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Self-learning Fuzzy Logic Controllers for Pursuit-Evasion Differential Games

Sameh F. Desouky∗, Howard M. Schwartz

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, ON, Canada

Abstract

This paper addresses the problem of tuning the input and the output parameters of a fuzzy logic controller.
The system learns autonomously without supervision or a priori training data. Two novel techniques are
proposed. The first technique combines Q(λ)-learning with function approximation (fuzzy inference system)
to tune the parameters of a fuzzy logic controller operating in continuous state and action spaces. The
second technique combines Q(λ)-learning with genetic algorithms to tune the parameters of fuzzy logic
controller in the discrete state and action spaces. The proposed techniques are applied to different pursuit-
evasion differential games. The proposed techniques are compared with the optimal strategy, Q(λ)-learning
only, reward-based genetic algorithms learning, and to the technique proposed by Dai et al. (2005) in
which a neural network is used as a function approximation for Q-learning. Computer simulations show the
usefulness of the proposed techniques.

Key words: Differential game, function approximation, fuzzy control, genetic algorithms, Q(λ)-learning,
reinforcement learning.

1. Introduction

Fuzzy logic controllers (FLCs) are currently be-
ing used in engineering applications [1, 2] especially
for plants that are complex and ill-defined [3, 4]
and plants with high uncertainty in the knowledge
about its environment such as autonomous mobile
robotic systems [5, 6]. However, FLC has a draw-
back of finding its knowledge base which is based
on a tedious and unreliable trial and error process.
To overcome this drawback one can use supervised
learning [7–11] that needs a teacher or input/output
training data. However, in many practical cases the
model is totally or partially unknown and it is dif-
ficult or expensive and in some cases impossible to
get training data. In such cases it is preferable to
use reinforcement learning (RL).

RL is a computational approach to learning
through interaction with the environment [12, 13].
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The main advantage of RL is that it does not need
either a teacher or a known model. RL is suitable
for intelligent robot control especially in the field of
autonomous mobile robots [14–18].

1.1. Related work

Limited studies have applied RL alone to solve
environmental problems but its use with other
learning algorithms has increased. In [19], a RL
approach is used to tune the parameters of a FLC.
This approach is applied to a single case of one
robot following another along a straight line. In [15]
and [20], the authors proposed a hybrid learning
approach that combines a neuro-fuzzy system with
RL in a two-phase structure applied to an obsta-
cle avoidance mobile robot. In phase 1, supervised
learning is used to tune the parameters of a FLC
then in phase 2, RL is employed so that the system
can re-adapt to a new environment. The limita-
tion in their approach is that if the training data
are hard or expensive to obtain then supervised
learning can not be applied. In [21], the authors
overcame this limitation by using Q-learning as an
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expert to obtain training data. Then the training
data are used to tune the weights of an artificial
neural network controller applied to a mobile robot
path planning problem.

In [22], a multi-robot pursuit-evasion game is in-
vestigated. The model consists of a combination
of aerial and ground vehicles. However, the un-
manned vehicles are not learning. They just do
the actions they received from a central computer
system. In [23], the use of RL in the multi-agent
pursuit-evasion problem is discussed. The individ-
ual agents learn a particular pursuit strategy. How-
ever, the authors do not use a realistic robot model
or robot control structure. In [24], RL is used to
tune the output parameters of a FLC in a pursuit-
evasion game.

A number of articles used fuzzy inference system
(FIS) as a function approximation with Q-learning
[25–28] however these works have the following dis-
advantages: (i) the action space is considered to be
discrete and (ii) only the output parameters of the
FIS are tuned.

1.2. Paper motivation

The problem assigned in this paper is that we
assume that the pursuer/evader does not know its
control strategy. It is not told which actions to take
so as to be able to optimize its control strategy. We
assume that we do not even have a simplistic PD
controller strategy. The learning goal is to make the
pursuer/evader able to self-learn its control strat-
egy. It should do that on-line by interaction with
the evader/pursuer.

From several learning techniques we choose RL.
RL methods learn without a teacher, without any-
body telling them how to solve the problem. RL is
related to problems where the learning agent does
not know what it must do. It is the most appropri-
ate learning technique for our problem.

However, using RL alone has the limitation in
that it is too hard to visit all the state-action pairs.
We try to cover most of the state-action space but
we can not cover all the space. In addition, there are
hidden states that are not taken into consideration
due to the discretization process. Hence RL alone
can not find the optimal strategy.

The proposed Q(λ)-learning based genetic fuzzy
controller (QLBGFC) and the proposed Q(λ)-
learning Fuzzy inference system (QLFIS) are two
novel techniques used to solve the limitation in RL.
The limitation is that the RL method is designed

only for discrete state-action spaces. Since we want
to use RL in the robotics domain which is a con-
tinuous domain, then we need to use some type of
function approximation such as FIS to generalize
the discrete state-action space into a continuous
state-action space. Therefore, from the RL point
of view, a FIS is used as a function approximator
to compensate for the limitation in RL. And from
the FIS point of view, RL is used to tune the input
and/or the output parameters of the fuzzy system
especially if the model is partially or completely
unknown and it is hard or expensive to get a pri-
ori training data or a teacher to learn from. In
this case, the FIS is used as an adaptive controller
whose parameters are tuned on-line by RL. There-
fore, combining RL and FIS has two objectives; to
compensate the limitation in RL and to tune the
parameters of the FLC.

In this paper we design a self-learning FLC using
the proposed QLFIS and the proposed QLBGFC.
The proposed QLBGFC is used when the state and
the action spaces can be discretized in such a way
that make the resulting state and action spaces have
acceptable dimensions. This can be done, as we will
see in our case, if the state and the action values are
bounded. If not then the proposed QLFIS will be
suitable. However and for the comparatively pur-
pose, we will use both of the proposed techniques
in this work.

The learning process in the proposed QLFIS is
performed simultaneously as shown in Fig. 1. The
proposed QLFIS is used ”directly” with the contin-
uous state and action spaces. The FIS is used as
a function approximation to estimate the optimal
action-value function, Q∗(s, a), in the continuous
state and action spaces while the Q(λ)-learning is
used to tune the input and the output parameters
of both the FIS and the FLC.
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Figure 1: The proposed QLFIS technique
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In the proposed QLBGFC, the learning process
is performed sequentially as shown in Fig. ??. The
proposed QLBGFC can be considered as ”indirect”
method of using function approximation. First, in
phase 1, the state and the action spaces are dis-
cretized and Q(λ)-learning is used to obtain an esti-
mate of the desired training data set, (s, a∗). Then
this training data set is used by genetic algorithms
(GAs) in phase 2 stage1 to tune the input and the
output parameters of the FLC which is used at the
same time to generalize the discrete state and action
values over the continuous state and action spaces.
Finally in phase 2 stage 2, the FLC is further tuned
during the interaction between the pursuer and the
evader.

The proposed techniques are applied to two
pursuit-evasion games. In the first game, we as-
sume that the pursuer does not know its control
strategy whereas in the second game, we increase
the complexity of the system by assuming both the
pursuer and the evader do not know their control
strategies or the other’s control strategy.

The rest of this paper is organized as follows:
some basic terminologies for RL, FIS and GAs are
reviewed in Section 2, Section 3 and Section 4, re-
spectively. In Section 5, the pursuit-evasion game is
described. The proposed QLFIS and the proposed
QLBGFC techniques are described in Section 6 and
Section 7, respectively. Section 8 presents the com-
puter simulation and the results are discussed in
Section 9. Finally, conclusion and future work are

Figure 2: The proposed QLBGFC technique

discussed in Section 10.

2. Reinforcement Learning

Agent-environment interaction in RL is shown in
Fig. 3 [12]. It consists mainly of two blocks, an
agent which tries to take actions so as to maxi-
mize the discounted return, R, and an environment
which provides the agent with rewards. The dis-
counted return, Rt, at time t is defined as

Rt =
τ∑

k=0

γkrt+k+1 (1)

where rt+1 is the immediate reward, γ is the dis-
count factor, (0 < γ ≤ 1), τ is the terminal point.
Any task can be divided into independent episodes
and τ is the end of an episode. If τ is finite then
the model is called a finite-horizon model [13]. If
τ →∞ then the model is called an infinite-horizon
discounted model and in this case γ < 1 to avoid
infinite total rewards.

The performance of an action, a, taken in a state,
s, under policy, π, is evaluated by the action value
function, Qπ(s, a),

Qπ(s, a) = Eπ(Rt|st = s, at = a)

= Eπ

( ∞∑

k=0

γkrk+t+1|st = s, at = a

)
(2)

where Eπ(·) is the expected value under policy, π.
The way to choose an action is a trade-off between
exploitation and exploration. The ε−greedy action
selection method is a common way of choosing the
actions. This method can be stated as

at =
{
a∗, with probability 1− ε;
random action, with probability ε.

(3)
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where ε ∈ (0, 1) and a∗ is the greedy action defined
as

a∗ = arg max
a′

Q(s, a′) (4)

The RL method is searching for the optimal pol-
icy, π∗, by searching for the optimal value function,
Q∗(s, a), where

Q∗(s, a) = max
π

Qπ(s, a) (5)

Many algorithms have been proposed for estimating
the optimal value functions. The most widely used
and well-known control algorithm is Q-learning [29].

Q-learning, which was first introduced by
Watkins in his Ph.D [30], is an off-policy algorithm.
Therefore, it has the ability to learn without follow-
ing the current policy. The state and action spaces
are discrete and their corresponding value function
is stored in a what is known as a Q-table. To use Q-
learning with continuous systems (continuous state
and action spaces), one can discretize the state and
action spaces [11, 21, 31–34] or use some type of
function approximation such as FISs [26, 35, 36],
neural networks (NNs) [12, 19, 37, 38], or use some
type of optimization technique such as GAs [39, 40].
A one-step update rule for Q-learning is defined as

Qt+1(st, at) = Qt(st, at) + α4t (6)

where α is the learning rate, (0 < α ≤ 1) and 4t is
the temporal difference error (TD-error) defined as

4t = rt+1 + γmax
á

Qt(st+1, á)−Qt(st, at) (7)

Equation (6) is a one-step update rule. It updates
the value function according to the immediate re-
ward obtained from the environment. To update
the value function based on a multi-step update rule
one can use eligibility traces [12].

Eligibility traces are used to modify a one-step
TD algorithm, TD(0), to be a multi-step TD algo-
rithm, TD(λ). One type of eligibility traces is the
replacing eligibility [41] defined as: ∀ s, a,

et(s, a) =





1, if s = st and a = at;
0, if s = st and a 6= at;
λγet−1(s, a), if s 6= st.

(8)

where e0 = 0, and λ is the trace-decay parameter,

(0 ≤ λ ≤ 1). When λ = 0 that means a one-step
update, TD(0), and when λ = 1 that means an
infinite-step update. Eligibility traces are used to
speed up the learning process and hence to make
it suitable for on-line applications. Now we will
modify (6) to be

Qt+1(s, a) = Qt(s, a) + α et4t (9)

For the continuous state and action spaces, the eli-
gibility trace is defined as

et = γλet−1 +
∂Qt(st, at)

∂φ
(10)

where φ is the parameter to be tuned.

3. Fuzzy Inference System

The most widely used FIS models are Mamdani
[42] and Takagi-Sugeno-Kang (TSK) [43]. In this
work we are interesting in using the TSK model.
A first-order TSK means that the output is a lin-
ear function of its inputs while a zero-order TSK
means that the output is a constant function. For
simplicity purpose we use a zero-order TSK model.
A Rule used in zero-order TSK model for N inputs
has the form

Rl : IF x1 is A
l
1 AND ... AND xN is AlN

THEN fl = Kl (11)

where Ali is fuzzy set of the ith input variable, xi,
in rule Rl, l = 1, 2, ..., L, Kl is the consequent pa-
rameter of the output, fl, in rule Rl.

The fuzzy output can be defuzzified into a crisp
output using one of the defuzzification techniques.
Here, weighted average method is used and is de-
fined as follows

f(x̄) =

L∑

l=1

(
N∏

i=1

µA
l
i(xi)

)
Kl

L∑

l=1

(
N∏

i=1

µA
l
i(xi)

) (12)

where µA
l
i(xi) is the membership value for the fuzzy

set Ali of the input xi in rule Rl. Due to its sim-
ple formulas and computational efficiency, Gaussian
membership function (MF) has been used exten-
sively especially in real-time implementation, and
control. The Gaussian MF depicted in Fig. 4 is
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defined as

µA
l
i(xi) = exp

(
−(
xi −ml

i

σli
)2

)
(13)

where σ and m are the standard deviation and the
mean, respectively.

The structure of the FIS used in this work is
shown in Fig. 5. Without loss of generality, we as-
sume that the FIS model has 2 inputs, x1 and x2,
and one output, f , and each input has 3 Gaussian
MFs. The structure has two types of nodes. The
first type is an adaptive node (a squared shape)
whose output need to be adapted (tuned) and the
second type is a fixed node (a circled shape) whose
output is a known function of its inputs.

The structure has 5 layers. In layer 1, all nodes
are adaptive. This layer has 6 outputs denoted by
O1, The output of each node in layer 1 is the mem-
bership value of its input defined by (13). In layer 2,
all nodes are fixed. The AND operation (multipli-
cation) between the inputs of each rule is calculated
in this layer. This layer has 9 outputs denoted by

Figure 4: Gaussian MF

Figure 5: Structure of a FIS model

O2
l , l = 1, 2, ..., 9. The output of each node in layer

2, known as the firing strength of the rule, ωl, is
calculated as follows

O2
l = ωl =

2∏

i=1

µA
l
i(xi) (14)

In layer 3, all nodes are fixed. This layer has 9
outputs denoted by O3

l . The output of each node in
layer 3 is the normalized firing strength, ωl, which
is calculated as follows

O3
l = ωl =

O2
l

9∑

l=1

O2
l

=
ωl

9∑

l=1

ωl

(15)

In layer 4, all nodes are adaptive. The defuzzifica-
tion process that uses the weighted average method,
defined by (12), is performed in this layer and the
next layer. Layer 4 has 9 outputs denoted by O4

l .
The output of each node is

O4
l = O3

lKl = ωlKl (16)

Layer 5 is the output layer and has only one fixed
node whose output, f , is the sum of all its inputs
as follows

O5 = f =
9∑

l=1

O4
l =

9∑

l=1

ωlKl (17)

which is the same as (12).

4. Genetic Algorithms

Genetic algorithms (GAs) are search and opti-
mization techniques that are based on a formaliza-
tion of natural genetics [44, 45]. GAs have been
used to overcome the difficulty and complexity in
the tuning of the FLC parameters such as MFs,
scaling factors and control rules [5, 6, 8, 46–48].

A GA searches a multidimensional parameter
space to find an optimal solution. A given set of
parameters is referred to as a chromosome. The
parameters can be either real or binary numbers.
The GA is initialized with a number of randomly
selected parameter vectors or chromosomes. This
set of chromosomes is the initial population. Each
chromosome is tested and evaluated based on a fit-
ness function (in control engineering we would refer
to this as a cost function). The chromosomes are
sorted based on the ranking of the fitness functions.
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One then selects a number of the best, according to
the fitness function, chromosomes to be parents of
the next generation of chromosomes. A new set of
chromosomes is selected based on reproduction.

In the reproduction process, we generate new
chromosomes, which are called children. We use
two GA operations. The first operation is a
crossover in which we choose a pair of parents and
select a random point in all of their chromosomes
and make a cross replacement from one parent to
another. The second operation is a mutation in
which a parent is selected and we change one or
more of its parameters to get a new child. Now, we
have a new population to test again with the fitness
function.

The genetic process is repeated until a termi-
nation condition is met. There are different con-
ditions to terminate the genetic process such as:
(i) the maximum iteration is reached, (ii) a fit-
ness threshold is achieved, (iii) a maximum time is
reached and (iv) a combination of the previous con-
ditions. In our work we can not use the maximum
time condition since we use the learning time as a
parameter in our comparison. We use the maxi-
mum iteration condition which is actually based on
a threshold condition. The number of GA itera-
tions is determined based on simulations. We tried
different numbers of iterations and we determined
the number of iterations for which further train-
ing would not have any significant improvement in
performance. The coding process in the proposed
QLBGFC technique using GAs will be described in
detail in Section 7.

5. Pursuit-Evasion Differential Game

The pursuit-evasion differential game is one ap-
plication of differential games [49] in which a pur-
suer tries to catch an evader in minimum time
where the evader tries to escape from the pur-
suer. The pursuit-evasion game is shown in Fig. 6.
Equations of motion for the pursuer and the evader
robots are [50, 51]

ẋi = Vi cos(θi)
ẏi = Vi sin(θi) (18)

θ̇i =
Vi
Li

tan(ui)

where ”i” is ”p” for the pursuer and is ”e” for the
evader, (xi, yi) is the position of the robot, Vi is the

velocity, θi is the orientation, Li is the distance be-
tween the front and rear axle, and ui is the steering
angle where ui ∈ [−uimax

, uimax
]. The minimum

turning radius is calculated as

Rdimin
=

Li
tan(uimax)

(19)

Our strategies are to make the pursuer faster
than the evader (Vp > Ve) but at the same time to
make it less maneuverable than the evader (upmax <
uemax). The control strategies that we compare our
results with are defined by

ui =




−uimax : δi < −uimax

δi : −uimax
≤ δi ≤ uimax

uimax
: δi > uimax

(20)

where

δi = tan−1

(
ye − yp
xe − xp

)
− θi (21)

where ”i” is ”p” for the pursuer and is ”e” for the
evader. The capture occurs when the distance be-
tween the pursuer and the evader is less than a cer-
tain amount, `. This amount is called the capture
radius which is defined as

` =
√

(xe − xp)2 + (ye − yp)2 (22)

One reason for choosing the pursuit-evasion game
is that the time-optimal control strategy is known
so, it can be a reference for our results. By this
way, we can check the validity of our proposed tech-
niques.
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Figure 6: The pursuit-evasion model
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6. The proposed Q(λ)-learning Fuzzy Infer-
ence System

A FIS is used as a function approximation for
Q(λ)-learning to generalize the discrete state and
action spaces into continuous state and action
spaces and at the same time Q(λ)-learning is used
to tune the parameters of the FIS and the FLC.
The structure of the proposed QLFIS is shown in
Fig. 1 which is a modified version of the proposed
techniques used in [19] and [24].

The difference between the proposed QLFIS and
that proposed in [24] is that in [24], the authors
used FIS to approximate the value function, V (s),
but the proposed QLFIS is used to approximate the
action-value function, Q(s, a). In addition in [24],
the authors tune only the output parameters of the
FIS and the FLC while in this work the input and
the output parameters of the FIS and the FLC are
tuned. The reason for choosing Q-learning in our
work is that it outperforms the actor-critic learning
[52]. The main advantage of Q-learning over actor-
critic learning is exploration insensitivity since Q-
learning is an off-policy algorithm (see Section 2)
whereas actor-critic learning is an on-policy algo-
rithm.

The difference between the proposed QLFIS and
that proposed in [19] is that in [19], the authors used
neural networks (NNs) as a function approximation
but here we use the FIS as a function approxima-
tion. There are some advantages of using FIS rather
than NNs such that: (i) linguistic fuzzy rules can be
obtained from human experts [53] and (ii) the abil-
ity to represent fuzzy and uncertain knowledge [54].
In addition, our results show that the proposed QL-
FIS outperforms the technique proposed in [19] in
both the learning time and the performance.

Now we will derive the adaptation laws for the
input and the output parameters of the FIS and
the FLC. The adaptation laws will be derived only
once and are applied for both the FIS and the FLC.
Our objective is to minimize the TD-error, ∆t, and
by using the mean square error (MSE) we can for-
mulate the error as

E =
1
2

∆2
t (23)

We use the gradient descent approach and accord-
ing to the steepest descent algorithm, we make a
change along the −ve gradient to minimize the er-

ror so,

φ(t+ 1) = φ(t)− η ∂E
∂φ

(24)

where η is the learning rate and φ is the parameter
vector of the FIS and the FLC where φ = [σ,m,K].
The parameter vector, φ, is to be tuned. From (23)
we get

∂E

∂φ
= ∆t

∂∆t

∂φ
(25)

Then from (7),

∂E

∂φ
= −∆t

∂Qt(st, ut)
∂φ

(26)

Substituting in (24), we get

φ(t+ 1) = φ(t) + η∆t
∂Qt(st, ut)

∂φ
(27)

We can obtain ∂Qt(st, ut)/∂φ for the output pa-
rameter, Kl, from (17), where f is Qt(st, ut) for
the FIS and f is u for the FLC, as follows

∂Qt(st, ut)
∂Kl

=
∑

l

ωl (28)

Then we can obtain ∂Qt(st, ut)/∂φ for the input
parameters, σli and ml

i, based on the chain rule,

∂Qt(st, ut)
∂σli

=
∂Qt(st, ut)

∂ωl

∂ωl
∂σli

(29)

∂Qt(st, ut)
∂ml

i

=
∂Qt(st, ut)

∂ωl

∂ωl
∂ml

i

(30)

The term ∂Qt(st, ut)/∂ωl is calculated from (17)
and (15). The terms ∂ωl/∂σli and ∂ωl/∂ml

i are cal-
culated from both (14) and (13) so

∂Qt(st, ut)
∂σli

=
(Kl −Qt(st, ut))∑

l

ωl
ωl

2(xi −ml
i)

2

(σli)3

(31)

∂Qt(st, ut)
∂ml

i

=
(Kl −Qt(st, ut))∑

l

ωl
ωl

2(xi −ml
i)

(σli)2
(32)
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Substituting from (28), (31) and (32) in (10) and
modifying (27) to use eligibility trace, the update
law for the FIS parameters becomes

φQ(t+ 1) = φQ(t) + η∆tet (33)

The update law in (27) is applied also to the FLC
by replacing Qt(st, ut) with the output of the FLC,
u. In addition and as shown from Fig. 1, a ran-
dom Gaussian noise, n(0, σn), with zero mean and
standard deviation σn is added to the output of the
FLC in order to solve the exploration/exploitation
dilemma as for example the ε-greedy exploration
method used in the discrete state and action spaces.
Then the update law for the FLC parameters is de-
fined by

φu(t+ 1) = φu(t) + ξ∆t
∂u

∂φ
(
uc − u
σn

) (34)

where uc is the output of the random Gaussian
noise generator and ξ is the learning rate for the
FLC parameters. The term ∂u/∂φ can be calcu-
lated by replacing Qt(st, ut) with the output of the
FLC, u, in (28), (31) and (32).

7. The proposed Q(λ)-learning Based Ge-
netic Fuzzy Logic Controller

The proposed QLBGFC combines Q(λ)-learning
with GAs to tune the parameters of the FLC.
The learning process passes through two phases as
shown in Fig. ??. Now, we describe the FLC used
in the proposed technique then we will discuss the
learning in the two phases.

7.1. Fuzzy Logic Controller

A block diagram of a FLC system is shown in Fig.
7. The FLC has two inputs, the error in the pursuer
angle, δ, defined in (21), and its derivative, δ̇, and
the output is the steering angle, up. For the inputs
of the FLC, we use the Gaussian MF described by

 
reference 

signal 
δ  + 

- 
pθ  pu  Pursuer 

robot 

 
FLC 

dt
d

 

Figure 7: Block diagram of a FLC system

(13). For the Rules we modify (11) to be

Rl : IF δ is Al1 AND δ̇ is Al2 THEN fl = Kl (35)

where l = 1, 2, ..., 9. The crisp output, up, is calcu-
lated using (12) as follows

up =

9∑

l=1

((
2∏

i=1

µA
l
i(xi))Kl

9∑

l=1

(
2∏

i=1

µA
l
i(xi))

(36)

7.2. Learning in phase 1

In phase 1, Q(λ)-learning is used to obtain a suit-
able estimation for the optimal strategy of the pur-
suer. The state, s, consists of the error in angle
of the pursuer, δ, and its derivative, δ̇, and the ac-
tion, a, is the steering angle of the pursuer, up.
The states, (δ, δ̇), and their corresponding greedy
actions, a∗, are then stored in a lookup table.

7.2.1. Building the discrete state and action spaces
To build the state space we discretize the

ranges of the inputs, δ and δ̇, by 0.2. The
ranges of δ and δ̇ are set to be from -1.0 to
1.0 so the discretized values for δ and δ̇ will be
(−1.0,−0.8,−0.6, . . . , 0.0, . . . , 0.8, 1.0). There are
11 discretized values for δ and 11 discretized val-
ues for δ̇. These values are combined to form
11× 11 = 121 states.

To build the action space we discretize the range
of the action, up, by 0.1. The range of the action is
set to be from -0.5 to 0.5 so the discretized values for
up will be (−0.5,−0.4,−0.3, . . . , 0.0, . . . , 0.4, 0.5).
There are 11 actions and the dimension of the Q-
table will be 121-by-11.

7.2.2. Constructing the reward function
How to choose the reward function is very impor-

tant in RL because the agent depends on the reward
function in updating its value function. The reward
function differs from one system to another accord-
ing to the desired task. In our case we want the
pursuer to catch the evader in minimum time. In
other words, we want the pursuer to decrease the
distance to the evader at each time step. The dis-
tance between the pursuer and the evader at time
t is calculated as follows

D(t) =
√

(xe(t)− xp(t))2 + (ye(t)− yp(t))2 (37)
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The difference between two successive distances,
∆D(t), is calculated as

∆D(t) = D(t)−D(t+ 1) (38)

A positive value of ∆D(t) means that the pursuer
approaches the evader. The maximum value of
∆D(t) is defined as

∆Dmax = VrmaxT (39)

where Vrmax is the maximum relative velocity of
the pursuer with respect to the evader (Vrmax =
Vp +Ve) and T is the sampling time. So, we choose
the reward, r, to be

rt+1 =
∆D(t)
∆Dmax

(40)

The learning process in phase 1 is described in Al-
gorithm 1.

Algorithm 1 (Phase 1: Q(λ)-learning)
1: Discretize the state space, S, and the action

space, A.
2: Initialize Q(s, a) = 0 ∀ s ∈ S, a ∈ A.
3: Initialize e(s, a) = 0 ∀ s ∈ S, a ∈ A.
4: For each episode

a: Initialize (xp, yp) = (0, 0).
b: Initialize (xe, ye) randomly.
c: Compute st = (δ, δ̇) according to (21).
d: Select at using (3).
e: For each play

i: Receive rt+1 according to (40).
ii: Observe st+1.
iii: Select at+1 using (3).
iv: Calculate et+1 using (8).
v: Update Q(st, at) according to (9).

f: End
5: End
6: Q← Q∗.
7: Assign a greedy action, a∗, to each state, s using

(4).
8: Store the state-action pairs in a lookup table.

7.3. Learning in phase 2

Phase 2 consists of two stages. In stage 1, the
state-action pairs stored in the lookup table are
used as the training data to tune the parameters

of the FLC using GAs. Stage 1 is an off-line tun-
ing. In this stage, the fitness function used is the
mean square error (MSE) defined as

MSE =
1

2M

M∑

m=1

(a∗
m − umflc)2 (41)

where M is the number of input/output data pairs
and is equivalent to the number of states, a∗

m

is
the mth greedy action obtained from phase 1, and
uflc is the output of the FLC. The GA in this stage
is used as supervised learning so the results of this
stage will not be better than that of phase 1 so we
need to perform stage 2.

In stage 2, we run the pursuit-evasion game with
the tuned FLC as the controller. The GA is then
used to fine tune the parameters of the FLC during
the interaction with the evader. In this stage, the
capture time which the pursuer wants to minimize
is used as the fitness function. In this stage, the GA
is used as a reward-based learning technique with a
priori knowledge obtained from stage 1.

7.3.1. Coding a FLC into a chromosome
In phase 2, we use a GA to tune the input and

the output parameters of the FLC. Now, we will
describe the coding of the FLC parameters using
the GA. Note that the coding process of the FLC
is the same for all the different GAs used in this
paper so we will describe it in general. The FLC
to be learned has 2 inputs, the error, δ, and its
derivative, δ̇. Each input variable has 3 MFs with
a total of 6 MFs. We use the Gaussian MF defined
by (13) which has 2 parameters to be tuned. These
parameters are the standard deviation, σ, and the
mean, m. The total number of input parameters
to be tuned is 12 parameters. The rules being used
is defined by (35) that has a parameter, K, to be
tuned with a total number of 9 parameters to be
tuned for the output part.

A FLC will be coded into a chromosome with
length 12+9 = 21 genes as shown in Fig. 8. We use
real numbers in the coding process. The population
consists of a set of chromosomes, P , (coded FLCs).
In the reproduction process, we generate new chro-
mosomes by using two GA operations. The first
operation is crossover in which we choose a pair of
parents and select a random gene, g, between 1 and
20 and make a cross replacement from one parent to
another as shown in Fig. 9. The second operation is
mutation in which we generate a chromosome ran-
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domly to avoid a local minimum/maximum for the
fitness function. Now, we have a new population
to test again with the fitness function. The genetic
process is repeated until the termination condition
is met (see Section 4). The learning process in phase
2 with its two stages is described in Algorithm 2 and
Algorithm 3.

7.4. Reward-based genetic algorithm Learning

For comparative purpose, we will also implement
a general reward-based GA learning technique. The
reward-based GA learning will be initialized with
randomly chosen FLC parameters (chromosomes).
The GA adjust the parameters to maximize the
closing distance given by (40). Therefore, (40) acts
as the fitness function for the reward-based GA
learning.

In the proposed QLBGFC, A GA is used in phase
2 stage 1 to tune the FLC parameters as determined
from Q(λ)-learning in phase 1. The GA uses an
MSE criterion given by (41) that measures the dif-
ference between control or action defined by Q(λ)-
learning and the output of the FLC. The FLC pa-
rameters are then tuned by the GA to achieve the
greedy actions defined by Q(λ)-learning in phase
1. In phase 2 stage 2, the GA fine tunes the input

Algorithm 2 (Phase 2 Stage 1: GA learning)
1: Get the state-action pairs from the lookup table.
2: Initialize a set of chromosomes in a population,
P , randomly.

3: For each iteration
a: For each chromosome in the population

i: Construct a FLC.
ii: For each state, s,

• Calculate the FLC output, uflc, us-
ing (36).

iii: End
iv: Calculate the fitness value using (41).

b: End
c: Sort the entire chromosomes of the popula-

tion according to their fitness values.
d: Select a portion of the sorted population as

the new parents.
e: Create a new generation for the remaining

portion of the population using crossover and
mutation.

4: End

and the output parameters of the FLC to achieve a
minimizing capture time. The learning process in

standard deviations         means 
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Figure 8: A FLC coded into a chromosome
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Algorithm 3 (Phase 2 Stage 2: GA learning)
1: Initialize a set of chromosomes in a population,
P , from the tuned FLC obtained from stage 1.

2: For each iteration
a: Initialize (xe, ye) randomly.
b: Initialize (xp, yp) = (0, 0).
c: Calculate st = (δ, δ̇) according to (21).
d: For each chromosome in the population

i: Construct a FLC.
ii: For each play

• Calculate the FLC output, up, using
(36).
• Observe st+1.

iii: End
iv: Observe the fitness value which is the

capture time that the pursuer wants to
minimize.

e: End
f: Sort the entire chromosomes of the popula-

tion according to their fitness values.
g: Select a portion of the sorted population as

the new parents.
h: Create a new generation for the remaining

portion of the population using crossover and
mutation.

3: End

the reward-based GA learning is described in Algo-
rithm 4

8. Computer Simulation

We use a core 2 duo with a 2.0 GHz clock fre-
quency and 4.0 Gigabytes of RAM. We do com-
puter simulation with MATLAB software. Q(λ)-
learning and GAs have many parameters to be set
a priori therefore we tested computer simulation for
different parameter values and different parameter
value combinations and chose the values that give
the best performance. The initial position of the
evader is randomly chosen from a set of 64 different
positions in the space.

8.1. The pursuit-evasion game

The pursuer starts motion from the position
(0, 0) with an initial orientation θp = 0 and with
a constant velocity Vp = 1 m/s. The distance
between the front and rear axle Lp = 0.3 m and

Algorithm 4 (Reward-based GA learning)
1: Initialize a set of chromosomes in a population,
P , randomly.

2: For each iteration
a: Initialize (xe, ye) randomly.
b: Initialize (xp, yp) = (0, 0).
c: Calculate st = (δ, δ̇) according to (21).
d: For each chromosome in the population

i: Construct a FLC.
ii: For each play

• Calculate the FLC output, up, using
(36).
• Observe st+1

iii: End
iv: Observe the fitness value defined by (40).

e: End
f: Sort the entire chromosomes of the popula-

tion according to their fitness values.
g: Select a portion of the sorted population as

the new parents.
h: Create a new generation for the remaining

portion of the population using crossover and
mutation.

3: End

the steering angle up ∈ [−0.5, 0.5]. From (19),
Rdpmin ' 0.55 m.

The evader starts motion from a random position
for each episode with an initial orientation θe = 0
and with a constant velocity Ve = 0.5 m/s which
is half that of the pursuer (slower). The distance
between the front and rear axle Le = 0.3 m and
the steering angle ue ∈ [−1, 1] which is twice that
of the pursuer (more maneuverable). From (19),
Rdemin

' 0.19 m which is about one third that of
the pursuer. The duration of a game is 60 seconds.
The game ends when 60 seconds passed without
capturing or when the capture occurs before the
end of this time. The capture radius ` = 0.10 m.
The sampling time is set to 0.1 sec.

8.2. The proposed QLFIS
We choose the number of episodes (games) to be

1000, the number of plays (steps) in each episode is
600, γ = 0.95, and λ = 0.9. We make the learning
rate for the FIS, η, decrease with each episode such
that

η = 0.1− 0.09
(

i

Max. Episodes

)
(42)
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and also make the learning rate for the FLC, ξ,
decrease with each episode such that

ξ = 0.01− 0.009
(

i

Max. Episodes

)
(43)

where i is the current episode. Note that the value
of η is 10 times the value of ξ i.e. the FIS converges
faster than the FLC to avoid instability in tuning
the parameters of the FLC. We choose σn = 0.08.

8.3. The proposed QLBGFC

We choose the number of episodes to be 200, the
number of plays in each episode is 6000, γ = 0.5,
and λ = 0.3. We make the learning rate, α, decrease
with each episode such that

α =
1

(i)0.7
(44)

and we also make ε decrease with each episode such
that

ε =
0.1
i

(45)

where i is the current episode. The position of the
evader, (xe, ye), is chosen randomly at the begin-
ning of each episode to cover most of the states.
Table 1 shows the values of GAs parameters used
in phase 2 stage 1 and stage 2.

8.4. Compared techniques

To validate the proposed QLFIS and QLBGFC
techniques, we compare their results with the re-
sults of the optimal strategy, Q(λ)-learning only,
the technique proposed in [19], and the reward-
based GA learning. The optimal strategies of the
pursuer and the evader are defined by (20) and (21).
The parameters of Q(λ)-learning only have the fol-
lowing values: the number of episodes is set to 200,
the number of plays in each episode is 6000, γ = 0.5

Table 1: Values of GAs parameters
Phase 2

Stage 1 Stage 2
Number of iterations 800 200
Population size 40 10
Number of plays - 300
Crossover probability 0.2 0.2
Mutation probability 0.1 0.1
Fitness function MSE defined by (41) capture time
Fitness function objective minimize minimize

and λ = 0.3. The learning rate, α, and ε are defined
by (44) and (45),respectively.

For the technique proposed in [19], we choose the
same values for the parameters of the NN. The NN
has a three-layer structure with 7-21-1 nodes. The
RL parameters and the initial values of the input
and the output parameters of the FLC are all cho-
sen to be the same as those chosen in the proposed
QLFIS. We choose σn = 0.1 which is decreasing
each episode by 1/i where i is the current episode.
The parameters of the reward-based GA learning
are chosen as follows: the number of iterations =
1000, the population size = 40, the number of plays
= 300, the probability of crossover = 0.2 and the
probability of mutation = 0.1.

Note that in phase 2 stage 2 of the proposed QL-
BGFC we already have a tuned FLC (obtained from
phase 2 stage 1) and we just fine tune it but in the
reward-based GA learning we have no idea about
the FLC parameters so we initialize them randomly.
This random initialization of the FLC will make the
pursuer not be able or take a long time to catch the
evader for some iterations and therefore the learn-
ing time will increase as we see in Section 9.

9. Results

Fig. 10 and Table 2 show the input and the out-
put parameters of the FLC after tuning using the
proposed QLFIS, respectively where ”N”, ”Z”, and
”P” are referred to the linguistic values ”Negative”,
”Zero”, and ”Positive”. Fig. 11 and Table 3 show
the input and the output parameters of the FLC
after tuning using the proposed QLBGFC.

Table 4 shows the capture times for different ini-
tial positions of the evader using the optimal strat-
egy of the pursuer, the Q(λ)−learning only, the pro-
posed QLFIS, the technique proposed in [19], the
reward-based GA, and the proposed QLBGFC. In

(a) The input δp (b) The input δ̇p

Figure 10: MFs for the inputs after tuning using the pro-
posed QLFIS
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addition, the learning times for the different tech-
niques are also shown in this table. From Table
4 we can see that although the Q(λ)-learning only
has the minimum learning time, it is not enough
to get the desired performance in comparison with
the optimal strategy and the other techniques. The
reward-based GA gets the best performance in com-
parison to the other techniques and its performance
approaches that of the optimal strategy. However,
the learning process using the reward-based GA
takes a comparatively long learning time. The pro-
posed QLFIS outperforms the technique proposed
in [19] in both performance and learning time and
both of them have better performance than using

Table 2: Fuzzy decision table after tuning using the proposed
QLFIS

δ̇p N Z P
δp
N -0.5452 -0.2595 -0.0693
Z -0.2459 0.0600 0.2299
P 0.0235 0.3019 0.5594

(a) The input δp (b) The input δ̇p

Figure 11: MFs for the inputs after tuning using the pro-
posed QLBGFC

Table 3: Fuzzy decision table after tuning using the proposed
QLBGFC

δ̇p N Z P
δp
N -1.0927 -0.4378 -0.7388
Z -0.5315 -0.2145 0.0827
P 0.9100 0.1965 0.0259

Table 4: Capture time, in seconds, for different evader ini-
tial positions and learning time, in seconds, for the different
techniques

Evader initial position Learning
(-6,7) (-7,-7) (2,4) (3,-8) time

Optimal strategy 9.6 10.4 4.5 8.5 —
Q(λ)-learning only 12.6 15.6 8.5 11.9 32.0
Technique proposed in [19] 10.9 12.9 4.7 9.1 258.6
Proposed QLFIS 10.0 10.7 4.6 8.8 65.2
Reward-based GA 9.7 10.5 4.5 8.6 460.8
Proposed QLBGFC 9.9 10.5 4.6 8.7 47.8

the Q(λ)-learning only. We can also see that the
proposed QLBGFC has the best performance as the
reward-based GA. In addition, it takes only 47.8
seconds in the learning process which is about 10%
of the learning time taken by the reward-based GA
and about 18% of the learning time taken by the
technique proposed in [19].

Now, we will increase the complexity of the model
by making both the pursuer and the evader self-
learn their control strategies simultaneously. The
difficulty in the learning process is that each robot
will try to find its optimal control strategy based
on the control strategy of the other robot which, at
the same time, is still learning.

Fig. 12 and Table 5 show the input and the out-
put parameters of the FLC for the pursuer using
the proposed QLFIS. Fig. 13 and Table 6 show the
input and the output parameters of the FLC for
the evader using the proposed QLFIS. Fig. 14
and Table 7 show the input and the output param-

(a) The input δp (b) The input δ̇p

Figure 12: MFs for the inputs of the pursuer after tuning
using the proposed QLFIS

Table 5: Fuzzy decision table for the pursuer after tuning
using the proposed QLFIS

δ̇p N Z P
δp
N -1.2990 -0.6134 -0.4064
Z -0.3726 -0.0097 0.3147
P 0.3223 0.5763 0.9906

(a) The input δe (b) The input δ̇e

Figure 13: MFs for the inputs of the evader after tuning
using the proposed QLFIS
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eters of the FLC for the pursuer using the proposed
QLBGFC. Fig. 15 and Table 8 show the input and
the output parameters of the FLC for the evader
using the proposed QLBGFC.

Table 6: Fuzzy decision table for the evader after tuning
using the proposed QLFIS

δ̇e N Z P
δe
N -1.4827 -0.4760 -0.0184
Z -0.5365 -0.0373 0.5500
P -0.0084 0.4747 1.1182

(a) The input δp (b) The input δ̇p

Figure 14: MFs for the inputs of the pursuer after tuning
using the proposed QLBGFC

Table 7: Fuzzy decision table for the pursuer after tuning
using the proposed QLBGFC

δ̇p N Z P
δp
N -0.4677 -0.2400 -0.7332
Z -0.8044 -1.2307 -0.2618
P 0.8208 0.1499 0.9347

(a) The input δe (b) The input δ̇e

Figure 15: MFs for the inputs of the evader after tuning
using the proposed QLBGFC

Table 8: Fuzzy decision table for the evader after tuning
using the proposed QLBGFC

δ̇e N Z P
δe
N -1.1479 -0.0022 -0.2797
Z -0.0529 -0.9777 -0.1257
P 0.4332 0.4061 0.7059

To check the performance of the different tech-
niques we can not use the capture time as a mea-
sure, as we did in Table 4, because in this game both
the pursuer and the evader are learning so we may
find capture times that are smaller than those cor-
responding to the optimal solution. Of course that
does not mean that the performance is better than
the optimal solution but it means that the evader
does not learn well and as a result it is captured
in a shorter time. Therefore the measure that we
use is the paths of both the pursuer and the evader
instead of the capture time. Fig. 16, Fig. 17, Fig.
18, Fig. 19, and Fig. 20 show the paths of the
pursuer and the evader of the different techniques
against the optimal strategies of the pursuer and
the evader. We can see that the best performance
is that of the proposed QLFIS and the proposed
QLBGFC. We can also see that the performance
of the reward-based GA diminishes as a result of
increasing the complexity of the system by making
both the pursuer and the evader learn their control
strategies simultaneously.

Table 9 shows the learning time for the differ-
ent techniques. Table 9 shows that the proposed
QLBGFC has the minimum learning time. Finally,
we can conclude that the proposed QLBGFC has
the best performance and the best learning time
among all the other techniques. We can also see
that the proposed QLFIS still outperforms the tech-
nique proposed in [19] in both performance and
learning time.

10. Conclusion

In this paper we proposed two novel techniques
to tune the parameters of FLC in which RL is com-

Figure 16: Paths of the pursuer and the evader (solid line)
using the Q(λ)-learning only against the optimal strategies
(dotted line)
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bined with FIS as a function approximation to gen-
eralize the state and the action spaces to the con-
tinuous case. The second technique combines RL
with GAs as a powerful optimization technique.
The proposed techniques are applied to a pursuit-
evasion game. First, we assume that the pursuer

Figure 17: Paths of the pursuer and the evader (solid line) us-
ing the technique proposed in [19] against the optimal strate-
gies (dotted line)

Figure 18: Paths of the pursuer and the evader (solid line) us-
ing the proposed QLFIS against the optimal strategies (dot-
ted line)

Figure 19: Paths of the pursuer and the evader (solid line)
using the reward-based GA against the optimal strategies
(dotted line)

does not know its control strategy. However it can
self-learn its optimal control strategy by interaction
with the evader. Second, we increase the complex-
ity of the model by assuming that both the pur-
suer and the evader do know their control strategies.
Computer simulation and the results show that the
proposed QLFIS and the proposed QLBGFC tech-
niques outperforms all the other techniques in per-
formance when compared with the optimal strategy
and in the learning time which is also an important
factor especially in on-line applications.

In future work, we will test our proposed tech-
nique in a more complex pursuit-evasion games in
which multi pursuers and multi evaders self-learn
their control strategies.
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