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Abstract— We propose using a genetic algorithm to select 

hyperparameters in multi agent reinforcement learning settings. 
In particular, we look at this in the context of cooperation and 
altruism. We show through the use of 3 continuous space games, 
that certain algorithmic hyperparameters are better suited to 
allow to agents learn altruistic behaviors. The agents learn using 
fuzzy actor critic learning algorithms in either a hierarchical 
structure or a single actor critic policy. The genetic algorithm 
selects the discount factors, the reward weights, and the standard 
deviation of noise applied to actor during learning. The genetic 
algorithm uses a fitness function based on the ratio of successful 
tests the group of agents can pass after training. This automated 
selection of these specific hyperparameters show that they are 
important for cooperation and also not trivial to select. 
 
Index Terms—multi-agent reinforcement learning, altruism, 
cooperation, fuzzy systems  
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I. INTRODUCTION 
ulti-agent reinforcement learning (MARL) is a field 
of machine learning where multiple agents use 
reinforcement learning algorithms at the same time, 
either to learn to cooperate to achieve some common 

goal, or competitively, where agents compete against each 
other. This paper focuses on the cooperation between agents, 
which can have applications in autonomous vehicles, traffic 
control, resource allocation, and even the stock market. 
However, how do we know that agents are truly cooperating 
and not just working in parallel without regard for one and 
other? One problem in some of this research is the lack of clear 
cooperation among agents. According to [1] “cooperation is 
conceptually and empirically linked to altruism, which is 
defined as behavior in which one person foregoes a benefit to 
help another.”  Another source [2] states that altruism is “a 
behavior which is costly to the actor and beneficial to the 
recipient”. Altruism is an important aspect often missing in 
cooperative reinforcement learning as it demonstrates that 
agents are working together as a group and not individually. 
The goal of altruistic reinforcement learning is to show that one 
agent learns to forgo something for the benefit of the group. 
 
Common reinforcement learning benchmarks such as the 
StarCraft II Learning Environment (SC2LE) [3] does not 
necessarily demonstrate altruism in the cooperative aspect. We 
focus on the learning of altruism in multiagent systems using 
reinforcement learning. We use this paper to focus on the 
learning of altruism in multiagent systems using reinforcement 
learning which aids us demonstrate cooperative tendencies 
among agents. 
 
Difficulties within altruism in reinforcement learning include 
both the agents and the scenarios. How do we come up with 
scenarios where the agents have altruism as a choice? How do 
we measure altruism? What kind of parameters within an agents 
learning algorithm impact altruism?  
To show altruistic cooperation among agents we implemented 
modified versions of several MARL games taken from existing 
literature. These games give the agents the option of altruistic 
cooperation or not cooperating at all. The agents are trained 
with fuzzy actor critic reinforcement learning (FACL) using 
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different learning structures such as hierarchical reinforcement 
learning. Some of the FACL hyperparameters are selected using 
a genetic algorithm to better learn altruistic cooperation in the 
games. Fuzzy reinforcement learning is used due to its 
simplicity, as well as its interpretability which is advantageous 
over deep neural networks. In addition, a major benefit of using 
fuzzy reinforcement learning, is that when the environment 
changes, the fuzzy rules can easily adapt. Fuzzy reinforcement 
learning has been successfully used in many applications such 
as [4], [5], [6]. 
 
Key contributions of this paper include: 

- Using hyperparameter optimization on multi agent 
reinforcement learning systems. In each game, the 
agent system has key hyperparameters selected by a 
genetic algorithm. Similar research generally only 
has a single agent. 

- The creation of continuous space altruistic games. 
While games that display altruistic characteristics 
exist already [7], these games are often in the discrete 
domain. 

- Using fuzzy reinforcement learning in a MARL 
altruistic cooperation setting. Many papers that do 
look at altruistic reinforcement learning use neural 
networks and other deep learning tools which lack 
interpretability and explainability. By using fuzzy 
systems in the cooperative setting, the decisions the 
agents make are much clearer and related to specific 
fuzzy rules. 

 

II. RELATED WORK 
As mentioned, many papers that study the learning of 
cooperation using reinforcement learning do not study the 
altruistic aspect of cooperation. However, there are a few 
existing papers that do.  
 
Franzmeyer et al. study how a single agent can learn to be 
altruistic to help other agents succeed at their goals. By 
training an agent to maximize the number of states another 
agent will be able to reach in its future, the agent will learn 
altruistic behavior. The authors observe that certain 
hyperparameters such as discount factors and “look-ahead 
horizon” effect altruistic tendencies of the agent. [8] 
 
Forester et al. [9] study a dilemma in which a beneficial action 
to an agent might be disadvantageous to a neighboring agent in 
a game called the “Coin Game”.  The authors create an 
algorithm called “Learning with Opponent-Learning 
Awareness” using deep neural networks to show how agents 
can behave altruistically in circumstances where one agent can 
lose points due to another agent’s actions.  
 
In [7], the authors create a couple of cooperative games to 
show how social dilemmas can affect cooperation. Using 
deep-Q networks, the authors modify parameters such as 
discount factors, reward ratios, and hidden network neurons to 
see how they can affect the behavior of the agents. Results 
were studied in a game theory lens using empirical payoff 

matrices. They show how simple parameters can affect the 
resulting matrix payoff from the learned policy. 
 
What these papers have in common is that they’ve identified 
important hyperparameters that are used to learn altruistic 
behaviors among agents. All three papers utilize the discount 
factor as a hyperparameters to study.  However, these papers 
do not use any optimization algorithms to determine what the 
best combination of hyperparameters might be which happens 
to be a major gap in the cooperation domain. Additionally, 
these papers use Q-based learning algorithms; our paper 
utilizes an actor-critic learning model for the continuous 
domain. 
 
The use of genetic algorithms has been used to optimize 
hyperparameters within reinforcement learning algorithms in 
the past. The following papers [10] [11] [12] have shown 
success using genetic algorithms for optimization. However, 
an existing problem with reinforcement algorithms is 
repeatability. It is possible to get different results despite using 
the same hyperparameters. [13] [14] Many hyperparameter 
optimization papers lack analysis regarding the repeatability of 
this process. How repeatable are the hyperparameters that 
were selected via genetic algorithm? This paper does an 
analysis on this aspect by running the reinforcement learning 
algorithm 200 times to see how the resultant policies may 
deviate from each other. Additionally, these papers use some 
form of neural network (CNN, Deep-Q, etc) whereas we have 
opted to use a fuzzy system as our non-linear approximator 
which makes the explainability of hyperparameters clearer.  
 
Finally,  the use of using a hierarchical reinforcement learning 
algorithm has been used before in multi agent cooperative 
agent systems in [15] [16] [17]. More specifically, the use of a 
hierarchical reinforcement learning algorithm has been used 
within [18] [19]. In [18] hierarchical reinforcement learning 
using fuzzy systems is used to train an agent to learn deception 
in pursuer-evader games. The lower levels carry out primitive 
tasks and the higher level decides when to change tasks. In 
[19] a hierarchical structure is used to learn both the policy 
and the reward function simultaneously in the context of an 
adversarial game. The authors adjust the fuzzy actor critic 
algorithm to handle multiple reward functions with different 
time horizons in the hierarchical structure. In this paper we 
bridge the gap by applying the fuzzy hierarchical 
reinforcement learning algorithm to a cooperative scenario. 
 

III. PROBLEM STATEMENTS 
It’s important to design games in a way that altruism occurs in 
the cooperating agents. According to West et al. “cooperation 
is conceptually and empirically linked to altruism, which is 
defined as behavior in which one person foregoes a benefit to 
help another” [2]. This isn’t always displayed in classic 
cooperative games in the reinforcement learning field, which 
makes it difficult to determine if agents are truly acting 
cooperatively. Three problems/games are described here that 
force the agents to cooperate. 
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A. Continuous Hallway 
Taking inspiration from the Hallway game in [20], a similar 
game is proposed with some key differences. The goal of this 
game is for 2 agents to race each other to the end of the 
hallway, which is 15m long, but agents get a higher terminal 
reward if they get to the end of the hall at the same time. 
Instead of a discrete domain, the agents are in a continuous 
space to better mimic real life. The altruistic aspect here is that 
while the agent could get a terminal reward by going to the 
end of the hall first, it should learn to slow down and allow the 
partner to catch up so that they both get rewarded.  
 

B. Markov Stag Hunt 
Three agents are tasked to either hunt a stag or collect berries. 
It takes at least 2 agents to take down a stag. While it is simpler 
to get berries than take a stag, the stag is much more rewarding 
for the group. However, since the collection of food is split 
between all agents, if all 3 agents hunt the stag, there is less food 
to go around than if one of the three agents chose to pick the 
berries. 
 
The dilemma is as follows: if all agents hunt the stag, all agents 
receive a lower terminal reward than if one agent defects to 
berries. But the agent who defects to berries will get a 
comparatively lower reward than either of the agents who had 
chosen the stag. The rewards are on a weighted sum basis: the 
team reward is the sum of everyone’s rewards, and an 
individual reward is the value of its own catch.  

 
Fig. 1. Visualization of the Stag Hunt game where 3 agents 
must maximize their rewards. 
 

C. Leaving A Room 
The concept of having robots learn to leave a room has been 
seen in [21]. This game has 5 agents (robots) inside a 10x10 
continuous room who have to learn to leave the room without 
bumping into each other. The actions the agents can choose 
from is to either stop or to go. The agents get rewards based on 
the order of those leaving the room. Letting an agent pass in 
front of it, means a potential lower terminal reward for the agent 
that waited.  

 
Fig. 2. Visualization of the game Leaving A Room. Five robots 
must exit a room without crashing into each other. 
 

IV. ALGORITHMS 
This section describes the algorithms used to solve the games. 
While each game has slight differences in the algorithm 
(rewards etc), the basic Fuzzy Actor Critic Learning algorithm 
(FACL) is described here, along with the genetic algorithm 
used for hyperparameter optimization. 
 
The fuzzy actor critic algorithm is used to train the agents. 
There are two structures that are discussed here: a simple FACL 
and a hierarchical FACL, which is similar to the structure 
presented in [22].  
 
For each game we implement a genetic algorithm. We define 
an initial population where each member is a set of 
hyperparameters. For each set of hyperparameters, the fuzzy 
reinforcement learning algorithm starts learning. When the 
learning is complete, the agents then play a few dozen games 
using their static policies. The ratio of the number of successful 
games is the fitness for that specific set of hyperparameters. 
Once the total population of the hyperparameters has been 
assigned a fitness, the child population is created using 
selection, crossover, and mutation operators. The next iteration 
is done using the child population. Many iterations of this 
process are done many times to ensure convergence. All 
members of the final population should have the same values 
for each hyperparameter. Once we have these hyperparameters, 
we replicate the training 200 times purely for analysis purposes. 
We’d like to see how the results of using the hyperparameters 
deviate from each other. The results are show in histograms in 
Fig. 5, 8, and 10. 
 

A. Fuzzy Actor Critic Learning 
The Fuzzy Actor Critic Algorithm uses a fuzzy inference 
system as the critic and a fuzzy logic controller as the actor. The 
actor updates its weights based on the critic. The output of the 
actor at time 𝑡 is calculated as follows: 

𝑢! = Σ"#$% 𝜙"𝜔!"                                       (1) 
where 𝜔!"  is the actor’s output parameter of rule 𝑙, 𝐿 is the total 
number of rules, and 𝜙" is the firing strength of the rule 𝑙. In 
this scheme we use triangular membership functions per input 
for their computational speed. The number of rules that fire at 
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any time instant is simply the number of membership functions 
to the power of the number of inputs. In order to calculate the 
firing strength of rule 𝑙, computed as 

𝜙" = &'
&(!

= )"#$
% *&'

!
(,̅')

/!#$
( 0)"#$

% *&'
!
(,̅')1

                         (2) 

𝜇2'!(𝑥̅3) calculates the membership degree of the input 𝑥4.  with 
𝑛 being the number of inputs. During training, noise is added 
to the output of the actor to encourage exploration. The noise 
is from a normal distribution with a mean of 0, and a standard 
deviation 𝜎 that is specified by the user. Thus, the actual 
action used by the agent during learning is: 

𝑢!5 = Σ"#$% 𝜙"𝜔!" +𝑁(0, 𝜎)                         (3) 
The value functions at t and t+1 must be calculated in order to 
eventually update the output parameters of the fuzzy rules. The 
value function is simply the expected sum of discounted 
rewards and is approximated by the fuzzy inference system as: 

𝑉! = Σ"#$% 𝜙!"𝜁!"                                   (4) 
𝑉!6$ = Σ"#$% 𝜙!6$" 𝜁!"                               (5) 

Using the value function, we can estimate the prediction 
error/temporal difference. 

Δ! = 𝑅!6$ + 𝛾𝑉!6$	 − 𝑉!                           (6) 
The discount factor, 𝛾, is between 0 and 1, in this paper we 
propose to use a hierarchical genetic algorithm to tune the 
discount hyperparameter 𝛾 . The term 𝑅!6$ is the reward 
received. The critic output weights in the fuzzy inference 
system can then be updated using the temporal difference at t 
and learning rate, 𝛼. 

𝜁!6$" = 𝜁!" + 𝛼Δ!𝜙!"                               (7) 
Note how only the rules that fired are updated, this way if there 
are environmental changes, the system can easily adjust. 
The output weights of the actor fuzzy inference system are 
updated as: 

𝜔!6$" = 𝜔!" + 𝛽Δ!𝜙!"(𝑢!5 − 𝑢!)                     (8) 
Where 𝛽 is the learning rate of the actor, and Δ! is the temporal 
difference at time t, and 𝑅!6$ is the reward at a given timestep. 
 
In the hierarchical structure, the lower-level policies are 
independently trained to achieve a particular task. Once 
completed, the higher-level policy is then trained while using 
the completed lower-level policies.  
 

B. Genetic Algorithm for Hyperparameter Optimization 
In order to select ideal parameters in the FACL algorithm, a 
genetic algorithm can be used for the hyperparameter 
optimization. The main advantage of using a genetic algorithm 
to aid in the selection of hyperparameters is that many 
processors can be used in parallel which greatly speeds up the 
process. Genetic algorithms are generally good for complex 
search spaces. 
 
Algorithm steps: 

1. Create a randomly generated population of size n and 
initialize parameters. 

2. Train the policy(s) and assign fitness values for each 
set of hyperparameters in the population 

3. Start loop to create new child population 

4. Binary tournament to select parents to create offspring 
members of the next population 

5. Generate a random number to check for crossover. If 
above crossover rate, use parents in the child 
population, if below, perform the crossover operation 

6. Generate another random number, if below mutation 
rate, replace a parameter in the offspring with 
appropriate randomly generated value. 

7. Add offspring to new child population 
8. End loop once child population is full 

 
In step 1, the population is randomly chosen, which means 
creating sets of the hyperparameters to test. Here we call a set 
of hyperparameters a member of the population, where the 
population is many sets of hyperparameters. A couple members 
are planted into the initial population that have known 
hyperparameters that work satisfactorily. This is called seeding 
the initial population and is done to speed up the search. In step 
2, one implements reinforcement learning. The fitness function 
chosen is up to the user, for example in [10] the authors use the 
inverse of number of epochs it takes for the agent to reach a 
success rate of 0.85 for the very first time. We use a fitness 
function that corresponds to the number of successful tests after 
training. After the reinforcement learning algorithm has 
reached a terminal state for training, the policies of the agents 
are put through a number of test scenarios for evaluation. The 
fitness thus corresponds to how many scenarios were 
successfully passed by all agents. Once all the members of the 
current population have been trained and assigned a fitness 
value, the next population can be created. We use the selection, 
mutation, crossover, and elitism operators to create the next 
population to test, also called the child population.  
 
To create the child population 4 random members of the parent 
(current) population are chosen and paired off. All members in 
the population have an equal probability of getting selected. A 
binary tournament is used as the selection operator. Whichever 
member in the tournament pair has a better fitness is used, so 
now there are two parent members. A crossover operation 
ensues, a random number between 0 and 1 is generated if the 
value is above the crossover rate (which is set to 0.75) then the 
parents are kept, otherwise crossover occurs. Up to two 
parameters are randomly chosen for crossover. The new 
parameters are created by crossing the parent parameters 
𝑝$	&	𝑝8 using 	

𝑝9:;	$ = (1 − 𝛽)𝑝$ + 𝛽𝑝8																										(9) 
𝑝9:;	8 = 𝛽𝑝$ + (1 − 𝛽)𝑝8                      (10) 

𝛽 is a randomly generated value used for scaling. Note that this 
method does not allow for introduction of values beyond the 
extremes already represented in the population. For example, if 
the highest parameter value in the initial population is 0.8, the 
crossover method will not get any value greater than 0.8 using 
this method. The next step is mutation, where a new random 
value is generated to decide if these offspring will mutate. If the 
random number is above the mutation rate then the offspring 
members are not mutated, and if it is under the mutation rate 
then one of the corresponding hyperparameters in the offspring 
members is replaced with a random value within range. These 
offspring are then added to the child population, and the loop 
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restarts until the child population is replenished; then the 
process restarts. Through iterations, the values of the population 
will converge based on maximizing the fitness. 
 
Fig. 3 illustrates a hierarchical learning structure with the 
hyperparameter selection. Note that only the higher level is 
tuned. 
 

 
Fig. 3. A Diagram of the hierarchical structure for FACL with 
the genetic algorithm applied. A yellow box denotes a single 
FACL training session for a given set of hyperparameters in the 
population. The grey box shows the genetic algorithm over top. 

V. RESULTS  
We now present our findings on how the genetic algorithm 
converged, and how well the resultant policy performs with 
these chosen hyperparameters.  
 
Fig. 4, 7, and 9 show how the genetic algorithm converged to a 
solution. The two lines represent the average and the maximum 
fitness in each iteration’s population. After the genetic 
algorithm has converged, the learning program is run 200 times 
to show how it performs with these hyperparameters. 
 
In the spirit of reporting data, it is important to show metrics for 
reproducibility and variability using robust statistics like the 
interquartile range [13]. The interquartile range helps determine 
the variability across training runs; ideally each run does not 
significantly differ from other runs. The interquartile range is 
the difference between the 75th and 25th percentiles, it’s a 
robust statistic that is appropriate for asymmetric distributions. 
The authors in [14] recommend to also report the interquartile 
mean to measure metrics to summarize performance across 
tasks since it is more robust than the simple median. They also 
recommend showing the tails of the distribution. Once the 
genetic algorithm has chosen the hyperparameters, we show 
these statistics for the resultant learned policies. 
 

The hyperparameters that we are interested in are discount 
factor, the terminal reward weight, and the magnitude of the 
standard deviation of noise used during training. In [7] the 
authors showed that different discount factors can change the 
cooperative behavior of the agents. The standard deviation for 
noise is of interest since the amount of noise during training can 
greatly affect results. The authors in [23] mention how runs can 
be different depending on the random number seed used. By 
using the standard deviation of noise as a hyperparameter, the 
effects of using different seeds can also be minimized. And 
finally finding the reward weight (𝑤) of  
 

𝑅!:<=39>" = 𝑤 ∗ 𝑅39?3@3?'>" + (1 − 𝑤) ∗ 𝑅!:>=      (11) 
 

is of great importance, this weight shows how important 
individual reward is in comparison to team reward and thus 
defines the level of cooperation and altruism. 
 

A. Continuous Hallway 
Before looking into the optimization of hyperparameters, some 
extra details about the algorithm used specifically for the 
continuous hallway game must be discussed such as reward 
design, dynamics, and inputs into the system. Table 1 shows 
information used in the continuous hallway game. 
 

TABLE 1 
INFORMATION USED IN CONTINUOUS HALLWAY GAME 

 
 
The agents have been named Diana and Sharon and they must 
get to the end of the hall at the same time (within a tolerance of 
0.3m), to do this their actor outputs a force into the dynamics of 
the system. The shaping reward is a weighted equation between 
how close the agent is to the end of the hall, and how far the 
agent is away from the other agent.  
 
The hyperparameters we are interested in finding are the 
discount factor of agent Sharon 𝛾AB><C9, the discount factor of 
agent Diana 𝛾?3>9>, the reward weight 𝑤, and the standard 
deviation of noise applied during training 𝜎. The mutation rate 
was set to 0.05, crossover rate 0.75, and scaling rate 𝛽 were 
randomly generated values between 0 and 1. The population 
used in the genetic algorithm was set to 20. Since the population 
is quite small, it was seeded to ensure the space was being 
properly searched. 
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In the FACL algorithm we have chosen the following system 
parameters arbitrarily: critic learning rate 𝛼 = 0.1, actor 
learning rate 𝛽 =0.05, mass of agent 𝑚 =1kg, friction 
coefficient 𝑏 =0.1, and Fuzzy Inference System (FIS) limits of 
the actor are ±3. Note that these parameters are selected and 
remain constant. 
 
The fitness function used is a ratio of how many successful test 
games there are post-learning. Once the reinforcement learning 
has been completed the agents play many games, the fitness is 
the ratio of how many games agents succeeded at getting to the 
end of the hallway together. These tests place agents at various 
starting positions along the hallway. 
 
Fig. 4 shows the genetic solution converged quickly at 
approximately iteration 10 of the genetic algorithm. Many 
fitness values in the population are 0.9997 at convergence 
which tells us that 99.97% of test cases are passed after training. 
After 42 iterations of the genetic algorithm, the 
hyperparameters for all 30 members of the population were: 
𝛾AB><C9, = 0.995, 𝛾?3>9> = 0.995, 𝑤 = 0.9819, 𝜎 = 0.9. 
 

 
 
Fig. 4. Plot showing the fitness of the population per iteration 
for the hallway game. 
 
Once the genetic algorithm converged to a set of 
hyperparameters as seen in Fig. 4, we ran only the learning 
simulation an additional 200 times to ensure repeatability with 
these parameters. Examining the performance of the 
hyperparameters selected for the training, we see it is quite 
robust. Fig. 5 shows a histogram of the performance after 
training with the hyperparameters that were learned from the 
genetic algorithm. The majority of the 200 training sessions 
using the learned hyperparameters go quite well, with only 
7/200 runs achieving scores below 80% after training. 
 
With the interquartile mean of 0.9997, and interquartile range 
of 0.9997-0.9997 (the same value) the results show that the 
policy can succeed at 99.97% of tests post training. The mean 
is 0.9739 since some runs did not perform as well.  

 
Fig. 5. Plot of the two hundred runs using the hyperparameters 
chosen by the genetic algorithm 

 
Since this game is quite simple, there are many other 
hyperparameters that would be successful as well, implying that 
there are many local maximas. 
 

B. Stag Hunt 
To solve this problem, each agent uses its own hierarchical 
learning structure, where both the lower levels and the higher 
level is trained with the FACL algorithm. The lower-level 
policies output the required heading needed to get the agents to 
their goal (stag or berries). The higher-level policy decides 
which lower-level policy to use; it decides if the agent should 
hunt the stag or collect the berries based on the positions of the 
other agents.  
 
In this scenario, a genetic algorithm is used to find near optimal 
hyperparameters for all 3 discount factors for the agents, the 
terminal reward weight, and the standard deviation of noise in 
the higher-level decision policy. 

 
Fig. 6. Visualization of the higher and lower levels that each 
agent has when earning the stag hunt game 
 
Information about the Lower Level 
A policy is trained for the agent to reach the stag, and another 
to reach the berries. The input into the FIS is the x and y co-
ordinates of the agent, and the output is the required heading for 
the agent to get the goal. 
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TABLE 2 
PARAMETERS USED TO TRAIN LOWER LEVEL

 
 

The shaping reward was structured as distance from goal 𝑟!6$ =
𝑑(𝑡) − 𝑑(𝑡 + 1). The terminal reward is +10 for getting to the 
goal. 
 
Information about the Higher Level 
The goal of the higher-level policy (HLP) is to decide when to 
choose to hunt for the stag, and when to forage for berries. Each 
agent trains its own higher-level policy. Every 3 seconds in the 
game each agent reassesses whether to capture the stag or 
forage for berries. The HLP for each agent will measure the x 
and y position of each agent including itself. These x and y 
positions are the inputs into each agent's HLP FIS. The output 
for each agent’s HLP FIS is either a positive or negative 
number. If it is a positive number, then the actor selects the 
lower-level policy for berries, and a negative output selects the 
lower-level policy for stag. There is no formal communication 
between the agents, their decisions are solely made through x 
and y position data that updates every 3s. 
 
The actor learning rate is 0.05, and the critic learning rate is 0.1. 
These values were chosen arbitrarily. The higher-level policy is 
trained for 100k episodes, with each episode lasting up to 30s.  
There are 6 inputs, which are the x and y position for each of 
the three agents and the range of each input is covered by 4 
membership functions resulting in 4D 	= 	4096 rules. The 
terminal rewards are on a weighted sum basis: the team reward 
is the sum of everyone’s rewards, and individual reward portion 
is the value of the catch. In this scenario, the stag is worth 10 
points, the berries are worth 4 points. For demonstration 
purposes we show an example calculation with these values 
using the reward weight set to 0.5 using (11). 
 
Scenario 1: All agents chose to go hunt the stag with a reward 
Weight=0.5 

𝑅39?$ = 𝑅39?) = 𝑅39?* =
10
3  

𝑅!:>= = 10 
𝑅$ = 𝑅8 = 𝑅E = 0.5 ∗ 3.33 + 0.5 ∗ 10 = 6.665 

Scenario 2: Agents 1 and 2 hunt the stag, agent 3 collects berries 
with a reward weight of 0.5 

𝑅39?$ = 𝑅39?8 =
10
2 , 𝑅39?* = 4 

𝑅!:>= = 10 + 4 
𝑅$ = 𝑅39?$ ∗ 0.5 + 𝑅!:>= ∗ 0.5 = 5 ∗ 0.5 + 14 ∗ 0.5 = 9.5

= 𝑅8 
𝑅E = 𝑅39?* ∗ 0.5 + 𝑅!:>= ∗ 0.5 = 4 ∗ 0.5 + 14 ∗ 0.5 = 9 

 
Hyperparameter Optimization 
A parallel genetic algorithm implementation was done to help 
speed up the process. Using the genetic algorithm described in 
section IV B, 200 iterations of the genetic hyperparameter 
selection were done using a population of 30. The mutation rate 
was kept at 0.01, the crossover rate was kept at 0.75, the scaling 
rate was a randomly generated number between 0 and 1 for 
every crossover. The fitness function evaluates the post-training 
policy on 30 different scenario tests. Each test scenario has the 
agents placed into the game field at locations deemed ‘difficult’ 
and require altruism. Since the population of the genetic 
algorithm is 30 and therefore, relatively small, some members 
were planted in the initial population. These members had the 
extreme values (0 or 1) for the parameters, this was to ensure 
that all values in the space had a chance during crossover, and 
we did not need to depend on mutation as much. Fig. 7 shows 
the fitness plot, after about 30 iterations, the values converged. 
 
The hyperparameters the genetic algorithm converged to were: 
𝛾9C<> =	0.9791, 𝛾F:>9 =	0.9823, 𝛾3@>9 =	0.5517, 𝑤 =	0.018, 
𝜎 =	0.9985. 
 

 
Fig. 7. Average fitness of the population of 30 for each 
iteration of the Stag Hunt game. 
 
Once the genetic algorithm converged to the same set of 
hyperparameters, the tuning was stopped but the higher-level 
reinforcement learning program was run 200 times with these 
same hyperparameters using different random generator seeds 
to ensure consistency between training results. The results are 
shown in Fig. 8. 
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Fig. 8. Histogram of 200 policy results from training with the 
hyperparameters tuned with the genetic algorithm. 
 
Looking solely at the consistency of the reinforcement learning 
results with the selected hyperparameters, the histogram in Fig. 
8 shows 147 of the policies trained were 90%+ successful in the 
test scenarios, and the fitness plot shows that the best member 
in the population always scored 100%. The test scenario is 
marked as successful if two agents hunt the stag and one agent 
collects the berries from wherever they were placed in the 
space. Otherwise, the test was not successfully passed. The 
fixed test score had an interquartile range of 0.1 (10%). This 
stipulates that from the 25th percentile to the 75% percentile, 
there was a difference of 10% success rate among the tested 
policies. Since there were 30 different test scenarios, 10% 
difference in the IQR infers that only 3 tests were not passed at 
the extremes of this range: not a large difference. The mean of 
the 200 policy results from Fig. 8 was 0.8909 and the 
interquartile mean was 0.8785. Since the interquartile mean is 
lower than the regular mean, it implies that there are more 
highly successful runs than failed runs. 
 

C. Leaving A Room 
In this game, there are 5 robots placed in a 10x10 room with a 
door placed in the middle of a wall. The goal is for the robots 
to all leave the room without bumping into each other (if robots 
are within 0.3 m of each other, it counts as a crash). The 5 robots 
are placed randomly at least 5m away from the door. All the 
robots must train a single common policy; the goal is to have 
the robots cooperatively learn when it is beneficial to forgo a 
greater future reward and allow another robot to pass in front of 
it. 
 
The lower-level policies either output a heading or nothing at 
all; the higher-level policy will choose from two options. This 
means the robots can either stop or go. The robots receive 5 
inputs, which are all distances away from the other robots and 
the door. The distance input is positive if the object is in front 
of it, but negative if the object is behind in the y direction. 
 
The higher-level policy will call a lower-level policy and then 
execute the lower-level policy for 3 seconds before returning to 
the higher-level policy. If the higher-level policy chooses to 
move, then the lower-level policy that gets executed will input 

the x and y coordinates and the robot will move according to 
the heading being output from the actor. If the high-level policy 
chooses to stop, then the robot stays in place for those 3 
seconds. 
 
The distance used as an input is calculated below. If a 
neighboring robot is closer to the exit door in the y direction, 
the distance value is positive, otherwise it is negative. 

𝑑 = P(𝑥G − 𝑥>)8 + (𝑦G − 𝑦>)8                (15) 
𝑖𝑓	𝑦> > 𝑦G , 𝑑 ← −𝑑 

All 5 robots train the same higher-level policy, the same actor 
and critic. The goal is for the robots to find one single policy 
that dictates when the robots should let another one pass in front 
of it to avoid a collision, and when it should be the one to do 
the passing. To do this, each robot uses (7) and (8) to update the 
same actor and critic, based on its current observations from the 
rules fired during a training iteration. This means that every 
game iteration will have an update to the actor and critic made 
by each of the 5 robots. The robots get a reward of -0.1 for every 
higher-level policy iteration, and their terminal reward is 
dependent on the order of those that exit. For example, the first 
robot that exits receives a reward of 8, the second robot that 
exits receives a reward of 7 etc. Their terminal reward is 
described by (11). It is once again a weighted function of 
individual reward based on the order they exited, and the sum 
of the rewards received for the team reward. If robots collide, 
then each robot receives -2 as their 𝑅39?3@3?'>". 
 

TABLE 3 
INFORMATION USED TO TRAIN LEAVING A ROOM GAME 

 
The parameters presented in Table 3 were arbitrarily chosen. 
 
The genetic algorithm used had a population of 50, each 
population member contains 3 hyperparameters (discount 
factor, terminal reward weight, standard deviation of noise used 
for exploration), with 100 iterations of hyperparameter tuning 
completed. The crossover rate was 0.75, with a mutation rate of 
0.01. 
 
A population of 50 was randomly generated with the extreme 
values of the search [0,1] seeded into the initial population. The 
higher-level policy is then trained with each set of 
hyperparameters in the population. In the training, each agent 
takes the distance inputs and outputs a value. The sign of that 
value indicated whether to stop or go. Then the lower-level 
policies execute accordingly for 3 seconds before going back to 
the higher level. This is repeated in the game until either all 
agents make it out the door or 80s passed. Once the 12,000 
epochs of training have completed for a member of the 
population, there are 55 games played that require altruism 
from at least one agent. Each training epoch corresponds to a 
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game where the agents are randomly placed in the room and are 
required to exit without bumping into each other. The fitness 
value is assigned based on the ratio of successful games where 
all 5 robots exit the door. Once all 50 members of the population 
have been assigned a fitness value, the genetic operators are 
used to create a new population and repeat 200 times. The 
genetic algorithm had 200 iterations done to ensure 
convergence, but convergence appeared around iteration 15. To 
test the converged hyperparameters, the learning session was 
run 200 times with the fitness results of each session plotted in 
Fig 10. A fitness result from a learning session is the ratio of 
success from the 55 test games. 

 
Fig. 9. The fitness per population of the Leaving A Room 
game. A convergence happens around 7 iterations 
 
The hyperparameters converged to 𝛾 = 	0.0325, 𝜎 = 	0.8843, 
𝑤 = 0.8619. A very low discount factor of 0.0325 implies 
that the agents optimize for the immediate reward. 
Fig 10. shows the test results from the 200 individual training 
sessions. The training session is all 5 agents learning to exit 
the room in 12,000 epochs of training with the test results 
being the ratio of the 55 successful games played after 
training. These 200 training sessions were completed with 
these hyperparameters to look at the variation in policies and 
results. The policies were then tested using 55 test cases. The 
interquartile range was 0.0727, with an interquartile mean of 
0.4731 (or 26 altruistic test cases passed).  
 

 
Fig. 10. A Histogram of the success rate of 200 training 
sessions 
 
While not perfect, the hyperparameters the genetic algorithm 
chose showed that a low discount factor was beneficial, high 
variation of noise was needed, and that there is a large 
individual reward component in the terminal rewards. 

VI. DISCUSSION 
This section is divided into three discussions: discount factors, 
reward weights, and the standard deviation of noise used. The 
purpose is to individually discuss how these hyperparameters 
can contribute to altruism among agents with respect to the 
games. 
 

A. Discount Factors 
As previously mentioned, the discount factor has been found to 
change cooperative behavior [7]. One popular perspective of 
the discount factor is that it controls the time horizon, and thus 
the priority of short-term rewards. Another perspective is that it 
helps with the stability of an algorithm. The authors in [23] 
claim that “some common approximation error bounds may be 
tightened with a lower discount factor.” However, finding an 
appropriate discount factor for performance is non-trivial.  
While high values of discount factors allow for a greater time 
horizon, it also means that the stability of the algorithm worsens 
due to function approximation errors that are not getting 
discounted.  The goal of using the discount factor as a 
hyperparameter is to find a balance between these aspects and 
see how it affects the cooperation among agents. The results 
from the genetic algorithm are then compared to cases using 
other values that were chosen using user intuition. 
 
Here we analyze two games in reference to the stag hunt game: 
one where all the agents start at the same position in the field, 
and another where the agents start at different positions. Four 
HLPs are analyzed with respect to the different discount factors 
seen in Table 4. For the Stag Hunt game, we ran the 
hyperparameter optimization again using a population of 50, 
with very little difference in results. Hyperparameter set 1 
corresponds to the results selected by the genetic algorithm with 
a population of 30, and hyperparameter set 2 is with the 
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population of 50. Notice that the largest difference is with 
discount factor 3 (𝛾E). With a discount factor of 0.1768 the 
agent barely sees the next 2 steps, and with 0.5517 the agent 
sees the next 5 steps which isn’t a large difference in a 
continuous domain. Hyperparameter set 3 keeps the optimized 
values for 𝑤	&	𝜎 but replaces the discount factors with 0.9 for 
all agents. Finally, hyperparameter set 4 is used to demonstrate 
what user intuition for the hyperparameters might give. 
 

TABLE 4 
DESCRIPTION OF POLICY SETS FOR ANALYSIS 

 
 
In Fig. 11, the two cases are plotted. The top plot shows the 
agents paths, and the bottom part of the plot shows the actor FIS 
against time for each agent. In case 1 where all agents start at 
(25,15) the agents know where to go right from the first step. 
Ivan, the low discount factor agent simply goes to the goal 
closest, and the high discount agents choose the stag. In case 2 
the agents are spread out positioned at (0,40), (10,50), (15,0), it 
takes the agents 5 decision steps to reach a similar consensus. 
Hyperparameter set 2 plots are not shown due to the similarity 
in results of hyperparameter set 1. 
 
In the case where all agents have the same discount factors (as 
seen in Fig. 12), the agents unanimously choose the berries. If 
a single agent selects the stag, then this agent receives a 
negative reward, whereas the berries do not have this effect. The 
berries do not have any such restriction. It does not come as a 
surprise that no agent behaves altruistically when all agents see 
the same steps ahead. Hyperparameter set 4 was excluded from 
the plots since it resembled that of hyperparameter set 3. Since 
the results mimic hyperparameter set 3, it’s clear that the 
discount factors have the greatest impact. 
 
An analysis of the actual policies shows that the decision of 
whether to hunt the stag or collect the berries generally is 
chosen correctly within the first few decisions. Based on the 
hyperparameters, it appears beneficial to have agents learn with 
different discount factors. The discount factor appears to give 
agents a role in the system. For example, we see that the agent 
with a low discount factor will choose the goal that is closest, 
whether that is a stag or berries. When the berries are the 
closest, the agent takes on a more altruistic role. 
 
In case 2 with the hyperparameters optimized, the agents with 
high discount factors initially choose the nearest goal as well, 
this can be seen in the Agent FIS diagrams.  However, within a 
couple time iterations, the agents correct course. 
 

Another interesting aspect is that the lower discount factor 
agent, Ivan, will also always choose stag if he is much closer to 
it. In this case one of the other agents will compensate and 
collect the berries. Since Ivan has a low discount factor, he is 
more interested in rewards that can be achieved sooner. Fig. 11 
shows that at first Ivan’s HLP output is very small, and then 
after outputs larger and larger negative values corresponding to 
the stag. 

 
Fig. 11. These plots show the Agent's paths and FIS outputs 
over time. We can see that when Ivan is much closer to the 
stag, he will choose it instead of the berries. The top plot 
shows the path of each agent in the x-y plane. The bottom plot 
shows the HLP FIS output over time. 
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Fig. 12. Using hyperparameter set #1, the top plots show case 1 
where all agents start from the same place, and the bottom plots 
shows game 2. 
 
 
 
 

 
Fig. 13. Hyperparameter set 3 case 1 (top) and case 2 (bottom) 
 
The continuous hallway game is also affected by the discount 
factors. Fig. 14 and Fig. 15 show the position versus time plots 
with the velocity versus time plots underneath.  
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Fig. 14. The top plot shows position versus time and the 
bottom plot shows velocity versus time from a policy that was 
trained using the hyperparameters that were selected by the 
genetic algorithm:   𝛾AB><C9 = 0.995, 𝛾?3>9> =0.995, 
w=0.9819, σ=0.9 
 

 
Fig. 15. The top plot shows position versus time and the 
bottom plot shows velocity versus time from a policy that was 
trained with 𝛾AB><C9 = 0.5, 𝛾?3>9> =0.5, w=0.9819, σ=0.9 
 
In Fig. 14 and Fig. 15 we can see how the discount factor 
impacts the learned output weights for each rule. The policy 
learned by Diana in Fig. 15 shows the rules that get fired near 
the end of the hallway have highly negative weights, which is 
to decrease speed (negative force applied). (For example, rule 
1895 corresponds to a -1.7 weight) The effect of this is seen in 
the velocity plot. However, with a larger time horizon as seen 
in Fig. 14 we do not see this. (Rule 1895 is just -0.0117) It’s 
clear that a higher discount factor for both agents is better since 
their terminal reward varies largely depending on the result of 
the game. A further time horizon was necessary to better learn 
the weights of the rules. 
 
In the game Leaving a Room the five robots are tasked to learn 
to exit a room without bumping into each other. All 5 robots 

train one single shared policy. The higher level uses 5 inputs 
which are 4 distances away from the other robots and 1 distance 
away from the door. The discount factor found by the genetic 
algorithm was 0.03. A discount factor of near 0 implies that the 
current reward is the most important. Here we look at a test 
scenario where the agents are similarly positioned in the room. 
The learning algorithm is run once with 𝛾 = 0 and another time 
with 𝛾 = 1 (keeping the other hyperparameters the same) to 
compare. 
 
A set of videos showing some example tests for Leaving A 
Room are available at [24]. In these videos we see test cases 
that show scenarios where if some agents simply went towards 
the goal without stopping, there would be a crash and hence 
negative rewards allocated. This game has the agents decide 
between whether to simply stay in the same spot for the entire 
game (not to risk a costly crash) or go forward towards a large 
reward. We see that when comparing discount factors, the time 
horizon plays a major role in altruistic behaviors. A smaller 
discount factor allows agents to decide in the moment, without 
the consideration of a large terminal reward. Since the shaping 
reward is simply -0.1 regardless of if an agent chooses to stop 
or go, there is more incentive to be safe and let other agents go 
ahead. We see this in the video, agents who are further from the 
door tend to wait until the other agents get much closer to the 
goal. These further agents forgo a higher terminal reward 
instead of risking a crash. Fig. 15 shows two frames from the 
video showing these agents waiting while others go, thus acting 
altruistically to ensure that there are no crashes where the lines 
intersect. 
 

 
Fig. 16. Side by side plots of the agents early in the game, vs 
later in the game. Decision 2 corresponds to the second output 
of the higher-level FIS policy etc. Blue and Magenta initially 
chose to wait earlier on in the game. 
 
In Fig. 17 we compare the genetic algorithm’s selected discount 
factor of 0.018 with a discount factor of 0.99, while keeping the 
other parameters constant. In a high discount factor scenario, 
the red and the magenta agents will crash if one or the other 
does not act altruistically. With the discount factor of 0.018, the 
red agent who is closer to the door goes first and the magenta 
agent waits until it is safe to pass. When looking at the policy 
trained with a discount factor of 0.99, magenta and red crash 
into each other and the other agents who had started moving 
toward the door stop, to not risk another crash. Lower discount 
factors will make agents favors immediate rewards, which 
minimizes the amount of crashes. 
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Fig. 17. A comparison with policies. The top shows the 
progression of the game with a low discount factor. The 
bottom shows the same with a high discount factor. 
 
To get a general idea of the policies that developed we can take 
an average of all the weights associated to rules that were 
trained. In this game a positive value corresponds to stop, and a 
negative value corresponds to go. Taking the average of all the 
weights in the HLP policy we can see that the policy with 𝛾 =
0.99 has an average of 0.3110 whereas the policy trained with 
𝛾 = 0.018 has an average of -0.4267. So, an HLP policy with 
more positive weights is more likely to have the agent stop than 
go. 
 
Since not all test cases are successful, future work would look 
at how using a genetic algorithm to select more of the 
hyperparameters such as learning rate and the time between 
higher level policy calls (decisions) would improve the success 
rate.  
 
Looking at the games, we can see that it can be beneficial for 
agents to all have their own discount factor. We also see with 
the Leaving a Room game that immediate danger of crashing 
requires a lower discount factor. A higher discount was more 
likely to be chosen for agents whose reward for success was 
determined by the terminal reward. The discount factor can 
clearly impact the altruistic tendencies of learning agents. The 
discount factors are also chosen alongside the reward weight 
which also impacts the altruistic tendencies.  
 

B. Reward Weight 
One of the major parameters that helps the agents learn to 
behave in a certain way are the terminal rewards given at the 
end of a game. In the stag hunt game, the terminal reward is 
given based on the individual reward contribution and the 
overall reward value achieved by the group (team reward). The 
genetic algorithm shows us that the team reward is a very 
important component (w=0.018). Comparing the agent’s 
behavior with a team reward that favors individual 
contributions (larger values of w) shows that all agents defect 
to the berries, the safest option which still gets a positive reward 
for all agents. If the terminal reward weight were set to 1 (which 
implies that all agents get only their individual reward and no 

team reward), there would be high risk for choosing the stag 
alone, since one agent choosing the stag corresponds to a -2 
reward. In that scenario, the agent would be given a negative 
reward; however, by always choosing the berries, there is no 
risk of a negative reward. The same pattern of berry defection 
happened with the discount factors mentioned in section VI A, 
where all agents defect to berries. 
 
To get an idea of the importance of having the terminal reward 
weight favor the team reward aspect, we can take an average 
value of all the fuzzy rule weights in the policy learned in each 
agent. During training, each rule has a corresponding weight 
that is updated. Negative values correspond to the stag, whereas 
positive values correspond to the berries. We can see that by 
retraining the agents with the reward weight of 0.9 which favors 
individual contribution over team reward weight, the average 
weights learned are positive and lean heavily toward favoring 
the berries. The optimized policy parameters (𝛾9C<> =	0.9791, 
𝛾F:>9 =	0.9823, 𝛾3@>9 =	0.5517, 𝑤 =	0.018, 𝜎 =	0.9985) show 
that two agents on average prefer the stag and one agent prefers 
the berries, which makes much more sense for the game. 
 

TABLE 5 
AVERAGE VALUE OF ACTOR OUTPUT WEIGHTS WITH RESPECT 

TO REWARD WEIGHT USED IN TRAINING 
 Nora (𝛾 =

0.9791) 
Jean (𝛾 =
0.9823) 

Ivan (𝛾 =
0.5517) 

𝑤 = 0.018 -0.2186 -0.0935 0.0456 
𝑤 = 0.9 0.3650 0.2931 0.1330 

 
With respect to the hallway game, we can see that the reward 
weight used in the shaping reward effects the speed of the game 
played and the exactness. By looking at the plots in Fig. 18 
showing position versus time and velocity versus time, we can 
see how the weight of the shaping reward impacts the system. 
In these plots Diana starts at the 6m mark, and Sharon starts at 
the 0m mark. A higher reward weight favors getting closer to 
the end of the hall, and a smaller reward weight favors staying 
closer to the other agent. Fig. 18 shows a game trained with 
w=0.2, and Fig. 19 shows the same game trained with w=0.8. 
It’s clear that having the weight favor ‘stay close to other agent’ 
results in a longer and poorer strategy, however the agents are 
within 0.0032m of each other at the end of the hallway. When 
the weight favors getting closer to the end of the hallway, the 
agents are much faster, but they are within 0.1782m of each 
other instead. Having a genetic algorithm chosen reward weight 
of 0.9819 implies that it’s very important for agents to be 
rewarded for getting to the end of the hallway, but still slightly 
important that they stay within a reasonable distance of their 
partner agent. 
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Fig. 18. Plot of the agents path and velocity vs time with a 
shaping reward weight of 0.2 

 
Fig. 19. Plot of the position and velocity of the agents vs time 
with a shaping reward weight of 0.8 
 
With the reward weight set to 0.8629 in the Leaving A Room 
game, the individual reward is favored more than the team 
reward. Using the same example as in Fig. 16 the red and 
magenta agents crash into each other if one does not act 
altruistically. Analyzing what rewards these agents would get 
in the scenario where they crash would be: 

𝑅!:>= = 8 + 7 + 6 − 2 − 2 = 17 
The first agent gets an individual terminal reward of 8, the 
second-place agent gets 7, and third place receives a reward of 
6. The two agents that crashed both receive -2. 
Using a weight of 0.8629 for the agents that crashed will give 
them a reward of  
 

𝑅!:<=39>" = 𝑤 ∗ 𝑅39? + (1 − 𝑤) ∗ 𝑅!:>=               (11) 
𝑅 = 0.8629 ∗ −2 + (1 − 0.8629) ∗ 17 = 0.6049 

 
Using a reward weight of 0.2, the agents that crashed would get 
a terminal reward of 13.2, a much higher reward for failure 
which does not make sense to use. The reward weight of 0.8629 
shows us that it is better to at least try to make it to the goal and 
risk a crash than it is to just sit in place. If a crash does happen, 
the reward is much less than if the agents made it to the finish 
line. 
 
C. Noise 
The last parameter to discuss is the standard deviation of noise 
applied to the actor outputs during training. In the FACL 
algorithm, noise must be added to the actor output in order to 
simulate exploration during training. The noise comes from a 
normal distribution, and the parameter of interest is the standard 
deviation of that normal distribution. The genetic algorithm had 
to select a standard deviation between 0 and 1. While this 
parameter does not have a direct impact on altruism, it is crucial 
for the learning process. 
 

The three games studied all had high values chosen for standard 
deviations: 0.9, 0.99857, and 0.8843. This implies that a larger 
variety of noise is required for learning altruism in this setting. 

VII. CONCLUSION 
 
This study shows the importance of training agents for altruistic 
behaviors in cooperative games, without altruism it is difficult 
to determine if true cooperation is happening in multi agent 
settings. Three new continuous space games were designed to 
help identify when altruism was happening among agents. The 
agents were trained using fuzzy actor critic learning, and in two 
of the games a hierarchical structure was used in learning. 
While many hyperparameters in learning algorithms are often 
chosen arbitrarily, this paper shows that certain behaviors can 
emerge through the use of automated selection of 
hyperparameters in multi agent systems. By using a genetic 
algorithm to select hyperparameters, we can customize the 
fitness function to better select hyperparameters that pass 
altruistic tests. The hyperparameters that were used to help the 
agents learn altruistic behaviors were the discount factor, a 
reward weight used in either the shaping reward or terminal 
reward, and the standard deviation of noise applied to the actor 
during learning.  
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