
1
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Altruism in Fuzzy Reinforcement Learning

Rachel M. Haighton, Howard M. Schwartz, Sidney N. Givigi

Abstract— We propose using a genetic algorithm to select

hyperparameters in multi agent reinforcement learning settings.
In particular, we look at this in the context of cooperation and
altruism. We show through the use of 3 continuous space games,
that certain algorithmic hyperparameters are better suited to
allow to agents learn altruistic behaviors. The agents learn using
fuzzy actor critic learning algorithms in either a hierarchical
structure or a single actor critic policy. The genetic algorithm
selects the discount factors, the reward weights, and the standard
deviation of noise applied to actor during learning. The genetic
algorithm uses a fitness function based on the ratio of successful
tests the group of agents can pass after training. This automated
selection of these specific hyperparameters show that they are
important for cooperation and also not trivial to select.

Index Terms—multi-agent reinforcement learning, altruism,
cooperation, fuzzy systems

This paragraph of the first footnote will contain the date on which you

submitted your paper for review, which is populated by IEEE. It is IEEE style
to display support information, including sponsor and financial support
acknowledgment, here and not in an acknowledgment section at the end of the
article. For example, “This work was supported in part by the U.S. Department
of Commerce under Grant 123456.” The name of the corresponding author
appears after the financial information, e.g. (Corresponding author: Second B.
Author). Here you may also indicate if authors contributed equally or if there
are co-first authors.

The next few paragraphs should contain the authors’ current affiliations,
including current address and e-mail. For example, Rachel M. Haighton is with
Carleton University, Ottawa, Ontario, Canada (e-mail:
rachelhaighton@cmail.carleton.ca).

Howard M. Schwartz. is with Carleton University, Ottawa, ON, Canada. He
is now with the Department of Systems and Computing Engineering. (e-mail:
schwartz@sce.carleton.ca).

Sidney N. Givigi is with the Electrical Engineering Department, Queen’s
University, Kingston, ON, Canada (e-mail: sidney.givigi@queensu.ca).

Mentions of supplemental materials and animal/human rights statements can
be included here.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org

I. INTRODUCTION
ulti-agent reinforcement learning (MARL) is a field
of machine learning where multiple agents use
reinforcement learning algorithms at the same time,
either to learn to cooperate to achieve some common

goal, or competitively, where agents compete against each
other. This paper focuses on the cooperation between agents,
which can have applications in autonomous vehicles, traffic
control, resource allocation, and even the stock market.
However, how do we know that agents are truly cooperating
and not just working in parallel without regard for one and
other? One problem in some of this research is the lack of clear
cooperation among agents. According to [1] “cooperation is
conceptually and empirically linked to altruism, which is
defined as behavior in which one person foregoes a benefit to
help another.” Another source [2] states that altruism is “a
behavior which is costly to the actor and beneficial to the
recipient”. Altruism is an important aspect often missing in
cooperative reinforcement learning as it demonstrates that
agents are working together as a group and not individually.
The goal of altruistic reinforcement learning is to show that one
agent learns to forgo something for the benefit of the group.

Common reinforcement learning benchmarks such as the
StarCraft II Learning Environment (SC2LE) [3] does not
necessarily demonstrate altruism in the cooperative aspect. We
focus on the learning of altruism in multiagent systems using
reinforcement learning. We use this paper to focus on the
learning of altruism in multiagent systems using reinforcement
learning which aids us demonstrate cooperative tendencies
among agents.

Difficulties within altruism in reinforcement learning include
both the agents and the scenarios. How do we come up with
scenarios where the agents have altruism as a choice? How do
we measure altruism? What kind of parameters within an agents
learning algorithm impact altruism?
To show altruistic cooperation among agents we implemented
modified versions of several MARL games taken from existing
literature. These games give the agents the option of altruistic
cooperation or not cooperating at all. The agents are trained
with fuzzy actor critic reinforcement learning (FACL) using

M

2
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

different learning structures such as hierarchical reinforcement
learning. Some of the FACL hyperparameters are selected using
a genetic algorithm to better learn altruistic cooperation in the
games. Fuzzy reinforcement learning is used due to its
simplicity, as well as its interpretability which is advantageous
over deep neural networks. In addition, a major benefit of using
fuzzy reinforcement learning, is that when the environment
changes, the fuzzy rules can easily adapt. Fuzzy reinforcement
learning has been successfully used in many applications such
as [4], [5], [6].

Key contributions of this paper include:

- Using hyperparameter optimization on multi agent
reinforcement learning systems. In each game, the
agent system has key hyperparameters selected by a
genetic algorithm. Similar research generally only
has a single agent.

- The creation of continuous space altruistic games.
While games that display altruistic characteristics
exist already [7], these games are often in the discrete
domain.

- Using fuzzy reinforcement learning in a MARL
altruistic cooperation setting. Many papers that do
look at altruistic reinforcement learning use neural
networks and other deep learning tools which lack
interpretability and explainability. By using fuzzy
systems in the cooperative setting, the decisions the
agents make are much clearer and related to specific
fuzzy rules.

II. RELATED WORK
As mentioned, many papers that study the learning of
cooperation using reinforcement learning do not study the
altruistic aspect of cooperation. However, there are a few
existing papers that do.

Franzmeyer et al. study how a single agent can learn to be
altruistic to help other agents succeed at their goals. By
training an agent to maximize the number of states another
agent will be able to reach in its future, the agent will learn
altruistic behavior. The authors observe that certain
hyperparameters such as discount factors and “look-ahead
horizon” effect altruistic tendencies of the agent. [8]

Forester et al. [9] study a dilemma in which a beneficial action
to an agent might be disadvantageous to a neighboring agent in
a game called the “Coin Game”. The authors create an
algorithm called “Learning with Opponent-Learning
Awareness” using deep neural networks to show how agents
can behave altruistically in circumstances where one agent can
lose points due to another agent’s actions.

In [7], the authors create a couple of cooperative games to
show how social dilemmas can affect cooperation. Using
deep-Q networks, the authors modify parameters such as
discount factors, reward ratios, and hidden network neurons to
see how they can affect the behavior of the agents. Results
were studied in a game theory lens using empirical payoff

matrices. They show how simple parameters can affect the
resulting matrix payoff from the learned policy.

What these papers have in common is that they’ve identified
important hyperparameters that are used to learn altruistic
behaviors among agents. All three papers utilize the discount
factor as a hyperparameters to study. However, these papers
do not use any optimization algorithms to determine what the
best combination of hyperparameters might be which happens
to be a major gap in the cooperation domain. Additionally,
these papers use Q-based learning algorithms; our paper
utilizes an actor-critic learning model for the continuous
domain.

The use of genetic algorithms has been used to optimize
hyperparameters within reinforcement learning algorithms in
the past. The following papers [10] [11] [12] have shown
success using genetic algorithms for optimization. However,
an existing problem with reinforcement algorithms is
repeatability. It is possible to get different results despite using
the same hyperparameters. [13] [14] Many hyperparameter
optimization papers lack analysis regarding the repeatability of
this process. How repeatable are the hyperparameters that
were selected via genetic algorithm? This paper does an
analysis on this aspect by running the reinforcement learning
algorithm 200 times to see how the resultant policies may
deviate from each other. Additionally, these papers use some
form of neural network (CNN, Deep-Q, etc) whereas we have
opted to use a fuzzy system as our non-linear approximator
which makes the explainability of hyperparameters clearer.

Finally, the use of using a hierarchical reinforcement learning
algorithm has been used before in multi agent cooperative
agent systems in [15] [16] [17]. More specifically, the use of a
hierarchical reinforcement learning algorithm has been used
within [18] [19]. In [18] hierarchical reinforcement learning
using fuzzy systems is used to train an agent to learn deception
in pursuer-evader games. The lower levels carry out primitive
tasks and the higher level decides when to change tasks. In
[19] a hierarchical structure is used to learn both the policy
and the reward function simultaneously in the context of an
adversarial game. The authors adjust the fuzzy actor critic
algorithm to handle multiple reward functions with different
time horizons in the hierarchical structure. In this paper we
bridge the gap by applying the fuzzy hierarchical
reinforcement learning algorithm to a cooperative scenario.

III. PROBLEM STATEMENTS
It’s important to design games in a way that altruism occurs in
the cooperating agents. According to West et al. “cooperation
is conceptually and empirically linked to altruism, which is
defined as behavior in which one person foregoes a benefit to
help another” [2]. This isn’t always displayed in classic
cooperative games in the reinforcement learning field, which
makes it difficult to determine if agents are truly acting
cooperatively. Three problems/games are described here that
force the agents to cooperate.

3
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

A. Continuous Hallway
Taking inspiration from the Hallway game in [20], a similar
game is proposed with some key differences. The goal of this
game is for 2 agents to race each other to the end of the
hallway, which is 15m long, but agents get a higher terminal
reward if they get to the end of the hall at the same time.
Instead of a discrete domain, the agents are in a continuous
space to better mimic real life. The altruistic aspect here is that
while the agent could get a terminal reward by going to the
end of the hall first, it should learn to slow down and allow the
partner to catch up so that they both get rewarded.

B. Markov Stag Hunt
Three agents are tasked to either hunt a stag or collect berries.
It takes at least 2 agents to take down a stag. While it is simpler
to get berries than take a stag, the stag is much more rewarding
for the group. However, since the collection of food is split
between all agents, if all 3 agents hunt the stag, there is less food
to go around than if one of the three agents chose to pick the
berries.

The dilemma is as follows: if all agents hunt the stag, all agents
receive a lower terminal reward than if one agent defects to
berries. But the agent who defects to berries will get a
comparatively lower reward than either of the agents who had
chosen the stag. The rewards are on a weighted sum basis: the
team reward is the sum of everyone’s rewards, and an
individual reward is the value of its own catch.

Fig. 1. Visualization of the Stag Hunt game where 3 agents
must maximize their rewards.

C. Leaving A Room
The concept of having robots learn to leave a room has been
seen in [21]. This game has 5 agents (robots) inside a 10x10
continuous room who have to learn to leave the room without
bumping into each other. The actions the agents can choose
from is to either stop or to go. The agents get rewards based on
the order of those leaving the room. Letting an agent pass in
front of it, means a potential lower terminal reward for the agent
that waited.

Fig. 2. Visualization of the game Leaving A Room. Five robots
must exit a room without crashing into each other.

IV. ALGORITHMS
This section describes the algorithms used to solve the games.
While each game has slight differences in the algorithm
(rewards etc), the basic Fuzzy Actor Critic Learning algorithm
(FACL) is described here, along with the genetic algorithm
used for hyperparameter optimization.

The fuzzy actor critic algorithm is used to train the agents.
There are two structures that are discussed here: a simple FACL
and a hierarchical FACL, which is similar to the structure
presented in [22].

For each game we implement a genetic algorithm. We define
an initial population where each member is a set of
hyperparameters. For each set of hyperparameters, the fuzzy
reinforcement learning algorithm starts learning. When the
learning is complete, the agents then play a few dozen games
using their static policies. The ratio of the number of successful
games is the fitness for that specific set of hyperparameters.
Once the total population of the hyperparameters has been
assigned a fitness, the child population is created using
selection, crossover, and mutation operators. The next iteration
is done using the child population. Many iterations of this
process are done many times to ensure convergence. All
members of the final population should have the same values
for each hyperparameter. Once we have these hyperparameters,
we replicate the training 200 times purely for analysis purposes.
We’d like to see how the results of using the hyperparameters
deviate from each other. The results are show in histograms in
Fig. 5, 8, and 10.

A. Fuzzy Actor Critic Learning
The Fuzzy Actor Critic Algorithm uses a fuzzy inference
system as the critic and a fuzzy logic controller as the actor. The
actor updates its weights based on the critic. The output of the
actor at time 𝑡 is calculated as follows:

𝑢! = Σ"#$% 𝜙"𝜔!" (1)
where 𝜔!" is the actor’s output parameter of rule 𝑙, 𝐿 is the total
number of rules, and 𝜙" is the firing strength of the rule 𝑙. In
this scheme we use triangular membership functions per input
for their computational speed. The number of rules that fire at

4
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

any time instant is simply the number of membership functions
to the power of the number of inputs. In order to calculate the
firing strength of rule 𝑙, computed as

𝜙" = &'
&(!

=)"#$
% *&'

!
(,̅')

/!#$
(0)"#$

% *&'
!
(,̅')1

 (2)

𝜇2'!(𝑥̅3) calculates the membership degree of the input 𝑥4. with
𝑛 being the number of inputs. During training, noise is added
to the output of the actor to encourage exploration. The noise
is from a normal distribution with a mean of 0, and a standard
deviation 𝜎 that is specified by the user. Thus, the actual
action used by the agent during learning is:

𝑢!5 = Σ"#$% 𝜙"𝜔!" +𝑁(0, 𝜎) (3)
The value functions at t and t+1 must be calculated in order to
eventually update the output parameters of the fuzzy rules. The
value function is simply the expected sum of discounted
rewards and is approximated by the fuzzy inference system as:

𝑉! = Σ"#$% 𝜙!"𝜁!" (4)
𝑉!6$ = Σ"#$% 𝜙!6$" 𝜁!" (5)

Using the value function, we can estimate the prediction
error/temporal difference.

Δ! = 𝑅!6$ + 𝛾𝑉!6$	 − 𝑉! (6)
The discount factor, 𝛾, is between 0 and 1, in this paper we
propose to use a hierarchical genetic algorithm to tune the
discount hyperparameter 𝛾 . The term 𝑅!6$ is the reward
received. The critic output weights in the fuzzy inference
system can then be updated using the temporal difference at t
and learning rate, 𝛼.

𝜁!6$" = 𝜁!" + 𝛼Δ!𝜙!" (7)
Note how only the rules that fired are updated, this way if there
are environmental changes, the system can easily adjust.
The output weights of the actor fuzzy inference system are
updated as:

𝜔!6$" = 𝜔!" + 𝛽Δ!𝜙!"(𝑢!5 − 𝑢!) (8)
Where 𝛽 is the learning rate of the actor, and Δ! is the temporal
difference at time t, and 𝑅!6$ is the reward at a given timestep.

In the hierarchical structure, the lower-level policies are
independently trained to achieve a particular task. Once
completed, the higher-level policy is then trained while using
the completed lower-level policies.

B. Genetic Algorithm for Hyperparameter Optimization
In order to select ideal parameters in the FACL algorithm, a
genetic algorithm can be used for the hyperparameter
optimization. The main advantage of using a genetic algorithm
to aid in the selection of hyperparameters is that many
processors can be used in parallel which greatly speeds up the
process. Genetic algorithms are generally good for complex
search spaces.

Algorithm steps:

1. Create a randomly generated population of size n and
initialize parameters.

2. Train the policy(s) and assign fitness values for each
set of hyperparameters in the population

3. Start loop to create new child population

4. Binary tournament to select parents to create offspring
members of the next population

5. Generate a random number to check for crossover. If
above crossover rate, use parents in the child
population, if below, perform the crossover operation

6. Generate another random number, if below mutation
rate, replace a parameter in the offspring with
appropriate randomly generated value.

7. Add offspring to new child population
8. End loop once child population is full

In step 1, the population is randomly chosen, which means
creating sets of the hyperparameters to test. Here we call a set
of hyperparameters a member of the population, where the
population is many sets of hyperparameters. A couple members
are planted into the initial population that have known
hyperparameters that work satisfactorily. This is called seeding
the initial population and is done to speed up the search. In step
2, one implements reinforcement learning. The fitness function
chosen is up to the user, for example in [10] the authors use the
inverse of number of epochs it takes for the agent to reach a
success rate of 0.85 for the very first time. We use a fitness
function that corresponds to the number of successful tests after
training. After the reinforcement learning algorithm has
reached a terminal state for training, the policies of the agents
are put through a number of test scenarios for evaluation. The
fitness thus corresponds to how many scenarios were
successfully passed by all agents. Once all the members of the
current population have been trained and assigned a fitness
value, the next population can be created. We use the selection,
mutation, crossover, and elitism operators to create the next
population to test, also called the child population.

To create the child population 4 random members of the parent
(current) population are chosen and paired off. All members in
the population have an equal probability of getting selected. A
binary tournament is used as the selection operator. Whichever
member in the tournament pair has a better fitness is used, so
now there are two parent members. A crossover operation
ensues, a random number between 0 and 1 is generated if the
value is above the crossover rate (which is set to 0.75) then the
parents are kept, otherwise crossover occurs. Up to two
parameters are randomly chosen for crossover. The new
parameters are created by crossing the parent parameters
𝑝$	&	𝑝8 using 	

𝑝9:;	$ = (1 − 𝛽)𝑝$ + 𝛽𝑝8																										(9)
𝑝9:;	8 = 𝛽𝑝$ + (1 − 𝛽)𝑝8 (10)

𝛽 is a randomly generated value used for scaling. Note that this
method does not allow for introduction of values beyond the
extremes already represented in the population. For example, if
the highest parameter value in the initial population is 0.8, the
crossover method will not get any value greater than 0.8 using
this method. The next step is mutation, where a new random
value is generated to decide if these offspring will mutate. If the
random number is above the mutation rate then the offspring
members are not mutated, and if it is under the mutation rate
then one of the corresponding hyperparameters in the offspring
members is replaced with a random value within range. These
offspring are then added to the child population, and the loop

5
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

restarts until the child population is replenished; then the
process restarts. Through iterations, the values of the population
will converge based on maximizing the fitness.

Fig. 3 illustrates a hierarchical learning structure with the
hyperparameter selection. Note that only the higher level is
tuned.

Fig. 3. A Diagram of the hierarchical structure for FACL with
the genetic algorithm applied. A yellow box denotes a single
FACL training session for a given set of hyperparameters in the
population. The grey box shows the genetic algorithm over top.

V. RESULTS
We now present our findings on how the genetic algorithm
converged, and how well the resultant policy performs with
these chosen hyperparameters.

Fig. 4, 7, and 9 show how the genetic algorithm converged to a
solution. The two lines represent the average and the maximum
fitness in each iteration’s population. After the genetic
algorithm has converged, the learning program is run 200 times
to show how it performs with these hyperparameters.

In the spirit of reporting data, it is important to show metrics for
reproducibility and variability using robust statistics like the
interquartile range [13]. The interquartile range helps determine
the variability across training runs; ideally each run does not
significantly differ from other runs. The interquartile range is
the difference between the 75th and 25th percentiles, it’s a
robust statistic that is appropriate for asymmetric distributions.
The authors in [14] recommend to also report the interquartile
mean to measure metrics to summarize performance across
tasks since it is more robust than the simple median. They also
recommend showing the tails of the distribution. Once the
genetic algorithm has chosen the hyperparameters, we show
these statistics for the resultant learned policies.

The hyperparameters that we are interested in are discount
factor, the terminal reward weight, and the magnitude of the
standard deviation of noise used during training. In [7] the
authors showed that different discount factors can change the
cooperative behavior of the agents. The standard deviation for
noise is of interest since the amount of noise during training can
greatly affect results. The authors in [23] mention how runs can
be different depending on the random number seed used. By
using the standard deviation of noise as a hyperparameter, the
effects of using different seeds can also be minimized. And
finally finding the reward weight (𝑤) of

𝑅!:<=39>" = 𝑤 ∗ 𝑅39?3@3?'>" + (1 − 𝑤) ∗ 𝑅!:>= (11)

is of great importance, this weight shows how important
individual reward is in comparison to team reward and thus
defines the level of cooperation and altruism.

A. Continuous Hallway
Before looking into the optimization of hyperparameters, some
extra details about the algorithm used specifically for the
continuous hallway game must be discussed such as reward
design, dynamics, and inputs into the system. Table 1 shows
information used in the continuous hallway game.

TABLE 1
INFORMATION USED IN CONTINUOUS HALLWAY GAME

The agents have been named Diana and Sharon and they must
get to the end of the hall at the same time (within a tolerance of
0.3m), to do this their actor outputs a force into the dynamics of
the system. The shaping reward is a weighted equation between
how close the agent is to the end of the hall, and how far the
agent is away from the other agent.

The hyperparameters we are interested in finding are the
discount factor of agent Sharon 𝛾AB><C9, the discount factor of
agent Diana 𝛾?3>9>, the reward weight 𝑤, and the standard
deviation of noise applied during training 𝜎. The mutation rate
was set to 0.05, crossover rate 0.75, and scaling rate 𝛽 were
randomly generated values between 0 and 1. The population
used in the genetic algorithm was set to 20. Since the population
is quite small, it was seeded to ensure the space was being
properly searched.

6
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

In the FACL algorithm we have chosen the following system
parameters arbitrarily: critic learning rate 𝛼 = 0.1, actor
learning rate 𝛽 =0.05, mass of agent 𝑚 =1kg, friction
coefficient 𝑏 =0.1, and Fuzzy Inference System (FIS) limits of
the actor are ±3. Note that these parameters are selected and
remain constant.

The fitness function used is a ratio of how many successful test
games there are post-learning. Once the reinforcement learning
has been completed the agents play many games, the fitness is
the ratio of how many games agents succeeded at getting to the
end of the hallway together. These tests place agents at various
starting positions along the hallway.

Fig. 4 shows the genetic solution converged quickly at
approximately iteration 10 of the genetic algorithm. Many
fitness values in the population are 0.9997 at convergence
which tells us that 99.97% of test cases are passed after training.
After 42 iterations of the genetic algorithm, the
hyperparameters for all 30 members of the population were:
𝛾AB><C9, = 0.995, 𝛾?3>9> = 0.995, 𝑤 = 0.9819, 𝜎 = 0.9.

Fig. 4. Plot showing the fitness of the population per iteration
for the hallway game.

Once the genetic algorithm converged to a set of
hyperparameters as seen in Fig. 4, we ran only the learning
simulation an additional 200 times to ensure repeatability with
these parameters. Examining the performance of the
hyperparameters selected for the training, we see it is quite
robust. Fig. 5 shows a histogram of the performance after
training with the hyperparameters that were learned from the
genetic algorithm. The majority of the 200 training sessions
using the learned hyperparameters go quite well, with only
7/200 runs achieving scores below 80% after training.

With the interquartile mean of 0.9997, and interquartile range
of 0.9997-0.9997 (the same value) the results show that the
policy can succeed at 99.97% of tests post training. The mean
is 0.9739 since some runs did not perform as well.

Fig. 5. Plot of the two hundred runs using the hyperparameters
chosen by the genetic algorithm

Since this game is quite simple, there are many other
hyperparameters that would be successful as well, implying that
there are many local maximas.

B. Stag Hunt
To solve this problem, each agent uses its own hierarchical
learning structure, where both the lower levels and the higher
level is trained with the FACL algorithm. The lower-level
policies output the required heading needed to get the agents to
their goal (stag or berries). The higher-level policy decides
which lower-level policy to use; it decides if the agent should
hunt the stag or collect the berries based on the positions of the
other agents.

In this scenario, a genetic algorithm is used to find near optimal
hyperparameters for all 3 discount factors for the agents, the
terminal reward weight, and the standard deviation of noise in
the higher-level decision policy.

Fig. 6. Visualization of the higher and lower levels that each
agent has when earning the stag hunt game

Information about the Lower Level
A policy is trained for the agent to reach the stag, and another
to reach the berries. The input into the FIS is the x and y co-
ordinates of the agent, and the output is the required heading for
the agent to get the goal.

0 5 10 15 20 25 30 35 40 45
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
tn

es
s V

al
ue

s o
f P

op
ul

at
io

n

Genetic Algorithm - Fitness per Population
Continuous Hallway Game

Average Fitness
Best Fitness in Population

7
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

TABLE 2
PARAMETERS USED TO TRAIN LOWER LEVEL

The shaping reward was structured as distance from goal 𝑟!6$ =
𝑑(𝑡) − 𝑑(𝑡 + 1). The terminal reward is +10 for getting to the
goal.

Information about the Higher Level
The goal of the higher-level policy (HLP) is to decide when to
choose to hunt for the stag, and when to forage for berries. Each
agent trains its own higher-level policy. Every 3 seconds in the
game each agent reassesses whether to capture the stag or
forage for berries. The HLP for each agent will measure the x
and y position of each agent including itself. These x and y
positions are the inputs into each agent's HLP FIS. The output
for each agent’s HLP FIS is either a positive or negative
number. If it is a positive number, then the actor selects the
lower-level policy for berries, and a negative output selects the
lower-level policy for stag. There is no formal communication
between the agents, their decisions are solely made through x
and y position data that updates every 3s.

The actor learning rate is 0.05, and the critic learning rate is 0.1.
These values were chosen arbitrarily. The higher-level policy is
trained for 100k episodes, with each episode lasting up to 30s.
There are 6 inputs, which are the x and y position for each of
the three agents and the range of each input is covered by 4
membership functions resulting in 4D 	= 	4096 rules. The
terminal rewards are on a weighted sum basis: the team reward
is the sum of everyone’s rewards, and individual reward portion
is the value of the catch. In this scenario, the stag is worth 10
points, the berries are worth 4 points. For demonstration
purposes we show an example calculation with these values
using the reward weight set to 0.5 using (11).

Scenario 1: All agents chose to go hunt the stag with a reward
Weight=0.5

𝑅39?$ = 𝑅39?) = 𝑅39?* =
10
3

𝑅!:>= = 10
𝑅$ = 𝑅8 = 𝑅E = 0.5 ∗ 3.33 + 0.5 ∗ 10 = 6.665

Scenario 2: Agents 1 and 2 hunt the stag, agent 3 collects berries
with a reward weight of 0.5

𝑅39?$ = 𝑅39?8 =
10
2 , 𝑅39?* = 4

𝑅!:>= = 10 + 4
𝑅$ = 𝑅39?$ ∗ 0.5 + 𝑅!:>= ∗ 0.5 = 5 ∗ 0.5 + 14 ∗ 0.5 = 9.5

= 𝑅8
𝑅E = 𝑅39?* ∗ 0.5 + 𝑅!:>= ∗ 0.5 = 4 ∗ 0.5 + 14 ∗ 0.5 = 9

Hyperparameter Optimization
A parallel genetic algorithm implementation was done to help
speed up the process. Using the genetic algorithm described in
section IV B, 200 iterations of the genetic hyperparameter
selection were done using a population of 30. The mutation rate
was kept at 0.01, the crossover rate was kept at 0.75, the scaling
rate was a randomly generated number between 0 and 1 for
every crossover. The fitness function evaluates the post-training
policy on 30 different scenario tests. Each test scenario has the
agents placed into the game field at locations deemed ‘difficult’
and require altruism. Since the population of the genetic
algorithm is 30 and therefore, relatively small, some members
were planted in the initial population. These members had the
extreme values (0 or 1) for the parameters, this was to ensure
that all values in the space had a chance during crossover, and
we did not need to depend on mutation as much. Fig. 7 shows
the fitness plot, after about 30 iterations, the values converged.

The hyperparameters the genetic algorithm converged to were:
𝛾9C<> =	0.9791, 𝛾F:>9 =	0.9823, 𝛾3@>9 =	0.5517, 𝑤 =	0.018,
𝜎 =	0.9985.

Fig. 7. Average fitness of the population of 30 for each
iteration of the Stag Hunt game.

Once the genetic algorithm converged to the same set of
hyperparameters, the tuning was stopped but the higher-level
reinforcement learning program was run 200 times with these
same hyperparameters using different random generator seeds
to ensure consistency between training results. The results are
shown in Fig. 8.

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fi

tn
es

s V
al

ue
s o

f P
op

ul
at

io
n

Genetic Algorithm - Fitness per Population
Stag Hunt Game

Average Fitness
Best Fitness in Population

8
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 8. Histogram of 200 policy results from training with the
hyperparameters tuned with the genetic algorithm.

Looking solely at the consistency of the reinforcement learning
results with the selected hyperparameters, the histogram in Fig.
8 shows 147 of the policies trained were 90%+ successful in the
test scenarios, and the fitness plot shows that the best member
in the population always scored 100%. The test scenario is
marked as successful if two agents hunt the stag and one agent
collects the berries from wherever they were placed in the
space. Otherwise, the test was not successfully passed. The
fixed test score had an interquartile range of 0.1 (10%). This
stipulates that from the 25th percentile to the 75% percentile,
there was a difference of 10% success rate among the tested
policies. Since there were 30 different test scenarios, 10%
difference in the IQR infers that only 3 tests were not passed at
the extremes of this range: not a large difference. The mean of
the 200 policy results from Fig. 8 was 0.8909 and the
interquartile mean was 0.8785. Since the interquartile mean is
lower than the regular mean, it implies that there are more
highly successful runs than failed runs.

C. Leaving A Room
In this game, there are 5 robots placed in a 10x10 room with a
door placed in the middle of a wall. The goal is for the robots
to all leave the room without bumping into each other (if robots
are within 0.3 m of each other, it counts as a crash). The 5 robots
are placed randomly at least 5m away from the door. All the
robots must train a single common policy; the goal is to have
the robots cooperatively learn when it is beneficial to forgo a
greater future reward and allow another robot to pass in front of
it.

The lower-level policies either output a heading or nothing at
all; the higher-level policy will choose from two options. This
means the robots can either stop or go. The robots receive 5
inputs, which are all distances away from the other robots and
the door. The distance input is positive if the object is in front
of it, but negative if the object is behind in the y direction.

The higher-level policy will call a lower-level policy and then
execute the lower-level policy for 3 seconds before returning to
the higher-level policy. If the higher-level policy chooses to
move, then the lower-level policy that gets executed will input

the x and y coordinates and the robot will move according to
the heading being output from the actor. If the high-level policy
chooses to stop, then the robot stays in place for those 3
seconds.

The distance used as an input is calculated below. If a
neighboring robot is closer to the exit door in the y direction,
the distance value is positive, otherwise it is negative.

𝑑 = P(𝑥G − 𝑥>)8 + (𝑦G − 𝑦>)8 (15)
𝑖𝑓	𝑦> > 𝑦G , 𝑑 ← −𝑑

All 5 robots train the same higher-level policy, the same actor
and critic. The goal is for the robots to find one single policy
that dictates when the robots should let another one pass in front
of it to avoid a collision, and when it should be the one to do
the passing. To do this, each robot uses (7) and (8) to update the
same actor and critic, based on its current observations from the
rules fired during a training iteration. This means that every
game iteration will have an update to the actor and critic made
by each of the 5 robots. The robots get a reward of -0.1 for every
higher-level policy iteration, and their terminal reward is
dependent on the order of those that exit. For example, the first
robot that exits receives a reward of 8, the second robot that
exits receives a reward of 7 etc. Their terminal reward is
described by (11). It is once again a weighted function of
individual reward based on the order they exited, and the sum
of the rewards received for the team reward. If robots collide,
then each robot receives -2 as their 𝑅39?3@3?'>".

TABLE 3
INFORMATION USED TO TRAIN LEAVING A ROOM GAME

The parameters presented in Table 3 were arbitrarily chosen.

The genetic algorithm used had a population of 50, each
population member contains 3 hyperparameters (discount
factor, terminal reward weight, standard deviation of noise used
for exploration), with 100 iterations of hyperparameter tuning
completed. The crossover rate was 0.75, with a mutation rate of
0.01.

A population of 50 was randomly generated with the extreme
values of the search [0,1] seeded into the initial population. The
higher-level policy is then trained with each set of
hyperparameters in the population. In the training, each agent
takes the distance inputs and outputs a value. The sign of that
value indicated whether to stop or go. Then the lower-level
policies execute accordingly for 3 seconds before going back to
the higher level. This is repeated in the game until either all
agents make it out the door or 80s passed. Once the 12,000
epochs of training have completed for a member of the
population, there are 55 games played that require altruism
from at least one agent. Each training epoch corresponds to a

9
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

game where the agents are randomly placed in the room and are
required to exit without bumping into each other. The fitness
value is assigned based on the ratio of successful games where
all 5 robots exit the door. Once all 50 members of the population
have been assigned a fitness value, the genetic operators are
used to create a new population and repeat 200 times. The
genetic algorithm had 200 iterations done to ensure
convergence, but convergence appeared around iteration 15. To
test the converged hyperparameters, the learning session was
run 200 times with the fitness results of each session plotted in
Fig 10. A fitness result from a learning session is the ratio of
success from the 55 test games.

Fig. 9. The fitness per population of the Leaving A Room
game. A convergence happens around 7 iterations

The hyperparameters converged to 𝛾 = 	0.0325, 𝜎 = 	0.8843,
𝑤 = 0.8619. A very low discount factor of 0.0325 implies
that the agents optimize for the immediate reward.
Fig 10. shows the test results from the 200 individual training
sessions. The training session is all 5 agents learning to exit
the room in 12,000 epochs of training with the test results
being the ratio of the 55 successful games played after
training. These 200 training sessions were completed with
these hyperparameters to look at the variation in policies and
results. The policies were then tested using 55 test cases. The
interquartile range was 0.0727, with an interquartile mean of
0.4731 (or 26 altruistic test cases passed).

Fig. 10. A Histogram of the success rate of 200 training
sessions

While not perfect, the hyperparameters the genetic algorithm
chose showed that a low discount factor was beneficial, high
variation of noise was needed, and that there is a large
individual reward component in the terminal rewards.

VI. DISCUSSION
This section is divided into three discussions: discount factors,
reward weights, and the standard deviation of noise used. The
purpose is to individually discuss how these hyperparameters
can contribute to altruism among agents with respect to the
games.

A. Discount Factors
As previously mentioned, the discount factor has been found to
change cooperative behavior [7]. One popular perspective of
the discount factor is that it controls the time horizon, and thus
the priority of short-term rewards. Another perspective is that it
helps with the stability of an algorithm. The authors in [23]
claim that “some common approximation error bounds may be
tightened with a lower discount factor.” However, finding an
appropriate discount factor for performance is non-trivial.
While high values of discount factors allow for a greater time
horizon, it also means that the stability of the algorithm worsens
due to function approximation errors that are not getting
discounted. The goal of using the discount factor as a
hyperparameter is to find a balance between these aspects and
see how it affects the cooperation among agents. The results
from the genetic algorithm are then compared to cases using
other values that were chosen using user intuition.

Here we analyze two games in reference to the stag hunt game:
one where all the agents start at the same position in the field,
and another where the agents start at different positions. Four
HLPs are analyzed with respect to the different discount factors
seen in Table 4. For the Stag Hunt game, we ran the
hyperparameter optimization again using a population of 50,
with very little difference in results. Hyperparameter set 1
corresponds to the results selected by the genetic algorithm with
a population of 30, and hyperparameter set 2 is with the

0 10 20 30 40 50 60 70 80 90 100
Iteration

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Fi
tn

es
s V

al
ue

s o
f P

op
ul

at
io

n

Genetic Algorithm - Fitness per Population
Leaving A Room Game

Average Fitness
Best Fitness in Population

10
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

population of 50. Notice that the largest difference is with
discount factor 3 (𝛾E). With a discount factor of 0.1768 the
agent barely sees the next 2 steps, and with 0.5517 the agent
sees the next 5 steps which isn’t a large difference in a
continuous domain. Hyperparameter set 3 keeps the optimized
values for 𝑤	&	𝜎 but replaces the discount factors with 0.9 for
all agents. Finally, hyperparameter set 4 is used to demonstrate
what user intuition for the hyperparameters might give.

TABLE 4
DESCRIPTION OF POLICY SETS FOR ANALYSIS

In Fig. 11, the two cases are plotted. The top plot shows the
agents paths, and the bottom part of the plot shows the actor FIS
against time for each agent. In case 1 where all agents start at
(25,15) the agents know where to go right from the first step.
Ivan, the low discount factor agent simply goes to the goal
closest, and the high discount agents choose the stag. In case 2
the agents are spread out positioned at (0,40), (10,50), (15,0), it
takes the agents 5 decision steps to reach a similar consensus.
Hyperparameter set 2 plots are not shown due to the similarity
in results of hyperparameter set 1.

In the case where all agents have the same discount factors (as
seen in Fig. 12), the agents unanimously choose the berries. If
a single agent selects the stag, then this agent receives a
negative reward, whereas the berries do not have this effect. The
berries do not have any such restriction. It does not come as a
surprise that no agent behaves altruistically when all agents see
the same steps ahead. Hyperparameter set 4 was excluded from
the plots since it resembled that of hyperparameter set 3. Since
the results mimic hyperparameter set 3, it’s clear that the
discount factors have the greatest impact.

An analysis of the actual policies shows that the decision of
whether to hunt the stag or collect the berries generally is
chosen correctly within the first few decisions. Based on the
hyperparameters, it appears beneficial to have agents learn with
different discount factors. The discount factor appears to give
agents a role in the system. For example, we see that the agent
with a low discount factor will choose the goal that is closest,
whether that is a stag or berries. When the berries are the
closest, the agent takes on a more altruistic role.

In case 2 with the hyperparameters optimized, the agents with
high discount factors initially choose the nearest goal as well,
this can be seen in the Agent FIS diagrams. However, within a
couple time iterations, the agents correct course.

Another interesting aspect is that the lower discount factor
agent, Ivan, will also always choose stag if he is much closer to
it. In this case one of the other agents will compensate and
collect the berries. Since Ivan has a low discount factor, he is
more interested in rewards that can be achieved sooner. Fig. 11
shows that at first Ivan’s HLP output is very small, and then
after outputs larger and larger negative values corresponding to
the stag.

Fig. 11. These plots show the Agent's paths and FIS outputs
over time. We can see that when Ivan is much closer to the
stag, he will choose it instead of the berries. The top plot
shows the path of each agent in the x-y plane. The bottom plot
shows the HLP FIS output over time.

0 10 20 30 40 50

0

10

20

30

40

50

jean
ivan
nora

0 5 10 15 20 25
-3

-2

-1

0

1

2

3
Agent FIS output

nora
jean
ivan

11
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 12. Using hyperparameter set #1, the top plots show case 1
where all agents start from the same place, and the bottom plots
shows game 2.

Fig. 13. Hyperparameter set 3 case 1 (top) and case 2 (bottom)

The continuous hallway game is also affected by the discount
factors. Fig. 14 and Fig. 15 show the position versus time plots
with the velocity versus time plots underneath.

12
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 14. The top plot shows position versus time and the
bottom plot shows velocity versus time from a policy that was
trained using the hyperparameters that were selected by the
genetic algorithm: 𝛾AB><C9 = 0.995, 𝛾?3>9> =0.995,
w=0.9819, σ=0.9

Fig. 15. The top plot shows position versus time and the
bottom plot shows velocity versus time from a policy that was
trained with 𝛾AB><C9 = 0.5, 𝛾?3>9> =0.5, w=0.9819, σ=0.9

In Fig. 14 and Fig. 15 we can see how the discount factor
impacts the learned output weights for each rule. The policy
learned by Diana in Fig. 15 shows the rules that get fired near
the end of the hallway have highly negative weights, which is
to decrease speed (negative force applied). (For example, rule
1895 corresponds to a -1.7 weight) The effect of this is seen in
the velocity plot. However, with a larger time horizon as seen
in Fig. 14 we do not see this. (Rule 1895 is just -0.0117) It’s
clear that a higher discount factor for both agents is better since
their terminal reward varies largely depending on the result of
the game. A further time horizon was necessary to better learn
the weights of the rules.

In the game Leaving a Room the five robots are tasked to learn
to exit a room without bumping into each other. All 5 robots

train one single shared policy. The higher level uses 5 inputs
which are 4 distances away from the other robots and 1 distance
away from the door. The discount factor found by the genetic
algorithm was 0.03. A discount factor of near 0 implies that the
current reward is the most important. Here we look at a test
scenario where the agents are similarly positioned in the room.
The learning algorithm is run once with 𝛾 = 0 and another time
with 𝛾 = 1 (keeping the other hyperparameters the same) to
compare.

A set of videos showing some example tests for Leaving A
Room are available at [24]. In these videos we see test cases
that show scenarios where if some agents simply went towards
the goal without stopping, there would be a crash and hence
negative rewards allocated. This game has the agents decide
between whether to simply stay in the same spot for the entire
game (not to risk a costly crash) or go forward towards a large
reward. We see that when comparing discount factors, the time
horizon plays a major role in altruistic behaviors. A smaller
discount factor allows agents to decide in the moment, without
the consideration of a large terminal reward. Since the shaping
reward is simply -0.1 regardless of if an agent chooses to stop
or go, there is more incentive to be safe and let other agents go
ahead. We see this in the video, agents who are further from the
door tend to wait until the other agents get much closer to the
goal. These further agents forgo a higher terminal reward
instead of risking a crash. Fig. 15 shows two frames from the
video showing these agents waiting while others go, thus acting
altruistically to ensure that there are no crashes where the lines
intersect.

Fig. 16. Side by side plots of the agents early in the game, vs
later in the game. Decision 2 corresponds to the second output
of the higher-level FIS policy etc. Blue and Magenta initially
chose to wait earlier on in the game.

In Fig. 17 we compare the genetic algorithm’s selected discount
factor of 0.018 with a discount factor of 0.99, while keeping the
other parameters constant. In a high discount factor scenario,
the red and the magenta agents will crash if one or the other
does not act altruistically. With the discount factor of 0.018, the
red agent who is closer to the door goes first and the magenta
agent waits until it is safe to pass. When looking at the policy
trained with a discount factor of 0.99, magenta and red crash
into each other and the other agents who had started moving
toward the door stop, to not risk another crash. Lower discount
factors will make agents favors immediate rewards, which
minimizes the amount of crashes.

13
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 17. A comparison with policies. The top shows the
progression of the game with a low discount factor. The
bottom shows the same with a high discount factor.

To get a general idea of the policies that developed we can take
an average of all the weights associated to rules that were
trained. In this game a positive value corresponds to stop, and a
negative value corresponds to go. Taking the average of all the
weights in the HLP policy we can see that the policy with 𝛾 =
0.99 has an average of 0.3110 whereas the policy trained with
𝛾 = 0.018 has an average of -0.4267. So, an HLP policy with
more positive weights is more likely to have the agent stop than
go.

Since not all test cases are successful, future work would look
at how using a genetic algorithm to select more of the
hyperparameters such as learning rate and the time between
higher level policy calls (decisions) would improve the success
rate.

Looking at the games, we can see that it can be beneficial for
agents to all have their own discount factor. We also see with
the Leaving a Room game that immediate danger of crashing
requires a lower discount factor. A higher discount was more
likely to be chosen for agents whose reward for success was
determined by the terminal reward. The discount factor can
clearly impact the altruistic tendencies of learning agents. The
discount factors are also chosen alongside the reward weight
which also impacts the altruistic tendencies.

B. Reward Weight
One of the major parameters that helps the agents learn to
behave in a certain way are the terminal rewards given at the
end of a game. In the stag hunt game, the terminal reward is
given based on the individual reward contribution and the
overall reward value achieved by the group (team reward). The
genetic algorithm shows us that the team reward is a very
important component (w=0.018). Comparing the agent’s
behavior with a team reward that favors individual
contributions (larger values of w) shows that all agents defect
to the berries, the safest option which still gets a positive reward
for all agents. If the terminal reward weight were set to 1 (which
implies that all agents get only their individual reward and no

team reward), there would be high risk for choosing the stag
alone, since one agent choosing the stag corresponds to a -2
reward. In that scenario, the agent would be given a negative
reward; however, by always choosing the berries, there is no
risk of a negative reward. The same pattern of berry defection
happened with the discount factors mentioned in section VI A,
where all agents defect to berries.

To get an idea of the importance of having the terminal reward
weight favor the team reward aspect, we can take an average
value of all the fuzzy rule weights in the policy learned in each
agent. During training, each rule has a corresponding weight
that is updated. Negative values correspond to the stag, whereas
positive values correspond to the berries. We can see that by
retraining the agents with the reward weight of 0.9 which favors
individual contribution over team reward weight, the average
weights learned are positive and lean heavily toward favoring
the berries. The optimized policy parameters (𝛾9C<> =	0.9791,
𝛾F:>9 =	0.9823, 𝛾3@>9 =	0.5517, 𝑤 =	0.018, 𝜎 =	0.9985) show
that two agents on average prefer the stag and one agent prefers
the berries, which makes much more sense for the game.

TABLE 5
AVERAGE VALUE OF ACTOR OUTPUT WEIGHTS WITH RESPECT

TO REWARD WEIGHT USED IN TRAINING
 Nora (𝛾 =

0.9791)
Jean (𝛾 =
0.9823)

Ivan (𝛾 =
0.5517)

𝑤 = 0.018 -0.2186 -0.0935 0.0456
𝑤 = 0.9 0.3650 0.2931 0.1330

With respect to the hallway game, we can see that the reward
weight used in the shaping reward effects the speed of the game
played and the exactness. By looking at the plots in Fig. 18
showing position versus time and velocity versus time, we can
see how the weight of the shaping reward impacts the system.
In these plots Diana starts at the 6m mark, and Sharon starts at
the 0m mark. A higher reward weight favors getting closer to
the end of the hall, and a smaller reward weight favors staying
closer to the other agent. Fig. 18 shows a game trained with
w=0.2, and Fig. 19 shows the same game trained with w=0.8.
It’s clear that having the weight favor ‘stay close to other agent’
results in a longer and poorer strategy, however the agents are
within 0.0032m of each other at the end of the hallway. When
the weight favors getting closer to the end of the hallway, the
agents are much faster, but they are within 0.1782m of each
other instead. Having a genetic algorithm chosen reward weight
of 0.9819 implies that it’s very important for agents to be
rewarded for getting to the end of the hallway, but still slightly
important that they stay within a reasonable distance of their
partner agent.

14
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 18. Plot of the agents path and velocity vs time with a
shaping reward weight of 0.2

Fig. 19. Plot of the position and velocity of the agents vs time
with a shaping reward weight of 0.8

With the reward weight set to 0.8629 in the Leaving A Room
game, the individual reward is favored more than the team
reward. Using the same example as in Fig. 16 the red and
magenta agents crash into each other if one does not act
altruistically. Analyzing what rewards these agents would get
in the scenario where they crash would be:

𝑅!:>= = 8 + 7 + 6 − 2 − 2 = 17
The first agent gets an individual terminal reward of 8, the
second-place agent gets 7, and third place receives a reward of
6. The two agents that crashed both receive -2.
Using a weight of 0.8629 for the agents that crashed will give
them a reward of

𝑅!:<=39>" = 𝑤 ∗ 𝑅39? + (1 − 𝑤) ∗ 𝑅!:>= (11)
𝑅 = 0.8629 ∗ −2 + (1 − 0.8629) ∗ 17 = 0.6049

Using a reward weight of 0.2, the agents that crashed would get
a terminal reward of 13.2, a much higher reward for failure
which does not make sense to use. The reward weight of 0.8629
shows us that it is better to at least try to make it to the goal and
risk a crash than it is to just sit in place. If a crash does happen,
the reward is much less than if the agents made it to the finish
line.

C. Noise
The last parameter to discuss is the standard deviation of noise
applied to the actor outputs during training. In the FACL
algorithm, noise must be added to the actor output in order to
simulate exploration during training. The noise comes from a
normal distribution, and the parameter of interest is the standard
deviation of that normal distribution. The genetic algorithm had
to select a standard deviation between 0 and 1. While this
parameter does not have a direct impact on altruism, it is crucial
for the learning process.

The three games studied all had high values chosen for standard
deviations: 0.9, 0.99857, and 0.8843. This implies that a larger
variety of noise is required for learning altruism in this setting.

VII. CONCLUSION

This study shows the importance of training agents for altruistic
behaviors in cooperative games, without altruism it is difficult
to determine if true cooperation is happening in multi agent
settings. Three new continuous space games were designed to
help identify when altruism was happening among agents. The
agents were trained using fuzzy actor critic learning, and in two
of the games a hierarchical structure was used in learning.
While many hyperparameters in learning algorithms are often
chosen arbitrarily, this paper shows that certain behaviors can
emerge through the use of automated selection of
hyperparameters in multi agent systems. By using a genetic
algorithm to select hyperparameters, we can customize the
fitness function to better select hyperparameters that pass
altruistic tests. The hyperparameters that were used to help the
agents learn altruistic behaviors were the discount factor, a
reward weight used in either the shaping reward or terminal
reward, and the standard deviation of noise applied to the actor
during learning.

VIII. REFERENCES

[1] A. A. M. Salem, M. Abdelsattar, A.-D. A. Mosaad, A.

H. Al-Hwailah, E. Derar, N. A. Al-Hamdan and S. T.
Tilwani, "Altruistic behaviors and cooperation among
gifted adolescents," Frontiers in Psychology, 2022.

[2] S. A. West, A. S. Griffin and A. Gardner, "Social
semantics: altruism, cooperation, mutualism, strong
reciprocity and group selection," Journal of
Evolutionary Biology, vol. 20, pp. 415-432, 2007.

[3] O. e. a. Vinyals, "StarCraft II: A New Challenge for
Reinforcement Learning," arXiv, vol. arXiv:1708.0478,
2017.

[4] C. Fan, S. Bao, Y. Tao, B. Li and C. Zhao, "Fuzzy
Reinforcement Learning for Robust Spectrum Access in
Dynamic Shared Networks," IEEE Access, vol. 7, pp.
125827-125839, 2019.

[5] W. Wang, C. Du, W. Wang and Z. Du, "A PSO-
Optimized Fuzzy Reinforcement Learning Method for
Making the Minimally Invasive Surgical Arm
Cleverer," IEEE Access, vol. 7, 2019.

[6] C.-F. Juang and C.-M. Lu, "Ant Colony Optimization
Incorporated With Fuzzy Q-Learning for Reinforcement
Fuzzy Control," EEE Transactions on Systems, Man,
and Cybernetics , vol. 39, no. 3, pp. 597-608, 2009.

[7] J. Z. Leibo, Z. Vinicius, M. Lanctot and J. Marecki,
"Multi-agent Reinforcement Learning in Sequential
Social Dilemmas," in Sixteenth International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Sao Paulo, 2017.

15
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

[8] T. Franzmeyer, M. Malinowski and J. F. Henriques,

"Learning Altruistic Behaviours in reinforcement
Learning withut External Rewards," in International
Conference on Learning Representations, 2022.

[9] J. Foerster and R. Y. Chen, "Learning with Opponent-
Learning Awareness," in International Conference on
Autonomous Agents and Multiagent Systems,
Stockholm, 2018.

[10] A. Sehgal and H. Nguyen, "Deep Reinforcement
Learning using Genetic Algorithm for Parameter
Optimization," in International Conference on Robotic
Computing (IRC), Naples, 2019.

[11] C. G. J. M. Hossain Delowar, "Optimizing Deep
Learning Parameters Using Genetic Algorithm for
Object Recognition and Robot Grasping," Journal of
Electric Science and Technology, vol. 1, no. 1, 2018.

[12] T. Hinz, Navarro-Guerrero, S. Magg and S. Wermter,
"Speeding up the Hyperparameter Optimization of Deep
Convolutional Neural Networks," International Journal
of Computational Intelligence and Applications, vol. 17,
no. 2, p. 1850008, 2018.

[13] S. C. Chan, S. Fishman, J. Canny, A. Korattikara and S.
Guadarrama, "Measuring the Reliability of
Reinforcement Learning Algorithms," in Internation
Confrence on Learning Representations, Addis Ababa,
2020.

[14] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville
and M. G. Bellemare, "Deep Reinforcement Learning at
the Edge of the Statistical Precipice," in Neural
Information Processing Systems, 2021.

[15] J. Ma and F. Wu, "Feudal Multi-Agent Deep
Reinforcement Learning for Traffic Signal Control," in
International Conference on Autonomous Agents and
Multiagent Systems, Auckland, 2020.

[16] J. Yang, I. Borovikov and H. Zha, "Hierachical
Cooperative Multi-Agent Reinforcement Learning with
Skill Discovery," in International Confrence on
Autonomous Agents and Multiagent Systems, Auckland,
2020.

[17] A. Levy, G. Konidaris, R. Platt and K. Saenko,
"Learning Multi-Level Hierarchies with Hindsight," in
International Conference on Learning Representations,
New Orleans, 2019.

[18] A. Asgharnia, H. Schwartz and M. Atia, "Learning
multi-objective deception in a two-player differential
game using reinforcement learning and multi-objective
genetic algorithm," International Journal of Innovative
Computing, Information, and Control, vol. 18, no. 6, pp.
1667-1688, 2022.

[19] A. Asgharnia, H. Schwartz and M. Atia, "Hierarchical
Reinforcement Learning With Multi Discount Factors In
A Differential Game," in IEEE Symposium Series on
Computational Intelligence, Singapore, 2022.

[20] Wang, Tonghan; Wang, Jianho;, "Learning Nearly
Decomposible Value Functions via Communication

Minimization," in International Conference on Learning
Representations (ICLR), Addis Ababa, 2020.

[21] S. Givigi and H. Schwartz, "Swarm Robot Systems
Based on the Evolution of Personality Traits," Turkish
Journal of Electrical Engineering and Computer
Sciences, vol. 15, no. 2, pp. 257-282, 2007.

[22] A. Asgharnia, H. M. Schwartz and M. Atia, "Deception
in A Multi-Agent Adversial Game: The Game of
Guarding Several Territories," in IEEE Symposium
Series on Computational Intelligence, Canberra, 2020.

[23] M. Petrik and B. Scherrer, "Biasing Approximate
Dynamic Programming with a Lower Discount Factor,"
Advances in Neural Information Processing Systems,
pp. 1265-1272, 2009.

[24] R. Haighton, "Leaving A Room Videos Folder," 2023.
[Online]. Available:
https://drive.google.com/drive/folders/1Bg25stFGrfLa4
z_oy382VTQbc4F8WoTa?usp=sharing.

