
Journal Pre-proof

An adaptable fuzzy reinforcement learning method for non-stationary
environments

Rachel Haighton, Amirhossein Asgharnia, Howard Schwartz,
Sidney Givigi

PII: S0925-2312(24)01080-4
DOI: https://doi.org/10.1016/j.neucom.2024.128309
Reference: NEUCOM 128309

To appear in: Neurocomputing

Received date : 11 November 2023
Revised date : 3 July 2024
Accepted date : 1 August 2024

Please cite this article as: R. Haighton, A. Asgharnia, H. Schwartz et al., An adaptable fuzzy
reinforcement learning method for non-stationary environments, Neurocomputing (2024), doi:
https://doi.org/10.1016/j.neucom.2024.128309.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.neucom.2024.128309
https://doi.org/10.1016/j.neucom.2024.128309


Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

An Adaptable Fuzzy Reinforcement Learning1

Method for Non-Stationary Environments2

Rachel Haighton†, Amirhossein Asgharnia†, Howard Schwartz,3

Sidney Givigi4

Department of Systems and Computer Engineering, Carleton University,5

1125 Colonel By Drive, Ottawa, K1S 5B6, Ontario, Canada.6

*Corresponding author(s). E-mail(s): rachelhaighton@cmail.carleton.ca;7

Contributing authors: amirhosseinasgharnia@cmail.carleton.ca;8

schwartz@sce.carleton.ca; sidney.givigi@queensu.ca;9

†These authors contributed equally to this work.10

Abstract11

How do we know when a reinforcement learning policy needs to adapt? In non-12

stationary environments, agents must adapt and learn in environments that13

change dynamically. We propose a finite-horizon model-free solution using a hier-14

archical learning structure with fuzzy systems. The higher-level learning policy15

advises the lower-level policy when to start and stop learning based on the tempo-16

ral differences calculated within the lower-level. Major differences in the temporal17

difference of each action produced by an agent may indicate environment change.18

This structure is tested with multi-agent differential games in both the cooper-19

ative and competitive aspect. Results show that this method is quick to notice20

and adapt the policy within relatively few learning episodes.21

Keywords: reinforcement learning, non-stationary environment, multi-agent system,22

fuzzy systems23

1 Introduction24

Learning and adapting the parameters of a network controller of an autonomous sys-25

tem can be computationally expensive. Once the parameters are properly converged,26

it is important to stop the learning; however, if the model’s environment has changed27

how do we know when to turn learning back on and update the network parameters to28

1



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

reflect the new environment? An environment where changes can occur repeatedly is29

often noted as a Non-Stationary Environment. This type of an environment requires30

near constant learning or more sophisticated methods to ensure proper adaptation.31

Fuzzy inference systems are excellent non-linear function approximators which32

makes them ideal for the actor-critic learning scheme in reinforcement learning. A33

major strength of fuzzy systems is their ability to evolve their parameters. A lot of34

autonomous fuzzy systems research look at using recursive least squares techniques35

for consequent parameter learning. Instead, we use a reinforcement learning actor-36

critic structure to do this where the value function and actor can be approximated37

and adapted with fuzzy inference systems.38

Within the structure of actor critic learning, a term called the temporal difference39

(TD) is calculated and used to update the consequent parameters of each rule. The40

temporal difference error can be defined as a way to quantify the degree of temporal41

inconsistency between estimates made by the value function. The temporal difference42

can be thought of as the prediction error; by using this prediction error as an indicator43

of the state of the environment, it provides a knowledge of when the FIS must adapt44

to the new changes in the non-stationary environment.45

In order to determine and keep track of when the FIS controller must be updated46

to be compliant with the environment, a second FIS controller is trained and used with47

the temporal differences of the agents as an input. This secondary controller simply48

determines when the main controller needs to re-adapt to the new environment and49

when it can stop adapting the consequent parameters for the rules. This hierarchy50

allows for a more seamless adaptation based on temporal difference statistics that occur51

within the FIS controller of the agents. Other non-stationary environment learning52

models use a secondary model to determine changes such as [1] and [2] however they53

are much more computationally expensive and complex. By combining the concepts54

of adaptable fuzzy systems with temporal difference reinforcement learning, a hurdle55

is removed for autonomous systems in non-stationary environments. Another possible56

approach to detect changes in the environment was to watch the game’s result. By57

observing a significant change in the result, we could trigger re-training. However, in58

such a method, the higher-level policy, which decides about the re-training would be59

dependant on the game’s nature. To circumvent this issue, we used TD, which is a60

universal metric in all applications that are trained via reinforcement learning. The fact61

that the TD is a signal opens a place to use its properties, such as derivative to predict62

future changes as well. It should be mentioned that the proposed method addresses63

finding significant changes in the environment. The games and the algorithms are64

designed in a way that are robust to small uncertainties such as asynchronously in the65

state updates and real-time processing constraints.66

In this paper, we used differential games as a platform for our simulations. Differen-67

tial games are games that follow differential equations. Although most of applications68

in the literature are about pursuit-evasion games, they have many other applications69

in prediction, economics and sports [1].70

1.1 Contributions71

The contributions of this paper are threefold and include:72

2



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

• A study of multi-agent systems in non-stationary environments. By studying how73

the statistics of the temporal difference from an agent react during environment74

changes, we see that it is a good indicator of when a policy should or should not75

adapt.76

• A model-free finite horizon method for learning in non-stationary environments.77

This method uses an evolving fuzzy system that uses reinforcement learning for78

consequent parameter adaptation.79

• This paper strengthens the importance of using fuzzy systems in the field of rein-80

forcement learning. Since fuzzy approximators allow for easy interpretability in81

machine learning, they act as a more transparent method in the field of artifi-82

cial intelligence. This paper does an analysis of consequent rule parameters during83

adaptation which is simple since each rule corresponds to an observed state in the84

system.85

1.2 Organization of Paper86

The rest of the paper is organised as follows. In Section 2, we discuss related work87

including other methods to do with reinforcement learning in non-stationary envi-88

ronments, and fuzzy reinforcement learning. Section 3 looks at the differential games89

used to demonstrate the proposed method. Section 4 is dedicated to the tools and90

concepts that we used for our proposed method. Section 5 describes the hierarchical91

learning switch that this paper proposes as a solution to reinforcement learning in non-92

stationary environments. We describe how to train and execute the learning switch.93

Section 6 displays and analyzes the results of the proposed method for the cooper-94

ative and competitive games.The environmental changes and the proposed methods95

are studied at the rule level with different examples given from each game. Finally,96

section 7 concludes the paper with future works and references.97

2 Literature Review98

In this paper we address the problem of learning in non-stationary environments. We99

use differential games as the learning environment. Differential games are the gener-100

alized form of game theory problems, where the state and action space are continuous101

[2]. In other words, the agents are governed by differential equations. In differential102

games, the players may cooperate to accomplish a common goal, or the players my103

compete against each other. Thus, we can divide differential games into two groups104

of cooperative games, and competitive games. In cooperative games, the agents have105

a common goal and try to maximize the pay-off of the whole group in the game. In106

competitive games, the pay-offs of the agents are conflicting: if an agent gets more107

reward, the other agent loses reward.108

In [3], the authors tackled a pursuit-evasion game using a genetic algorithm. This109

paper is among the first papers that provide an artificial intelligence solution for the110

game in a virtual reality environment. However, the method has some limitations. To111

use population based optimization algorithms, one needs to simulate the game several112

times with the same environmental variables, such as initial conditions. Thus, the113

policy found by the proposed method suffers if a the game starts from a new initial114

3



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

point. This problem is also addressed in [4], by using several initial conditions for each115

cost function evaluation. The cost function was defined to be the average of several116

cost functions with different initial position for the robots. The initial positions were117

distributed on the game field’s boundary.118

In [5], the authors modeled an N-pursuers M-evaders game. In the proposed game,119

the evaders are omniscient and they do not have limitations in the speed. The evaders120

act like a contaminating gas in an unknown environment. However, the pursuers have121

limited speed, information about the environment map, and sensor range. The authors122

initially used the genetic algorithm to evolve suitable control policy for the pursuers.123

However, the policy could not handle a general case, where the initial condition or124

map was different. To address this limitation, the authors propose a complementary125

approach in which a random walk is used alternatively with the evolved automaton,126

indicating random actions in cases of states not sufficiently visited during evolution.127

Another way to generalize the policy is to use a reinforcement learning strategy.128

Reinforcement learning algorithms, such as Q-learning are independent of the initial129

condition. In addition, unlike the population based optimization algorithms, by using130

a reinforcement learning algorithm, only those variables that have a effect on the131

outcome get credit from the algorithm [6]. However, the major drawback of using132

a reinforcement learning algorithm is defining a suitable reward function as well as133

hyper-parameters [7]. The type of reward functions that are used in pursuit-evasion134

games are instantaneous, which means the reward signal is given to the agent at each135

time step [4, 8]. These reward functions are weighted, and the weight is dependent to136

the game’s environment. Changing the game environment not only makes the policies137

unfit, but also hinders the relearning process because of the wrong reward functions.138

The idea of changing environments in autonomous systems has been well estab-139

lished. Concepts of dynamically changing data patterns (data drifts) have been studied140

in fuzzy systems for over two decades [9]. Often this research is broken up into two141

schemes: evolving the structure of the FIS and updating the parameters. In this paper,142

we focus on updating the parameters to reflect the dynamically changing environ-143

ment. Work that looks at parameter learning schemes for first-order fuzzy rules often144

use recursive weighted least square techniques such as [10]. Other parameter tuning145

schemes also included Extended Kalman Filter based techniques [11] and gradient146

descent-based techniques [12]. The idea of using reinforcement learning to adapt fuzzy147

parameters in a dynamically changing environment is novel.148

A survey that focuses on reinforcement learning in non-stationary environments149

was produced by [13]. Within the survey the author categorizes the proposed solution150

by model-based or model-free and finite horizon/infinite horizon approaches. Since151

we are focusing on differential games, the approach is finite horizon. [14] is also an152

online model-free solution; it focuses on minimizing a regret function. The regret is153

defined as the difference between the average reward per step and the average reward154

obtained by the best stationary deterministic policy. The algorithm separates the155

learning iterations into intervals and within each interval, the Q values are learnt156

from the reward samples of that interval. Another regret-based approach is [15]. This157

model-based method does not scale well to large state-action space MDPs.158

4



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

The authors in [16] introduce a new class of graphical model that allows for the con-159

ditional dependence structure of data-generation processes to change over time. This160

framework has numerous applications, from studying transcriptional regulatory net-161

works during an organism’s development to analyzing traffic patterns throughout the162

day. The authors propose a Markov Chain Monte Carlo (MCMC) sampling algorithm163

to learn the structure of non-stationary dynamic Bayesian networks.164

Ref. [17] presents data-dependent learning bounds for the general scenario of non-165

stationary non-mixing stochastic processes. The key ingredients of the generalization166

bounds are a data-dependent measure of sequential complexity and a measure of167

discrepancy between the sample and target distributions. The learning guarantees pre-168

sented in the paper hold for both bounded and unbounded memory models, covering169

the majority of approaches used in practice, including various autoregressive and state170

space models. Therefore, the paper was able to learn in a non-stationary environment171

by using a data-dependent approach that takes into account the complexity of the172

process and the discrepancy between the sample and target distributions.173

Another method exits where the learning rate adapts during the training phase.174

Examples of this method include [18]. While the method presented in [18] has been175

successful in non-stationary environments, it is computationally expensive since the176

learning algorithm must always be on, regardless of how small the updates to the177

network are.178

Fuzzy learning systems has been used in a variety of applications over the years179

including [19], [20], [21]. Using fuzzy inference systems as function approximators often180

make the system computationally simpler while also increasing the interpretability of181

the results. Having interpretable and transparent results is becoming a much larger182

issue in the field of machine learning which fuzzy systems handle quite well.183

The idea of using temporal differences as an indicator of policy was described in184

[8]. By studying the statistics of the temporal differences that occur while learning a185

policy, there is confidence that adaptation is converging to the correct values. This186

paper is an extension of the idea presented [8]. One possible way to detect the changes187

in the environment is to observe the game’s outcome. However, since the definition of188

a successful game varies among different games, a better option is to choose to watch189

the TD as the change indicator as suggested in [22].190

3 Differential Games191

Three different games are presented in this section. These games are of the multi-192

agent learning realm and are used to test the learning switch. There are two categories193

of games used, cooperative where agents must cooperate to complete a task; and194

competitive where agents are in a adversarial scenario.195

3.1 Cooperative196

There are two cooperative games used, one called continuous hallway and another197

called balancing a ball.198

5



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

3.1.1 Continuous Hallway199

Based on a game presented in [23], two agents are randomly placed in a hallway and200

must reach the end of the hallway at the same time. The agents must coordinate their201

actions based on distance and velocity inputs. In the continuous version, agents are202

rewarded a terminal reward of +3 for getting to the end of the hallway, but if both203

agents get to the end of the hallway at the same time then they are both rewarded204

+15. Fig. 1 shows an illustration of this game.205

In this game the environment changes include the mass of the agents, m, and the206

coefficient of friction, b. The dynamics of the agents are given by 1.207

mẍ+ bẋ = F, (1)

where b is a coefficient of friction and m is the mass. The shaping reward is as follows,208

rt+1 = w(Dig(t)−Dig(t+ 1))

+ 0.01(1− w)exp(−(
Dij(t)

0.1
)2),

(2)

where w represents a weight. The weight used is 0.98. The weight determines which209

part of the function to value more, in this case getting to the finish line is valued more210

than staying near the other agent. The shaping reward indicated to the agent that211

getting closer to the end of the hallway is generally more important than staying close212

to the other agent. In terms of the terminal reward, if one agent gets to end of the213

hallway alone, the agent receives a terminal reward of +3, whereas the other agent214

receives 0. If both agents get to the end at the same time, the agents both receives215

+15. Additionally, D represents a function of distance. For example, Dig(t) represents216

the distance between a location of agent i, and the location g, the goal or end of the217

hallway at time t. Dij is the distance between agent i and agent j.218

The inputs to the actor are the agent’s distance to the end of the hall, the agent’s219

velocity, the distance between the agent and the partner agent, and the partner agent’s220

velocity. There is no communication method between the agents; the agents must only221

make decisions based on velocity and distance information. The output of the agent222

is the force, F in (1) which has a maximum of +3N and minimum of -3N. Since this223

is generated by a Fuzzy Logic Controller (FLC) it is a continuous action space.224

This game uses 7 membership functions per input for a total of 74 = 2401 rules.225

The critic learning rate is α = 0.5 and the actor learning rate β = 0.3.226

To differentiate between the two agents, one was named Diana and the other was227

named Sharon. This was done for clarity in the results and discussion section.228

3.1.2 Balancing A Ball229

This game was inspired by [24] where two robots on either side of a 2D table and they230

must adjust the heights of either end of the table to balance the ball in the middle of231

the table. An illustration of this game can be found in Fig. 2.232

The goal of the agents is to adjust the table to balance the ball in the middle. An233

agent can only adjust the height of its end of the table as illustrated in Fig. 2. The234

game ends when the ball rolls off the table or 10 seconds has passed. The dynamics of235

6



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofFig. 1 Illustration of Continuous Hallway

Fig. 2 Illustration of Balancing A Ball game

the ball is 3 where m represents the mass of the ball, c is the friction coefficient, g is236

the gravitational coefficient, l is the length of the table, h1 and h2 are the heights of237

each end of the table.238

mẍ = −cẋ+mg ∗ ((h1 − h2)/L), (3)

There are two inputs into the controller of each agent: the position of the ball239

on the table, and the velocity of the ball. In each episode the ball starts randomly240

on the table with a random position and velocity. The agents output a height which241

corresponds to the height of their side of the table. This action can tilt the table if242

one side is higher or lower than the other side. This action space is continuous but243

capped at +/− 1m.244

There are 15 membership functions for each of the two inputs with boundaries245

between -3m and +3m for the position, and -4 m/s and +4 m/s for the velocity of the246

ball. The critic learning rate is α = 0.1 and the actor learning rate β = 0.05.247

The reward function used to train the policy of each agent is (4) where x is the248

position of the ball on the table, with the center of the table being x = 0, and ẋ is the249

velocity of the ball. The reward function gives larger rewards when the position of the250

ball is closer to the center of the table (x = 0), and when the velocity is also close to251

zero ẋ = 0.252

7



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

r(t+ 1) = 0.8e−x2/0.25 + 0.2e−ẋ2/0.25 (4)

3.2 Competitive Games253

3.2.1 Pursuit-Evasion Game254

Pursuit-evasion (PE) games are a class of differential games, where the participating255

agents have conflicting interests. There is a group of agents called invaders that want256

to reach a target. There is another group of agents called defenders, and they want257

to capture the invader and defend the target [25]. In a PE game the target may be258

stationary, or it also moves in the game field. The kinematics of each agent is given259

by the differential equation that describes a car motion as,260





ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v tan(φ)
L

, (5)

where (x, y) is the agent’s location. The term θ is the agent’s heading with respect to261

the x-axis. The term φ is the steering angle of the agent. The steering angle is the262

output of the agent, this action is from a continuous action space with values between263

π
4 and −π

4 . The terms v and L are the agent’s speed, and distance between the forward264

and rear axles, respectively.265

The game finishes when at least one invader reaches the target, or the defenders266

capture all the invaders. In this paper, we assume there is one invader and one defender267

and one target.268

The invader’s reward function, Rinv, and the defender’s reward function, Rdef , are269

shown as follows,270

Rinv = WI(dIG(t)− dIG(t+ 1)) + (1−WI)(dID(t+ 1)− dID(t))

Rdef = WD(dID(t)− dID(t+ 1)) + k(1−WD)(dDG(t)− dDG(t+ 1)).
(6)

In (6), dIG(t) is the Euclidean distance between the invader and the goal, dID(t) is271

the Euclidean distance between the invader and the defender, dDG(t) is the Euclidean272

distance between the defender and the goal. The terms WI and WD are called the273

invader’s and the defender’s reward weights, and they weight one term of the reward274

function over the other one. The parameter k in (6) is set to zero if the defender is275

getting further from the goal and otherwise it is set to 1 [25].276

To return an action, the invader’s and the defender’s policy need to take in inputs.277

The invader’s and the defender’s policy inputs are,278

Invader’s Input = [XI(t) YI(t) θI(t) XD(t) YD(t)]

Defender’s Input = [XD(t) YD(t) θD(t) XI(t) ID(t)],
(7)

where (XI(t), YI(t)) is the invader’s Cartesian location, θI(t) is the invader’s heading279

with respect to the x-axis, (XD(t), YD(t)) is the defender’s Cartesian location, θD(t)280

is the defender’s heading with respect to the x-axis.281

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Unlike [4, 25], the agents of the competitive game are not omniscient and they do282

not have a complete vision of the goal location. The agents have to find the goal and283

build their policy based on the discovered target. This means after changing the goal284

location, the learnt policy is not suitable anymore.285

4 Fuzzy Actor Critic Learning and Temporal286

Difference287

4.1 Reinforcement Learning288

The primary approach to solve the problems in this study is reinforcement learning.289

Reinforcement learning (RL) is regarded as the third paradigm of machine learning290

approaches in the literature [6]. RL is different from supervised learning, where a set291

of examples are provided to train a model. In RL, there is no set of examples and292

pieces of data, but an agent finds the suitable action via trial and error. RL is also293

different from unsupervised learning, where a set of unlabeled data are clustered. RL is294

different from optimization methods, where all the parameters of a model are equally295

credited, even if they are not used in creating the output in a certain instance [6]. In296

reinforcement learning, the model returns the best action that maximizes a trade-off297

between the current outcome and the future outcomes.298

Reinforcement learning problems are often modeled as an Markov Decision Process299

(MDP). An MDP is a tuple (S,A, P,R, γ), where S is the set of states, A is the set300

of actions, given each state, P (s, a, s′) is the probability of reaching state s′ ∈ S, by301

taking action a ∈ A from state s ∈ S. The term R is the reward function, a signal302

that assess the quality of a taken action. Finally, the term γ is a discount factor and303

magnifies the current action over the future actions.304

In a problem with limited number of states and actions, one may use a table to305

store the quality index of an action given a state. However, when the number of states306

and actions is large (but still bounded), or when the game is played in the continuous307

domain, using a model estimator is useful. In this paper, we used a fuzzy inference308

system to estimate the quality of each action, given a state.309

4.2 Fuzzy Inference Systems310

To map a state into an action we implemented a fuzzy inference system. We used the311

Takagi-Sugeno (TS) fuzzy inference model [26]. Unlike the Mamdani fuzzy inference312

model, where there are output membership functions, in Takagi-Sugeno model, the313

output parameters are all singletons. The output is calculated by the linear combina-314

tion of the output parameters. There are two advantages for using a TS model in this315

paper: they have less computational complexity, and they can be adapted in a more316

straight forward fashion. Because of the latter advantage, it is easier to combine a TS317

fuzzy inference model with an RL paradigm.318

9



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 3 A diagram of the FACL algorithm. There are two main components: the actor and the critic.
They are both approximated with their own fuzzy inference system.

4.3 Fuzzy Actor Critic Learning319

The Fuzzy Actor Critic Learning algorithm (FACL) is a reinforcement learning method320

that uses fuzzy systems as function approximtors for the actor and the critic. The actor321

acts as the controller or policy and and the critic estimates the value of the current322

state. The value function is used to calculate the prediction error or the temporal323

difference. Fig. 3 shows a diagram of the structure of FACL. The algorithm was initially324

proposed in [27], as a tool to map a continuous input state to a continuous action.325

More specifically, a Takagi-Sugeno (TS) fuzzy logic controller (FLC) is utilized for the326

actor; and a TS fuzzy inference system (FIS) is used for the critic which estimates the327

state value function. The output of the actor is given by (8) where ωl
t is the actor’s328

output parameter of rule l, L is the total number of rules, and ϕl is the firing strength329

of the rule l. Since the fuzzy rules have meanings with respect to the inputs provided,330

when a policy is no longer sufficient for some states, the algorithm will only adapt the331

consequent parameters for the rules that fired instead of adapting the entire network.332

Given we use triangular membership functions only 2i rules will fire where, i is the333

number of inputs. The actor output or the control signal is given by 8.334

ut =

L∑

l=1

ϕlωl
t. (8)

When learning the policy, noise is added to the output to mimic exploration. The335

noise is taken from a normal distribution that has a mean of 0, and a standard deviation336

σ, noted as N(0, σ). We refer to σ as the exploration-exploitation factor, and is largely337

based on the dynamics of game being played. The control signal during the learning338

process is,339

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

u′
t = ut + n(0, σ). (9)

The firing strength of the rule is represented by (10), and is shown as follows,340

ϕl =
∂u

∂ωl
=

n∏
i=1

µF l
i (x̄i)

L∑
l=1

(
n∏

i=1

µF l
i (x̄i))

, (10)

where µF l
i (x̄i) calculates the membership degree of the input x̄i with n being the341

number of inputs.342

The critic’s task is to estimate the state value in each time step. After each action343

output by the actor, the critic evaluates the new state to check performance. The344

value functions at t and t + 1 must be calculated in order to eventually update the345

output parameters of the fuzzy rules. The value function is simply the expected sum346

of discounted rewards and is approximated by the fuzzy inference system as:347

Vt =

L∑

l=1

ϕl
tζ

l
t (11)

Vt+1 =

L∑

l=1

ϕl
t+1ζ

l
t (12)

where Vt is the value function at time t, ζlt is the critic’s output parameter given rule348

l at time t, and γ is the discount factor. Using the value function, we can estimate the349

prediction error or temporal difference (TD) as,350

∆t = rt+1 + γVt+1 − Vt (13)

The discount factor, γ, is between 0 and 1. The discount factor can help control351

the time horizon of the agent and thus its priority of short-term rewards, additionally352

it helps with the stability of learning algorithms. The term rt+1 is the reward received353

which is based on the game. The critic output parameters in the fuzzy inference system354

can then be updated using the temporal difference at t and learning rate, α.355

Using the temporal difference (13), the actor and critic policies are then updated356

with (14 )and (15).357

ωl
t+1 = ωl

t + β∆tϕ
l
t(u

′
t − ut), (14)

where β is the learning rate of the actor, and ∆t is the temporal difference, and rt+1358

is the reward at a given time step. The actor learning rate should be smaller than the359

critic learning rate to prevent instabilities in the actor. The term (u′
t−ut) is equivalent360

to the noise that was added to the system for learning and exploratory purposes.361

ζlt+1 = ζlt + α∆tϕ
l
t (15)

11



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 4 Temporal difference statistics during while adapting a policy

4.4 Temporal Difference362

The temporal difference is an important parameter in the actor-critic structure of363

reinforcement learning. The temporal difference error aims to quantify the degree of364

temporal inconsistency between estimates made by the value function in successive365

time steps. The goal of the value function is to estimate the expected return for an366

agent at a given state. The temporal difference is then used to update both the critic367

and the actor. Since the temporal difference acts as a prediction method, the temporal368

difference can indirectly give important insights to the state of the environment.369

To determine the impact of environment changes on the temporal difference, a
pre-trained policy had its environment suddenly change. The learning is switched on
and off over the required policy adaptation period to see how the temporal differences
within a game respond. The pre-trained policy was trained for the continuous hallway
game where two agents must meet each other at the end of a hallway without commu-
nication. The agents play 2000 episodes with the original policy, in other words, there
is learning is turned off. The pre-trained policy or the pre-trained consequent parame-
ters for the actor and the critic were trained based on environment which consisted of
a hallway of 15m long, a mass of an agent, m, being 1kg and the coefficient of friction,
b, being 0.1. The environment dynamics are given by (16). After these initial games are
played, the environment suddenly changes, the agents now have a mass of 0.1kg and
the coefficient of friction is changed to 0.01. These changes are large enough for policies
to be insufficient and the agents are no longer be able to successfully coordinate.

mẍ+ bẋ = F (t) (16)

370

12



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 5 Temporal difference statistics where fuzzy rule parameters have yet to be learned

Fig. 4 shows two plots, one that shows the mean of the temporal differences of371

a single agent within a single episode, and one that shows the standard deviation of372

temporal differences of a single agent within a single episode. Each point represents the373

statistics within an episode. At episode 2000 the environment changes, and these plots374

show an obvious impact. The standard deviation and mean plots show a separation375

of the points and form two distinct bars. At episode 4000, the learning is switched376

on for both agents and the temporal differences within a game varies a lot while the377

policy adapts. Recall that during learning the output signal is corrupted by noise378

used for exploration and results in a spread of the points. High standard deviations379

and larger magnitudes of means implies that more learning is required. Every 2000380

episodes the learning is switched on or off until the policy is converged which occurs381

around episode 26,000. As the policy adapts to its new environment, the spread of the382

points decreases. It is visually clear when the learning is on or off based purely on the383

spread of the points.384

Fig. 5 points to a data trend that slowly vanishes with increased policy adaption.385

What does this data represent? The sporadic points that we see in the standard devi-386

ation and the mean are due to both the noise applied during learning but also the387

learning of new fuzzy rule parameter in the game. These points have rules fired that388

were never previously fired and are now being learned from 0 due to the new environ-389

ment dynamics. As these fuzzy rule parameters are learned, these points disappear.390

These points in the plots shown in Fig. 5 disappear with learning and is seen most391

clearly from episode 14000 onwards whenever the learning is switched off and these392

points appear less often. When a policy is initialized, all fuzzy rule parameters are set393

to zero. If the rules do not fire during training, then they are never updated. However,394

when the environment dynamics are changed, there is now possibility for the conse-395

quent parameters for these rules to now fire due to new states appearing. Since the396

13



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 6 Position plot of Sharon (blue) and Diane (orange) during a game where new rules are firing.

Fig. 7 Velocity plot of Sharon (blue) and Diane (orange) during a game where new rules are firing.

temporal difference error is used as a prediction error, the temporal differences calcu-397

lated within a game may become large signifying larger errors in a given state. This398

in turn will increase the standard deviation of temporal differences within a game and399

impact the mean.400

Figs. 6 and 7 shows a single episode from one of the points the arrows are pointing401

at in Fig. 5. This game has the agents begin in the hallway at the 0.012m mark402

and the 5.46m mark. The temporal differences that were calculated in this game403

from a single agent show values from -11.86 to 6.1779 with a mean of -0.0803 and a404

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

standard deviation of 3.1417. In the previous environment, the velocity of an agent405

rarely surpassed 6m/s however in this episode with the new dynamics, the last 4 steps406

of the episode shows velocities over 7m/s. The fuzzy rules that correspond to these new407

states have rarely been fired, if at all; and thus the calculated temporal differences are408

large. It is important that these rules must adapt for the new states that the change409

in environment has presented.410

By looking at Fig. 4 it is clear that studying the temporal difference during a game411

can help us determine when the environment has changed in order to start re-learning;412

but also when we can stop learning too.413

5 Proposed Method: Hierarchical Reinforcement414

Learning415

In order to create a switch to turn learning on/off, we have chosen to make a hier-416

archical learning model where the agents play their game in the lower level and the417

higher level learns when to turn learning on and off in the lower level based on the418

temporal differences calculated in the game. An initial idea to determine environmen-419

tal changes was to use a threshold value, and if the standard deviation of temporal420

differences passed this value, learning would switch on. However, due to the highly421

non-linear nature of the problem, we were unable to successfully find any threshold422

values through trial and error. This led to hierarchical learning where a fuzzy infer-423

ence system could be used to select when learning can be switched on and off based424

on the temporal difference statistics of the lower-level policy.425

Fig. 8 shows a diagram of the hierarchical learning model. The actual game is426

played in the lower level, after each episode the standard deviation of temporal differ-427

ences and the mean of the temporal differences in the game are calculated. The lower428

level policy is the controller of the agent. The higher level policy is used to determine429

whether this controller of the agent must be updated to reflect a new environment or430

not.431

These temporal difference statistics are used as the input to the actor and critic of432

the HLP to determine if the learning must be on for the next episode; these statistics433

are also as part of the HLP reward. The reward function selected (18) seeks to minimize434

the standard deviation of temporal differences and mean of the temporal differences435

in the game. The temporal difference is calculated through the value function seen in436

(17).437

∆ = rt+1 + γVt+1 − Vt, (17)

Another term used for temporal difference is prediction error. The assumption438

here is that a lower mean and standard deviation of the temporal differences played439

within a game implies that the prediction error is low, and the game episode is then440

successful. Note that important hyperparameters such as the discount factor, γ, are441

given values in Table 1 and Table 2.442

The HLP reward is given by,

R = e−
µ2

a2 + e−
σ2

d2 (18)

15



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 8 Block Diagram illustration of a switch designed to learn to adapt policies. The switch
learns using an actor-critic learning scheme. Randomized environment indicates that the environment
dynamics will suddenly change every 500 episodes for policy learning purposes.

where a and d are values selected by the user. These values are specified in the443

discussion section as they largely depend on the game and reward structure used. The444

reward function is structured in a way that gives a higher reward value when µ, the445

average of the TD within an episode of a game is lower, and when σ, the standard446

deviation of those TD values is lower. Lower TD statistics generally imply that the447

prediction error is low because the policy has been successfully learned or adapted.448

Fig. 9 shows a diagram illustrating how the HLP is trained. At the start of learning449

the higher-level switch, the switch is set to 0 which indicates that learning in the450

lower-level is not taking place during the initial HLP training episode. A switch value451

of 1 indicates that learning in the lower level is turned on. This on and off learning is452

to adapt the consequent parameters of the lower-level policy. After the entire lower-453

level game is played, all temporal differences that were calculated within the game are454

averaged and the standard deviation is found using (20) and (19). These statistics of455

the temporal differences are used as inputs to the higher-level learning switch.456

σ =

√√√√√
T∑

t=0
(∆t − µ)2

T − 1
. (19)

µ =

T∑
t=0

∆t

T
. (20)

16



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 9 Higher Level Actor Critic Learning used to switch learning off in the lower-level game actor-
critic learning structure.

The reward is calculated by (18) where the constants a and d are selected by the457

user based on temporal differences seen within the episode of the game played. The458

output parameters of the rules are updated by (14) for the actor and critic of this459

higher level.460

The mean and standard deviation are used as inputs into the actor to decide461

if the upcoming game about to be played should have the agent learn or not. A462

positive output from the HLP represents learning on, and a negative output means463

that learning should be off. In the continuous hallway game, there is one learning464

switch for the group of cooperative agents. In the ball balancing task and the guarding465

a territory game, each agent has their own learning switch. If the learning switch is466

on, then the agent will add noise/exploration and update the actor and critic fuzzy467

rule parameter during the episode being played.468

To train the HLP, some aspect of the environment is changed every 500 or 1000469

episodes. In the cooperative games, 1000 episodes were used and in the competitive470

game, 500 episodes were used. The number of episodes between environment changes471

to train the HLP generally will depend on the game and LLPs that are being used.472

In cooperative games, it may take longer to reach a stable LLP after an environment473

change due to having to coordinate with other agents in the environment, hence why474

1000 episodes are used to adapt rather than 500 for training HLP purposes. The475

proposed method is shown in Algorithm 1.476

An important aspect of the proposed method is that when there is an environment477

change such as the mass of the agent changing, the corresponding rules that fire478

in the LLP will be required to be updated. An increased mass of an agent might479

require a larger force to be output, thus ζLLP and ωLLP will need to be updated and480

overwritten. Due to this, the previous environments will be ’forgotten’ within the LLP.481

An important reason for this is that remembering the required policy for every single482

17



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Algorithm 1 The proposed algorithm: Learning Switch

Initialize:
Set the hyperparameters which can be found in Table 1.
Import a pre-trained LLP. The LLP was trained via the training loop below,

while kis are set to 1 (ki=1 means the learning is on).
Initialize the HLPs’ actors ω and critics ζ to be zero vectors for each agent.
Create a vector called TD for storing temporal differences for each agent.

Training Loop:
for Iteration number=1 .. Maximum Iteration do

Set an initial location for each agent.
The HLP returns kis, which signify the learning state of on (positive) or off

(negative). Each i corresponds to a single agent.
while t ≤ Maximum simulation time OR the agent is in the terminal state do
The LLP returns an action for each kind of agent with (9).
The actions are taken and the agents move to the new state based on the

dynamics given by (1) or (3).
The reward, Rt+1 for the LLPs are received, with (1) or (4).
Temporal differences are calculated with (13) for the LLPs and stored in TD.

for i=1..Number of agents do
if k == 1 then

Update the actor and the critic of the ith LLP via the received reward with
(14) and (15).

else if k == 0 then
Do not update the LLP of the ith agent.

end if
end for

end while
The reward for the HLPs are calculated via the temporal differences stored

in TD of the game that was just played. This is done with (18). In some cases,
implementing a filter on TD is beneficial.

Update the actors and the critics of the HLPs using (14) and (15).
if Iteration number modulus 500 == 0 then
The parameters of the environment dynamics in (1) or (3) are randomized to

give a new environment.
end if

end for
Finalization: Store the policies.

environment change becomes much more computationally expensive along with a much483

larger memory required. By adapting the policy to constantly match the environment,484

the amount of memory and computation required is much smaller and more efficient.485

18



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

6 Results and Discussion486

In this section, we apply the proposed learning switch method to the differential487

games described in section 3. Results of how the HLP performs at adapting the LLP488

during environment changes are studied. The consequent output rule parameters are489

studied during the environmental changes as learning adapts the LLP. First, we go490

through the preliminaries and hyper-parameters of the simulations. Then, we look at491

the cooperative differential games, and finally we study the competitive differential492

game. The code scripts of this paper are written in Matlab 2021b and the results are493

simulated by desktop PC that runs on an Intel Core i5 CPU.494

6.1 Preliminaries495

During the training of the HLP, the dynamics of environment will change in some way496

every 500 to 1000 episodes. For example, the mass may suddenly change from 0.1kg497

to 1.4 kg at training episode number 3000 and stay that way until until episode 3500.498

During those 500 games, the HLP must learn when it is appropriate to have the LLP499

adapt its consequent rule parameters based on the temporal difference statistics.500

Table 1 Parameters used in training the cooperative policies

LLP HLP

Continuous Hallway Ball Balancing Continuous Hallway Ball BalancingParameter

Number of Membership
Functions

7 15 15 25

Number of inputs 4 2 2 2
Maximum Training
Episodes

50,000 5000 80,000 100,000

Maximum Time in each
Episode (seconds)

30 10 N/A N/A

Actor Learning Rate 0.05 0.05 0.3 0.3
Critic Learning Rate 0.1 0.1 0.5 0.6
Noise 0.9 0.9 0.9 0.9
Discount Factor 0.995 0.9 1 0.5
Reward Weight w = 0.998 w = 0.8 a = 0.25, d = 0.25 a = 0.1, d = 0.1

The algorithm used to train the higher level switch to turn on and off the learning501

in the lower level is outlined in algorithm 1. This algorithm uses a pre-trained lower502

level policy. The game’s environment will change every 500 episodes. By changing the503

dynamics of the game, the temporal differences within the game will dramatically504

change, which should signal the higher level policy to turn on learning in the lower505

level. An environment change may be abrupt or constantly changing. In both cases,506

there will be changes in the temporal difference. The change in the TD will trigger507

the learning to switch on. With 100,000 training episodes, only the environment that508

the agents play in will only change 200 times. This way there will be 200 peaks of509

temporal difference changes that the higher level switch can learn from.510

19



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Once the HLP is trained, it can be executed as a learning switch in non-stationary511

environments. Since there are only 2 inputs into the higher-level policy FIS actor,512

there are not many rules; the computation is quick. After each episode of the game,513

the lower level temporal difference statistics are calculated. These values are then514

input into the HLP which determines if the environment has changed and the policy515

parameters must adapt or not.516

For the competitive game, we modeled the pursuit-evasion game of section 3.2517

with two players. In the beginning of each episode, the invader and the defender are518

transferred to an arbitrary location within a bounded location. The invader’s initial519

location is (5,5) and then perturbed by adding a Gaussian noise with mean of 0 and520

standard deviation of 1. The defender’s initial location is (30,30) and then perturbed521

by adding a Gaussian noise with mean of 0 and standard deviation of 1. The game522

field is a 50 × 50 square. The goal location is what makes this game non-stationary:523

every 1,000 epochs, a new goal location is selected. When we are pre-training the LLP,524

the goal location is fixed on (10,40). The goal location will change randomly during525

the HLP training. The agents’ speeds are 1.0 unit/sec, and the distance between two526

axles, the parameter L in (5) is set to 1.0 unit. The capture radius is equal to 2.0527

units. The other hyper-parameters of the competitive game are shown on Table 2.528

Table 2 Parameters used in training the competitive policies

Parameter LLP HLP

Number of Membership Functions 5 10
Number of Inputs 4 2

Maximum Training Epsiodes 5,000 20,000
Maximum Time in each Episode (seconds) 100 100

Actor Leaning Rate 0.25 0.1
Critic Learning Rate 0.5 0.2

Noise 1 0.1
Discount Factor 0 0.5
Reward Weight WI = 0.675, WD = 0.45 N/A

We trained the HLP and LLP system several times with different seed numbers to529

have several different initial conditions and finally we reported one case in our paper.530

But here is an interesting fact in our particular case. At the terminal state of each531

game, a new initial location for the agents will be selected. Thus, the agents will be532

trained to operate in different locations of the environment. On the other hand, the533

initial actor’s and critic’s output parameters at the very first time step are always534

zero. But when we are in the middle of the game, and the environment changes, the535

initial output parameters are the same as the output parameters just before the change536

happens. Thus, in training the LLP, we will have different initial output parameters537

at each time when the we have a change in the environment.538

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 10 Second example of HRL results for the continuous hallway game. The top plot shows the
mean temporal difference in an episode, the middle plot shows the standard dev. of temporal difference
in an episode. And the bottom plot shows the success rate and state of the learning switch (on=1 or
off=0) for a given episode.

6.2 Cooperative539

6.2.1 Continuous Hallway540

Recall that the goal of the two agents in the continuous hallway game is to reach541

the end of the hallway at the same time. This implies that one agent may need to542

slow down so that the other can catch up. But what happens when the mass of the543

agents change from one game to another? By using the hierarchical learning model to544

learn when the mass of the agent m and friction coefficient of the hallway b changes.545

Then the HLP will turn on the adaptation of the consequent parameters for the LLP.546

This will reduce the computational requirements for the agent because adaptation and547

learning for the LLP will only be done when needed as determined by the HLP. The548

parameters used for training in the LLP and HLP are found in Table 1. In this game,549

there is one HLP that turns learning on and off for both agents. The inputs into the550

HLP are the temporal difference mean and standard deviation of a single agent.551

The initial LLP was first trained for 50,000 episodes. The HLP was then trained for552

80,000 episodes. During training, the mass of the agent and the coefficient of friction553

would change every 1000 episodes. The HLP had to learn when it was appropriate to554

turn learning on and off during these changes. Each episode runs for 30s.555

Fig. 10 shows an example of a successfully trained HLP. A successful HLP should556

both react fast when an environment has changed in some manner, and should adapt557

the consequent parameters of the policy quickly. Fig. 11 shows the exact environment558

transformations that occur within Fig. 10 along with how many episodes had learning559

21



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 11 Environment changes that occur in Fig. 10

on to adapt the lower-level policy. Fig. 10 contains 3 important plots. The top plot560

contains points that represent the mean of all the temporal differences of a single561

agent within a single episode played. The middle plot shows points that represent the562

standard deviation of all the temporal differences for an agent within a single episode563

played. The bottom plot keeps track of the score and the learning switch. A black564

point is used at y=1 to indicate that learning was turned on, and at y=0 to indicate565

that learning is turned off within the LLP. The blue line plots the running score of the566

last 100 episodes played. For example, a score at 0.5 indicates that only 50 of the last567

100 games are successful. Its important to note that in this cooperative differential568

game, there is only one HLP that controls both agents; it takes the temporal difference569

statistics from only one single agent.570

The example result is shown in Fig. 11. From This initial LLP was trained with571

m = 1kg, and b = 0.1 in 1. In this example, the environment changes 3 times, at the572

500, 1000 and 1500 episode mark; information is summarized in Fig. 11. A brief look573

at the results in Fig. 11 shows 3 distinct temporal difference shifts within the plots.574

At episode 501, the coefficient of friction, b, changes from 0.1 to 0.01. A short delay575

occurs and at episode 514 the learning switch turns on. There are then 3 episodes total576

that are played with learning turned on. This shows the robustness of the pre-trained577

policy.578

At game 1001, the mass,m suddenly decreases from 1kg to 0.5kg along with a slight579

increase in the friction coefficient, b, to 0.05. The very next episode, the HLP turns580

learning on for the LLP. We can see how the standard deviation of TD jumps up and581

the mean of TDs becomes negative. It takes 184 games for the LLP output parameters582

to adapt to this environment change. The standard deviation of TD settles to approx-583

imately 0.3. Comparing the LLP performance prior to the environmental change at584

game 1001 to the LLP after it converged to its new policy after the environmental585

change, we see, we see some minor and major changes in the values of the output586

parameters that were adapted. In total, 285 rule output parameters were adapted for587

agent Diana and 279 rule output parameters were adapted for agent Sharon.588

The largest consequent parameter adaptation in Sharon’s LLP went from a value589

of 2.9390 to 0.9306. More interestingly, agent Diana’s largest adaptation occurred with590

rule 1494 from -0.0628 to 2.0131. Recall that these parameters make up the force that591

the agents output into their dynamic system. A negative value tends to imply a neg-592

ative force, or a force in the opposite direction from the finish line. Further analyzing593

the adaptation that occurs to rule 1494 during this environment change, this rule594

is made up of 4 triangular membership functions: r1494 = [MF1,MF2,MF3,MF4].595

Where MF1 = [6, 8, 10],MF2 = [1, 2.5, 4],MF3 = [−4, 0, 4],MF4 = [1, 2.5, 4]. Recall596

that each membership function corresponds to part of the input state; in this case597

22



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

MF1 corresponds to the position of Diana, MF2 corresponds to Diana’s velocity, etc.598

This means that when an input is within these ranges, rule 1494 will fire. The mem-599

bership function is made up of 3 values indicated the extreme values and the peak600

value of the triangle. This implies that Diana must speed up when these rules fire in601

the new environment and thus an adaptation into the positive force direction occurs602

to catch up. Analyzing the rules that fire as they adapt shows the functionality and603

transparency of using fuzzy systems as function approximators for the actor and critic.604

Finally, at episode 1501, the environment changes in a greater manner, with the605

mass increasing to m = 1.4kg and the friction coefficient, b, kept at 0.05. Once again606

there is a large drop into the negative mean of TD along with a spike in standard607

deviation of TD. We can see there are two periods of intense learning that take place608

by looking at the blue line success rate plot. Learning in the LLP occurs on and off609

until it finally settles on a new policy at episode 2034. The total number of episodes610

that used learning were 134. In Sharon’s LLP, the largest adaptation that occurred611

was rule 1887 from -1.0591 to 2.2580. This adaptation occurred due to the mass612

increases from 0.5kg to 1.4kg. Here we can analyze a set of rules that fire somewhat613

frequently near the end of the hallway that contains rule 1887. The rule set is: [1830,614

1831, 1837, 1838, 1879, 1880, 1886, 1887, 2173, 2174, 2180, 2181, 2222, 2223, 2229,615

2230]. Recall that since there are 4 inputs into the system and triangular membership616

function are used, 42 = 16 rules will fire. Looking specifically at rule 1887, it is made617

up of r1887 = [MF1,MF2,MF3,MF4]. The triangular membership functions are given618

as MF1 = [12, 14, 16],MF2 = [1, 2.5, 4],MF3 = [−4, 0, 4],MF4 = [1, 2.5, 4]. This619

implies that rule 1887 will fire when the inputs are within these ranges, and these620

outputs required the biggest correction for this rule. For the entire rule set, the output621

parameters were adapted as shown in Table 3.622

Table 3 Rule Set Firing Example in the
Continuous Hallway Game

Rule # Before Change After Change

1830 2.9435 2.8929
1831 2.9994 3.0000
1837 0.5309 1.5119
1838 -0.1515 2.9561
1879 2.8054 2.8175
1880 2.9989 2.9777
1886 -2.4569 -1.7898
1887 -1.0604 2.2580
2173 0.9748 0.9264
2174 0.8216 0.8050
2180 -1.1151 -1.4278
2181 -1.8928 -1.4544
2222 0.7557 0.7527
2223 0.7836 0.7996
2229 -2.8640 -2.9564
2230 -2.9393 -2.6849

23



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of0 2000 4000 6000 8000 10000

 

0

2

4

6

S
ta

n
d

a
rd

 D
e

v
.

Standard Deviation of Temporal Differences within Game

0 2000 4000 6000 8000 10000

 

-0.5

0

0.5

M
e

a
n

Mean of Temporal Differences within Game

0 2000 4000 6000 8000 10000

Episode Number

0

0.5

1
Switch State and Success Ratio

Fig. 12 Example of the higher and lower level policies in action

In Table 3, we see the output parameters from when m = 0.5 and b = 0.05, and623

then after the environment changes to m = 1.4 and b = 0.05. Rule 1838 is the only624

other rule in this set that changed signs. In this rule set we see a high number of625

positive values indicating that a force output by the agent is likely to be large and626

towards the finish line. This change in rules may be due to the increase in mass of the627

agents, a larger force is required to get the finish line of the hallway.628

Another example of a the HLP is shown in Fig. 12. After every 1000 episodes a new629

mass and friction coefficient are suddenly implemented. This is apparent by looking at630

the temporal difference plots, at the start of each environment change both the mean631

and standard deviation vary a lot for several episodes. The standard deviation looks632

like a streak on the plot; as discussed in Section 4.4 this is often the result of new633

fuzzy rule output parameters being learned.634

It is interesting to note how quickly the LLP adapts once the HLP switches learning635

on as seen in the bottom plot of Fig. 12. For example, after episode 5000 the environ-636

ment changes, it took 4 games with the learning on for the success rate to climb back637

up to 100%. The learning first switched on at episode 5004. After the environment638

dynamics changed once again at episode 6000, the higher-level policy turned learning639

on immediately after the first unsuccessful game. This unsuccessful game with the new640

dynamics had the standard deviation of TDs within the game jump to 2.07. The HLP641

24



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

was able to use this data to switch the learning on. Once the learning was switched642

on, it stayed on for 17 episodes. During these 17 episodes, the agents adapted only the643

applicable output parameters ωl of their lower-level policies. Similar trends appeared644

during environment changes taking place at episodes 7000, 8000, and 9000; with 9000645

being a more extreme change in values.646

This second example which uses the same HLP, shows how quickly both agents’647

LLP is able to adapt once an environment change occurs. This indicates that the648

temporal difference is a strong indicator of environmental change.649

6.2.2 Balancing A Ball650

The balancing ball game described in Section 3 is used as an additional example of the651

temporal difference learning switch. Recall that in this coordination game, the agents652

must balance a ball on a table by lifting or lowering the ends of the table.653

The hierarchical reinforcement learning method is once again applied to allow the654

agents to adapt their policies when the environment changes. Environment changes655

in this game can be change of mass of the ball, change of friction coefficient, and656

change in length of the table. After some different trials, we found that the initial LLP657

that was trained was very robust and often did not require any additional learning to658

adapt when the mass of the ball or the friction coefficient was changed. This meant659

that much larger changes were required in order to impact the LLP. In order to train660

the HLP the changes in the environment had to be very large, so 3 changes to the661

environment were made every 1000 training episodes. The first set of changes were662

random values between 0 and 1 for the mass and coefficient of friction. The table663

was set to 3 meter long. At the next environment change, the mass and coefficient of664

friction are changed to values between 0 and 0.1 with the table being 1 meter long. By665

going back and forth between these two scenarios we are able to create more extreme666

cases that require lower-level learning to be on.667

The temporal differences seen in this game are much lower due to the reward func-668

tion. Since the temporal differences are smaller, a and d in the HLP reward function669

(18) were chosen to be both 0.1. During training of the HLP, 100,000 training episodes670

were played, since the environment changed every 1000 games, this means there were671

100 randomized environments used in the HLP training. Once again, the two inputs672

into the HLP were the mean of the temporal differences played within the game, and673

the standard deviation of those temporal differences. In this scenario, both agents have674

their own switch. Table 1 shows the parameters that were used to train the higher-675

level policy. The discount factor was chosen arbitrarily but intended to help balance676

the stability and time horizon aspects of the learning.677

Fig. 13 shows the results of a successful HLP from agent Sharon. Both agents678

produced very similar results so only Sharon’s results will be shown. In this plot, there679

are two disturbances made to the system. The original LLP was trained with a mass of680

m = 0.1, and a coefficient of friction of b = 0.1 with the table being 1m long. At episode681

1500 the dynamics change to m = 1kg, and b = 0.01 with the table length changing to682

3m. At episode 2500, the mass is decreased to m = 0.1kg and b = 0.05 along with the683

table length decreasing to 1m. Fig. 14 shows a plot where there is no HLP, and the684

25



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 13 HLP Results of Balancing A Ball. These plots show how the higher level policy - the
learning switch - is successful in recognizing environment changes through the temporal difference
and switching on and off the learning accordingly.

learning stays off throughout the environment changes. The information surrounding685

the exact environment changes that occur in Fig. 13 and 14 is summarized in Fig. 15.686

We notice two interesting aspects when comparing Fig. 13 to Fig. 14. First, the687

lower-level policy is quite robust. The results show that the agents are still success-688

ful about half of the time when no learning takes place at all. A successful episode689

is defined as not dropping the ball off the table for 5 seconds. The second important690

aspect we see from comparing these plots is that at episode 1500, the standard devia-691

tion of temporal differences actually decreases but the mean increases. At episode 2500692

the opposite happens. This shows the importance of having both of these statistics as693

inputs into the HLP.694

From episode 1 to 1500, there are 47 episodes with learning. This indicates that the695

statistics of temporal difference did not satisfy the HLP which rewarded low means696

and standard deviations. At episode 1500 the environment changed, and 46 episodes697

following this change had learning switched on. The success rate dipped initially from698

100% to a low of 94%. There were 119 episodes with and without learning that passed699

before regaining the 100% success rate. The first episode that included learning from700

the HLP occurred 8 episodes after the environment changed. At episode 2500, the701

environment changed once again. There were 31 episodes that had learning switched702

26



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Fig. 14 The impact of the environment changes on the temporal difference statistics and success
rate when learning is never switched on.

Fig. 15 Diagram showing the environment changes that occur in the ball balancing example in Fig.
13 and 14

on. The lowest success rate recorded was 89%. The first episode that included learning703

occurred 2 episodes after the environment had changed.704

Looking at Sharon’s LLP adaptations that took place, the largest rule weight705

change was rule 157. This rule fired 41,067 times after the environment changed. The706

original policy had this fuzzy rule weight at 0 and the policy after the first environment707

change converged this rule to -1. This indicates that a new rule was learned after708

this environment change. Rule 157 is represented by r157 = [MF1,MF2] where the709

triangular membership functions areMF1 = [0.75, 1.125, 1.5] for the position state and710

MF2 = [−1,−0.5, 0] for the velocity state. Two inputs with triangular membership711

functions has up to 4 rules firing at a given state. Since the initial policy was trained712

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

using a table of 1m length where the possible position states went from [-0.5, +0.5],713

and as such rule 157 would have never fired during the training stage and it is expected714

rule 157 would have a significant change.715

After the second environment change, the largest adaptation in Sharon’s LLP was716

rule 128 with a difference of 1.4406. Rule 128 went from a value of -0.4602 to 0.9804717

after the policy had adapted from the environment change. This rule was fired 118,766718

after the environment change. Rule 128 is represented by r157 = [MF1,MF2] where719

the triangular membership functions are MF1 = [0, 0.375, 0.75] for position state and720

MF2 = [−0.5, 0, 0.5] for the velocity state. Since this rule is found in the middle of721

the table with slow to near zero velocities, it makes sense that this rule is fired so722

frequently as the reward maximizes low velocity at the 0m mark of the table.723

If we look at a set of rules that fire when the ball is at position +0.1m with a724

velocity of -0.1m/s we see that different rules are fired. Table 4 shows Sharon’s rules725

before and after the second environment change and Table 5 shows Diana’s rules before726

and after the same environment change. Part of the reason the values are so different727

is because of the length of the table. Before episode 2500 the table was 3m long and728

after it was 1m long. Calculating the angle of incline of the table shows that they are729

somewhat close in values. Before episode 2500, the angle of incline with this set of730

rules is 4.46 degrees and at episode 3000 the angle is 5.517◦. Since the ball becomes731

ten times lighter while the table shortens, a steeper incline is necessary.732

Table 4 Agent Sharon rule firings for a given state

Rule Rule Firing Strength Rule Weight Before Episode 2500 Rule Weight at Episode 3000

112 0.13416 -0.9997 -1
113 0.63249 0.3612 -0.633
127 0.04083 -1 -0.9997
128 0.1925 -0.4601 0.9804

Actor Output -0.0351 -0.3866

Table 5 Agent Diana rule firings for a given state

Rule Rule Firing Strength, Rule Weight Before Episode 2500 Rule Weight at Episode 3000

112 0.13416 0.9989 0.9996
113 0.63249 0.239 -0.8438
127 0.04083 0.9962 0.9995
128 0.1925 -0.6594 0.3576

Actor Output 0.1989 -0.29

28



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

We see that the temporal difference is an important calculation that can provide733

information about the learning process and about the environment. When the envi-734

ronment changes and the learned policy is no longer optimal the temporal difference735

calculated indicates this. A hierarchical reinforcement learning model can be trained736

and used to dictate when training should continue on a policy. The lower-level policy737

is trained to play the game while the higher-level policy is trained to indicate when738

the lower-level policy needs to adapt. In terms of the cooperative multi agent scenar-739

ios, we also see that giving each agent their own switch versus having one switch for740

the group does not make a large difference in outcome741

6.3 Competitive742

The pre-train process is done for the hyper-parameters in section 6.1. The result is743

shown in Fig. 16. It is shown that for WI = 0.675 and WD = 0.45 in (6), the capture744

point is close to the optimal capture point given by the Cartesian oval method [28].745

For the competitive game, the LLP is trained for 5,000 iterations. Then, the HLP746

is trained for 20,000 iterations. At each 1,000 iterations, the goal location changes.747

Although the goal location changes, the invader’s location is always at (5,5) perturbed748

by adding a Gaussian noise with mean of 0 and variance of 1. In addition, the defender’s749

location is always set to (30,30) perturbed by adding a Gaussian noise with mean of750

0 and variance of 1. After 20,000 iterations of HLP training, we conduct a test. The751

test result is depicted on Fig. 17.752

In the test, the LLP output parameters are set to the output parameters of the753

pre-training phase. The goal location is set to (10,40), and the invader is placed around754

(5,5), and the defender is placed around (30,30). Fig. 17 (a) shows that in the first 1,000755

iterations there is not a significant difference in the TD mean between the proposed756

method and the non-adaptive LLP. The reason is that the environment is the exact757

same environment as the initial training. The same result applies for Fig. 17 (b), where758

there is not a significant difference between the standard deviation of TDs. Fig. 17 (c)759

shows that in the first 1,000 iterations, the proposed method switched on the training760

only for five iterations.761

At iteration 1,000, the goal location changes. Between iteration 1,000 and 2,000 in762

Fig. 17 (a) the mean of TD falls by more than -0.05 units. Fig. 17 (c) shows between763

iteration 1,000 and 2,000 the learning switches on and off many times. As a result,764

the mean of TD for the proposed method stays around zero. Fig. 17 (b) shows that765

between iteration 1,000 and 2,000, the standard deviation of both approaches are not766

different.767

Finally, at iteration 2,000, the environment changes again. Fig. 17 (a) shows that768

the mean of TD of the non-adaptive method jumps up. However, it does not reach zero769

and has bias around -0.015. On the other hand, as shown in Fig. 17 (c), the learning770

switches on for a few iterations. As a result, the mean of TD for the proposed method771

converges to zero. As shown in Fig. 17 (b), there is not a significant difference between772

the standard deviation of TD.773

29



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

Goal

Invader

Defender

Optimal Capture Point

Discrimination Lines

Fig. 16 The trajectory of the invader and the defender after pre-training

7 Conclusion774

This paper presented a method to both detect environmental changes in non-stationary775

reinforcement learning environments, and also to determine when a policy has been776

properly adapted based on the temporal difference. In this model, the HLP switch777

sends a signal to turn learning on in the LLP. Once the network parameters have suc-778

cessfully adapted to the new environment, the HLP sends a signal to turn the learning779

off. The HLP trained uses a fuzzy logic controller to switch learning on and off in the780

LLP. The HLP inputs are the temporal difference statistics from the LLP. During the781

training of the HLP the environment changes every 500 to 1000 episodes. The reward782

function used to train the HLP learning switch sought to minimize the mean of tem-783

poral differences along with the standard deviation. The temporal difference which784

acts as a prediction error is used as a key indicator to determine if the environment785

30



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 500 1000 1500 2000 2500 3000

(a) Iteration

-0.1

-0.05

0

0.05
M

ea
n
 o

f 
T

D
 f

o
r 

th
e 

in
av

d
er

0 500 1000 1500 2000 2500 3000

(b) Iteration

0

0.02

0.04

0.06

0.08

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n
 o

f

T
D

 f
o
r 

th
e 

in
v
ad

er

0 500 1000 1500 2000 2500 3000

(c) Iteration

0

0.5

1

S
w

it
ch

No Learning at all

Learning switches On/Off

Fig. 17 The performance of the proposed method. (a) The mean of TD for the invader. (b) The
standard deviation of TD for the invader. (c) The learning switch of the invader

31



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

has changed, and also if the policy has successfully adapted. Calculating the tem-786

poral difference for a given state-action is much less computationally expensive than787

constantly running a learning algorithm in a non-stationary environment.788

The applications used to demonstrate this method were multi-agent differential789

games for both cooperative and competitive games. The results show that this method790

is successful at adapting the fuzzy rules of a lower-level policy; the HLP is quick to791

notice an environment change and generally takes minimal episodes to relearn the792

impacted fuzzy rules.793

The contributions are as follows:794

• A study of the temporal difference in a reinforcement learning algorithm in non-795

stationary environments. This paper shows how informative the temporal difference796

is and how it behaves with both environment changes and further learning. Large797

changes in the temporal difference statistics often occur when the dynamics of the798

game shift, and the even larger when there are many new states seen for the first799

time.800

• A hierarchical learning model is developed to learn to adapt a new policy when801

it recognizes that the environment has changed. More specifically, a method that802

easily accommodates multi-agent settings. Examples were studied of differential803

games in both the cooperative and competitive nature. In these examples, the fuzzy804

consequent parameters being adapted were studied and we saw that adaptation805

was generally quick; it only took a couple episodes to converge to new parameters.806

However, this is also dependent on the magnitude of the change to the environment.807

This proposed method switches learning on and off which saves computational power808

since learning can be quite costly.809

• This paper strengthens the case of using fuzzy systems in the field of reinforcement810

learning. Fuzzy approximators allow for easy interpretability in machine learning811

as shown in the discussion of this paper. The analysis of rules during adaptation is812

simple since each rule corresponds to an observed state.813

The proposed method can be called a finite horizon model free approach to rein-814

forcement learning in non-stationary environments. It succeeds at quick adaptation815

between episodes when the temporal difference statistics demonstrate a shift in values.816

Since the adaptation is in the form of either turning learning on or off, the computa-817

tional complexity decreases compared to many other methods. It also succeeds in the818

interpretability and simplicity of the resultant policy.819

References820

[1] Weintraub, I.E., Pachter, M., Garcia, E.: An introduction to pursuit-evasion dif-821

ferential games. In: 2020 American Control Conference (ACC), pp. 1049–1066822

(2020). IEEE823

[2] Isaacs, R.: Differential Games: a Mathematical Theory with Applications to War-824

fare and Pursuit, Control and Optimization. Courier Corporation, Garden City825

(1999)826

32



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[3] Eaton, M., McMillan, M., Tuohy, M.: Pursuit-evasion using evolutionary algo-827

rithms in an immersive three-dimensional environment. In: IEEE International828

Conference on Systems, Man and Cybernetics, vol. 2, pp. 348–353 (2002). IEEE829

[4] Asgharnia, A., Schwartz, H.M., Atia, M.: Deception in a multi-agent adversarial830

game: The game of guarding several territories. In: 2020 IEEE Symposium Series831

on Computational Intelligence (SSCI), pp. 1321–1327 (2020). IEEE832

[5] Gregorin, L., Givigi, S.N., Freire, E., Carvalho, E., Molina, L.: Heuristics for833

the multi-robot worst-case pursuit-evasion problem. IEEE Access 5, 17552–17566834

(2017)835

[6] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,836

Cambridge (2018)837

[7] Lau, M., Steffens, M., Mavris, D.: Closed-loop control in active target defense838

using machine learning. AIAA Scitech 2019 Forum (January) (2019) https://doi.839

org/10.2514/6.2019-0143840

[8] Schwartz, H.: An object oriented approach to fuzzy actor-critic learning for multi-841

agent differential games. In: 2019 IEEE Symposium Series on Computational842

Intelligence (SSCI), pp. 183–190 (2019). IEEE843

[9] Gu, X., Han, J., Shen, Q., Angelov, P.P.: Autonomous learning for fuzzy systems:844

a review. Artifical Intelligence Review 56, 7549–7595 (2023)845

[10] Angelov, P., Buswell, R.: Identification of evolving fuzzy rule-based models. IEEE846

Transactions on Fuzzy Systems 10, 667–677 (2002)847

[11] Rong, H.-J., Sundararajan, N., Huang, G.-B., Saratchandran, P.: Sequential848

adaptive fuzzy inference system (safis) for nonlinear system identification and849

prediction. Fuzzy Sets and Systems 57, 1260–1275 (2006)850

[12] Rubio, J.d.J., Bouchachia, A.: Msafis: an evolving fuzzy inference system. Soft851

Computing 21, 2357–2366 (2017)852

[13] Padakandla, S.: A survey of reinforcement learning algorithms for dynamically853

varying environments. ACM Computing Surveys 54 (2022)854

[14] Yu, J.Y., Mannor, S.: Arbitrarily modulated markov decision processes. In:855

Proceedings of the 48th IEEE Conference on Decision and Control (2009). IEEE856

[15] Dick, T., Gyorgy, A., Szepesvari, C.: Online learning in markov decision processes857

with changing cost sequences. In: Proceedings of the 31st International Conference858

on Machine Learning (2014)859

[16] Robinson, J.W., Hartemink, A.J., Ghahramani, Z.: Learning non-stationary860

dynamic bayesian networks. Journal of Machine Learning Research 11(12) (2010)861

33



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[17] Kuznetsov, V., Mohri, M.: Learning theory and algorithms for forecasting non-862

stationary time series. Advances in neural information processing systems 28863

(2015)864

[18] Hung, S.-M., Givigi, S.N.: A q-learning approach to flocking with uavs in a865

stochastic environment. IEEE Transactions on Cybernetics 47(1), 186–197 (2017)866

https://doi.org/10.1109/TCYB.2015.2509646867

[19] Pickering, L., Cohen, K.: Toward explainable ai—genetic fuzzy systems—a use868

case. In: Rayz, J., Raskin, V., Dick, S., Kreinovich, V. (eds.) Explainable AI and869

Other Applications of Fuzzy Techniques, pp. 343–354. Springer, Cham (2022)870

[20] Wu, Q., Cheng, S., Li, L., Yang, F., Meng, L.J., Fan, Z.X., Liang, H.W.: A fuzzy-871

inference-based reinforcement learning method of overtaking decision making for872

automated vehicles. Proceedings of the Institution of Mechanical Engineers, Part873

D: Journal of Automobile Engineering 236(1), 75–83 (2022) https://doi.org/10.874

1177/09544070211018099 https://doi.org/10.1177/09544070211018099875

[21] Malik, H., Yadav, A.K.: A novel hybrid approach based on relief algorithm and876

fuzzy reinforcement learning approach for predicting wind speed. Sustainable877

Energy Technologies and Assessments 43, 100920 (2021)878

[22] Haighton, R., Asgharnia, A., Schwartz, H., Givigi, S.: Hierarchical reinforcement879

learning for non-stationary environments. In: 2023 IEEE Symposium Series on880

Computational Intelligence (SSCI), pp. 1421–1428 (2023). IEEE881

[23] Wang, T., Wang, J., Zheng, C., Zhang, C.: Learning nearly decomposable882

value functions via communication minimization. In: International Conference on883

Learning Representations (ICLR) (2020)884

[24] Matignon, L., Laurent, G., Le Fort-Piat, N.: Hysteretic q-learning: an algorithm885

for decentralized reinforcement learning in cooperative multi-agent teams. In:886

IEEE/RSJ International Conference on Intelligent Robots and Systems (2007).887

IEEE888

[25] Asgharnia, A., Schwartz, H., Atia, M.: Learning multi-objective deception in889

a two-player differential game using reinforcement learning and multi-objective890

genetic algorithm. International Journal of Innovative Computing, Information891

and Control 18(6), 1667–1688 (2022)892

[26] Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to893

modeling and control. IEEE transactions on systems, man, and cybernetics (1),894

116–132 (1985)895

[27] Jouffe, L.: Actor-critic learning based on fuzzy inference system. In: 1996896

IEEE International Conference on Systems, Man and Cybernetics. Information897

Intelligence and Systems (Cat. No. 96CH35929), vol. 1, pp. 339–344 (1996). IEEE898

34



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[28] Garcia, E.: Cooperative target protection from a superior attacker. Automatica899

131, 109696 (2021)900

35



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Rachel Haighton
Rachel Haighton has a B.Eng in Mechanical Engineering from Concordia 
University in Montreal, QC, Canada, and a M.A.Sc in Electrical and Computer 
Engineering from Carleton University in Ottawa, ON, Canada. Her research 
focuses on adaptive and intelligent systems, reinforcement learning, and 
multiagent systems.

Amirhossein Asgharnia
Amirhossein Asgharnia joined the Department of Systems and Computer 
Engineering at Carleton University as Post-Doctoral Researcher. He received 
his Ph.D from Carleton University, ON, Canada in 2023 in Electrical and 
Computer Engineering. His research focuses on reinforcement learning and 
multiagent systems.

Howard Schwartz
Howard Schwartz received his B.Eng. degree from McGill University, Montreal, 
Canada, in June 1981 and his M.Sc. degree and Ph.D. degree from the 
Massachusetts Institute of Technology, Cambridge, Ma, in 1982 and 1987, 
respectively. He is currently a Professor in the Department of Systems and 
Computer Engineering at Carleton University. His research interests include 
adaptive and intelligent control systems, robotics and process control, 
system modeling and system identifcation. His most recent research is in 
multiagent learning with applications to teams of mobile robots.

Sidney Givigi
Sidney N. Givigi received the Ph.D. degree in electrical and computer engineering from 
Carleton University, Ottawa, ON, Canada, in 2009. He is currently an Associate 
Professor with the School of Computing, Queen's University, Kingston, ON, Canada. 
His current research interests include autonomous systems and robotics.



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Declaratio if ioterettt
 

 The authors declare that they have no known competng fnancial interests or personal relatonships ☐
that could have appeared to infuence the work reported in this paper.
 

 The authors declare the following fnancial interests/personal relatonships which may be considered ☒
as potental competng interests:

Rachel Haighton reports artcle publishing charges was provided by Carleton 
University. If there are other authors, they declare that they have no known 
competng fnancial interests or personal relatonships that could have appeared to 
infuence the work reported in this paper.


	An adaptable fuzzy reinforcement learning method for non-stationary environments
	CRediT authorship contribution statement
	Data availability


