
Neurocomputing 617 (2025) 129005

A
0
n

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Enhancing cooperative multi-agent reinforcement learning through the
integration of R-STDP and federated learning
Mohammad Tayefe Ramezanlou a,∗, Howard Schwartz a, Ioannis Lambadaris a, Michel Barbeau b

a Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
b School of Computer Science, Carleton University, Ottawa, Canada

A R T I C L E I N F O

Communicated by C. Gao

Keywords:
Spiking neural network
STDP
Federated learning
Consensus flying
Leader–follower flocking

A B S T R A C T

This paper introduces a novel approach to enhance the stability and efficiency of R-STDP in the context of
federated learning. The primary objective is to stabilize the unbounded growth of R-STDP and make it more
responsive to real-time changes. The methodology involves integrating R-STDP with Spiking Neural Networks
and employing the norm of the neural network model for adjusting weighted aggregation in federated learning
systems. The proposed method incorporates a mechanism where weights decay over time, depending on the
duration since the agent last published its model. Additionally, the sampling time is dynamically adjusted
based on the Euclidean norm, which measures the distance between the weight matrices of the agents and
the server. The results demonstrate that the proposed event-triggered federated learning method significantly
enhances learning speed and performance. At the same time, the dynamic aggregation interval efficiently
reduces communication between the agents and the central server, especially after model convergence. This
research presents a significant advancement in federated learning and offers a more stable, responsive, and
efficient learning process.
1. Introduction

The consensus problem in flying multi-agent systems, commonly
called the ‘‘flocking’’ or ‘‘swarming’’ challenge, is fundamental to aerial
robotics. It involves coordinating and controlling multiple agents to en-
sure cooperative behavior, avoid collisions, and align towards a shared
goal. Such coordination is crucial for applications ranging from co-
ordinated surveillance to communication, logistics, and infrastructure
monitoring.

Formation control within these systems, especially cost-constrained
communication, faces significant challenges. These include managing
limited resources, overcoming communication constraints, and ensur-
ing system scalability and robustness. Various studies have addressed
these issues, demonstrating innovative solutions and methodologies to
enhance adaptability and resilience by leveraging local sensing and
communication capabilities, even on low-cost platforms [1].

Security in multi-agent systems is also a critical concern, partic-
ularly in the face of cyber threats. Adaptive mechanisms that tune
communication link weights to maintain secure consensus have offered
resilience in adversarial conditions [2]. Additionally, hierarchical con-
trol mechanisms, such as leader-follower dynamics, are essential for
specific applications, including aerial operations. Recent advancements

∗ Corresponding author.
E-mail address: MohammadTayefeRamez@cmail.carleton.ca (M.T. Ramezanlou).

include finite-time control protocols that ensure stability and rapid con-
sensus in leader-follower setups [3] and innovative path-guided control
strategies that function effectively in uncertain environments [4].

Moreover, decision-making within these systems has seen enhance-
ments through entropy-based consensus methods that facilitate more
efficient cooperation by employing swarm intelligence principles for
local negotiation and preference updating [5]. These methodologies
promise faster convergence and scalability, which are crucial for di-
verse operational settings. Overall, the ongoing research in multi-agent
systems continues to address the dual challenges of robust formation
control and secure, efficient consensus amidst evolving operational
demands and external threats.

1.1. Decentralized learning through FL

FL is an emerging paradigm in machine learning that allows for
decentralized training of models across multiple agents without cen-
tralizing data [6]. Using this approach, robots can benefit from shared
experiences while preserving data privacy and reducing communication
overheads [7,8].

The challenge of optimizing communication efficiency in FL is ad-
dressed in [8], where a hierarchical approach is introduced, leveraging
https://doi.org/10.1016/j.neucom.2024.129005
Received 30 April 2024; Received in revised form 19 September 2024; Accepted 21
vailable online 29 November 2024
925-2312/© 2024 The Authors. Published by Elsevier B.V. This is an open access
c/4.0/).
 November 2024

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:MohammadTayefeRamez@cmail.carleton.ca
https://doi.org/10.1016/j.neucom.2024.129005
https://doi.org/10.1016/j.neucom.2024.129005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.129005&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

M.T. Ramezanlou et al.

t
w
r
c

m

p
i
p

a
a
e
t
u

q
s

i

s
c

m
i
t

i
i

f
e

u
p
i

l
n

f
m
o
a

c

a
t
s

o
c

o
s
n

t
s
s

t
p
l

p
e

i
t

m

Neurocomputing 617 (2025) 129005
adaptive staleness control. This method emphasizes that system-level
and data-level heterogeneity in FL must be considered. The complexi-
ies of wireless network constraints in FL are explored in another study,
here the focus is placed on optimizing the convergence time. This

esearch indicates that the wireless environment introduces a layer of
omplexity to the FL framework [9].

The practical applicability of FL in real-world scenarios is demon-
strated in [10], which focuses on hierarchical trajectory planning for
narrow-space automated parking. This study highlights the vast poten-
tial of FL in automation and robotics. An exciting direction in which
neuromorphic learning and FL converge is presented in [11], suggesting
future trends where bio-inspired computing and FL might merge. A
holistic view of the advancements, challenges, and future directions in
FL is provided in a comprehensive survey, making it clear that FL is
poised to reshape the landscape of machine learning [12].

FedFa presents a novel FL algorithm that utilizes a double mo-
entum gradient approach and a specialized weighting strategy to

enhance the fairness and accuracy of model training across distributed
networks [13]. By incorporating considerations of accuracy and partici-
ation frequency in the weighting of client updates, FedFa significantly
mproves upon the stability of convergence and fairness in the learning
rocess compared to traditional methods. These advancements are

demonstrated through rigid practical testing on synthetic and real
datasets.

1.2. Decentralized reinforcement learning: RL meets FL

Real-time processes are essential for decision-making and adapt-
bility in dynamic environments. The Reinforcement Learning (RL)
lgorithms offer a promising approach to address these challenges by
nabling agents to learn optimal policies through interactions with
heir environment, enabling them to adapt to dynamic scenarios and
ncertainties. Specifically, they allow agents to autonomously learn

from their experiences, making them well-suited for tasks that re-
uire decentralized decision-making and adaptability to unforeseen
ituations [14].

Evolutionary dynamics provide a novel perspective on agent learn-
ng in MAS. For instance, [15] explores the application of replicator

dynamics from evolutionary game theory to Q-learning, offering in-
ights into the exploration-exploitation mechanisms in MAS, which
ould inform more effective consensus strategies in aerial robotics.

Further complicating the implementation of RL in MAS, new
ethodologies suggest deterministic limits to temporal difference learn-

ng, offering potential improvements in learning stability and response
o environmental dynamics in MAS [16].

In addressing the complexities of MAS, recent advances have mod-
eled the regret minimization dynamics across large populations, offer-
ng a robust framework to better understand and predict agent behavior
n collaborative aerial tasks [17].

In addition to RL, incorporating FL offers a decentralized approach,
urther advancing learning and adaptability in dynamic and distributed
nvironments. The integration of FL with RL presents opportunities for

drones to learn and update their policies in a distributed manner col-
laboratively, leveraging the collective intelligence of the swarm [18].
The advent of the FL offers a decentralized training paradigm, allowing
agents to learn collaboratively while keeping their data localized.

The FedDSR model combines FL and Deep Reinforcement Learning
(DRL) to optimize daily schedule recommendations while maintaining
ser privacy, demonstrating superior performance in dynamic and
rivacy-sensitive environments through integrating curriculum learn-
ng and a novel similarity aggregation algorithm [19].

The opportunity and challenge presented by IoT devices in FL are
highlighted in [18], where edge computing and deep reinforcement
earning are combined for traffic management in IoT. The evolving
ature of FL applications, branching out from traditional use cases, is

demonstrated by this work. Regarding the aggregation methods in FL,
2
robust algorithms that provide guarantees against adversarial attacks
are introduced, underscoring the security aspect of FL [20].

By integrating RL with FL, researchers envision a new era where
lying agents learn and adapt in real-time, making consensus problems
ore manageable. Fusing these advanced learning techniques can rev-

lutionize consensus mechanisms in flying multi-agent systems. The
pplication of these integrated learning methods in multi-agent systems

presents various challenges and opportunities, particularly in formation
ontrol and security aspects.

1.3. Spiking neural networks in MAS

According to recent research, event-triggering mechanisms in multi-
agent systems can improve communication and computation. This ap-
proach operates with predetermined communication patterns, reduc-
ing messages to save resources while ensuring stability and conver-
gence [21]. While optimizing communication in multi-agent systems,
emerging methods like SNN offer groundbreaking approaches to robotic
learning and control.

SNNs have gained popularity in robotics due to their ability to
replicate the structure and functioning of networks. One crucial char-
cteristic of SNNs is their capacity to encode and handle information
hrough spikes, which has been demonstrated as a resource energy-
aving approach [22,23]. The versatility of SNNs is further expanded

through their ability to learn and adapt, which is particularly beneficial
in complex tasks like movement planning and nonlinear system control.

One of the remarkable features of SNNs is their ability to learn and
adapt. Here, Reward-modulated Spike-Timing-Dependent Plasticity (R-
STDP) plays a key role. R-STDP is a bio-inspired learning rule based on
the relative timing of pre- and post-synaptic spikes. Several studies have
elucidated the constraints on Hebbian and R-STDP learned weights
in spiking neurons, revealing the underlying mechanisms that make
this learning paradigm so effective [24]. Furthermore, research has
demonstrated that networks trained with local rules, such as R-STDP,
can exhibit continuous learning, showcasing their potential in lifelong
learning scenarios [25]. To fully utilize the potential of SNNs, devel-
ping hybrid models and exploring various training methodologies are
rucial in enhancing their adaptability and efficiency.

In robotics, the application of SNNs has shown promise in vari-
us tasks, including movement planning within confined operational
paces. Such applications leverage the temporal dynamics of spiking
eurons to achieve collision-free motion, demonstrating the capability

of SNNs to handle complex spatial–temporal challenges [26]. Beyond
movement planning, SNNs have also been employed for nonlinear sys-
tems control, providing a robust and adaptive control mechanism [27].

The evolution of SNN has seen the emergence of models that aim
o blend the advantages of machine-inspired approaches. These hybrid
ystems have enhanced the adaptability of SNNs, making them more
uitable for environments encountered in robotics [28]. The advance-

ments in classification capabilities offered by integrate and fire models
have also expanded the range of SNN applications in robotics [29]. No-
ably, Deep Spiking Q Networks, which are trained directly, have shown
erformance in tasks highlighting the potential of integrating deep
earning techniques with SNNs to achieve human-level control [30].

Exploring direct and indirect training methodologies for SNNs is vital,
articularly in applications such as autonomous vehicle control, where
nd-to-end learning is essential.

Direct and indirect training methodologies for SNNs have been
extensively explored for achieving end-to-end control of vehicles in
tasks like lane keeping [31]. Furthermore, incorporating meta neurons
nto SNNs has further improved their effectiveness in spatial learning
asks [32]. The adaptability of SNNs, enhanced through reinforcement

and evolutionary learning, opens new avenues in robotics, particularly
otor control and changing operational needs. The exploration of

learning dynamics in neural networks, particularly in developing neural

M.T. Ramezanlou et al.

a

e
t
a
S

S
S
o

s
w
o
o
c
i
r

s
s

p
M

r
i

Neurocomputing 617 (2025) 129005
units that can learn rules and robot dynamics, represents a significant
dvancement in the capabilities of SNNs.

In line with research on learning dynamics, there is a growing inter-
st in developing networks consisting of neural units. When combined
ogether, these units possess the ability to learn both learning rules
nd spiking dynamics, thereby enhancing the capabilities exhibited by
NN [33].

The application of reinforcement and evolutionary learning to train
NNs for motor control has opened new avenues in the field of robotics.
uch training methods use SNNs’ adaptability for the changing needs
f robots [34–37]. Integrating FL with SNNs presents the synergy

between decentralized training strategies and advanced neural network
architectures, offering collaborative and privacy-preserving learning
opportunities.

Another frontier in applying SNNs in robotics is integrating FL. The
FL has been combined with SNNs to achieve collaborative learning
across multiple agents while harnessing the efficiency of SNNs in
distributed settings [38].

Several challenges emerge in exploring integrating SNNs with FL.
The transmission of SNN-specific parameters, such as spike timings,
introduces considerable communication overhead in the FL setup [39].
Additionally, aggregating SNN models from diverse devices in a fed-
erated context is non-trivial, often leading to challenges in achieving
effective global learning. The unique dynamics of spiking neurons,
coupled with the distributed nature of FL, can also result in training
instabilities. Lastly, the inherent complexity and potential size of SNNs
raise concerns about memory requirements and the feasibility of model
aggregation in distributed scenarios [40].

The provided literature has set the stage by exploring integrating
algorithms such as SNN and FL in MAS, underscoring their key roles
in enhancing robotics’ capabilities. These methods facilitate efficient
data handling and learning in decentralized settings and address the
critical challenge of achieving consensus among autonomous agents
in dynamic environments. The paper will elaborate on these themes,
presenting novel methodologies for improving learning processes and
network stability and discussing the practical challenges and solutions
encountered in real-world implementations.

1.4. Contributions

This paper employs the SNN model to train a group of swarm agents
that follow a leader. Each agent has its own SNN, trained independently
using the R-STDP algorithm. Each agent receives position data from
the agents nearby. The goal is for each agent to keep a commanded
distance from the leader agent and the other agents in the group. The
encoding and decoding processes for the input and output layers of the
SNN are considered fuzzy encoding, and a novel method is introduced
to stabilize the network dynamics considering the reward function. This
work presents several key contributions:

• The paper presents a comprehensive method for stabilizing and
enhancing the learning process in SNN. This method focuses on
controlling the unbounded growth of synaptic weights in SNNs,
utilizing a strategy that dynamically adapts to changes in re-
ward conditions and coefficients. It introduces a decay rate and
learning rate adjustment based on the status of synaptic weights
and enhances the responsiveness of the SNN weights to reward
change.

• In terms of advancements in FL with R-STDP, the paper addresses
the FL challenges in the R-STDP framework. It introduces an
event-triggered mechanism for model publishing and receiving
within the network, improving network traffic. Additionally, the
paper implements a novel weighted aggregation method on the
server. This method calculates weights based on the models’
arrival time, effectively tackling the asynchronous issues in FL.
3
The remainder of this paper is structured as follows: Section 2,
titled ‘‘Preliminaries’’, provides an overview of the FL algorithm as it
applies to consensus flying, including a discussion of the neuron model
employed for training and key parameters for the algorithms proposed.
Section 3, ‘‘Proposed Method’’, establishes the basis of our investigation
and examines the training algorithm and learning through R-STDP. This
section presents our innovative approach to weight stabilization called
R-CSE method, outlines the network architecture designed for our
tudy, and discusses the application of FL in achieving consensus flying,
ith a comprehensive explanation of how SNN models are aggregated
n a central server. Section 4, ‘‘Results and Discussion’’, presents the
utcomes of various simulations and investigates the effects of reward
hange within FL. Finally, Section 5 concludes the paper by summariz-
ng our principal discoveries and contemplating the implications of our
esearch.

2. Preliminaries

2.1. Consensus Flying Problem

The ‘‘Consensus Flying Problem’’ deals with ensuring drones can
work together in real-time to agree on their flight paths and positions.
When many drones are close together, like in swarms, avoiding crashes
is vital. Advanced algorithms and communication methods are needed
so drones can exchange information and handle changing situations and
unexpected obstacles.

As shown in Fig. 1, a swarm of agents (follower drones) flies around
a leader. The leader is controlled from a remote base station, and the
warm agents should learn to fly safely with the leader. The leader
ends its position to all agents, and each agent only sees two neigh-

boring agents. The swarm aims to learn how to keep a commanded
distance from each other and the leader. The commanded distance is
provided from the leader. Each agent uses the onboard sensors to find
the distance and line of sight from neighboring agents.

The follower agents are equipped with an SNN, and their learning
algorithm incorporates R-STDP and FL. Each follower agent trains a
local network (𝑀𝑛

𝑙 𝑜𝑐) using R-STDP and sends its model to the leader
as the central server. The leader aggregates models and sends back the
global model (𝑀𝐺 𝑙 𝑜𝑏𝑎𝑙).

2.2. Neuron model

The LIF neuron model provides a simplified yet powerful representa-
tion of neuronal dynamics. Fundamentally, using basic electrical circuit
elements, the LIF model captures the behavior of a neuron’s membrane
potential in response to incoming currents. It incorporates membrane
potential decay, realistically simulating how neurons respond to inputs
with high frequencies. This enhances the model’s accuracy in pre-
dicting neuronal behavior under dynamic conditions, offering a more
recise tool for neuroscientific research and computational simulations.
athematically, the LIF model is characterized by a linear differential

equation that describes the voltage response to a current input as
follows [41],

𝜏𝑚
𝑑 𝑉𝑚(𝑡)
𝑑 𝑡 = 𝑉𝑚(𝑡) + 𝐸𝐿 + 𝑅𝑚𝐼𝑒(𝑡) (1)

where 𝜏𝑚 is the membrane time-constant, 𝑉𝑚 is the membrane potential,
𝐸𝐿 is the reversal potential, 𝑅𝑚 is the membrane resistance, and
𝐼𝑒(𝑡) is the input current to the neuron. When the neuron’s potential
eaches the threshold potential (𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑), it spikes, and the potential
mmediately returns to the resting potential (𝑉𝑟𝑒𝑠𝑡).

For scenarios with constant input current, the Inter-Spike Interval
(𝑡𝑖𝑠𝑖) can be analytically determined by separating variables in the
governing differential equation. This allows for the derivation of the
𝑡𝑖𝑠𝑖 as follows [42],

𝑡𝑖𝑠𝑖 = 𝜏𝑚 ln
(

𝐸𝑙 + 𝑅𝑚𝐼 − 𝑉𝑟𝑒𝑠𝑡
)

(2)

𝐸𝑙 + 𝑅𝑚𝐼 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑

M.T. Ramezanlou et al. Neurocomputing 617 (2025) 129005
Fig. 1. The central server (the leader) and the surrounding follower agents (white drones). The follower agents learn to fly in a formation to maintain the commanded distance.
The local models trained individually by follower agents are sent to the leader. The leader aggregates the models and sends back the global model for another round of training

on the follower agents.
It is imperative to note that this solution is dependent on an input
current magnitude that induces a transition of the membrane poten-
tial from 𝑉𝑟𝑒𝑠𝑡 to 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 . Through this analytical framework, the
LIF model provides insights into the modulation of neuronal spiking
dynamics based on constant input currents.

The neuron does not fire when the input current is minimum and 𝑡𝑖𝑠𝑖
approaches infinity. This occurs when the input current is insufficient to
drive the membrane potential to the threshold potential from its resting
potential. By setting the 𝑡𝑖𝑠𝑖 to infinity, one obtains the condition:

𝐸𝑙 + 𝑅𝑚𝐼 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 = 0 (3)

or

𝐼𝑚𝑖𝑛 =
𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 − 𝐸𝐿

𝑅𝑚
(4)

where 𝐼𝑚𝑖𝑛 is the minimum input current that makes the neuron reach
the potential below the threshold voltage. Conversely, the lowest pos-
sible 𝑡𝑖𝑠𝑖 defines the maximum input current. In this paper, we consider
the 𝑡𝑖𝑠𝑖 to be one sample time 𝛥𝑡. By considering ln(1 + 𝑧) ≈ 𝑧, one can
derive the maximum input current that would drive the neuron to spike
on every sample time as follows,

𝐼𝑚𝑎𝑥 =
𝜏𝑚

(

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 − 𝑉𝑟𝑒𝑠𝑡
)

𝛥𝑡𝑅𝑚
+

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 − 𝐸𝐿
𝑅𝑚

(5)

These derived equations determine the range of operation for neu-
rons and establish the boundaries for the maximum weights in the SNN.
Specifically, positive synaptic weights indicate the limits of excitement
that a neuron can generate. In this context, the minimum input current
(or synaptic weight) represents the stimulating influence a neuron can
exert without triggering an action potential. In contrast, the maximum
input current signifies the most powerful stimulating influence possi-
ble. Conversely, considering weight values, these currents reflect the
minimum and maximum inhibitory effects. In this case, the minimum
and maximum input currents determine how much a neuron can inhibit
other neurons from firing.

3. Proposed method

3.1. Network structure

This paper assumes that each agent detects only two neighboring
agents besides the leader. The information obtained from other agents
4
includes the Line-of-Sight (LOS) angle and the distance. Each agent’s
neural network consists of three sub-layers in the input layer, as shown
in Fig. 2. Two sub-layers correspond to the two neighboring follower
agents (𝐹1 and 𝐹2), and the third is dedicated to the leader (𝐿). Inputs
for these sub-layers are encoded using the Gaussian Receptive Fields
(GRF) that use fuzzy membership functions. The network uses the
difference between current and commanded distances within the swarm
(𝑟𝑐 𝑚𝑑) and between followers and the leader (𝑅𝑐 𝑚𝑑) to stimulate input
neurons.

Every input sub-layer is split into two parts. The first part deals
with distances greater than the commanded distance, while the second
focuses on the space between the agent and the commanded distance.
Within each part, the LOS angle is encoded with fuzzy membership
functions. The difference between the current and commanded distance
is represented as the error. We transform this difference into an am-
plitude value using the 𝑡𝑎𝑛ℎ function so that it is bounded between
0 and 1. An error of zero leads to an amplitude of zero, and as
the error increases towards infinity, the amplitude approaches one.
Consequently, the encoding function for the input layer is expressed
as follows,

𝜇𝐼 (𝜙𝑖, 𝑟𝑖) = |

|

𝑡𝑎𝑛ℎ(𝑟 − 𝑟𝑖)|| ⋅ exp
(

−
(𝜙𝑖 − 𝜁)2

2𝜎2

)

(6)

where 𝜁 and 𝜎 are the Gaussian membership functions’ center and stan-
dard deviation. The 𝑟𝑖 is the distance from the corresponding agent, 𝜙𝑖
is the LOS angle, and 𝜇𝐼 is the vector of the membership degrees. Here,
𝑟 is a placeholder that can either represent 𝑟𝑐 𝑚𝑑 or 𝑅𝑐 𝑚𝑑 , depending on
the context. The firing strengths from fuzzy encoders are then converted
to the spiking input based on the neuron model as follows [43],

𝐼𝑠𝑢𝑏−𝑙 𝑎𝑦𝑒𝑟 =
(

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
)

𝜇𝐼 (𝜙𝑖, 𝑟𝑖) + 𝐼𝑚𝑖𝑛 (7)

or

𝐼𝑠𝑢𝑏−𝑙 𝑎𝑦𝑒𝑟 =
𝜏𝑚

(

𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠
)

𝛥𝑡𝑅𝑚
𝜇𝐼 (𝜙𝑖, 𝑟𝑖) +

𝑉𝑡ℎ − 𝐸𝑙
𝑅𝑚

(8)

The encoding process is shown in Fig. 3. The Fuzzy-to-Spiking (F2S)
block uses (8) to calculate the inputs for the associated sub-layer.

The output layer has two sub-layers, and each sub-layer has two
neurons. The first sub-layer determines the 𝛥𝑥, and the second one
determines 𝛥𝑦. The first neuron of the sub-layers is for negative values,
and the second one is for positive values. Each neuron is associated with
the output sign, and the magnitude of the 𝛥𝑥 and 𝛥𝑦 is encoded into

M.T. Ramezanlou et al. Neurocomputing 617 (2025) 129005
Fig. 2. SNN structure with encoding and decoding layers. Each sub-layer consists of a fuzzy encoder and the F2S Converter, with the output layer receiving inputs from synaptic
weights and a random action selector. During the training phase, the output layer receives input only from the random action selector, which then shifts to synaptic weight inputs
after the training.
Fig. 3. The fuzzy encoding principle for the input sub-layer.

the output sub-layers based on the minimum and maximum synaptic

weights. Eq. (8) is used to encode the magnitude of the random action
5
Fig. 4. Input and output of the SNN.

into the output sub-layers. The only difference is that a function called
𝜇𝑂 is used to normalize the maximum step between 0 and 1 as follows,

𝜇𝑂 𝑥 = 𝛥𝑥
𝛥𝑋𝑚𝑎𝑥

(9)

𝛥𝑦

𝜇𝑂 𝑦 = 𝛥𝑌𝑚𝑎𝑥

(10)

M.T. Ramezanlou et al.

i
u

s

T

p

𝛶
s
g
n

p
l
p
t
i

n

t
t
t

n
m
b

B
b
H
f

t

m

Neurocomputing 617 (2025) 129005
where 𝛥𝑥 and 𝛥𝑦 are selected actions, and 𝛥𝑋𝑚𝑎𝑥 and 𝛥𝑌𝑚𝑎𝑥 are maxi-
mum steps (displacements) in 𝑋 and 𝑌 directions. Two random actions,
one for 𝛥𝑥 and one for 𝛥𝑦, are generated for the training process.

The decoding of the spiking output is determined by the difference
n the firing rates of the output neurons within each sub-layer. Let
s denote 𝑓 (𝑡) as the activity of the output neurons that control the

movement in the 𝑥 and 𝑦-directions:

𝑓 (𝑖) =
{

1 if the neuron spikes at time 𝑖,
0 otherwise,

The equation for decoding this activity can be expressed as:

𝛥𝑥𝑑 𝑒𝑐 𝑜𝑑 𝑒𝑑 =

[𝑡
∑

𝑖=𝑡−𝛥𝑇

(

𝑓𝑥+(𝑖) − 𝑓𝑥−(𝑖)
)

]

𝛥𝑋𝑚𝑎𝑥 (11)

where 𝑓𝑥+(𝑖) and 𝑓𝑥−(𝑖) are the activities of the two output neurons as-
ociated with the 𝑥-direction. A similar process is applied for decoding

in the 𝑦-direction:

𝛥𝑦𝑑 𝑒𝑐 𝑜𝑑 𝑒𝑑 =

[𝑡
∑

𝑖=𝑡−𝛥𝑇

(

𝑓 𝑦+(𝑖) − 𝑓 𝑦−(𝑖)
)

]

𝛥𝑌𝑚𝑎𝑥 (12)

where 𝛥𝑇 is the time window the network updates weights.
One of the challenges in robotic applications is ensuring smooth

transitions in actions to prevent abrupt and potentially harmful changes.
herefore, the recursive random number generation method is used to

produce correlated random numbers. This method ensures that during
training, the current displacements of the robot are influenced by its
revious displacements, leading to smoother transitions. The recursive

random number generation can be formulated as,

𝑡 = 𝛾 ⋅ 𝑡−1 + (1 − 𝛾) ⋅ 𝛶𝑡 (13)

where 𝑡 is the random action at time 𝑡, 𝛾 is a correlation coefficient, and
𝑡 is a random number drawn from a standard distribution (e.g., Gaus-
ian) at time 𝑡. This equation ensures that the random action at any
iven time 𝑡 is a weighted combination of the previous action and a
ew random number.

3.2. Training algorithm

The R-STDP algorithm is a learning technique inspired by biological
rocesses in the brain, which is believed to be fundamental to certain
earning processes [44]. The algorithm’s core principle is that when a
re-synaptic neuron activates just before its post-synaptic counterpart,
he synapse’s strength connecting them should increase, and vice versa
f the post-synaptic neuron fires first.

Within the SNN framework, pre-synaptic neurons are the input
eurons, and post-synaptic neurons function as the output neurons. The

function 𝑆 𝑇 𝐷 𝑃 (𝜏) can be defined as the firing timelines of both input
and output neurons [45] as,

𝑆 𝑇 𝐷 𝑃𝑘𝑙(𝜏) =  exp
(

− 𝜏
𝜏𝑠

)

for 𝜏 ≥ 0 (14)

where  stands as the exponential function’s amplitude, and 𝜏 is the
difference between the firing time of the input neuron (𝑘) and output
neuron (𝑙) (see Fig. 4). Meanwhile, 𝜏𝑠 acts as the time constant, setting
he decay rate for the 𝑅−𝑆 𝑇 𝐷 𝑃 function. Should 𝜏𝑠 approach infinity,
he exponential function converges to 1, neutralizing time’s effect on
he 𝑅 − 𝑆 𝑇 𝐷 𝑃 function.

The adjustment of synaptic weights follows the given equation:

𝑊̇𝑘𝑙(𝑡) = 𝑆 𝑇 𝐷 𝑃𝑘𝑙(𝜏)(𝑡) (15)

where 𝑊̇𝑘𝑙(𝑡) denotes the rate of change of the synaptic weight that
connects neurons 𝑘 and 𝑙. This weight determines the input that the
post-synaptic neuron receives upon the spiking of its pre-synaptic neu-
ron, which is quantified as 𝐼(𝑡). The term (𝑡) represents the reward

that is received at time 𝑡.

6
The reward functions used in this paper are as follows,

𝐹 𝑗
𝐹 𝑖 (𝑡) = 𝐹 𝑗

𝐹 𝑖
[

𝑟𝐹 𝑗𝐹 𝑖 (𝑡 − 1) − 𝑟𝐹 𝑗𝐹 𝑖 (𝑡)
]

𝑡𝑎𝑛ℎ(𝑟𝐹 𝑗𝐹 𝑖 (𝑡) − 𝑟𝑐 𝑚𝑑) (16)

𝐿
𝐹 𝑖(𝑡) = 𝐿

𝐹 𝑖
[

𝑟𝐿𝐹 𝑖(𝑡 − 1) − 𝑟𝐿𝐹 𝑖(𝑡)
]

𝑡𝑎𝑛ℎ(𝑟𝐿𝐹 𝑖(𝑡) − 𝑅𝑐 𝑚𝑑) (17)

where, 𝐹 𝑗
𝐹 𝑖 , 𝑟𝐹 𝑗𝐹 𝑖 , and 𝑟𝑐 𝑚𝑑 denote the reward, distance, and com-

manded distance between two 𝑖 and 𝑗 follower agents, respectively.
Similarly, 𝐿

𝐹 𝑖, 𝑟𝐿𝐹 𝑖, and 𝑅𝑐 𝑚𝑑 represent the reward, distance, and the
commanded distance between the follower agent 𝑖 and the leader (𝐿),
respectively. The terms 𝐹 𝑗

𝐹 𝑖 and 𝐿
𝐹 𝑖 are the reward coefficients and

the 𝑡𝑎𝑛ℎ(𝑟𝐹 𝑗𝐹 𝑖 (𝑡) − 𝑟𝑐 𝑚𝑑) and 𝑡𝑎𝑛ℎ(𝑟𝐿𝐹 𝑖(𝑡) − 𝑅𝑐 𝑚𝑑) functions determine the
reward’s sign according to the agents’ relative distance and the com-
manded distance. The expressions 𝑟𝐹 𝑗𝐹 𝑖 (𝑡− 1) − 𝑟𝐹 𝑗𝐹 𝑖 (𝑡) and 𝑟𝐿𝐹 𝑖(𝑡− 1) − 𝑟𝐿𝐹 𝑖(𝑡)
specify the magnitude of the instantaneous reward.

If an agent finds itself farther away from the commanded distance
than a neighboring agent or the leader, it will be rewarded positively
for decreasing its distance. Conversely, moving closer results in a
negative reward if the agent is within the commanded distance from a
neighboring agent or the leader. This system is designed to encourage
the maintenance of a commanded distance: being too far away from
the commanded distance invites a penalty. At the same time, positive
reinforcement is given for closing the gap between the current distance
and the commanded distance.

One of the challenges in R-STDP is the unbounded growth or decay
of synaptic weights, which can impede effective learning in neural
etworks. The following section introduces a novel weight-stabilization
ethod to address this challenge and enhance the algorithm’s applica-

ility.

3.2.1. Weight stabilization using reward-modulated competitive synaptic
equilibrium (R-CSE)

Controlling the excessive increase of synaptic weights in SNNs is im-
portant to maintain network resilience and function. If not controlled,
this growth can lead to saturation, affecting the network’s ability
to learn and adapt. When the network receives fuzzy sets of firing
strengths as input, the synaptic weights grow in a pattern influenced
by the Gaussian function’s shape used for fuzzy encoding. Imposing
a limit on synaptic weights disrupts this growth pattern over time,
and eventually, all the synaptic weights reach the maximum. Weight
normalization, while preventing excessive growth in one part of the net-
work, can inhibit overall growth; when a synaptic connection reaches
its maximum, its activation subsequently diminishes other weights.

Traditional methods like L1 regularization and weight decay employ
a constant decay rate, which can slow the network’s responsiveness
to changes in rewards. Alternatively, a more advanced approach, the

ienenstock, Cooper, and Munro (BCM) method, dynamically adjusts
oth a threshold and a decay rate in response to input variations.
owever, this method does not provide a control mechanism for the

uzzy inputs. In this chapter, we introduce a method called R-CSE to
manage the unbounded growth of synaptic weights while maintaining
the gradual change in the synaptic weights formed due to differences
in firing strength from fuzzy membership functions. Our method also
dynamically adjusts the network when the reward changes by adjusting
he maximum synaptic weight based on the reward.

The enhanced version of the R-STDP method considering the control
echanism from R-CSE algorithm is expressed as follows,

𝑾̇ (𝑡) = 𝜶 ⊙ 𝐒𝐓𝐃𝐏(𝜏)⊙(𝑡) −𝜣 ⊙ sgn(𝑾) (18)

where ⊙ is the Hadamard product, 𝜶 is the learning rate matrix, and
𝜣 is the decay rate matrix. The primary distinction between the R-CSE
method and the approach detailed in Section 2.4 lies in the decay rate,
which allows the learning system to remain adaptable after the learning
phase, and in the learning rate, which is represented as a matrix rather
than a scalar value affecting all synaptic weights uniformly. These
modifications enhance the learning algorithm’s flexibility in responding

M.T. Ramezanlou et al.

a

a
t
c
r
p

s
a
m
t


p
l
t
p

a
t
r
i
r
f
T
e

r
r
a
o
o

f

s

b

t

b

a
|

t
t

s
0

𝛹
d

p
d
d
t

Neurocomputing 617 (2025) 129005
to reward changes and provide greater control over synaptic weight
djustments.

Let us define  as the set of input and output neurons that fired
t time 𝑡 in one of the network sections. If we consider 𝑊 

𝑚𝑎𝑥(𝑡) as
he maximum weight among the firing neurons in set , then we can
haracterize the learning rate using a Sigmoid function. The learning
ate value (𝜶 (𝑡)) gradually transitions from 1 to 0 as the learning
rocess advances, as explained below:

𝜶 (𝑡) = 1

1 + exp
[

1
𝜖

(

|𝑊 
𝑚𝑎𝑥(𝑡)| − 𝛹

)

] ,

(

𝛹 =


𝑚𝑎𝑥

𝐺
𝑚𝑎𝑥

𝐼𝑚𝑎𝑥
)

(19)

where 
𝑚𝑎𝑥 is the maximum reward in the network section (e.g.,

𝑚𝑎𝑥(𝐹 𝑗
𝐹 𝑖)), 𝐺

𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐹 𝑗
𝐹 𝑖 ,𝐿

𝐹 𝑖), and 𝜖 is a small positive number that
controls the curvature of the function around 𝑊 

𝑚𝑎𝑥(𝑡) = 𝛹 . This model
determines the learning rate by the highest synaptic weight among
the active input and output neurons. This mechanism is similar to
the ‘‘winner-takes-all’’ approach. When a synaptic connection reaches
its weight limit, it prevents further changes in the adjacent synaptic
weights.

The network contains a variety of reward functions, each with its
own maximum and minimum values. The highest reward value in a
pecific area of the network sets the limit for the synaptic weight in that
rea. The synaptic weight limit is linked to the ratio of the local maxi-
um reward (

𝑚𝑎𝑥) to the global maximum reward (𝐺
𝑚𝑎𝑥). As a result,

he network section with the highest local maximum reward (
𝑚𝑎𝑥 =

𝐺
𝑚𝑎𝑥) attains the maximum allowable synaptic weights because 

𝑚𝑎𝑥
𝐺

𝑚𝑎𝑥
=

1, while sections with lower local maximum rewards reach only a
roportional fraction of the maximum weight. The adjustment of the
earning rate transforms into a competitive algorithm that modifies
he growth rate of individual synaptic weights by considering network
arameters, like reward and maximum synaptic weight.

A significant challenge in learning algorithms is their capacity to
dapt to changes in rewards. Commonly, once the learning rate reduces
o zero, weight adjustments stop. To address this, a variable decay
ate is introduced to prevent weights in each network section from
ndefinitely remaining at their peak values. In our method, the decay
ate is represented as a matrix, and it is calculated using the SoftPlus
unction, enabling it to adjust according to the current stage of learning.
his method ensures that weight modifications continue to respond
ffectively to changes in the learning environment.

This chapter defines the decay rate as a function of the maximum
synaptic weight among neurons in the set . This approach is designed
to address a critical aspect: when the maximum synaptic weight in 
eaches its peak (|𝑊 

𝑚𝑎𝑥(𝑡)| = 𝛹), it is essential that the learning rate
emains above zero. This condition is necessary to allow weight change
nd prevent the learning rate from stagnating at zero ((18)). Simultane-
usly, the learning rate must not exceed the maximum acceptable rate
f weight change, which is  × 𝐺

𝑚𝑎𝑥. When the reward coefficients
change after training, it can cause |𝑊 

𝑚𝑎𝑥(𝑡)| to exceed 𝛹 for set .
With these considerations, we propose that the decay rate should be
set to ∕𝜆 × 𝐺

𝑚𝑎𝑥 when |𝑊 
𝑚𝑎𝑥(𝑡)| = 𝛹 and increase to 𝜆 × 𝐺

𝑚𝑎𝑥
when |𝑊 

𝑚𝑎𝑥(𝑡)| = 2𝛹 , where 𝜆 is a coefficient that controls the rate of
decay when |𝑊 

𝑚𝑎𝑥(𝑡)| > 𝛹 .
By applying the mentioned condition and solving for the SoftPlus

unction, the decay rate function can be obtained as follows,

𝛩 =
(

𝜂
𝛽

)

log
(

1 + exp [𝛽 (|𝑊 
𝑚𝑎𝑥(𝑡)| − 𝛹)]) (20)

where 𝜂 = 𝐺
𝑚𝑎𝑥 ln (2𝜆2−1)
𝜆𝛹 log (2) is a scaling parameter that can adjust the

output scale of the function, and 𝛽 = ln (2𝜆2−1)
𝛹 controls the curvature

of the function. A higher 𝛽 makes the SoftPlus function approach a
tep function, making it closer to the binary behavior. Conversely, a
7
smaller 𝛽 makes the function smoother and more gradual. Eq. (20) can
e represented as,

𝛩 =

(

𝐺
𝑚𝑎𝑥

𝜆 log (2)

)

log

(

1 + exp
[(

ln (2𝜆2 − 1)
𝛹

)

(

|𝑊 
𝑚𝑎𝑥(𝑡)| − 𝛹)

])

(21)

The choice of setting the decay rate to 𝜆×𝐺
𝑚𝑎𝑥 when |𝑊 

𝑚𝑎𝑥(𝑡)| =
2𝛹 is based on the feature of reward coefficients. Specifically, when
he reward coefficients in (16) and (17) increase, leading to new

condition where 
𝑚𝑎𝑥 or 𝐺

𝑚𝑎𝑥 change, the |𝑊 
𝑚𝑎𝑥(𝑡)| is allowed to

increase. Conversely, a decrease in the reward coefficient, resulting in
|𝑊 

𝑚𝑎𝑥(𝑡)| > 𝛹 , necessitates a higher decay rate to reduce the |𝑊 
𝑚𝑎𝑥(𝑡)|

ack to 𝛹 .
When |𝑊 

𝑚𝑎𝑥(𝑡)| < 𝛹 , the reward adjusts the synaptic weights,
nd there is no weight decay to disturb the learning process. When
𝑊 

𝑚𝑎𝑥(𝑡)| > 𝛹 , the decay rate changes the synaptic weights and brings
he maximum weight to the reward zone, where |𝑊 

𝑚𝑎𝑥(𝑡)| < 𝛹 and
he networks responds to reward change.

Lemma 3.1. The R-CSE method is asymptotically stable in its equilibrium
point 𝑊 

𝑚𝑎𝑥(𝑡) = 𝛹 .

Proof. We consider the dynamical system given by the equation of
ynaptic weights for 𝑊 

𝑚𝑎𝑥(𝑡) ≥ 0 that receives a positive reward ((𝑡) >
) as,

𝑊̇ 
𝑚𝑎𝑥(𝑡) = 1

1 + exp
[

1
𝜖

(

𝑊 
𝑚𝑎𝑥(𝑡) − 𝛹

)

]𝑆 𝑇 𝐷 𝑃 (𝜏)(𝑡)

−

(

𝐺
𝑚𝑎𝑥

𝜆 log (2)

)

log

(

1 + exp
[(

ln (2𝜆2 − 1)
𝛹

)

(

𝑊 
𝑚𝑎𝑥(𝑡) − 𝛹)

])

,

(22)

To assess the stability of this system around the equilibrium point,
we introduce a Lyapunov function candidate 𝑉 (𝑧), where 𝑧 = 𝑊 

𝑚𝑎𝑥(𝑡) −
 . A common choice for such analyses is a quadratic function of the
eviation from the equilibrium:

𝑉 (𝑧) = 1
2
𝑧2. (23)

This positive definite function has a minimum at the equilibrium
oint, satisfying the essential criteria for a Lyapunov function. The
erivative of 𝑉 (𝑧) with respect to time, 𝑉̇ (𝑧), is then calculated to
etermine the rate of change of the Lyapunov function along the
rajectories of the system:

𝑉̇ (𝑧) = 𝑧 ̇𝑧 (24)

Substituting 𝑊̇ 
𝑚𝑎𝑥(𝑡) from (22) into the above expression, we have,

𝑉̇ (𝑧) = 𝑧 ×

⎡

⎢

⎢

⎢

⎣

1

1 + exp
[

1
𝜖 (𝑧)

]𝑆 𝑇 𝐷 𝑃 (𝜏)(𝑡) −
(

𝐺
𝑚𝑎𝑥

𝜆 log (2)

)

log (1 + exp

[(

ln (2𝜆2 − 1)
𝛹

)

(𝑧)

])

⎤

⎥

⎥

⎦

(25)

A negative 𝑉̇ (𝑧) indicates that the system’s energy decreases over
time, concluding that the equilibrium point is asymptotically stable.
Conversely, a positive 𝑉̇ (𝑧) in any region would suggest the presence

M.T. Ramezanlou et al. Neurocomputing 617 (2025) 129005
Fig. 5. Synaptic weight change for 𝜆 = 5, 𝛹 = 15.5, and 𝐺
𝑚𝑎𝑥 = 1.

of instability or regions of attraction that do not encompass the entire
state space.

In analyzing the system’s stability, we focus on the behavior of the
derivative of the Lyapunov function, 𝑉̇ (𝑧), across different regions of
𝑧. We decompose the dynamics of 𝑧̇ into its constituent components to
systematically analyze the stability conditions. We assess the relative
magnitudes of the two main components influencing 𝑉̇ (𝑧):

1. The first term, represented as 1
1+exp

[

1
𝜖 𝑧

]𝑆 𝑇 𝐷 𝑃 (𝜏)(𝑡), denotes

the effect of learning rate and is inherently positive when the
synaptic connection receives positive reward consistently.

2. The second term,
(

𝐺
𝑚𝑎𝑥

𝜆 log (2)
)

log
(

1 + exp
[(

ln (2𝜆2−1)
𝛹

)

𝑧
])

, cap-
tures the dynamic decay rate of synaptic weights, which is
governed by the SoftPlus function.

Analysis for 𝑧 < 0:
In this region, we observe that the term exp

[(

ln (2𝜆2−1)
𝛹

)

𝑧
]

goes to
zero and makes the term inside the log function go to 1. This implies
that the contribution of this term to ̇𝑉 (𝑧) is negligible in this region.
Moreover, the first term remains positive throughout, and given that
it is multiplied by 𝑧 (which is negative in this region), the overall
contribution to 𝑉̇ (𝑧) is negative. Consequently, 𝑉̇ (𝑧) is negative for
𝑧 < 0, indicating that any perturbations from the equilibrium in this
region will decrease over time, thereby contributing to the system’s
stability.

Analysis for 𝑧 > 0:
For this region, the magnitude of the second term significantly

exceeds that of the first term. This predominance is critical as it is
associated with a negative sign in the 𝑉̇ (𝑧) equation. Therefore, the
negative contribution of this component ensures that 𝑉̇ (𝑧) remains
negative throughout this region. It indicates that any deviation from the
equilibrium state results in the system’s energy decreasing over time,
leading to the conclusion that the equilibrium point 𝑊 

𝑚𝑎𝑥(𝑡) = 𝛹 is
asymptotically stable for 𝑧 > 0. □

Fig. 5 demonstrates the performance of the R-CSE when it regulates
the synaptic weights to prevent unbounded growth. The red dotted line
represents the value of 𝛹 , which is derived from the maximum reward
value of the corresponding network section. As shown in Fig. 5, the
synaptic weight oscillates around 𝛹 , and when it drops below 𝛹 , the
learning rate is set to 1 by (19). This allows any changes in the reward
function to be applied to the synapse.
8
Fig. 6. Reward-based learning rate and decay rate functions. In the blue region (active
learning rate), the reward adjusts the weights, and in the red region (active decay rate),
the RCSE method controls synaptic growth.

According to Fig. 6, when 𝑊 
𝑚𝑎𝑥 ≤ 𝛹 , synaptic weights in set 

increase. If the reward changes, 𝛹 also changes. Depending on the
current value of 𝑊 

𝑚𝑎𝑥, the R-CSE either increases or decreases the
synaptic weights within set .

Fig. 7 shows how the maximum synaptic weight of the active
synapses in set  stops the adjacent synaptic connections’ growth by
setting the learning rate of the set to 0.

3.2.2. Federated learning for consensus flying
In FL, a key challenge is centralizing various models on one server.

This process must effectively combine these models to create a unified
global model without compromising the specific adjustments made to
each model. A critical strategy involves choosing models that contain
substantial information. Another significant aspect is determining the
frequency of model aggregation. Shorter intervals between aggrega-
tions can enhance learning efficiency but may strain network resources,
particularly as the number of participating agents and devices grows.
Conversely, longer intervals might slow down the learning process
due to delayed updates of the global model. This section proposes an
aggregation method for SNN. Our focus is on reducing network usage
and energy consumption.

This approach allows clients to upload their local model updates at
different times rather than synchronously. Such a method is particularly
beneficial in reducing the negative impacts of device heterogeneity,
which can include varying computational capacities and network con-
nectivity among devices [46]. In traditional FL setups, delays caused
by poor network signals or unexpected client crashes can significantly
prolong the time the server takes to receive updates from all clients.
By adopting asynchronous aggregation, the server processes and ag-
gregates models as they are received without synchronizing with all
clients. This strategy accelerates the training process, making FL more
efficient and adaptable to diverse client conditions.

Our proposed FL model aggregation algorithm aims to establish an
efficient and event-triggered system for global and local model pub-
lishing. This system relies on the similarity between consecutive global
and local models and publishes updates only when significant changes
are detected, thus avoiding redundant updates and improving overall
efficiency. Unlike the uniform model updates in FedAvg [47,48], our
approach allows individual agents to evaluate and send their local
models based on a similarity threshold with the global model, thereby
enabling a potentially more effective update process. Our aggregation

M.T. Ramezanlou et al. Neurocomputing 617 (2025) 129005
Fig. 7. RCSE working principle in inhibiting the adjacent synaptic connections. The heatmap shows the synaptic weight matrix. Neurons have different firing strengths due to the
difference in fuzzy membership values, which affects the increase or decrease rate and shapes the patterns in the synaptic weight matrix.
strategy emphasizes similarity metrics for model updates, which is not
commonly emphasized in methods like FedNova [49], adding a layer
of context sensitivity to our approach.

In our approach, considering the difference in agents’ neural net-
work parameters and maximum and minimum synaptic weights, the
weights are normalized to align them on a uniform scale ranging from
−1 to 1. This normalization process makes the neural model values
comparable across the network. Based on the maximum and minimum
synaptic weights outlined in (5), and taking into account the highest
excitation (𝐼𝑚𝑎𝑥) and inhibition (−𝐼𝑚𝑎𝑥), the normalization of synaptic
weights is performed as follows:

𝑾 𝑘(𝑡) = 1
𝐼𝑚𝑎𝑥𝑘

[𝑾 𝑘(𝑡)] (26)

where 𝑾 𝑘(𝑡) represents the matrix of synaptic weights, 𝑾 𝑘(𝑡) denotes
the normalized synaptic weight matrix for agent 𝑘 ∈ {1, 2, 3, ..}, and
𝐼𝑚𝑎𝑥𝑘 is the maximum synaptic weight for agent 𝑘.

The global model on the server (Leader) is then computed using a
weighted average,

𝑾 𝐺(𝑡) =
∑𝑁

𝑘=1 𝜔𝑘.𝑾 𝑘(𝑡)
∑𝑁

𝑘=1 𝜔𝑘
(27)

where 𝑾 𝐺(𝑡) is the global normalized model on the central server, 𝑁
is the number of agents, and 𝜔𝑘 is the aggregation weight for each SNN
model, defined as,

𝜔𝑘 = 1
√

𝑚𝑛
‖𝑾 𝑘(𝑡)‖𝐹 exp

(

−
𝑡 − 𝑇𝑘
𝜏𝑐 𝑠

)

(𝑡 ≥ 𝑇𝑘) (28)

where the term ‖.‖𝐹 is the Frobenius norm, and 𝑚 and 𝑛 are the
dimensions of the matrix 𝑾 𝑘(𝑡), used for normalizing the Frobenius
norm. 𝑇𝑘 indicates the time at which agent 𝑘 last transmitted its local
model to the central server, and 𝜏𝑐 𝑠 is a time constant that reduces the
weight to zero if there is no recent update from the agent.

Both agents and the central server employ an event-triggered mech-
anism for transmitting local and global models. Throughout the training
9
phase, each agent calculates the Euclidean distance between the most
recent global model from the central server and its current synaptic
weights matrix, as follows,

𝑎(𝑾 𝑘(𝑡),𝑾 𝐺(𝑇𝑐 𝑠)) = 1
2
√

𝑚𝑛

√

√

√

√

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
(𝑎𝑖𝑗 − 𝑏𝑖𝑗)2 (29)

where 𝑎 is the Euclidean distance on the agent side, 𝑇𝑐 𝑠 is the time
when the central server published the global model, and 𝑎𝑖𝑗 and 𝑏𝑖𝑗
are elements of the latest global model and the current local model,
respectively. If this distance exceeds a certain threshold, set between 0
and 1, the agent transmits its model to the central server.

If the 𝑎 on the agent 𝑘 reaches the threshold and it does not receive
any update from the server, the agent sends its model to the server, and
then it calculates the 𝑎 between current synaptic weights 𝑾 𝑘(𝑡) and
the model it recently sent to the server 𝑾 𝑘(𝑇𝑘) until it receives a new
model update from the central server.

The central server follows a similar procedure as the agents, evaluat-
ing the distance 𝐺 between the current and recently published model
at time 𝑇𝑐 𝑠,

𝐺(𝑾 𝐺(𝑡),𝑾 𝐺(𝑇𝑐 𝑠)) = 1
2
√

𝑚𝑛

√

√

√

√

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
(𝑎𝑖𝑗 − 𝑏𝑖𝑗)2 (𝑡 ≥ 𝑇𝑐 𝑠) (30)

Incorporating the proposed FL method with the R-CSE algorithm,
the modified R-STDP equation can be represented as follows,

𝑾̇ 𝑘(𝑡) = (1 − 𝛿(𝑡 − 𝑇𝑐 𝑠))
[

𝜶 ⊙ 𝐒𝐓𝐃𝐏(𝜏)⊙(𝑡) −𝜣 ⊙ sgn(𝑾 𝑘(𝑡))
]

+ 𝛿(𝑡 − 𝑇𝑐 𝑠)𝐼𝑚𝑎𝑥𝑘

(

𝑾 𝐺(𝑡) −𝑾 𝑘(𝑡)
)

(31)

where 𝛿 is the Dirac delta function. Algorithm 1 shows the step-by-step
implementation process of the proposed method.

M.T. Ramezanlou et al.

1
1
1

t
S

o
a
S
i
n
4
S
p

v
s

d

o
d

s
s
t
t
a

6
t
t

t
c

Neurocomputing 617 (2025) 129005
Algorithm 1 High-Level Algorithm for the Proposed FL Algorithm
Require: Initialization of Central Server and Agents
Ensure: Updated Global Model on the Central Server and Local Models

on Agents
1: Initialize the agents and Central Server with default parameters for

model publication threshold, Euclidean distance, and model publish
status

2: Initialize the Global Model on the Central Server
3: if 𝑡 is greater than 0 then
4: Normalize synaptic weights of local models using (26)
5: Aggregate models from all agents at the Central Server using

(27)
6: Calculate the 𝐺 between the current and previous global

models on the Central Server using (30)
7: if 𝐺 > the Central Server’s threshold then
8: Publish the global model
9: set 𝑇𝑐 𝑠 = 𝑡
0: end if
1: for each Agent in the network do
2: if Central Server publishes a new global model then

13: Update the local model of the Agent with the global
model using (31)

14: else
15: Agents evaluate their local models against the latest

global model (𝑎) using (29)
16: if 𝑎 > the Agent’s threshold then
17: Send the model to the Central Server
18: set 𝑇𝑘 = 𝑡
19: end if
20: end if
21: end for
22: end if

The proposed algorithm allows agents to communicate less of-
en and save energy. It only sends essential updates to the Central
erver, which helps when many agents have different SNN models

and communication interfaces. This method reduces unnecessary data
transmission, making the whole system more efficient.

4. Results and discussion

In this section, we conducted a numerical simulation to validate
the performance of the proposed method. The simulation involves a
group of five agents flying around a leader who is moving in a circular
path. Initially, a scenario without implementing FL was conducted to
evaluate the performance of the SNN in achieving coordinated flight.
During this phase, the effect of the change in reward was simulated to
examine the R-CSE method. In the second part of the simulation, the
proposed FL aggregation algorithm is used, where the leader agent acts
as a central server. Finally, the algorithm was tested both before and
after changing the rewards.

4.1. Simulation without FL

In this simulation, we modeled five agents, each equipped with its
wn SNN model, capable of reaching a maximum speed of 1 m/s. The
rchitecture of each agent’s neural network included 72 input neurons.
ince each agent was designed to detect three distinct objects within
ts environment, the input layer was organized into sub-layers, with 24
eurons dedicated to each object. The network’s output layer comprised
 neurons, divided equally to represent 𝛥𝑥 and 𝛥𝑦 movements. The
NN model in the simulation is a fully connected network, and the
arameters of the LIF neuron are also represented in Table 1.

The R-STDP mechanism updated synaptic weights at 10 ms inter-
als. During these intervals, the learning algorithm adjusted the agent’s
tates based on received data from other agents and the leader while
 t

10
Table 1
Parameter values for LIF neuron model [50].

Parameter Value Description

𝑅𝑚 40 MΩ Membrane Resistance
𝜏𝑚 30 ms Membrane time constant
𝐸𝑙 −70 mV Resting potential
𝑉𝑟𝑒𝑠 −70 mV Reset potential
𝑉0 −70 mV Initial membrane potential
𝑉𝑡ℎ −50 mV Threshold membrane potential

Table 2
Simulation parameters.

Parameter Value Description

𝛥𝑇 10 ms Weight and state update sample time
𝜏𝑠 2 ms Time constant for R-STDP
 1 Amplitude in R-STDP function
𝜆 5 Decay rate coefficient
𝛥𝑥 and 𝛥𝑦 0.01 m Max step per 𝛥𝑇
𝜎 0.5 Gaussian function’s std. deviation
𝛥𝑡 1 ms Minimum inter-spike interval
𝐼𝑚𝑖𝑛 0.5 Lower bound of synaptic weight
𝐼𝑚𝑎𝑥 15.5 Upper bound of synaptic weight
𝛾 0.95 Correlation Coefficient

Fig. 8. Measured distances used for evaluating swarm flight performance and collision
detection.

simultaneously generating random outputs as part of an exploration
strategy.

Table 2 shows the simulation parameters. The simulation was done
in a 10 m by 10 m area, and the leader followed a circular path centered
at (5,5) with a 2.5 m radius and a 0.1 m/s speed.

To monitor swarm performance, the minimum and maximum dis-
tances of each agent from other agents and the minimum and maximum
distances of the swarm from the leader were measured. Fig. 8 shows the
efinition of the distances.

The simulation included two phases. During the initial phase, the
bjective was for the agents to learn to maintain the commanded
istance from each other and the leader. This phase took 600 s for

training, and the reward coefficient among followers (𝐹 𝑗
𝐹 𝑖) was set at

0.02, while the coefficient between followers and the leader (𝐿
𝐹 𝑖) was

et at 0.07. These parameters were derived from a series of numerical
imulations. A higher value of 𝐿

𝐹 𝑖 signifies an increased emphasis on
he leader in the learning process, which means that the distance to
he leader is more important than the commanded distance between
gents.

Fig. 9 shows the simulation results for the R-CSE method. According
to the results, the agents rapidly aligned around the leader within
.89 s, and the maximum distance was reduced from 7.632 meters to
he target distance of 2 m. The swarm completed the formation around
he leader in approximately 8.94 s, avoiding collisions (see Fig. 10).

As mentioned in Section 3, the input encoding uses the error be-
tween current and commanded distance. Therefore, one of the ad-
vantages of the encoding and learning method in this paper is that
he learned policies are independent of the commanded distance. The
ommanded distance can be changed after training since the SNN uses

he distance error.

M.T. Ramezanlou et al.

t

w

c

c

f

i
m
i

Neurocomputing 617 (2025) 129005
Fig. 9. Agents’ trajectory during the test phase.

Fig. 10. Variation of distances within the swarm during the test phase.

Fig. 11. Adaptive response to commanded distance adjustments: dynamic reconfigura-
tion during the test phase.
S

11
Fig. 12. Trajectory adaptations of following agents in response to reward change for
he leader during the test phase.

Another key feature of our SNN implementation is that when the
agent successfully aligns with the commanded distances, resulting in
zero error, the input neurons cease to spike. This characteristic lever-
ages the sparsity of spikes in SNNs, significantly reducing energy con-
sumption, as the spike is the primary energy consumer in these net-

orks [51]. This absence of spiking under zero-error conditions demon-
strates the network’s precision and operational efficiency, as it min-
imizes unnecessary computational activity and power usage. While
quantized ANNs are beneficial in reducing model size and computa-
tional demands, they often face challenges in maintaining accuracy due
to reduced precision, which can be critical in complex decision-making
ontexts.

Fig. 11 shows the agents’ response to changes in commanded dis-
tance after training. According to this figure, when the commanded
distance is changed at 30 s, the swarm immediately responds to this
change in 2.98 s without disrupting the formation or any collision.

After 600 s, the leader is changed into an obstacle, and its reward
coefficient 𝐿

𝐹 is changed to 0.0175. The reward sign function, t anh in
(17), is also changed to −1, so the reward function for the leader is
hanged as follows,

𝐿
𝐹 𝑖(𝑡) = −𝐿

𝐹 𝑖
[

𝑟𝐿𝐹 𝑖(𝑡 − 1) − 𝑟𝐿𝐹 𝑖(𝑡)
]

(32)

When the leader is transformed into an obstacle, the encoding
equation for the input layer must be changed. This is because the
obstacle has no commanded distance, and the agents must maintain a
commanded distance only from each other. Therefore, the commanded
distance from the obstacle encoder in the input layer must be removed.
Therefore, (6) can then be rewritten as follows:

𝜇𝐼 (𝜙𝑖) = exp
(

−
(𝜙𝑖 − 𝜁)2

2𝜎2

)

(33)

The simulation proceeded for an additional 1200 s, during which
the synaptic weights were adjusted in accordance with the new reward
unction given by (32). The results of the reward change are shown in

Figs. 12 and 13, which indicate that the agents quickly reduced their
nitial distance to the commanded distance of 2 m. Simultaneously, the
inimum distance from the obstacle, the leader, increased over time,

ndicating that the agents adapted their behavior to maintain a greater
distance from the obstacle. Fig. 12 shows the trajectory of each agent
after the reward change.

In order to better understand the effect of reward change on the
NN, the synaptic weights matrix before and after reward change

M.T. Ramezanlou et al. Neurocomputing 617 (2025) 129005
Fig. 13. Variations in distances after reward changes and Leader becomes Obstacle -
test phase.

has been illustrated in Figs. 14 and 15, the vertical axis shows the
output neurons. The first output neuron is for negative displacement
in the 𝑥-direction, while the second output neuron is dedicated to
positive displacement in the 𝑥-direction. Similarly, the third output
neuron corresponds to negative displacement in the 𝑦-direction and
the fourth output neuron to positive displacement in the 𝑦-direction.
The horizontal axis shows the input neurons. The neuron IDs from 1
to 24 are for the first sub-layer dedicated to the neighboring follower.
The network has two sub-layers for the neighboring follower agents,
but only one is shown since they are similar in the case of synaptic
weight values. The neuron numbers from 25 to 48 are for the sub-
layer dedicated to the leader. The R-CSE method aims to maintain
the synaptic weight matrix gradient while adapting to changes in the
reward signal.

Considering the numerical values presented in Table 2 along with
the reward coefficients 𝐹 𝑗

𝐹 𝑖 = 0.02 and 𝐹 𝑗
𝐿 = 0.07, and 𝑟𝐹 𝑗𝐹 𝑖 = 1 m∕s and

𝑟𝐿𝐹 𝑖 = 0.1 m∕s, the maximum rewards at each weight update interval
(𝛥𝑇) for 𝐹 𝑗

𝐹 𝑖 and 𝐿
𝐹 𝑖 are calculated using (16) and (17) as 4 × 10−4

and 7.7 × 10−4, respectively. Consequently, 𝐺
𝑚𝑎𝑥 = max(𝐹 𝑗

𝐹 𝑖 ,𝐿
𝐹 𝑖) = 7.7 ×

10−4. The 𝛹𝑆 for the follower section in the network is
[

4×10−4
7×10−4

]

15.5 =
8.0519, and for the leader section, it is

[

7×10−4
7×10−4

]

15.5 = 15.5. The 𝜂 and 𝛽

for the follower section within the network are 𝐺
𝑚𝑎𝑥 ln (2𝜆2−1)
𝜆𝛹 log (2) = 0.0011

and 𝛽 = ln (2𝜆2−1)
𝛹 = 2.152, respectively. For the leader section, these

values are 𝐺
𝑚𝑎𝑥 ln (2𝜆2−1)
𝜆𝛹 log (2) = 5.719 × 10−4 and 𝛽 = ln (2𝜆2−1)

𝛹 = 1.118,
respectively.

The visual patterns observed in the synaptic weights matrix in
Figs. 14 and 15, specifically, the gradual increases and decreases in
values across weights, directly result from applying Gaussian member-
ship functions for encoding. As illustrated in the heatmap visualization,
regions of higher values denote areas closer to the function’s center,
where the degree of membership peaks. Conversely, areas of lower val-
ues reflect points moving away from the center, where the membership
degree decreases according to the Gaussian distribution’s tails.

Since the reward coefficients for followers and leaders are differ-
ent, their maximum allowed synaptic weights are also different. The
proposed method for controlling the unbounded growth of synaptic
weights has successfully stabilized the network.

Fig. 15 shows the synaptic weights after the reward change. In this
case, since the reward coefficients are changed, the 𝜂 and 𝛽 values are
changed for the represented sub-layers, and the proposed method has
12
Fig. 14. Synaptic Weights before Reward change.

Fig. 15. Synaptic Weights after Reward change.

Fig. 16. Synaptic weights increase after reward change.

helped the R-STDP algorithm to adjust the weights based on the new
situation in the environment.

Figs. 16 and 17 show the changes in the synaptic weights before
and after the reward change for each section of the neural network.

M.T. Ramezanlou et al.

t
a
s
m
c

2

l
a
A

r

Neurocomputing 617 (2025) 129005
Fig. 17. Synaptic weights decrease after reward change.

According to the figures, the maximum synaptic weight converges to
the maximum threshold defined based on each section’s reward value.

4.2. Simulation with FL and R-CSE

In this section, the proposed aggregation algorithm is tested. In this
case, the agents only send their models when the Euclidean distance
between the current and previously published model or the latest global
model reaches a threshold. In the first phase, the simulation was done
in 600 s, and the agents learned to follow the leader. The threshold
for publishing the agents’ and server models was 0.0005 and 0.00051,
respectively. The reason for choosing the server’s threshold higher than
the agents’ is that as soon as the first agent sends its model to the server,
the Euclidean distance between the current and previously published
model by the server reaches 0.0005, and the server distributes the
model immediately. Therefore, the serve’s threshold is set higher than
the agents’ threshold, so it waits for the other agents to send their
models.

Fig. 18 shows the distances between agents and the leader before
the reward change. According to the figure, the agents converge to
he solution faster than the non-federated learning scenario without
ny error. Fig. 19 shows the simulation results for the reward change
cenario. According to the figure, the proposed event-triggered FL
ethod has improved the learning performance so that the swarm

onverges to the solution in 6 s.
To verify the method’s effectiveness, the number of agents is in-

creased to 7. Figs. 20 and 21 show the performance of the proposed
method in formation flying. According to Fig. 21, the agents can fly
around the leader without colliding with each other. Because of the
complexity of the environment in this case, it takes more time (around
2 s) for the agents to stabilize the formation.

As shown in Fig. 22, the norm of the synaptic weights can represent
the changes in the synaptic weights due to the change in the envi-
ronment during the training process, which can be used to adjust the
earning process in SNNs. In the proposed event-triggered FL method,
gents communicate with the Central Server (leader) during training.
ccording to Fig. 23, the aggregation step time is small at the beginning

of the training and increases as the SNN models converge to the final
solution. The rate of change of the norm of the synaptic weights
determines the communication sample time of the aggregation process,
which results in small aggregation intervals when the change rate is
high and larger intervals when it reduces.

Therefore, the aggregation frequency is very high initially, and it
educes after the change in synaptic weights goes to zero because of
13
Fig. 18. Distance measurements during the test phase before reward change in the
proposed event-triggered FL method.

Fig. 19. Distance measurements during the test phase after reward change in the
proposed event-triggered FL method.

Fig. 20. Formation flying of 7 agents in the proposed event-triggered FL method.

M.T. Ramezanlou et al. Neurocomputing 617 (2025) 129005
Fig. 21. Distances between 7 agents and the leader in the proposed event-triggered
FL method.

Fig. 22. Frobenius norm of the Agent 1 during the learning phase. The reward changes
for the Leader after 600 s.

Fig. 23. Communication times for agents and the Central Server (Leader). Red and
blue dots show the times that agents and the Central Server have sent their model,
respectively.
14
Table 3
Comparative performance analysis of the proposed aggregation Algorithm+R-CSE and
R-CSE.

FL+R-CSE R-CSE

Learning Time - Training Phase (s) 261.92 554.71
Max Distance Convergence Error - Test Phase (%) 0.71 1.95
Convergence Time for Distance - Test Phase (s) 5.81 8.94

the learning rate in (19). Also, after the reward changes and the leader
becomes an obstacle after 600 s, the Euclidean distance between the
converged and current models increases and reaches the threshold. As
soon as the first agent sends its model to the server, the aggregation
process starts again, and the agents adjust the associated synaptic
weight.

Table 3 compares the results and focuses on three critical metrics:
learning time, maximum error after convergence, and convergence
time. The proposed FL algorithm demonstrates significant improve-
ments in terms of efficiency and accuracy, as evidenced by its consid-
erably shorter learning and convergence times and a notable reduction
in error after convergence.

Our approach advances beyond traditional FL frameworks by intro-
ducing an innovative event-triggered aggregation mechanism tailored
for the real-time adaptive capabilities inherent in SNNs. This method
contrasts with those seen in literature, where aggregation weights
are primarily calculated based on rewards [52]. Instead, our model
considers both the time of arrival and the substantive content of each
model, quantified through the Euclidean norm of the synaptic weights,
to determine the aggregation weight, providing a nuanced approach to
model integration.

Additionally, while other studies address challenges related to abrupt
model changes due to global model updates using fixed aggregation
intervals, our model inherently avoids these disruptions through its
event-triggered mechanism [53,54]. This is evident from the smooth
transitions observed in the plot of the Euclidean norm of each agent,
illustrating a more stable model evolution without the sudden changes
typically associated with periodic global updates. In our framework,
agents autonomously decide the optimal time to send their updates
based on real-time changes, effectively resolving issues related to model
selection and synchronization prevalent in systems with predetermined
aggregation schedules.

Moreover, most of the papers employ methods like Deep Q-Network
(DQN) requiring a data buffer for training [55]; our use of an SNN
facilitates an online learning paradigm. This online method allows our
model to continually learn and adapt without storing data, enhancing
efficiency and suitability for real-time applications.

Through these distinctions, our approach improves communication
efficiency and learning adaptability and provides a robust solution for
dynamic and distributed learning environments, setting a new standard
for deploying federated learning in multi-agent systems.

5. Conclusion

In this paper, we presented a comprehensive approach addressing
the challenges of uncontrolled growth in synaptic weights and the lim-
ited responsiveness of R-STDP to real-time changes within SNNs. Our
proposed solution integrates the R-CSE method with a dynamic aggre-
gation interval in FL and significantly reduces learning time while im-
proving performance. The R-CSE method introduces a novel mechanism
to manage the unbounded growth of synaptic weights by dynamically
adjusting the decay rate through the SoftPlus function. This adjustment
is sensitive to the learning stages and rewards changes, ensuring synap-
tic weight adjustments remain responsive over time. By addressing the
challenge of synaptic weight saturation, the R-CSE method facilitates
a balanced approach to weight adjustment, preventing network satura-
tion and promoting continuous learning adaptability. We introduce a

M.T. Ramezanlou et al.

t

S
a
S
&

a
C

Neurocomputing 617 (2025) 129005
novel approach that uses FL in SNN and employs the Frobenius norm
o adjust weighted aggregation in FL. Additionally, we include weight

decay proportional to the time elapsed since an agent’s last model
publication. This improves the efficiency and responsiveness of the
learning process. Our model’s dynamic nature of the model aggregation
time adjusts based on the Euclidean norm. This metric measures the
distance between the weight matrices of the agents and the server,
determining reduced intervals for model publication. Our results show
that the proposed aggregation method significantly accelerates agents’
learning while increasing the accuracy of the swarm in following
the commanded distance. Moreover, the dynamic aggregation interval
effectively reduces communication overhead between the agents and
the central server, particularly after model convergence. This reduction
is critical when communication bandwidth is limited or costly. This
approach is particularly advantageous in 5G networks, where efficient
bandwidth use can enhance the overall throughput and reduce latency
in real-time applications. Moreover, the adaptive use of communication
resources aligns with the scalable and flexible infrastructure of 5G,
optimizing network performance even during peak demand periods.

CRediT authorship contribution statement

Mohammad Tayefe Ramezanlou: Writing – original draft,
Software, Methodology, Formal analysis, Conceptualization. Howard
chwartz: Writing – review & editing, Supervision, Funding
cquisition. Ioannis Lambadaris: Writing – review & editing,
upervision, Funding acquisition. Michel Barbeau: Writing – review
 editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We acknowledge financial support from Ericsson, Mitacs, Canada,
nd NSERC (Natural Sciences and Engineering Research Council) of
anada.

Data availability

Data will be made available on request.

References

[1] S.K. Lee, Distributed deformable configuration control for multi-robot systems
with low-cost platforms, Swarm Intell 16 (3) (2022) 169–209.

[2] M. Zhao, J. Xi, L. Wang, K. Xia, Y. Zheng, Edge-based adaptive secure
consensus for nonlinear multiagent systems with communication link attacks,
Neurocomputing (2023).

[3] M. Yu, J. Xia, J.-e. Feng, S. Fu, H. Shen, Leader–follower output consensus of
multiagent systems over finite fields, Neurocomputing 550 (2023).

[4] Z. Peng, Y. Jiang, L. Liu, Y. Shi, Path-guided model-free flocking control
of unmanned surface vehicles based on concurrent learning extended state
observers, IEEE Trans. Systems, Man, Cybern: Syst (2023).

[5] C. Zheng, K. Lee, Consensus decision-making in artificial swarms via
entropy-based local negotiation and preference updating, Swarm Intell (2023)
1–21.

[6] H. Yang, K.-Y. Lam, L. Xiao, Z. Xiong, H. Hu, D. Niyato, H. Vincent Poor, Lead
federated neuromorphic learning for wireless edge artificial intelligence, Nature
Commun 13 (1) (2022) 42–69.

[7] M. Chen, H.V. Poor, W. Saad, S. Cui, Convergence time optimization for federated
learning over wireless networks, IEEE Trans. Wireless Commun. 20 (4) (2020)
2457–2471.

[8] Q. Wu, X. Chen, T. Ouyang, Z. Zhou, X. Zhang, S. Yang, J. Zhang, Hiflash:
Communication-efficient hierarchical federated learning with adaptive staleness
control and heterogeneity-aware client-edge association, IEEE Trans. Parallel
Distrib. Syst. 34 (5) (2023) 1560–1579.
15
[9] M. Chen, H.V. Poor, W. Saad, S. Cui, Convergence time optimization for federated
learning over wireless networks, IEEE Trans. Wireless Commun. 20 (4) (2020)
2457–2471.

[10] Z. Yuan, Z. Wang, X. Li, L. Li, L. Zhang, Hierarchical trajectory planning for
narrow-space automated parking with deep reinforcement learning: A federated
learning scheme, Sensors 23 (8) (2023).

[11] H. Yang, K.-Y. Lam, L. Xiao, Z. Xiong, H. Hu, D. Niyato, H. Vincent Poor, Lead
federated neuromorphic learning for wireless edge artificial intelligence, Nat.
Commun 13 (1) (2022).

[12] R. Gupta, T. Alam, Survey on federated-learning approaches in distributed
environment, Wirel. Personal Commun 125 (2) (2022) 1631–1652.

[13] W. Huang, T. Li, D. Wang, S. Du, J. Zhang, T. Huang, Fairness and accuracy in
horizontal federated learning, Inform. Sci. 589 (2022) 170–185.

[14] M.-A. Lahmeri, M.A. Kishk, M.-S. Alouini, Artificial intelligence for UAV-enabled
wireless networks: A survey, IEEE Open J. Commun Soc 2 (2021) 1015–1040.

[15] K. Tuyls, K. Verbeeck, T. Lenaerts, A selection-mutation model for q-learning in
multi-agent systems, in: Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems, 2003, pp. 693–700.

[16] W. Barfuss, J.F. Donges, J. Kurths, Deterministic limit of temporal difference
reinforcement learning for stochastic games, Phys. Rev. E 99 (4) (2019).

[17] Z. Wang, C. Mu, S. Hu, C. Chu, X. Li, Modelling the dynamics of regret
minimization in large agent populations: a master equation approach, in: IJCAI,
2022, pp. 534–540.

[18] A. Jarwan, M. Ibnkahla, Edge-based federated deep reinforcement learning for
IoT traffic management, IEEE Internet Things J. 10 (5) (2022) 3799–3813.

[19] W. Huang, J. Liu, T. Li, T. Huang, S. Ji, J. Wan, Feddsr: Daily schedule
recommendation in a federated deep reinforcement learning framework, IEEE
Trans. Knowl. Data Eng. 35 (4) (2021) 3912–3924.

[20] A.B. Mansour, G. Carenini, A. Duplessis, D. Naccache, Federated learning aggre-
gation: New robust algorithms with guarantees, in: 2022 21st IEEE International
Conference on Machine Learning and Applications, ICMLA, 2022, pp. 721–726.

[21] Y. Yang, W. He, S. Li, Refined dynamic event-triggering cluster consensus of
multiagent systems with fixed/switching topology, IEEE Trans. Cybern. (2022).

[22] H. Lu, J. Liu, Y. Luo, Y. Hua, S. Qiu, Y. Huang, An autonomous learning mobile
robot using biological reward modulate STDP, Neurocomputing 458 (2021)
308–318.

[23] J. Liu, H. Lu, Y. Luo, S. Yang, Spiking neural network-based multi-task
autonomous learning for mobile robots, Eng. Appl. Artif. Intell. 104 (2021)
104–362.

[24] D. Chu, H. Le Nguyen, Constraints on hebbian and STDP learned weights of a
spiking neuron, Neural Netw. 135 (2021) 192–200.

[25] D. Antonov, K. Sviatov, S. Sukhov, Continuous learning of spiking networks
trained with local rules, Neural Netw. 155 (2022) 512–522.

[26] D. Xing, J. Li, T. Zhang, B. Xu, A brain-inspired approach for collision-free
movement planning in the small operational space, IEEE Trans. Neural Netw.
Learn. Syst. 33 (5) (2022) 2094–2105.

[27] J. Pérez, J.A. Cabrera, J.J. Castillo, J.M. Velasco, Bio-inspired spiking neural
network for nonlinear systems control, Neural Netw. 104 (2018) 15–25.

[28] G. Liu, W. Deng, X. Xie, L. Huang, H. Tang, Human-level control through directly
trained deep spiking 𝑄-networks, IEEE Trans. Cybern. (2022).

[29] S.A. Lobov, A.N. Mikhaylov, M. Shamshin, V.A. Makarov, V.B. Kazantsev, Spatial
properties of STDP in a self-learning spiking neural network enable controlling
a mobile robot, Front. Neurosci 14 (2020).

[30] C. Teeter, R. Iyer, V. Menon, N. Gouwens, D. Feng, J. Berg, A. Szafer, N. Cain, H.
Zeng, M. Hawrylycz, et al., Generalized leaky integrate-and-fire models classify
multiple neuron types, Nat. Commun 9 (2018).

[31] J. Shen, Y. Zhao, J.K. Liu, Y. Wang, Hybridsnn: Combining bio-machine strengths
by boosting adaptive spiking neural networks, IEEE Trans. Neural Netw. Learn.
Syst. (2021).

[32] Z. Bing, C. Meschede, G. Chen, A. Knoll, K. Huang, Indirect and direct training of
spiking neural networks for end-to-end control of a lane-keeping vehicle, Neural
Netw. 121 (2020) 21–36.

[33] X. Cheng, T. Zhang, S. Jia, B. Xu, Meta neurons improve spiking neural networks
for efficient spatio-temporal learning, Neurocomputing 531 (2023) 217–225.

[34] P. Bertens, S.-W. Lee, Network of evolvable neural units can learn synaptic
learning rules and spiking dynamics, Nat. Mach. Intell. 2 (12) (2020) 791–799.

[35] M. Białas, J. Mańdziuk, Spike-timing-dependent plasticity with activation-
dependent scaling for receptive fields development, IEEE Trans. Neural Netw.
Learn. Syst. 33 (10) (2021) 5215–5228.

[36] J.L. Lobo, J. Del Ser, A. Bifet, N. Kasabov, Spiking neural networks and online
learning: An overview and perspectives, Neural Netw. 121 (2020) 88–100.

[37] D. Haşegan, M. Deible, C. Earl, D. D’Onofrio, H. Hazan, H. Anwar, S.A. Neymotin,
Training spiking neuronal networks to perform motor control using reinforcement
and evolutionary learning, Front. Comput. Neurosci 16 (2022).

[38] Y. Venkatesha, Y. Kim, L. Tassiulas, P. Panda, Federated learning with spiking
neural networks, IEEE Trans. Signal Process. 69 (2021) 6183–6194.

[39] Y. Wang, S. Duan, F. Chen, Efficient asynchronous federated neuromorphic
learning of spiking neural networks, Neurocomputing 557 (2023).

[40] S.A. Tumpa, S. Singh, M.F.F. Khan, M.T. Kandemir, V. Narayanan, C.R. Das,
Federated learning with spiking neural networks in heterogeneous systems, in:
IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2023, pp. 1–6.

http://refhub.elsevier.com/S0925-2312(24)01776-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb1
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb2
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb3
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb4
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb5
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb6
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb7
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb8
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb9
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb10
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb11
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb12
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb13
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb14
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb15
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb16
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb17
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb18
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb18
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb18
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb19
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb20
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb21
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb21
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb21
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb22
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb22
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb22
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb22
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb22
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb23
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb23
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb23
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb23
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb23
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb24
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb24
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb24
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb25
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb26
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb27
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb27
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb27
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb28
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb28
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb28
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb29
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb30
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb31
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb32
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb33
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb34
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb34
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb34
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb35
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb35
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb35
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb35
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb35
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb36
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb36
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb36
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb37
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb37
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb37
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb37
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb37
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb38
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb38
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb38
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb39
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb39
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb39
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb40
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb40
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb40
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb40
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb40

M.T. Ramezanlou et al. Neurocomputing 617 (2025) 129005
[41] Y.-H. Liu, X.-J. Wang, Spike-frequency adaptation of a generalized leaky
integrate-and-fire model neuron, J. Comput. Neurosci 10 (2001) 25–45.

[42] L. Long, F. Guoliang, A review of biologically plausible neuron models for spiking
neural networks, AIAA Infotech@ Aerospace (2010).

[43] M. Tayefe Ramezanlou, H. Schwartz, I. Lambadaris, M. Barbeau, S.H.R. Naqvi,
Learning a policy for pursuit-evasion games using spiking neural networks and
the STDP algorithm, in: IEEE International Conference on Systems, Man, and
Cybernetics, SMC, 2023, pp. 1918–1925.

[44] K. Kasaura, S. Miura, T. Kozuno, R. Yonetani, K. Hoshino, Y. Hosoe, Benchmark-
ing actor-critic deep reinforcement learning algorithms for robotics control with
action constraints, IEEE Robot. Autom. Lett. (2023).

[45] J. EEßerer, N. Bach, C. Jestel, O. Urbann, S. Kerner, Guided reinforcement
learning: A review and evaluation for efficient and effective real-world robotics,
IEEE Robot. Autom. Mag. (2022).

[46] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, F. Piccialli, Model aggrega-
tion techniques in federated learning: A comprehensive survey, Future Gener.
Comput. Syst. 150 (2024) 272–293.

[47] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, in: Artificial
Intelligence and Statistics, 2017, pp. 1273–1282.

[48] Z. Wang, Z. Peng, X. Fan, Z. Wang, S. Wu, R. Yu, P. Yang, C. Zheng, C. Wang,
Fedave: Adaptive data value evaluation framework for collaborative fairness in
federated learning, Neurocomputing 574 (2024).

[49] J. Wang, Q. Liu, H. Liang, G. Joshi, H.V. Poor, Tackling the objective incon-
sistency problem in heterogeneous federated optimization, Adv. Neural Inform
Process. Syst 33 (2020) 7611–7623.

[50] A. AbdelAty, M. Fouda, A. Eltawil, On numerical approximations of fractional-
order spiking neuron models, Commun. Nonlinear Sci. Numer. Simul. 105
(2022).

[51] M. Dampfhoffer, T. Mesquida, A. Valentian, L. Anghel, Are SNNs really more
energy-efficient than ANNs? An in-depth hardware-aware study, IEEE Trans.
Emer. Topics Comput. Intell 7 (3) (2022) 731–741.

[52] T.M. Ho, K.-K. Nguyen, M. Cheriet, Federated deep reinforcement learning for
task scheduling in heterogeneous autonomous robotic system, IEEE Trans. Autom.
Sci. Eng. 21 (1) (2022) 528–540.

[53] S. Na, T. Rouček, J. Ulrich, J. Pikman, T. Krajník, B. Lennox, F. Arvin, Federated
reinforcement learning for collective navigation of robotic swarms, IEEE Trans.
Cognit Develop Syst 15 (4) (2023) 2122–2131.

[54] M. Krouka, A. Elgabli, C.B. Issaid, M. Bennis, Communication-efficient and
federated multi-agent reinforcement learning, IEEE Trans. Cognit. Commun Netw
8 (1) (2021) 311–320.

[55] R. Luo, W. Ni, H. Tian, J. Cheng, Federated deep reinforcement learning for RIS-
assisted indoor multi-robot communication systems, IEEE Trans. Veh. Technol.
71 (11) (2022) 12321–12326.

Mohammad Tayefe Ramezanlou is a Ph.D. candidate at
the Department of Systems and Computer Engineering at
Carleton University, Canada. He received a B.Sc. in Me-
chanical Engineering in 2016 and an M.Sc. in Mechatronics
Engineering in 2018 from the University of Tabriz, Iran. His
research interests are neuro-robotics, neuromorphic compu-
tation, Federated Learning (FL), and multi-agent systems.
16
Professor Howard M. Schwartz received his B.Eng. degree
from McGill University, Montreal, Canada, in June 1981 and
his M.Sc. degree and Ph.D. from the Massachusetts Institute
of Technology, Cambridge, MA, in 1982 and 1987, respec-
tively. He is a Professor in the Department of Systems and
Computer Engineering at Carleton University. His research
interests include adaptive and intelligent control systems,
robotics and process control, system modeling, and system
identification. His most recent research is in multiagent
learning with applications to teams of drones and mobile
robots.

Professor Ioannis Lambadaris received his M.Sc. degree
in engineering from Brown University, Providence, RI, USA,
in 1985 and his Ph.D. in electrical engineering from the
University of Maryland, College Park, MD, USA, in 1991.
He was employed as a Research Associate at Concordia
University, Montreal, QC, Canada, from 1991 to 1992. He
joined the Department of Systems and Computer Engineer-
ing, Carleton University, Ottawa, ON, Canada, in September
1992, where he is currently a Chancellor’s Professor.
His research interests include applied stochastic processes,
stochastic control, queueing theory, and their application for
modeling/simulation and performance analysis of computer
communication networks. He has made numerous contribu-
tions to Quality of Service (QoS) control for IP networks,
resource allocation in optical networks, and optimal routing
and flow control in ad hoc wireless systems. His recent
research focuses on hardware and software solutions for
mobile applications and platforms, including biomedical,
remote monitoring, and security applications.

Professor Michel Barbeau is a professor of Computer
Science. He got a Bachelor’s (Universite de Sherbrooke,
Canada ’85), a master’s (Universite de Montreal, Canada ’87
& ’91), and a Ph.D. (Universite de Montreal, Canada ’91), all
in Computer Science. From ’91 to ’99, he was a professor at
Universite de Sherbrooke. During the ’98–’99 academic year,
he was a visiting researcher at the University of Aizu, Japan.
Since 2000, he has worked at Carleton University, School
of Computer Science, Canada. His main topic of expertise
is computer networks: architecture and protocols. Specific
research interests include underwater communications and
networks, flying drone networks, quantum networks, cyber–
physical security, postquantum cryptography, and network
control systems.

http://refhub.elsevier.com/S0925-2312(24)01776-4/sb41
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb41
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb41
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb42
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb43
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb44
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb45
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb46
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb47
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb48
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb49
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb49
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb49
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb49
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb49
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb50
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb51
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb52
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb53
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb54
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb55
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb55
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb55
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb55
http://refhub.elsevier.com/S0925-2312(24)01776-4/sb55

	Enhancing cooperative multi-agent reinforcement learning through the integration of R-STDP and federated learning
	Introduction
	Decentralized Learning through fl
	Decentralized Reinforcement Learning: RL meets FL
	Spiking Neural Networks in mas
	Contributions

	Preliminaries
	Consensus Flying Problem
	Neuron Model

	Proposed Method
	Network Structure
	Training algorithm
	Weight Stabilization using Reward-Modulated Competitive Synaptic Equilibrium (R-CSE)
	Federated Learning for Consensus Flying

	Results and Discussion
	Simulation without fl
	Simulation with fl and R-CSE

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

