 + exp

[(
ln (2λ

2 − 1)

ΨS

)(
WS

max(t) − ΨS)]) ,

(22)

To assess the stability of this system around the equilibrium point, we introduce a Lyapunov function
candidate V (z), where z = WS

max(t) − ΨS . A common choice for such analyses is a quadratic function of the
deviation from the equilibrium:

V (z) =
1

2
z2. (23)

This positive definite function has a minimum at the equilibrium point, satisfying the essential criteria for a
Lyapunov function. The derivative of V (z) with respect to time, V̇ (z), is then calculated to determine the rate
of change of the Lyapunov function along the trajectories of the system:

V̇ (z) = zż (24)

Substituting ẆS
max(t) from (22) into the above expression, we have,

V̇ (z) = z ×

[
1

1 + exp
[
1
ϵ (z)

]STDP (τ)R(t) −
(
ARG

max

λ log (2)

)
log

(
1 + exp

[(
ln (2λ

2 − 1)

ΨS

)
(z)

])]
(25)

A negative V̇ (z) indicates that the system’s energy decreases over time, concluding that the equilibrium point
is asymptotically stable. Conversely, a positive V̇ (z) in any region would suggest the presence of instability or
regions of attraction that do not encompass the entire state space.

In analyzing the system’s stability, we focus on the behavior of the derivative of the Lyapunov function, V̇ (z),
across different regions of z. We decompose the dynamics of ż into its constituent components to systematically
analyze the stability conditions. We assess the relative magnitudes of the two main components influencing
V̇ (z):

1. The first term, represented as 1

1+exp [1
ϵ z]

STDP (τ)R(t), denotes the effect of learning rate and is inherently

positive when the synaptic connection receives positive reward consistently.

2. The second term,
(

ARG
max

λ log (2)

)
log

(
1 + exp

[(
ln (2λ

2
−1)

ΨS

)
z

])
, captures the dynamic decay rate of synaptic

weights, which is governed by the SoftPlus function.

Analysis for z < 0:

In this region, we observe that the term exp

[(
ln (2λ

2
−1)

ΨS

)
z

]
goes to zero and makes the term inside the log

function go to 1. This implies that the contribution of this term to ˙V (z) is negligible in this region. Moreover, the

10

first term remains positive throughout, and given that it is multiplied by z (which is negative in this region),
the overall contribution to V̇ (z) is negative. Consequently, V̇ (z) is negative for z < 0, indicating that any
perturbations from the equilibrium in this region will decrease over time, thereby contributing to the system’s
stability.

Analysis for z > 0:
For this region, the magnitude of the second term significantly exceeds that of the first term. This pre-

dominance is critical as it is associated with a negative sign in the V̇ (z) equation. Therefore, the negative
contribution of this component ensures that V̇ (z) remains negative throughout this region. It indicates that
any deviation from the equilibrium state results in the system’s energy decreasing over time, leading to the
conclusion that the equilibrium point WS

max(t) = ΨS is asymptotically stable for z > 0.

Reward changes

Oscillations around

the equilibrium

point

Figure 5: Synaptic weight change for λ = 5,ΨS = 15.5,
and ARG

max = 1.

𝑊𝑚𝑎𝑥
𝑆 𝜓𝑆

𝛼𝑆𝑆𝑇𝐷𝑃 (𝜏)ℛ𝑆(𝑡) 𝛩𝑆sgn(𝑤𝑚𝑎𝑥
𝑆)

𝛩
𝑆

𝛼
𝑆

Figure 6: Reward-based learning rate and decay rate functions.
In the blue region (active learning rate), the reward adjusts the
weights, and in the red region (active decay rate), the RCSE
method controls synaptic growth.

Figure 5 demonstrates the performance of the R-CSE when it regulates the synaptic weights to prevent
unbounded growth. The red dotted line represents the value of ΨS , which is derived from the maximum reward
value of the corresponding network section. As shown in Figure 5, the synaptic weight oscillates around ΨS , and
when it drops below ΨS , the learning rate is set to 1 by (19). This allows any changes in the reward function
to be applied to the synapse.

According to Figure 6, when WS
max ≤ ΨS , synaptic weights in set S increase. If the reward changes, ΨS

also changes. Depending on the current value of WS
max, the R-CSE either increases or decreases the synaptic

weights within set S.

11

mohammadtayeferamez
Highlight

mohammadtayeferamez
Highlight

𝑤3

𝑤1 𝑤2

𝑤3

𝑤1

𝑤2 𝑤1 = 𝑤𝑚𝑎𝑥
𝑆

𝑤3

𝑤2

Time

𝛹𝑆

𝑖1

𝑖2

𝑖3

𝑖4 𝑜1

𝑖1 − 𝑜1

𝑖2 − 𝑜1

𝑖3 − 𝑜1

𝛼𝑆 = 0

𝑜1

𝑜2

𝑖2𝑖1 𝑖3

Figure 7: RCSE working principle in inhibiting the adjacent synaptic connections. The heatmap shows the synaptic weight matrix.
Neurons have different firing strengths due to the difference in fuzzy membership values, which affects the increase or decrease rate
and shapes the patterns in the synaptic weight matrix.

Figure 7 shows how the maximum synaptic weight of the active synapses in set S stops the adjacent synaptic
connections’ growth by setting the learning rate of the set to 0.

3.2.2. Federated Learning for Consensus Flying

In FL, a key challenge is centralizing various models on one server. This process must effectively combine
these models to create a unified global model without compromising the specific adjustments made to each
model. A critical strategy involves choosing models that contain substantial information. Another significant
aspect is determining the frequency of model aggregation. Shorter intervals between aggregations can enhance
learning efficiency but may strain network resources, particularly as the number of participating agents and
devices grows. Conversely, longer intervals might slow down the learning process due to delayed updates of the
global model. This section proposes an aggregation method for SNN. Our focus is on reducing network usage
and energy consumption.

This approach allows clients to upload their local model updates at different times rather than synchronously.
Such a method is particularly beneficial in reducing the negative impacts of device heterogeneity, which can
include varying computational capacities and network connectivity among devices [46]. In traditional FL setups,
delays caused by poor network signals or unexpected client crashes can significantly prolong the time the server
takes to receive updates from all clients. By adopting asynchronous aggregation, the server processes and
aggregates models as they are received without synchronizing with all clients. This strategy accelerates the
training process, making FL more efficient and adaptable to diverse client conditions.

Our proposed FL model aggregation algorithm aims to establish an efficient and event-triggered system for
global and local model publishing. This system relies on the similarity between consecutive global and local
models and publishes updates only when significant changes are detected, thus avoiding redundant updates
and improving overall efficiency. Unlike the uniform model updates in FedAvg [47, 48], our approach allows
individual agents to evaluate and send their local models based on a similarity threshold with the global model,
thereby enabling a potentially more effective update process. Our aggregation strategy emphasizes similarity
metrics for model updates, which is not commonly emphasized in methods like FedNova [49], adding a layer of
context sensitivity to our approach.

In our approach, considering the difference in agents’ neural network parameters and maximum and minimum
synaptic weights, the weights are normalized to align them on a uniform scale ranging from -1 to 1. This
normalization process makes the neural model values comparable across the network. Based on the maximum

12

mohammadtayeferamez
Highlight

mohammadtayeferamez
Highlight

and minimum synaptic weights outlined in (5), and taking into account the highest excitation (Imax) and
inhibition (−Imax), the normalization of synaptic weights is performed as follows:

W k(t) =
1

Imax
k

[Wk(t)] (26)

where Wk(t) represents the matrix of synaptic weights, W k(t) denotes the normalized synaptic weight matrix
for agent k ∈ {1, 2, 3, ..}, and Imax

k is the maximum synaptic weight for agent k.
The global model on the server (Leader) is then computed using a weighted average,

WG(t) =

∑N
k=1 ωk.W k(t)∑N

k=1 ωk

(27)

where WG(t) is the global normalized model on the central server, N is the number of agents, and ωk is the
aggregation weight for each SNN model, defined as,

ωk =
1√
mn

∥W k(t)∥F exp

(
− t− Tk

τcs

)
(t ≥ Tk) (28)

where the term ∥.∥F is the Frobenius norm, and m and n are the dimensions of the matrix W k(t), used for
normalizing the Frobenius norm. Tk indicates the time at which agent k last transmitted its local model to the
central server, and τcs is a time constant that reduces the weight to zero if there is no recent update from the
agent.

Both agents and the central server employ an event-triggered mechanism for transmitting local and global
models. Throughout the training phase, each agent calculates the Euclidean distance between the most recent
global model from the central server and its current synaptic weights matrix, as follows,

Da(W k(t),WG(Tcs) =
1

2
√
mn

√√√√ m∑
i=1

n∑
j=1

(aij − bij)2 (29)

where Da is the Euclidean distance on the agent side, Tcs is the time when the central server published the
global model, and aij and bij are elements of the latest global model and the current local model, respectively.
If this distance exceeds a certain threshold, set between 0 and 1, the agent transmits its model to the central
server.

If the Da on the agent k reaches the threshold and it does not receive any update from the server, the agent
sends its model to the server, and then it calculates the Da between current synaptic weights W k(t) and the
model it recently sent to the server W k(Tk) until it receives a new model update from the central server.

The central server follows a similar procedure as the agents, evaluating the distance DG between the current
and recently published model at time Tcs,

DG(WG(t),WG(Tcs)) =
1

2
√
mn

√√√√ m∑
i=1

n∑
j=1

(aij − bij)2 (t ≥ Tcs) (30)

Incorporating the proposed FL method with the R-CSE algorithm, the modified R-STDP equation can be
represented as follows,

Ẇk(t) = (1 − δ(t− Tcs)) [α⊙ STDP(τ) ⊙R(t) −Θ⊙ sgn(Wk(t))] + δ(t− Tcs)I
max
k

(
WG(t) −W k(t)

)
(31)

where δ is the Dirac delta function. Algorithm 1 shows the step-by-step implementation process of the proposed
method.

13

Algorithm 1 High-Level Algorithm for the Proposed FL Algorithm

Require: Initialization of Central Server and Agents
Ensure: Updated Global Model on the Central Server and Local Models on Agents
1: Initialize the agents and Central Server with default parameters for model publication threshold, Euclidean

distance, and model publish status
2: Initialize the Global Model on the Central Server
3: if t is greater than 0 then
4: Normalize synaptic weights of local models using (26)
5: Aggregate models from all agents at the Central Server using (27)
6: Calculate the DG between the current and previous global models on the Central Server using (30)
7: if DG > the Central Server’s threshold then
8: Publish the global model
9: set Tcs = t

10: end if
11: for each Agent in the network do
12: if Central Server publishes a new global model then
13: Update the local model of the Agent with the global model using (31)
14: else
15: Agents evaluate their local models against the latest global model (Da) using (29)
16: if Da > the Agent’s threshold then
17: Send the model to the Central Server
18: set Tk = t
19: end if
20: end if
21: end for
22: end if

The proposed algorithm allows agents to communicate less often and save energy. It only sends essential
updates to the Central Server, which helps when many agents have different SNN models and communication
interfaces. This method reduces unnecessary data transmission, making the whole system more efficient.

4. Results and Discussion

In this section, we conducted a numerical simulation to validate the performance of the proposed method.
The simulation involves a group of five agents flying around a leader who is moving in a circular path. Initially,
a scenario without implementing FL was conducted to evaluate the performance of the SNN in achieving
coordinated flight. During this phase, the effect of the change in reward was simulated to examine the R-CSE
method. In the second part of the simulation, the proposed FL aggregation algorithm is used, where the leader
agent acts as a central server. Finally, the algorithm was tested both before and after changing the rewards.

4.1. Simulation without FL

In this simulation, we modeled five agents, each equipped with its own SNN model, capable of reaching a
maximum speed of 1 m/s. The architecture of each agent’s neural network included 72 input neurons. Since
each agent was designed to detect three distinct objects within its environment, the input layer was organized
into sub-layers, with 24 neurons dedicated to each object. The network’s output layer comprised 4 neurons,
divided equally to represent ∆x and ∆y movements. The SNN model in the simulation is a fully connected
network, and the parameters of the LIF neuron are also represented in Table 1.

Table 1: Parameter values for LIF neuron model [50]

Parameter Value Description
Rm 40 MΩ Membrane Resistance
τm 30 ms Membrane time constant
El -70 mV Resting potential
Vres -70 mV Reset potential
V0 -70 mV Initial membrane potential
Vth -50 mV Threshold membrane potential

The R-STDP mechanism updated synaptic weights at 10 ms intervals. During these intervals, the learning
algorithm adjusted the agent’s states based on received data from other agents and the leader while simultane-
ously generating random outputs as part of an exploration strategy.

14

Table 2: Simulation Parameters

Parameter Value Description

∆T 10 ms Weight and state update sample time

τs 2 ms Time constant for R-STDP

A 1 Amplitude in R-STDP function

λ 5 Decay rate coefficient

∆x and ∆y 0.01 m Max step per ∆T

σ 0.5 Gaussian function’s std. deviation

∆t 1 ms Minimum inter-spike interval

Imin 0.5 Lower bound of synaptic weight

Imax 15.5 Upper bound of synaptic weight

γ 0.95 Correlation Coefficient

Table 2 shows the simulation parameters. The simulation was done in a 10 m by 10 m area, and the leader
followed a circular path centered at (5,5) with a 2.5 m radius and a 0.1 m/s speed.

To monitor swarm performance, the minimum and maximum distances of each agent from other agents
and the minimum and maximum distances of the swarm from the leader were measured. Figure 8 shows the
definition of the distances.

Min F2L

Max F2L

Max F2F

Min F2F

Leader

Agent

Agent

Agent

Figure 8: Measured distances used for evaluating
swarm flight performance and collision detection.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Leader Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Figure 9: Agents’ trajectory during the test phase

The simulation included two phases. During the initial phase, the objective was for the agents to learn to
maintain the commanded distance from each other and the leader. This phase took 600 seconds for training,
and the reward coefficient among followers (CFj

Fi) was set at 0.02, while the coefficient between followers and the
leader (CL

Fi) was set at 0.07. These parameters were derived from a series of numerical simulations. A higher
value of CL

Fi signifies an increased emphasis on the leader in the learning process, which means that the distance
to the leader is more important than the commanded distance between agents.

Figure 10 shows the simulation results for the R-CSE method. According to the results, the agents rapidly
aligned around the leader within 6.89 seconds, and the maximum distance was reduced from 7.632 meters to
the target distance of 2 meters. The swarm completed the formation around the leader in approximately 8.94
seconds, avoiding collisions.

As mentioned in section 3, the input encoding uses the error between current and commanded distance.
Therefore, one of the advantages of the encoding and learning method in this paper is that the learned policies
are independent of the commanded distance. The commanded distance can be changed after training since the
SNN uses the distance error.

Another key feature of our SNN implementation is that when the agent successfully aligns with the com-
manded distances, resulting in zero error, the input neurons cease to spike. This characteristic leverages the
sparsity of spikes in SNNs, significantly reducing energy consumption, as the spike is the primary energy con-

15

0 5 10 15 20 25 30
Time (s)

0

2

4

6

8

10

12
D

is
ta

nc
e

(m
)

Min F2F
Max F2F
Min F2L
Max F2L
Commanded Radius

Figure 10: Variation of distances within the swarm during the
test phase

0 10 20 30 40 50 60
Time (s)

0

2

4

6

8

10

12

D
is

ta
nc

e
(m

)

Min F2F
Max F2F
Min F2L
Max F2L
Commanded Radius

Figure 11: Adaptive response to commanded distance adjust-
ments: dynamic reconfiguration during the test phase

sumer in these networks [51]. This absence of spiking under zero-error conditions demonstrates the network’s
precision and operational efficiency, as it minimizes unnecessary computational activity and power usage. While
quantized ANNs are beneficial in reducing model size and computational demands, they often face challenges
in maintaining accuracy due to reduced precision, which can be critical in complex decision-making contexts.

Figure 11 shows the agents’ response to changes in commanded distance after training. According to this
figure, when the commanded distance is changed at 30 seconds, the swarm immediately responds to this change
in 2.98 seconds without disrupting the formation or any collision.

After 600 seconds, the leader is changed into an obstacle, and its reward coefficient CL
F is changed to 0.0175.

The reward sign function, tanh in (17), is also changed to -1, so the reward function for the leader is changed
as follows,

RL
Fi(t) = −CL

Fi

[
rLFi(t− 1) − rLFi(t)

]
(32)

When the leader is transformed into an obstacle, the encoding equation for the input layer must be changed.
This is because the obstacle has no commanded distance, and the agents must maintain a commanded distance
only from each other. Therefore, the commanded distance from the obstacle encoder in the input layer must
be removed. Therefore, (6) can then be rewritten as follows:

µI(ϕi) = exp

(
− (ϕi − ζ)2

2σ2

)
(33)

The simulation proceeded for an additional 1200 seconds, during which the synaptic weights were adjusted in
accordance with the new reward function given by (32). The results of the reward change are shown in Figures
12 and 13, which indicate that the agents quickly reduced their initial distance to the commanded distance
of 2 m. Simultaneously, the minimum distance from the obstacle, the leader, increased over time, indicating
that the agents adapted their behavior to maintain a greater distance from the obstacle. Figure 13 shows the
trajectory of each agent after the reward change.

In order to better understand the effect of reward change on the SNN, the synaptic weights matrix before
and after reward change has been illustrated in Figures 14 and 15, the vertical axis shows the output neurons.
The first output neuron is for negative displacement in the x-direction, while the second output neuron is
dedicated to positive displacement in the x-direction. Similarly, the third output neuron corresponds to negative
displacement in the y-direction and the fourth output neuron to positive displacement in the y-direction. The
horizontal axis shows the input neurons. The neuron IDs from 1 to 24 are for the first sub-layer dedicated to
the neighboring follower. The network has two sub-layers for the neighboring follower agents, but only one is
shown since they are similar in the case of synaptic weight values. The neuron numbers from 25 to 48 are for
the sub-layer dedicated to the leader. The R-CSE method aims to maintain the synaptic weight matrix gradient
while adapting to changes in the reward signal.

Considering the numerical values presented in Table 2 along with the reward coefficients CFj
Fi = 0.02 and

CFj
L = 0.07, and rFj

Fi = 1 m/s and rLFi = 0.1 m/s, the maximum rewards at each weight update interval (∆T)

for RFj
Fi and RL

Fi are calculated using (16) and (17) as 4 × 10−4 and 7.7 × 10−4, respectively. Consequently,

RG
max = max(RFj

Fi ,RL
Fi) = 7.7×10−4. The ΨS for the follower section in the network is

[
4×10−4

7×10−4

]
15.5 = 8.0519,

16

0 1 2 3 4 5 6 7 8 9 10
X (m)

0

1

2

3

4

5

6

7

8

9

10
Y

 (
m

)

Obstacle

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Figure 12: Trajectory adaptations of following agents in re-
sponse to reward change for the leader during the test phase.

0 2 4 6 8 10 12 14 16 18 20
Time (s)

0

1

2

3

4

5

6

7

D
is

ta
nc

e
(m

)

Min F2F
Max F2F
Min F2L
Max F2L
Commanded Radius

Figure 13: Variations in distances after reward changes and
Leader becomes Obstacle - test phase.

5 10 15 20 25 30 35 40 45

 x+

 x-

 y+

 y-

-15

-10

-5

0

5

10

15

Figure 14: Synaptic Weights before Reward change.

5 10 15 20 25 30 35 40 45

 x+

 x-

 y+

 y-

-15

-10

-5

0

5

10

15

Figure 15: Synaptic Weights after Reward change.

and for the leader section, it is
[
7×10−4

7×10−4

]
15.5 = 15.5. The η and β for the follower section within the network

are
ARG

max ln (2λ
2
−1)

λΨS log (2)
= 0.0011 and β = ln (2λ

2
−1)

ΨS = 2.152, respectively. For the leader section, these values are

ARG
max ln (2λ

2
−1)

λΨS log (2)
= 5.719 × 10−4 and β = ln (2λ

2
−1)

ΨS = 1.118, respectively.

The visual patterns observed in the synaptic weights matrix in Figure 14 and 15, specifically, the gradual
increases and decreases in values across weights, directly result from applying Gaussian membership functions
for encoding. As illustrated in the heatmap visualization, regions of higher values denote areas closer to the
function’s center, where the degree of membership peaks. Conversely, areas of lower values reflect points moving
away from the center, where the membership degree decreases according to the Gaussian distribution’s tails.

Since the reward coefficients for followers and leaders are different, their maximum allowed synaptic weights
are also different. The proposed method for controlling the unbounded growth of synaptic weights has success-
fully stabilized the network.

Figure 15 shows the synaptic weights after the reward change. In this case, since the reward coefficients are
changed, the η and β values are changed for the represented sub-layers, and the proposed method has helped
the R-STDP algorithm to adjust the weights based on the new situation in the environment.

4.2. Simulation with FL and R-CSE

In this section, the proposed aggregation algorithm is tested. In this case, the agents only send their models
when the Euclidean distance between the current and previously published model or the latest global model
reaches a threshold. In the first phase, the simulation was done in 600 seconds, and the agents learned to follow
the leader. The threshold for publishing the agents’ and server models was 0.0005 and 0.00051, respectively.
The reason for choosing the server’s threshold higher than the agents’ is that as soon as the first agent sends its
model to the server, the Euclidean distance between the current and previously published model by the server

17

0 200 400 600 800 1000 1200 1400 1600 1800
Times (s)

-20

-15

-10

-5

0

5

10

15

20
Sy

na
pt

ic
 W

ei
gh

t

Figure 16: Synaptic weights increase after reward change.

0 200 400 600 800 1000 1200 1400 1600 1800
Times (s)

-20

-15

-10

-5

0

5

10

15

20

Sy
na

pt
ic

 W
ei

gh
t

Figure 17: Synaptic weights decrease after reward change.

reaches 0.0005, and the server distributes the model immediately. Therefore, the serve’s threshold is set higher
than the agents’ threshold, so it waits for the other agents to send their models.

Figure 18 shows the distances between agents and the leader before the reward change. According to the
figure, the agents converge to the solution faster than the non-federated learning scenario without any error.
Figure 19 shows the simulation results for the reward change scenario. According to the figure, the proposed
event-triggered FL method has improved the learning performance so that the swarm converges to the solution
in 6 seconds.

0 1 2 3 4 5 6 7 8 9
Time (s)

0

2

4

6

8

10

D
is

ta
nc

e
(m

)

Min F2F
Max F2F
Min F2L
Max F2L
Commanded Radius

Figure 18: Distances during the test phase before reward
change in the proposed event-triggered FL method.

Distances within

swarm convergence

around 6s

Figure 19: Distances during the test phase after reward change
in the proposed event-triggered FL method.

To verify the method’s effectiveness, the number of agents is increased to 7. Figures 20 and 21 show the
performance of the proposed method in formation flying. According to the figure 21, the agents can fly around
the leader without colliding with each other. Because of the complexity of the environment in this case, it takes
more time (around 22 seconds) for the agents to stabilize the formation.

The norm of the synaptic weights can represent the changes in the synaptic weights due to the change in
the environment during the training process, which can be used to adjust the learning process in SNNs. In
the proposed event-triggered FL method, agents communicate with the Central Server (leader) during training.
According to Figure 23, the aggregation step time is small at the beginning of the training and increases as the
SNN models converge to the final solution. The rate of change of the norm of the synaptic weights determines
the communication sample time of the aggregation process, which results in small aggregation intervals when
the change rate is high and larger intervals when it reduces.

Therefore, the aggregation frequency is very high initially, and it reduces after the change in synaptic weights
goes to zero because of the learning rate in (19). Also, after the reward changes and the leader becomes an
obstacle after 600 seconds, the Euclidean distance between the converged and current models increases and
reaches the threshold. As soon as the first agent sends its model to the server, the aggregation process starts

18

0 1 2 3 4 5 6 7 8 9 10
X (m)

0

1

2

3

4

5

6

7

8

9

10
Y

 (
m

) Leader

Agent 1

Agent 2

Agent 4

Agent 5

Agent 3

Agent 6

Agent 7

Figure 20: Formation flying of 7 agents in the proposed event-
triggered FL method.

0 5 10 15 20 25 30
Time (s)

0

2

4

6

8

10

D
is

ta
nc

e
(m

)

Min F2F
Max F2F
Min F2L
Max F2L
Commanded Radius

Figure 21: Distances between 7 agents and the leader in the
proposed event-triggered FL method.

200 400 600 800 1000 1200 1400 1600 1800
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ob

en
iu

s
N

or
m

Figure 22: Frobenius norm of the Agent 1 during the learning
phase. The reward changes for the Leader after 600 s.

0 200 400 600 800 1000 1200 1400 1600 1800
Time (s)

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Central Server

Figure 23: Communication times for agents and the Central Server
(Leader). Red and blue dots show the times that agents and the
Central Server have sent their model, respectively.

again, and the agents adjust the associated synaptic weight.

Table 3: Comparative Performance Analysis of the Proposed Aggregation Algorithm+R-CSE and R-CSE

FL+R-CSE R-CSE

Learning Time - Training Phase (s) 261.92 554.71

Max Distance Convergence Error - Test Phase (%) 0.71 1.95

Convergence Time for Distance - Test Phase (s) 5.81 8.94

Table 3 compares the results and focuses on three critical metrics: learning time, maximum error after
convergence, and convergence time. The proposed FL algorithm demonstrates significant improvements in
terms of efficiency and accuracy, as evidenced by its considerably shorter learning and convergence times and a
notable reduction in error after convergence.

Our approach advances beyond traditional FL frameworks by introducing an innovative event-triggered
aggregation mechanism tailored for the real-time adaptive capabilities inherent in SNNs. This method contrasts
with those seen in literature, where aggregation weights are primarily calculated based on rewards [52]. Instead,
our model considers both the time of arrival and the substantive content of each model, quantified through the
Euclidean norm of the synaptic weights, to determine the aggregation weight, providing a nuanced approach to
model integration.

Additionally, while other studies address challenges related to abrupt model changes due to global model

19

mohammadtayeferamez
Highlight

mohammadtayeferamez
Highlight

mohammadtayeferamez
Highlight

updates using fixed aggregation intervals, our model inherently avoids these disruptions through its event-
triggered mechanism [53, 54]. This is evident from the smooth transitions observed in the plot of the Euclidean
norm of each agent, illustrating a more stable model evolution without the sudden changes typically associated
with periodic global updates. In our framework, agents autonomously decide the optimal time to send their
updates based on real-time changes, effectively resolving issues related to model selection and synchronization
prevalent in systems with predetermined aggregation schedules.

Moreover, most of the papers employ methods like Deep Q-Network (DQN) requiring a data buffer for
training [55]; our use of an SNN facilitates an online learning paradigm. This online method allows our model to
continually learn and adapt without storing data, enhancing efficiency and suitability for real-time applications.

Through these distinctions, our approach improves communication efficiency and learning adaptability and
provides a robust solution for dynamic and distributed learning environments, setting a new standard for
deploying federated learning in multi-agent systems.

5. Conclusion

In this paper, we presented a comprehensive approach addressing the challenges of uncontrolled growth in
synaptic weights and the limited responsiveness of R-STDP to real-time changes within SNNs. Our proposed
solution integrates the R-CSE method with a dynamic aggregation interval in FL and significantly reduces
learning time while improving performance. The R-CSE method introduces a novel mechanism to manage the
unbounded growth of synaptic weights by dynamically adjusting the decay rate through the SoftPlus function.
This adjustment is sensitive to the learning stages and rewards changes, ensuring synaptic weight adjustments
remain responsive over time. By addressing the challenge of synaptic weight saturation, the R-CSE method
facilitates a balanced approach to weight adjustment, preventing network saturation and promoting continuous
learning adaptability. We introduce a novel approach that uses FL in SNN and employs the Frobenius norm
to adjust weighted aggregation in FL. Additionally, we include weight decay proportional to the time elapsed
since an agent’s last model publication. This improves the efficiency and responsiveness of the learning process.
Our model’s dynamic nature of the model aggregation time adjusts based on the Euclidean norm. This metric
measures the distance between the weight matrices of the agents and the server, determining reduced intervals
for model publication. Our results show that the proposed aggregation method significantly accelerates agents’
learning while increasing the accuracy of the swarm in following the commanded distance. Moreover, the
dynamic aggregation interval effectively reduces communication overhead between the agents and the central
server, particularly after model convergence. This reduction is critical when communication bandwidth is
limited or costly. This approach is particularly advantageous in 5G networks, where efficient bandwidth use
can enhance the overall throughput and reduce latency in real-time applications. Moreover, the adaptive
use of communication resources aligns with the scalable and flexible infrastructure of 5G, optimizing network
performance even during peak demand periods.

Declaration of Conflicting Interests

The authors declare that there is no conflict of interest.

Acknowledge

We acknowledge financial support from Ericsson, Mitacs, and NSERC (Natural Sciences and Engineering
Research Council) of Canada.

References

[1] S. K. Lee, Distributed deformable configuration control for multi-robot systems with low-cost platforms,
Swarm Intelligence 16 (3) (2022) 169–209.

[2] M. Zhao, J. Xi, L. Wang, K. Xia, Y. Zheng, Edge-based adaptive secure consensus for nonlinear multiagent
systems with communication link attacks, Neurocomputing (2023).

[3] M. Yu, J. Xia, J.-e. Feng, S. Fu, H. Shen, Leader–follower output consensus of multiagent systems over
finite fields, Neurocomputing 550 (2023).

[4] Z. Peng, Y. Jiang, L. Liu, Y. Shi, Path-guided model-free flocking control of unmanned surface vehicles
based on concurrent learning extended state observers, IEEE Transactions on Systems, Man, and Cyber-
netics: Systems (2023).

20

mohammadtayeferamez
Highlight

[5] C. Zheng, K. Lee, Consensus decision-making in artificial swarms via entropy-based local negotiation and
preference updating, Swarm Intelligence (2023) 1–21.

[6] H. Yang, K.-Y. Lam, L. Xiao, Z. Xiong, H. Hu, D. Niyato, H. Vincent Poor, Lead federated neuromorphic
learning for wireless edge artificial intelligence, Nature communications 13 (1) (2022) 42–69.

[7] M. Chen, H. V. Poor, W. Saad, S. Cui, Convergence time optimization for federated learning over wireless
networks, IEEE Transactions on Wireless Communications 20 (4) (2020) 2457–2471.

[8] Q. Wu, X. Chen, T. Ouyang, Z. Zhou, X. Zhang, S. Yang, J. Zhang, Hiflash: Communication-efficient hier-
archical federated learning with adaptive staleness control and heterogeneity-aware client-edge association,
IEEE Transactions on Parallel and Distributed Systems 34 (5) (2023) 1560–1579.

[9] M. Chen, H. V. Poor, W. Saad, S. Cui, Convergence time optimization for federated learning over wireless
networks, IEEE Transactions on Wireless Communications 20 (4) (2020) 2457–2471.

[10] Z. Yuan, Z. Wang, X. Li, L. Li, L. Zhang, Hierarchical trajectory planning for narrow-space automated
parking with deep reinforcement learning: A federated learning scheme, Sensors 23 (8) (2023).

[11] H. Yang, K.-Y. Lam, L. Xiao, Z. Xiong, H. Hu, D. Niyato, H. Vincent Poor, Lead federated neuromorphic
learning for wireless edge artificial intelligence, Nature communications 13 (1) (2022).

[12] R. Gupta, T. Alam, Survey on federated-learning approaches in distributed environment, Wireless personal
communications 125 (2) (2022) 1631–1652.

[13] W. Huang, T. Li, D. Wang, S. Du, J. Zhang, T. Huang, Fairness and accuracy in horizontal federated
learning, Information Sciences 589 (2022) 170–185.

[14] M.-A. Lahmeri, M. A. Kishk, M.-S. Alouini, Artificial intelligence for uav-enabled wireless networks: A
survey, IEEE Open Journal of the Communications Society 2 (2021) 1015–1040.

[15] K. Tuyls, K. Verbeeck, T. Lenaerts, A selection-mutation model for q-learning in multi-agent systems, in:
Proceedings of the second International Joint Conference on Autonomous Agents and Multiagent Systems,
2003, pp. 693–700.

[16] W. Barfuss, J. F. Donges, J. Kurths, Deterministic limit of temporal difference reinforcement learning for
stochastic games, Physical Review E 99 (4) (2019).

[17] Z. Wang, C. Mu, S. Hu, C. Chu, X. Li, Modelling the dynamics of regret minimization in large agent
populations: a master equation approach., in: IJCAI, 2022, pp. 534–540.

[18] A. Jarwan, M. Ibnkahla, Edge-based federated deep reinforcement learning for iot traffic management,
IEEE Internet of Things Journal 10 (5) (2022) 3799–3813.

[19] W. Huang, J. Liu, T. Li, T. Huang, S. Ji, J. Wan, Feddsr: Daily schedule recommendation in a federated
deep reinforcement learning framework, IEEE Transactions on Knowledge and Data Engineering 35 (4)
(2021) 3912–3924.

[20] A. B. Mansour, G. Carenini, A. Duplessis, D. Naccache, Federated learning aggregation: New robust algo-
rithms with guarantees, in: 2022 21st IEEE International Conference on Machine Learning and Applications
(ICMLA), 2022, pp. 721–726.

[21] Y. Yang, W. He, S. Li, Refined dynamic event-triggering cluster consensus of multiagent systems with
fixed/switching topology, IEEE Transactions on Cybernetics (2022).

[22] H. Lu, J. Liu, Y. Luo, Y. Hua, S. Qiu, Y. Huang, An autonomous learning mobile robot using biological
reward modulate stdp, Neurocomputing 458 (2021) 308–318.

[23] J. Liu, H. Lu, Y. Luo, S. Yang, Spiking neural network-based multi-task autonomous learning for mobile
robots, Engineering Applications of Artificial Intelligence 104 (2021) 104–362.

[24] D. Chu, H. Le Nguyen, Constraints on hebbian and stdp learned weights of a spiking neuron, Neural
Networks 135 (2021) 192–200.

[25] D. Antonov, K. Sviatov, S. Sukhov, Continuous learning of spiking networks trained with local rules, Neural
Networks 155 (2022) 512–522.

[26] D. Xing, J. Li, T. Zhang, B. Xu, A brain-inspired approach for collision-free movement planning in the small
operational space, IEEE Transactions on Neural Networks and Learning Systems 33 (5) (2022) 2094–2105.

21

[27] J. Pérez, J. A. Cabrera, J. J. Castillo, J. M. Velasco, Bio-inspired spiking neural network for nonlinear
systems control, Neural Networks 104 (2018) 15–25.

[28] G. Liu, W. Deng, X. Xie, L. Huang, H. Tang, Human-level control through directly trained deep spiking
q-networks, IEEE Transactions on Cybernetics (2022).

[29] S. A. Lobov, A. N. Mikhaylov, M. Shamshin, V. A. Makarov, V. B. Kazantsev, Spatial properties of stdp
in a self-learning spiking neural network enable controlling a mobile robot, Frontiers in neuroscience 14
(2020).

[30] C. Teeter, R. Iyer, V. Menon, N. Gouwens, D. Feng, J. Berg, A. Szafer, N. Cain, H. Zeng, M. Hawrylycz,
et al., Generalized leaky integrate-and-fire models classify multiple neuron types, Nature communications
9 (2018).

[31] J. Shen, Y. Zhao, J. K. Liu, Y. Wang, Hybridsnn: Combining bio-machine strengths by boosting adaptive
spiking neural networks, IEEE Transactions on Neural Networks and Learning Systems (2021).

[32] Z. Bing, C. Meschede, G. Chen, A. Knoll, K. Huang, Indirect and direct training of spiking neural networks
for end-to-end control of a lane-keeping vehicle, Neural Networks 121 (2020) 21–36.

[33] X. Cheng, T. Zhang, S. Jia, B. Xu, Meta neurons improve spiking neural networks for efficient spatio-
temporal learning, Neurocomputing 531 (2023) 217–225.

[34] P. Bertens, S.-W. Lee, Network of evolvable neural units can learn synaptic learning rules and spiking
dynamics, Nature Machine Intelligence 2 (12) (2020) 791–799.

[35] M. Bia las, J. Mańdziuk, Spike-timing-dependent plasticity with activation-dependent scaling for receptive
fields development, IEEE Transactions on Neural Networks and Learning Systems 33 (10) (2021) 5215–5228.

[36] J. L. Lobo, J. Del Ser, A. Bifet, N. Kasabov, Spiking neural networks and online learning: An overview
and perspectives, Neural Networks 121 (2020) 88–100.

[37] D. Haşegan, M. Deible, C. Earl, D. D’Onofrio, H. Hazan, H. Anwar, S. A. Neymotin, Training spiking
neuronal networks to perform motor control using reinforcement and evolutionary learning, Frontiers in
Computational Neuroscience 16 (2022).

[38] Y. Venkatesha, Y. Kim, L. Tassiulas, P. Panda, Federated learning with spiking neural networks, IEEE
Transactions on Signal Processing 69 (2021) 6183–6194.

[39] Y. Wang, S. Duan, F. Chen, Efficient asynchronous federated neuromorphic learning of spiking neural
networks, Neurocomputing 557 (2023).

[40] S. A. Tumpa, S. Singh, M. F. F. Khan, M. T. Kandemir, V. Narayanan, C. R. Das, Federated learning
with spiking neural networks in heterogeneous systems, in: IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2023, pp. 1–6.

[41] Y.-H. Liu, X.-J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron,
Journal of computational neuroscience 10 (2001) 25–45.

[42] L. Long, F. Guoliang, A review of biologically plausible neuron models for spiking neural networks, AIAA
Infotech@ Aerospace (2010).

[43] M. Tayefe Ramezanlou, H. Schwartz, I. Lambadaris, M. Barbeau, S. H. R. Naqvi, Learning a policy
for pursuit-evasion games using spiking neural networks and the stdp algorithm, in: IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2023, pp. 1918–1925.

[44] K. Kasaura, S. Miura, T. Kozuno, R. Yonetani, K. Hoshino, Y. Hosoe, Benchmarking actor-critic deep rein-
forcement learning algorithms for robotics control with action constraints, IEEE Robotics and Automation
Letters (2023).

[45] J. EEßerer, N. Bach, C. Jestel, O. Urbann, S. Kerner, Guided reinforcement learning: A review and
evaluation for efficient and effective real-world robotics, IEEE Robotics & Automation Magazine (2022).

[46] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, F. Piccialli, Model aggregation techniques in federated
learning: A comprehensive survey, Future Generation Computer Systems 150 (2024) 272–293.

[47] B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Arcas, Communication-efficient learning of deep
networks from decentralized data, in: Artificial intelligence and statistics, 2017, pp. 1273–1282.

22

[48] Z. Wang, Z. Peng, X. Fan, Z. Wang, S. Wu, R. Yu, P. Yang, C. Zheng, C. Wang, Fedave: Adaptive data
value evaluation framework for collaborative fairness in federated learning, Neurocomputing 574 (2024).

[49] J. Wang, Q. Liu, H. Liang, G. Joshi, H. V. Poor, Tackling the objective inconsistency problem in hetero-
geneous federated optimization, Advances in neural information processing systems 33 (2020) 7611–7623.

[50] A. AbdelAty, M. Fouda, A. Eltawil, On numerical approximations of fractional-order spiking neuron models,
Communications in Nonlinear Science and Numerical Simulation 105 (2022).

[51] M. Dampfhoffer, T. Mesquida, A. Valentian, L. Anghel, Are snns really more energy-efficient than anns?
an in-depth hardware-aware study, IEEE Transactions on Emerging Topics in Computational Intelligence
7 (3) (2022) 731–741.

[52] T. M. Ho, K.-K. Nguyen, M. Cheriet, Federated deep reinforcement learning for task scheduling in hetero-
geneous autonomous robotic system, IEEE Transactions on Automation Science and Engineering 21 (1)
(2022) 528–540.

[53] S. Na, T. Rouček, J. Ulrich, J. Pikman, T. Krajńık, B. Lennox, F. Arvin, Federated reinforcement learning
for collective navigation of robotic swarms, IEEE Transactions on cognitive and developmental systems
15 (4) (2023) 2122–2131.

[54] M. Krouka, A. Elgabli, C. B. Issaid, M. Bennis, Communication-efficient and federated multi-agent rein-
forcement learning, IEEE Transactions on Cognitive Communications and Networking 8 (1) (2021) 311–320.

[55] R. Luo, W. Ni, H. Tian, J. Cheng, Federated deep reinforcement learning for ris-assisted indoor multi-robot
communication systems, IEEE Transactions on Vehicular Technology 71 (11) (2022) 12321–12326.

[56] C. Zheng, K. Lee, Consensus decision-making in artificial swarms via entropy-based local negotiation and
preference updating, Swarm Intelligence (2023) 1–21.

[57] A. Antonietti, C. Casellato, J. A. Garrido, N. R. Luque, F. Naveros, E. Ros, E. D’Angelo, A. Pedrocchi,
Spiking neural network with distributed plasticity reproduces cerebellar learning in eye blink conditioning
paradigms, IEEE Transactions on Biomedical Engineering 63 (1) (2015) 210–219.

[58] Y. Wang, G. Vasan, A. R. Mahmood, Real-time reinforcement learning for vision-based robotics utilizing
local and remote computers, in: IEEE International Conference on Robotics and Automation (ICRA),
2023, pp. 9435–9441.

23

