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A computer simulation experiment is presented which attempts to relate survival 
of genets (clones) and ramets in laterally spreading clonal organisms, for example 
a herbaceous perennial, to density-independent mortality caused by spatially local- 
ized disturbances of different frequency and size. The model used is based on a 
two-dimensional cellular automaton approach (Wolfram, 1984, Physica 10D, 1). 
The results of the simulations emphasize the crucial importance of the size of the 
patches of disturbances for the survival of both genets and ramets. 

1. Introduction 

Plants are sessile organisms, in which the situation in the near environment, especially 
the spatial relation to neighbouring plants, is of great importance for the fitness of 
an individual plant (Mithen et al., 1984; Hutchings, 1986). Plants are also modular 
organisms. Many plants, especially herbaceous perennials, exhibit clonal growth, 
i.e. produce laterally spreading shoots that became physiologically and (eventually) 
physically independent units (ramets), suffering mortality more or less independent 
of each other (Cook, 1979). These traits--sessility, modularity and clonality--make 
two-dimensional cellular automata (Wolfram, 1984; cf. also other papers in the 
same issue) a promising tool for building models of population dynamics and species 
coexistence of herbaceous perennials. A two-dimensional cellular automaton con- 
sists of an array of discrete sites, with each site carrying a discrete value. The value 
of each position is updated in discrete time steps depending of the values in a 
neighbourhood of sites around it, according to uniform rules. These rules are 
typically deterministic, but they may even be stochastic. There is a growing interest 
in such models in plant ecology (Barkham & Hance, 1982; Crawley & May, 1987). 
Similar models have been used for some time in population genetics, such as the 
two-dimensional extensions of the stepping-stone approach for modelling gene flow 
(Rohlf & Schnell, 1971; Comins, 1982; Turner et al., 1982). 

In an earlier paper about two rosette herbs (Inghe & Tamm, 1985), a simple 
model was used to predict the survival of genets from calculated depletion curves 
and bifurcation frequencies of rosettes. However, that model assumed completely 
statistically independent deaths of the ramets, which is unrealistic if the daughter 
ramets are placed closely together (which they were) and if mortality is caused by 
coarse-grained patchy disturbances (which it partly was). Here, I present a simple 
stochastic cellular automaton simulation model which intends to explore the relation- 
ship between clonal growth and genet survival under different regimes of density- 
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independent  mortality caused by spatially localized disturbances, where both the 
size of  the disturbances and the total area affected is varied. 

2. The model 

For the sake of  clarity, I present the technical features of  the model in numbered 
points, with explanations and justifications added in brackets after each point. 

(i) Simulations is carried out in a universe of  3600 sites (cells), arranged in a 
square of  60 rows and 60 columns. Each site can either be empty, or occupied by 
exactly one ramet. (The size of  the universe was partly chosen out from considerations 
of  the limited memory and speed of the used microcomputer.  If, to make a realistic 
example, a mature ramet is considered to occupy a site of  2 x 2 cm 2, the universe 
will correspond in size to a "'permanent plot"  of  1.2 x 1.2 m2.) 

(ii) Sites are assumed to be placed in a square lattice. (Some models, e.g. Crawley 
& May, 1977, use a hexagonal lattice, which is the densest way to pack circular 
units of equal size on a plane. That may be somewhat more realistic, but a greater 
neighbourhood of  sites is then needed to represent the same number of  distances 
from the cell to be updated,  and I have not thought that to be good economy of  
computer  time for the present aims.) 

(iii) To avoid edge effects, the universe has wrap-around margins, so that the 
upper row and the bottom row are neighbours to each other, and the rightmost 
column and the leftmost column are neighbours to each other. (Real populations, 
of  course, have edges of  diverse kinds. However,  it is convenient to begin with a 
homogeneous,  universe-like space, and introduce various complications in a step- 
wise manner  later on.) 

(iv) Each site have a neighbourhood of  12 sites (Fig. 1), representing three 
distances from the site. For each site in the neighbourhood,  there is a certain 
probability PI for a ramet growing there, and providing it is the only ramet in the 
neighbourhood,  to colonize the central site from time t to t + 1 (e.g. one generation 
of  the model),  if it is unoccupied. The actual probabilities used in the simulation 
experiment are shown in Fig. l(a).  If more than one ramet compete for colonizing 
an empty site, the actual probability for a ramet in position I to colonize the empty 
place, P~, is given by 

(1 P~ = 12 
i = l  ZP, 

i = l  

where Pi (i = 1, 2, 3 . . . .  ,12) is a value from one of  the 12 positions in Fig. l(a) if 
the position is occupied and otherwise zero. The expression within the parentheses 
is the probability that any ramet in the neighbourhood colonizes the empty site. 
The expression in front of  it is the proport ion of  that probability assigned to the 
ramet in position I. (Applying Lovett Doust 's (1981) phalanx-guerilla dichotomy, 
the expansion probabilities chosen may be considered to represent a clonal herb 
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FIG. 1. The probability (Pt) of an empty site to be colonized within one generation by a sole ramet 
growing in different positions of the neighbourhood. (a) Colonizing probabilities chosen to represent a 
clonal herb growing in the phalanx mode. (b) Colonizing probabilities chosen to represent a clonal 
herb growing in the guerilla mode. 

growing in the phalanx mode, i.e. with most of the daughter ramets placed very 
near the original ramet. Reiterated undisturbed growth gives a roughly circular clone 
with a nearly closed advancing front. If Fig. l(a) is viewed as an empty zone of 
expansion around a single ramet--which is completely valid as long as one ramet 
is considered in isolation, although not the way the actual computations are carried 
out--it is easy to see that an average of three daughter ramets will be produced in 
one generation, which seems to be within the realm of biological realism, if one 
generation of the model is viewed as one year in nature.) 

(v) Death of ramets is caused by randomly choosing squares in a grid of non- 
overlapping squares covering the universe and killing all ramets present within them. 
Edge effects are averted by letting the position of the square grid vary randomly in 
both spatial dimensions between generations. The size of the squares (measured as 
side length in cell units, A) and total number of cells affected per generation (L) 
are the two parameters varied between simulation runs. Note that the non-overlap- 
ping method of sampling squares within a closed grid keeps L exactly constant 
between generations within runs, but it constrains the A-values chosen to be factors 
of 60--the length of the universe. (Obviously, in nature far from all disturbances 
cause 100% mortality among affected ramets of all plant species. Nor do many 
disturbance agencies make square-formed, non-overlapping disturbances of exactly 
uniform sizes. But there are disturbers who approach 100% killing effectiveness, 
for example wild boars, who often remove the whole turf when foraging. Besides, 
even if some of these four simplifications ought to be removed to achieve a closer 
fit to observed natural conditions, they can all easily be fairly strictly followed in 
long-term field experiments. There is no death of single ramets due to competition 
or senility. This is certainly wrong in many cases. On the other hand, frequently 
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competi t ion appears  to be ineffective in removing grown-up ramets (Grubb,  1 9 7 7 ) ,  

and senility may be virtually absent in some ramet morphologies (Inghe & Tamm,  
1985).) 

(vi) A simulation starts by "sowing"  50 genets, each consisting of  one ramet, at 
random over the universe, which is then exposed to death events according to (v). 
This is called generation zero. The following generations each consists of  an episode 
of  clonal growth (iv) followed by an episode of  death (v). O u t p u t ~ n u m b e r  of  
ramets and their genet ident i ty-- is  at the end of  each generation; an example is 
displayed in Fig. 2. (Seed regeneration does not occur outside the initial "sowing"  
event. Recruitment by seedlings is indeed believed to be as a rule a rare event in 
clonal herbs (Cook, 1985), although reviewing of  made species studies yields a more 
complicated picture, Eriksson, in press.) 
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FIG. 2. A computer outprint mapping the position of ramets after 16 generations in a run where A = 12 
and L = 432. The position of the three "fresh" mortality squares are clearly visible. 



G E N E T  A N D  R A M E T  S U R V I V O R S H I P  261 

(vii) The explored parameter  values are shown in Fig. 3. Three runs of  250 
generations was made for each combinat ion of  paramete r  values. (Keeping to the 
2 x 2  cm 2 cell example  above,  mortality squares vary in size between 2 x 2  and 
60 x 60 cm 2. This is plausible for many types of  animal-  and man-made  disturbances, 
al though some biotic and many  abiotic disturbances are much bigger. The total area 
affected per genera t ion/year  (L) may reach unrealistic values in some of  the 
small-squared combinations,  but those are included to cover the whole field of  
parameter  values up to the limit where the ramet  populat ions rapidly go to extinction. 
The number  of  replicates have been kept low, to cover more parameter  combinat ions 
instead. Most differences in ramet  and genet number  between replicates appeared  
in the first few generations, due to good or bad luck for the populat ion of  one-or 
few-unit-genets present then, but these differences became damped  out or eclipsed 
by fluctuations later on.) 
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FIG. 3. Combinations of parameter values used in the main simulation experiment (m) and in the 
"competition" simulation experiment (~). The number besides each square is the number of mortality 
squares per generation, i.e. L / A  2. The A-axis is turned around to enhance visual compatibility with the 
bottom planes of Figs 4(a-b). 
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(viii) Besides this, four unreplicated runs of  120 generations were done where 
25 of  the clones introduced at the start were of  the type already described [Fig. 
l(a)],  while 25 were of  the more guerilla-like (Lovett Doust, 1981) type in Fig. l(b).  
This "competi t ion simulation" had the additional rule that ramets of  the phalanx- 
type could colonize ("overgrow")  sites occupied by ramets of  the guerilla-type with 
the same ease as if the sites were unoccupied. (The expansion probabilities of  the 
guerilla type also produce a clone that expands in a roughly circular fashion, but 
with a more irregular front than in the phalanx type, with a deep of  around 4-5 
cell units before all space is occupied. The assumptions of  total competition 
superiority for the phalanx type can perhaps be justified as a postulated trade off 
for investment in strong, competitive daughter ramets vs. investment in long stolons 
or rhizomes, although it may be exaggerated, and therefore give unduly conservative 
results for possibilities of  coexistence. Crawley & May (1987) use the same rule for 
a perennial vs. an annual (where it may be more valid), and, leaving the question 
of  genetic identity aside, our guerilla-type can indeed alternatively be viewed as an 
annual which, contrary to in their model, have localized seed dispersal.) 

3. Results 

The mean number of  ramets and ofgenets respectively remaining in the simulations 
after 250 generations are shown by Figs 4(a-b).  

With unit-sized mortality squares (A = 1) the number of  ramets lies closely to 
3 6 0 0 - L  for L-values up to around 1200 [cf. dotted line on the back-wall of  Fig. 
4(a)], indicating that most emptied sites are recolonized within one generation. For 
higher values of L, ramet number drops more significantly below 3 6 0 0 - L ,  and 
reach zero for L =  2700. Even in a model assuming unlimited spatial dispersal a 
zero point must eventually be reached when L increases. However, with the spatially 
restricted dispersal of this model such a point must be reached even sooner because 
the random dispersal of  many one-unit mortality squares must necessarily create 
some greater gaps somewhere sometimes; gaps which takes several generations to 
fill from the border  inwards. The greater fluctuations in ramet number  between 
generations for L = 2340 as compared to L = 900 [Figs 5(a-b)] are certainly caused 
by the bigger stochastic component  in the number, size and shape of  these compound 
gaps. 

While preserving the generally convext  shape of  the slopes, higher A-values cause 
successively steeper drops towards zero as L increases. For example, A = 12 makes 
ramet survival impossible for L-values half  as big as for A = 1. The interpolated 
boundary for ramet survival is outlined as a curved dashed line on the bottom plane 
of  Fig. 4(a). In two cases near this boundary [marked by arrows in Fig. 4(a)], 
situated in the region of  high A-values, one of  the three runs reached zero values 
within 250 generations. Ramet number fluctuates violently between generations in 
this region, and sometimes a run of  generations with bad fortune (i.e. where the 
few big mortality squares happen to be placed over the most densely populated 
areas) may be fatal. Even Fig. 5(c) shows cases where the ramet populat ion dropped 

t"Convex'" and "concave" are used here in their visually descriptive, non-mathematical sense. 
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FIG. 4. Three-dimensional diagrams showing the number of ramets (a) and genets (b) (mean of three 
runs) after 250 generations for the tested parameter combinations in the main simulation experiment. 
See text for further explanations. 
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to dangerously low values, for a point somewhat more removed from the ramet 
survival boundary line. 

The growth of the ramet population through time can be followed in the leftmost 
column of Fig. 6. Ramet number grows rapidly in the beginning, except in the 
regions where extinction occurs soon, reaching a pseudo-carrying capacity after 
about 20 generations. After this, the most notable change is a displacement of the 
zero line to the left; most pronounced for higher A-values and certainly due to the 
above-mentioned stochastic fluctuations. 

The genet (or clone) number after 250 generations combine to a plane of a flat 
to concave shape [Fig. 4(b)], markedly different from the convex shape of the ramet 
numbers of Fig. 4(a). The depletion of genet number through time (Fig. 6, middle 
column) does not reach a standstill within 20 generations, as for ramet number, but 
continues, although with diminishing rate, throughout the span of the simulations, 
carving out a successively deeper glacier niche-like concavity and creating a widening 
zone with very few remaining ramets. It can be argued that for all L >  0, genet 
number eventually will reach 1 (that is, if the ramet population escapes ext inct ion)-  
although this will take an increasingly long time for lower values of L or A--because 
in each case a patch is opened for recolonization there is, when more than one 
clone is left, a certain probability that it will be placed in the border region between 
two clones. Now, the border of a small clone tends to be more convexly curved 
than that of the bigger clone, which means that an empty unit placed close to the 
border will have a greater probability to have a position in its neighbourhood of 
potential colonizers to be occupied with a ramet of the bigger clone, than with one 
from the smaller clone. This argument presupposes the existence of clear borders 
between the clones, and there mostly are for the phalanx-like colonization prob- 
abilities used in the present simulation (cf. Fig. 2). If, on the other hand, ramets of 
different clones would come to grow randomly intermixed, the eventual "victory" 
of a single clone will likewise be probable, in analogy to the mechanisms operating 
on alleles in genetic drift. 

The evolving differences in shapes for the planes extrapolated for ramet and genet 
numbers, respectively, imply that the corresponding genet size pattern also evolves 
(Fig. 6, rightmost column). From around 20 generations, i.e. when ramet number 
begins to level off, a conspicious elongated dome of big genet sizes develops in the 
region of high A-values, with the crest for L-values near below the extinction line. 
(Although, for only three replicates, the exact position and shape of the crest vary 
with the big stochastical fluctuations mentioned above.) 

Figures 7(a-c) show genet number for the three "competition" simulations with 
an A-value of 12. The phalanx clones clearly win out for the lowest L-value. One 
guerilla clone is the sole survivor for the highest L-value, with a ramet population 
(not shown in the figure) fluctuating between 150 and 742 during the last 70 
generations. (This outcome is hardly accidental, as no phalanx clones survived until 
120 generations in the thrice replicated run for the same parameter values in the 
main simulation experiment.) At the intermediate L-value members of both clone 
types survive. The number of ramets for the single guerilla clone vary between 212 
and 596, and the total number of ramets for the two phalanx clones vary between 



266 

genera- 
tions 

O. I N G H E  

ramets genets ramets/genets 
L ~  

1 

A 

20 

50 

150 

250  

F 

FIG. 6. Contour diagrams showing the number of ramets (leftmost column), number ofgenets (middle 
column), and mean genet size (dghtmost column) for some generations in the main simulation experiment. 
Scales and axis directions for the diagrams are the same as in Fig. 3. Contours are hand-interpolated 
from the means of the three runs for each of the tested-parameter combinations. The irregularity dotted 
area in the diagrams covers the regions where no (or, down to the left, very few) parameter combinations 
were tested. 
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244 and 744, during the last 50 generations. The result for the fourth run (with 
A = 5, L = 1200) resembles that of Fig. 7(a). A preliminary conclusion may therefore 
be that the guerilla type can survive in a narrow zone outside the survival limit for 
the phalanx clones (i.e. with higher A- or L-values), and that coexistence is possible 
in a narrow zone just inside that limit. 

4. Discussion 

The simulations clearly shows the paramount role of the size structure of the 
effect of mortality agents for the growth and survival of the population of ramets, 
and for their clone structure. 

The one-unit cases (A = 1) approximate non-spatial models (e.g. Inghe and Tamm, 
1985), where only overall mortality is varied. However, this now appears as a special, 
limiting case, where disturbances (or other mortality agents) are of the same size 
as a single specimen. Disturbances of a somewhat bigger relative size (or, more 
precisely, width) can have a much bigger effect, especially on clone number, and 
size. The size of, for example, cow-pats, the pits of badgers and wild boars, the 
runways of voles, the trampling of big animals, including men and his vehicles, 
certainly belongs to this size category, from an ordinary herb ramet's "point of 
view". A greater capacity of lateral expansion (i.e. a larger neighbourhood) than 
used in the simulations presented here would push the frequency isolines for ramets 
and genets upwards (as for the faster-expanding guerilla clones in the "competition" 
simulation), but hardly alter the pattern qualitatively. 

However, the model assumed 100% ramet mortality within the mortality squares, 
and it seems obvious that even a rather low survival probability within them would 
profoundly facilitate recolonization of the emptied area, especially for the real big 
A-values, by reducing the mean distance to the nearest potential recolonizer. In 
nature, selection pressure may be high for such a capacity for persistence in spite 
of severe disturbances. 

The results concerning the clonal structure (number and mean size of genets) 
illuminates the capacity of the big-sized disturbances to rapidly weed out genets, 
leaving only one or a few to expand to a size where they may be comparatively 
"secure". (Even if, as argued above, the survival of a single (or no) clone may be 
the eventual outcome even for small A-values, that end-point is hardly attained 
within time-spans of ecological relevance in those cases.) Such a depletion of the 
local genetic variation implies a decreased capacity for adaptations to spatial 
microenvironmental heterogeneity (due to both loss of genes from the population 
and increased inbreeding reducing genetic recombination), and may also increase 
susceptibility to attacks of pathogens. 

Coffin & Lauenroth (1988) explicitly address the effects of disturbance size upon 
turnover rate for clones and for total cover of the perennial steppe grass Bouteloua 
gracilis in a computer simulation using empirically derived frequency and size 
distribution data for grass clones and (in order of decreasing frequency and increas- 
ing size) cattle faecal pats, ant mounds and animal burrows. Ant mounds and animal 
burrows was found to contribute differentially more to clone turnover rate than to 
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plant cover turnover rate, a result qualitatively in line with that predicted from our 
model. However,  although covering time-spans of  up to more than half  a million 
years, there is no growth of  the clones or clonal fragments in their model, which in 
other respects is rather similar to ours. Inclusion of  empirically derived data for 
lateral growth of  Bouteloua may improve its accuracy considerably. 

The realism of  this model,  of  course, is limited to scenarios where seedling 
establishment occurs only very rarely, usually after a widespread disturbance such 
as a fire, or a severe flooding. Inclusion of  more or less continuous seed dispersal 
and seedling establishment in the model may generate more complex, but perhaps 
more widely applicable, clonal patterns. 

The runs with the two different types of  genets represent another  possible extension 
of  the model towards greater realism and complexity by including competit ion 
effects and other neighbourhood interactions. If  interpreted as a perennial-annual 
competition, the outcome is broadly in line with the equilibrium model of  Crawley 
& May (1987) in the general conditions found necessary for coexistence, although 
the models are not directly comparable. More developed models along the same 
line could shed light over mechanisms of  coexistence of  genotypes and species; 
exploring the continuum spanning the apparent  (scale-dependent) dichotomy 
between equilibrium and non-equilibrium processes in this respect. 

In a greenhouse competit ion experiment, Schmid and Harper  (1985) found Bellis 
perennis (phalanx type) to be competitively superior at high planting densities and 
Prunella vulgaris (guerilla type) to be competitively superior at low planting densities. 
The different outcomes were maintained even when a complete vegetation cover 
was established in all plots, so the role of  competitive overgrowth was not similar 
to that of  our  simulations. Neither was there a regime of  perpetual disturbances. 
Nevertheless, provided that competitive overgrowth occurs to some degree, the 
predicted outcome of  a field or greenhouse experiment involving these two species, 
where disturbances of  different sizes and frequencies are applied as different treat- 
ments, should be qualitatively similar to that of  the made simulations. 

Finally it should be mentioned that it is possible to integrate models of  the 
above-mentioned type with population genetic models of  the same brand, including 
factors as breeding systems, pollen dispersal and somatic selection, thereby enabling 
analysis of  the interaction between ecological interactions and microevolution. 

I am indebted to G6ran Blom, Gudrun Jonsdottir, Thomas Nilsson, Peppe Tapper, Anders 
Telenius, G6ran Thor and Peter Torstensson for assistance by starting up night-long computer 
simulations after finishing their own work, and to Ove Eriksson for valuable comments on 
the manuscript. 
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