Simulation Service performance analysis across the Atlantic Ocean

Gabriel Wainer Loïc Quinet Julien Chazal
2Abstract

2Introduction

31. Communication between Ottawa and Clermont-Ferrand

62. Fire spread model

72.1. Performance analysis on the local machine (in Ottawa)

92.2. Performance analysis on the distant machine (in Clermont-Ferrand)

112.3. Comparison between the machines used to run Fire model simulation

122.4. Distributed Simulation on Internet for Fire model

163. Sand pile model

163.1. Performance analysis on the local machine (in Ottawa)

183.2. Performance analysis on the distant machine (in Clermont-Ferrand)

203.3. Comparison between the machines used to run Sand-pile model simulation

213.4. Distributed Simulation on Internet for Sand Pile model

25Conclusion

25References

Abstract

This paper presents a session of simulation tests realized across the Atlantic Ocean between two machines, one located in Canada and the other in France. These tests were done by using Simulation Service [Mad06] web service and a commodity Internet connection. The fire spread model [Ame01] and the sand-pile model [Saa03] were used.
Introduction

Simulation Service [Mad06] web service developed for CD++ simulator allows to run distributed simulation on any network, for example Internet. However, it introduced some overhead that affects the execution time of the models. That is, the time it takes for a local message (implemented as a C++ object) to be transmitted between two local processors is much shorter than the time it takes for a SOAP message carrying the same information to be transmitted between two remote processors.

In order to study the performance of the simulator across the Atlantic Ocean, different distributed simulation sessions were executed using two machines: one located in Canada, the other in France. These machines were connected using a commodity Internet connection.
1. Communication between Ottawa and Clermont-Ferrand
The machine located in Canada belongs to Department of Systems and Computer Engineering from Carleton University, Ottawa. The other machine, placed in France, is located in the LIMOS
 Laboratory from Blaise Pascal University, Clermont-Ferrand. The machines were connected using a commodity Internet connection.

[image: image1.emf]M

e

s

s

a

g

e

Q

u

e

u

e

s

(

L

i

n

u

x

K

e

r

n

e

l

)

Wrapper

(Java)

Axis engine

CD++

Wrapper

(C++)

Wrapper

(Java)

Axis engine

M

e

s

s

a

g

e

Q

u

e

u

e

s

(

L

i

n

u

x

K

e

r

n

e

l

)

Local message path Local message path

Internet/

UCLP

Remote message path

CD++

Wrapper

(C++)

Figure 1: Sending remote messages in distributed simulation

Readings obtained during the runs:

· The simulation time required to execute the models.

· The average time it takes in each run to transmit a SOAP message from Ottawa to Clermont-Ferrand.

· The average time it takes in each run to transmit a message within the Linux kernel using message queues.

· The average time it takes in each run to transfer a local message within a single machine.

Power of the machines:

· Configuration of the machine in the lab of Carleton University of Ottawa:

· Processor: dual PIV 3.2 GHz

· RAM: 512 MB

· Configuration of the machine in the lab of Blaise Pascal University of Clermont-Ferrand:

· Processor: single PIV 1.8 GHz

· RAM: 256 MB

Trace route (chart of the trace route):

· Report for 193.55.95.51 [devslimos1.isima.fr] (machine located in Clermont-Ferrand).

· The host '193.55.95.51' (known as devslimos1.isima.fr) has been found, and is reachable in 19 hops.

· Roundtrip time to 193.55.95.51, average = 136ms, min = 136ms, max = 137ms.

	Hop
	Node Name
	Location
	Time
	Network

	0
	ARS-1.cunet.carleton.ca
	*
	*
	Carleton University CARLETON1

	1
	-
	Ottawa, ON, Canada
	0
	Carleton University CARLETON1

	2
	-
	…
	0
	(private use)

	3
	-
	…
	0
	(private use)

	4
	-
	Ottawa, ON, Canada
	0
	Carleton University CARLETON1

	5
	-
	Ottawa, ON, Canada
	0
	Carleton University CARLETON1

	6
	-
	…
	0
	(private use)

	7
	orion-carleton-rne.dist1-otwa.ip.orion.on.ca
	Toronto, ON, Canada
	1
	ORANO ORION

	8
	C4-mon01.canet4.net
	Ottawa, ON, Canada
	3
	Canarie Inc CANARIE

	9
	C4-tor01.canet4.net
	Ottawa, ON, Canada
	18
	Canarie Inc CANARIE

	10
	carnarie-t.rt1.nyc.us.geant2.net
	(United Kingdom)
	33
	DANTE Ltd.

	11
	so-7-0-0.rt1.ams.nl.geant2.net
	(United Kingdom)
	112
	IP allocation for GEANT network

	12
	so-4-0-0.rt1.lon.uk.geant2.net
	(United Kingdom)
	120
	IP allocation for GEANT network

	13
	so-4-0-0.rt1.par.fr.geant2.net
	(United Kingdom)
	129
	IP allocation for GEANT network

	14
	renater-gw.rt1.par.fr.geant2.net
	(United Kingdom)
	127
	DANTE Ltd.

	15
	lyon-pos6-0.cssi.renater.fr
	Lyon, France
	135
	French education and research network

	16
	clermont-pos2-0.cssi.renater.fr
	Clermont-Ferrand, France
	135
	French education and research network

	17
	-
	(France)
	135
	French education and research network

	18
	-
	(France)
	136
	Universite Blaise Pascal

	19
	devslimos1.isima.fr
	(France)
	136
	Institut Superieur d'Informatique de Modelisation et de leurs Applications

Table 1: Trace route between the machines

The trace route chart shows the connection between the two machines for the simulation. The way is not a classic Internet like the Internet network provided for public people. The networks used are provided by the government of each country as fallow:

· CANARIE
: Canadian non-profit collaboration between business and government, coordinates improved Internet access and network connectivity throughout Canada.

· RENATER
: French educational and research network.
DANTE
 plans, builds and operates advanced networks for research and education. It is owned by European NRENs (National Research and Education Networks), and works in partnership with them and in cooperation with the European Commission. DANTE provides the data communications infrastructure essential to the development of the global research community. DANTE ensures the connectivity between the Canadian and the French research networks.
Once the Internet connectivity was effective and that all the tools were well set up, two types of models were used for the performance analysis across the Atlantic Ocean: fire spread model [Ame01] and sand-pile model [Saa03].

2. Fire spread model

This model represents fire spread in a forest [Ame01]. It is composed of 30x30 cell space; each cell represents a square area of the forest. The cell is considered to be burned if its temperature exceeds a specific value. The fallowing figure (figure 2) shows an excerpt of the model definition file with possible initial values of the cells.
	[top]

components : fire

[fire]

type : cell

dim : (30,30)

delay : inertial

defaultDelayTime : 0

border : nowrapped

neighbors : fire(-1,-1) fire(-1,0) fire(-1,1)

neighbors : fire(0,-1) fire(0,0) fire(0,1)

neighbors : fire(1,-1) fire(1,0) fire(1,1)

initialvalue : 0

initialCellsValue : fire.val

localtransition : FireBehavior

	[image: image2.png]burned

unbumed

Figure 2: An excerpt of the fire model definition

The cell space is using inertial delay. The neighborhood of the cell is defined by the neighbors construct, the cell is neighbored by 8 cells from all sides. Fire(-1,1) represents the cell in the North West side (NW), Fire(0, -1) represents the cell in the west (W), etc. The rules that define the state of the cells in each simulation cycle are defined are shown in Figure 3:
	[FireBehavior]

rule : {(1,-1)+(21.552615/17.967136)} {(21.552615/17.967136)*60000} {(0,0)=0 and (1,-1)!=? and 0<(1,-1)}

rule : {(1,0)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and (1,0)!=? and 0<(1,0)}

rule : {(0,-1)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and (0,-1)!=? and 0<(0,-1)}

rule : {(-1,-1)+(21.552615/1.872060)} {(21.552615/1.872060)*60000} {(0,0)=0 and (-1,-1)!=? and 0<(-1,-1)}

rule : {(1,1)+(21.552615/1.872060)} {(21.552615/1.872060)*60000} {(0,0)=0 and (1,1)!=? and 0<(1,1)}

rule : {(-1,0)+(15.24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and (-1,0)!=? and 0<(-1,0)}

rule : {(0,1)+(15.24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and (0,1)!=? and 0<(0,1)}

rule : {(-1,1)+(21.552615/0.987474)} {(21.552615/0.987474)*60000} {(0,0)=0 and (-1,1)!=? and 0<(-1,1)}

rule : {(0,0)} 0 { t }

Figure 3: Fire model rule definition
The rules define the time it takes for the cell to be burned if one of its neighbors is burned. For example, the first rule indicates that if the cell in the south west side of the cell is burned (0 < (1, -1)), the cell will take ((21.552615/17.967136)*60000) milliseconds to be burned. The value of (21.552615) represents the diagonal distance of each cell (measured in meters), and the value of (17.967136) is the speed (measured in meters/minute) as presented in the model definition [Ame01]. By dividing the distance that the fire has to spread through by the speed of the fire spread, the time it takes for fire spread is evaluated in minutes and by multiplying it with 60,000 the time in milliseconds is obtained as the delay of the cell. If the condition in the first rule holds, the cell state is updated to the value of Fire(1,-1) + (21.552615/17.967136) when the delay elapses.

In order to study the performance of the Simulation Service Web Service and to compare the machine powerful, a session of 20 runs has been first realized on each machine.

2.1. Performance analysis on the local machine (in Ottawa)
	
	Average
	Std. Deviation
	Confidence Interval 95%

	Local Msg. (us)
	3.716
	0.135
	3.657
	≤ X ≤
	3.775

	Init. Time (ms)
	101.602
	3.197
	100.200
	≤ X ≤
	103.003

	Simulation Time (s)
	2.891
	0.011
	2.886
	≤ X ≤
	2.896

	Total Exec. Time (s)
	2.993
	0.012
	2.987
	≤ X ≤
	2.998

Table 2: Execution results of the fire model using the local machine (Ottawa)
The Local Message time is the time required to transmit a message from one processor (simulation processor) to another in the same machine. The transmission of a local message in a single machine is implemented as a method call (receive) in the receiving processor, which explains the short time required to communicate between two local processors (average of 3.716 microseconds).

The Initialization time is the time required by the simulator to load the model into memory, parse the configuration files, etc.; this is done before starting the simulation process.

The Simulation Time is the time of running the simulation which begins before processing the first event and ends after processing the last event.

[image: image3.emf]Simulation Time: Fire - Local Machine (Ars1)

2,80

2,85

2,90

2,95

3,00

3,05

3,10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Average

Figure 4: Fire model simulation time using the local machine (Ottawa)
[image: image4.emf]Total Execution Time: Fire - Local Machine (Ars1)

2,80

2,85

2,90

2,95

3,00

3,05

3,10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Average

Figure 5: Fire model total execution time using the local machine (Ottawa)

2.2. Performance analysis on the distant machine (in Clermont-Ferrand)

The followings tables and figures show the performance result tests for the fire model done on the distant machine located in Clermont-Ferrand, France.
	
	Average
	Std. Deviation
	Confidence Interval 95%

	Local Msg. (us)
	1.269
	0.054
	1.245
	≤ X ≤
	1.293

	Init. Time (ms)
	189.049
	8.064
	185.515
	≤ X ≤
	192.583

	Simulation Time (s)
	4.177
	0.528
	3.945
	≤ X ≤
	4.408

	Total Exec. Time (s)
	4.366
	0.529
	4.134
	≤ X ≤
	4.598

Table 3: Execution results of the fire model using the distant machine (Clermont-Ferrand)

[image: image5.emf]Simulation Time: Fire - Distant Machine (Limos)

3,0

3,5

4,0

4,5

5,0

5,5

6,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distant

Machine

(Limos)

Average

Figure 6: model simulation time using the distant machine (Clermont-Ferrand)

[image: image6.emf]Total Execution Time: Fire - Distant Machine (Limos)

3,0

3,5

4,0

4,5

5,0

5,5

6,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distant

Machine

(Limos)

Average

Figure 7: Fire model total execution time using the distant machine (Clermont-Ferrand)
2.3. Comparison between the machines used to run Fire model simulation

[image: image7.emf]Simulation Time: Fire -

comparison between local and distant machine

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Distant

Machine

(Limos)

Figure 8: Simulation Time comparison between local and distant machines
[image: image8.emf]Total Execution Time: Fire -

comparison between local and distant machine

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Distant

Machine

(Limos)

Figure 9: Total Execution Time comparison between local and distant machines

The latest figures show that the result test differences between the machines. The distant machine is an half less powerful than the machine located in Ottawa, as it’s mentioned in the part “1. Communication between Ottawa and Clermont-Ferrand”. The total execution time average for the local machine is 2.992 seconds whereas this for the distant machine is 4.365 seconds. This kind of differences is not really significant for this study, that matter is SOAP delay measured between the two machines during a distributed simulation.
2.4. Distributed Simulation on Internet for Fire model

The third great and the most interesting experiment is based on the distributed simulation across the Atlantic Ocean between the two machines. To do this, the cell space of the fire model was split into two equal parts (15x30) and each part was assigned to run on a different machine.
[image: image9.png]z
1
£

z
S
&

=

Figure 10: Fire model partitions on two machines

	
	Average
	Std. Deviation
	Confidence Interval 95%

	Local Msg. (us)
	3.719
	0.094
	3.678
	≤ X ≤
	3.760

	Kernel Msg. (ms)
	1.015
	0.673
	0.720
	≤ X ≤
	1.310

	SOAP Msg. (ms)
	8240.111
	1244.400
	7694.738
	≤ X ≤
	8785.484

	Init. Time (ms)
	99.801
	1.138
	99.303
	≤ X ≤
	100.300

	Simulation Time (s)
	895.274
	84.420
	858.276
	≤ X ≤
	932.272

	Total Exec. Time (s)
	895.374
	84.420
	858.376
	≤ X ≤
	932.372

Table 4: Execution results of the fire model using two machines via Internet

[image: image10.emf]Simulation Time: Fire -

Local Machine (Ars1) and Distant Machine (Limos)

800

850

900

950

1000

1050

1100

1150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distributed

Simulation

(Ars1 -

Limos)

Average

Figure 11: Simulation time for the fire model using 1&2 machines via Internet
[image: image11.emf]Execution Time: Fire -

Local Machine (Ars1) and Distant Machine (Limos)

800

850

900

950

1000

1050

1100

1150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distributed

Simulation

(Ars1 -

Limos)

Average

Figure 12: Total execution time for the fire model using 1&2 machines via Internet

The local message transfer is close to that when using a single machine since the messages are sent between local processors. When two machines are used to run distributed simulation, sending a message from one processor to another remote one involves sending it through the Linux kernel first to reach the web service components of the simulation service, then sending it as a SOAP message through the network (Internet), and finally from the web service components to the simulator at the receiving end (through the Linux kernel). The average time for message transfer through the kernel is 1.015 milliseconds.

On the other hand, the time for SOAP transfer from one machine to another is much longer than the kernel message transfer time, and it is the main contributing factor to the overhead associated with the distributed simulator. Another point to notice is that the initialization time is longer when running distributed simulation; this is due to the extra processors created to manage message passing among multiple machines (master and slave coordinators). By comparing the execution time when using one and two machines, the overhead introduced by the distributed simulator can be visualized, as shown in Figure 13:
[image: image12.emf]Simulation Time Synthesis for a distributed Simulation

- Fire -

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local Machine (Ars1)

Distributed

Simulation (Ars1 -

Limos)

Distant Machine

(Limos)

Figure 13: Comparing the simulation time for the fire model using 1&2 machines via Internet
[image: image13.emf]Total Execution Time Synthesis for a distributed simulation

- Fire -

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s) Local Machine

(Ars1)

Distributed

Simulation (Ars1

- Limos)

Distant Machine

(Limos)

Figure 14: Comparing the total execution time for the fire model using 1&2 machines via Internet

As it’s shown on the latest figures, the simulation and total execution times of the model are almost identical. The difference between the two is the time necessary to initialize the model which is insignificant compared to the time required to execute the model (average of 99.801 milliseconds compared to an average of 895.274 seconds). It is worth mentioning that the initialization time is measured for the local machine (in Ottawa) since the model in the distant machine (in Clermont-Ferrand) is loaded before starting the simulation in local machine. In addition, the time for loading the model in local machine is very close to that in distant machine due to the symmetric portioning of the model.
3. Sand pile model
The sand-pile model [Saa03] consists of a DEVS model representing a sand particle generator and a coupled Cell-DEVS model that simulates the sand-pile formation. The output of the generator is connected to the input of the coupled Cell-DEVS model, which in turn is connected to the input of one of the cells (sandpile(5,5)). An excerpt of the definition of the sand-pile model is shown in the following figure 15:
	[top]

components : sandpile particleGenerator@Generator

link : out@particleGenerator in@sandpile

out : out

link : out@particleGenerator out

[sandpile]

type : cell

dim : (10, 10)

delay : inertial

defaultDelayTime : 100

border : nowrapped

neighbors : sandpile(0,1) sandpile(1,0) sandpile(0,-1)

neighbors : sandpile(-1,0) sandpile(0,0)

in : in

link : in in@sandpile(5,5)

initialvalue : 0

localtransition : sandpile-rule

portInTransition : in@sandpile(5,5) NewParticle-rule

	[image: image14.png]Generatol

Figure 15: An excerpt of the Sand-pile model definition

NB: We can notice that all the simulation tests for the sand-pile use an execution time arbitrary fixed at 2 minutes (by using the setExecutionTime(“00:02:00:000”) method from the Simulation Service web service), due to that the sand generator perpetuity provides sand particles.
3.1. Performance analysis on the local machine (in Ottawa)

The sand-pile model was first executed on the local machine, located in Ottawa:

	
	Average
	Std. Deviation
	Confidence Interval 95%

	Local Msg. (us)
	3.730
	0.167
	3.657
	≤ X ≤
	3.803

	Init. Time (ms)
	22.625
	2.445
	21.553
	≤ X ≤
	23.696

	Simulation Time (s)
	0.066
	0.002
	0.065
	≤ X ≤
	0.067

	Total Exec. Time (s)
	0.089
	0.001
	0.088
	≤ X ≤
	0.089

Table 5: Execution results of the sand-pile model on the local machine (Ottawa)

[image: image15.emf]Simulation Time: Sand-pile - Local Machine (Ars1)

0,05

0,06

0,07

0,08

0,09

0,10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Average

Figure 16: Simulation time of the sand-pile model on the local machine (Ottawa)

The initialization time was less than that for the fire model due to the smaller cell space used, which resulted in smaller number of models to be initialized. However, the time required to load the models seems to be significant compared to the simulation time (the average initialization time is 22.625 milliseconds and the average simulation time is 66 milliseconds), which resulted in a longer execution time as the following figure (Figure 17). On the other hand, the variations in the simulation and execution times are insignificant (the standard deviation of the execution time is 0.001 second with an average of 0,089 seconds) and are due to different processes and daemons running on the machine.
[image: image16.emf]Total Execution Time: Sand-pile - Local Machine (Ars1)

0,05

0,06

0,07

0,08

0,09

0,10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Average

Figure 17: Total execution time of the sand pile model using the local machine (Ottawa)
3.2. Performance analysis on the distant machine (in Clermont-Ferrand)

The followings tables and figures show the performance result tests for the sand-pile model done on the distant machine located in Clermont-Ferrand, France.
	
	Average
	Std. Deviation
	Confidence Interval 95%

	Local Msg. (us)
	1.271
	0.067
	1.242
	≤ X ≤
	1.300

	Init. Time (ms)
	36.211
	4.913
	34.058
	≤ X ≤
	38.364

	Simulation Time (s)
	0.119
	0.003
	0.118
	≤ X ≤
	0.121

	Total Exec. Time (s)
	0.156
	0.004
	0.154
	≤ X ≤
	0.157

Table 6: Execution results of the sand-pile model using the distant machine (Clermont-Ferrand)

[image: image17.emf]Simulation Time: Sand-pile - Distant Machine (Limos)

0,10

0,11

0,12

0,13

0,14

0,15

0,16

0,17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distant

Machine

(Limos)

Average

Figure 18: Simulation time of the sand-pile model using the distant machine (Clermont-Ferrand)
[image: image18.emf]Total Execution Time: Sand-pile - Distant Machine (Limos)

0,10

0,11

0,12

0,13

0,14

0,15

0,16

0,17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distant

Machine

(Limos)

Average

Figure 19: Total execution time of the sand-pile model using the distant machine (Clermont-Ferrand)
3.3. Comparison between the machines used to run Sand-pile model simulation

[image: image19.emf]Simulation Time: Sand-pile -

comparison between local and distant machine

0,05

0,08

0,11

0,14

0,17

0,20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Distant

Machine

(Limos)

Figure 20: Simulation Time comparison for the sand-pile model between local and distant machines
[image: image20.emf]Total Execution Time: Sand-pile -

comparison between local and distant machine

0,05

0,08

0,11

0,14

0,17

0,20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local

Machine

(Ars1)

Distant

Machine

(Limos)

Figure 21: Total Execution Time comparison for the sand-pile model between local and distant machines

3.4. Distributed Simulation on Internet for Sand Pile model

In order to run the distributed simulation of the sand-pile model, this model was detached into two parts. The first part contains the sand pile generator (DEVS) and the second includes the sand-pile formation model (Cell-DEVS). Each part was assigned to run on one machine and the two machines were connected using a commodity Internet connection.

[image: image21.png]Machine #1

-}
v
H
£
5
&

Generator

Figure 22: Sand-pile model partition on two machines
	
	Average
	Std. Deviation
	Confidence Interval 95%

	Local Msg. (us)
	4.458
	0.172
	4.383
	≤ X ≤
	4.533

	Kernel Msg. (ms)
	1.522
	3.023
	0.198
	≤ X ≤
	2.847

	SOAP Msg. (ms)
	7653.817
	148.520
	7588.726
	≤ X ≤
	7718.907

	Init. Time (ms)
	21.720
	1.732
	20.961
	≤ X ≤
	22.479

	Simulation Time (s)
	132.714
	0.956
	132.295
	≤ X ≤
	133.133

	Total Exec. Time (s)
	132.735
	0.956
	132.316
	≤ X ≤
	133.155

Table 7: Execution results of the sand-pile model using local and distant machine via Internet

The results obtained are consistent with the ones obtained when running the fire model. The initialization time is longer when running distributed simulation since more processors need to be initialized. The simulation time is longer than that for a single machine due to the delay caused by sending SOAP messages between the remote processors.

[image: image22.emf]Simulation Time: Sand-pile -

Local Machine (Ars1) and Distant Machine (Limos)

130

131

132

133

134

135

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distributed

Simulation

(Ars1 -

Limos)

Average

Figure 23: Simulation time for the sand-pile model using 1&2 machines via Internet
[image: image23.emf]Simulation Time: Sand-pile -

Local Machine (Ars1) and Distant Machine (Limos)

130

131

132

133

134

135

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Distributed

Simulation

(Ars1 -

Limos)

Average

Figure 24: Total execution time for the sand-pile model using 1&2 machines via Internet
[image: image24.emf]Simulation Time Synthesis for a distributed Simulation

- Sand-pile -

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local Machine (Ars1)

Distributed

Simulation (Ars1 -

Limos)

Distant Machine

(Limos)

Figure 25: Comparing the simulation time for the sand-pile model using 1&2 machines via Internet
[image: image25.emf]Total Execution Time Synthesis for a distributed simulation

- Sand-pile -

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run#

Time (s)

Local Machine

(Ars1)

Distributed

Simulation (Ars1

- Limos)

Distant Machine

(Limos)

Figure 26: Comparing the total execution time for the sand-pile model using 1&2 machines via Internet
Conclusion

The following table presents a summary of the execution results for the models used in this study.

	
	Fire#1 (Ars1)
	Fire#1 (Limos)
	Fire#2 (Internet)
	SandPile#1 (Ars1)
	SandPile#1 (Limos)
	SandPile#2 (Internet)

	Local Msg. (us)
	3.700
	1.269
	3.719
	3.730
	1.271
	4.458

	Kernel Msg. (ms)
	NA
	NA
	1.0147565
	NA
	NA
	1.523

	SOAP Msg. (ms)
	NA
	NA
	8240.111
	NA
	NA
	7653.817

	Init. Time (ms)
	103.238
	189.048
	99.801
	22.624
	36.211
	21.720

	Simulation Time (s)
	2.889
	4.176
	895.273
	0.066
	0.119
	132.714

	Total Exec. Time (s)
	2.992
	4.365
	895.373
	0.088
	0.156
	132.735

Table 8: Summary of the execution results of the Fire and Sand-pile models

References
[Ame01] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of complex physical systems unsing Cell-DEVS”. Proceedings of the 34th Annual Simulation Symposium, Seattle, WA. USA. 2001.

[Mad06] Madhoun, R. “Web Service-based distributed simulation of Discrete Event Models”. Thesis, Carleton University, Ottawa, ON. Canada. 2006.
[Saa03] Saadawi, H.; Wainer, G. “modeling a sand pile application using Cell-DEVS”. Proceedings of the 2003 Summer Computer Simulation Conference. Montreal, QC. Canada. 2003.

� LIMOS : “Laboratoire de recherche d'Informatique, de Modélisation et d'Optimisation des Systèmes” - Complexe scientifique des Cézeaux, 63177 AUBIERE cedex, FRANCE. � HYPERLINK "http://www.isima.fr/limos/" ��http://www.isima.fr/limos/�

� CANARIE: � HYPERLINK "http://www.canarie.ca" ��http://www.canarie.ca�

� RENATER: “REseau NAtional de télécommunications pour la Technologie l'Enseignement et la Recherche”. � HYPERLINK "http://www.renater.fr/" ��http://www.renater.fr/�

� DANTE: “Delivery of Advanced Network Technology to Europe”. � HYPERLINK "http://www.dante.net/" ��http://www.dante.net/�

- 3 -

_1215497900.vsd
CD++

Wrapper (C++)

Wrapper
(Java)

Axis engine

Message Queues
(Linux Kernel)

Message Queues
(Linux Kernel)

Wrapper
(Java)

Axis engine

Local message path

Local message path

Internet/
UCLP

Remote message path

CD++

Wrapper (C++)

