SYSC-5104
Methodologies for Discrete
Event Modeling and Simulation

Assignment 1
A Discrete Event System Specification Model for
An Agricultural Farming System

Bruno St-Aubin – 101089879
Carleton University

Chika Chelvis Obioha Emetochukwu – 8896689
University of Ottawa

October 16th, 2017

Contents
Conceptual Model of the Agricultural Farming System	3
Description of the problem	3
Conceptual Model	3
Component Behavioral Description	3
Formal Specification of the Agricultural Farming Model	6
Types	6
Atomic Models	6
Coupled Models	11
Experimentation strategy	13
Implementation of the Agricultural Farming Model	16
Implementation code	16
Sample results and analysis	16
Model corrections following experimentation	21

[bookmark: _Toc497504661]Conceptual Model of the Agricultural Farming System
[bookmark: _Toc497504662]Description of the problem
Agriculture is the root of human nutrition. Sustainable and optimized agricultural production on industrial farms is a topic that generates world-wide academic and industrial research. Industrial farms are complex, large-scale and expensive systems that involve many sub-systems in interaction with one another. For the industrial farmer, a failure in any one of the components may result in irrecoverable costs, forecasting an eventual business failure. In this context, it is understandable that testing configurations of fields, farming equipment or delivery patterns is a risky undertaking for a farmer.
In this first assignment, we propose a conceptual model of a large-scale industrial farming system. Our objective is to be able to test and optimize the configuration of the different sub-systems, the growth cycles, the crop harvesting and the patterns of produce delivery. A successful model would allow industrial farmers to optimize their farming practice while mitigating, possibly eliminating, financial risks to their business.

[bookmark: _Toc497504663]Conceptual Model
[image:]
[bookmark: _Toc497504664]Component Behavioral Description

	After going through multiple iterations of our models, we realized that it presented similarities with the Queue-Processor-Transducer model used as an example in the textbook. Our fields act as the generators and generate three types of jobs. Our Job Manager is the queue, it splits, holds and distributes the requests according to their types. The Irrigator, Sower and Harvester act as the processors of our model. Finally, the market acts as the transducer, converting an input into another output, in this case, crops into sales.

Lesson Learned #1

1. Fields
The field component represents the cultivated area where seeds are sown and crops are grown. They generate requests that are sent to the Job Manager. These requests can be of 3 types, water requests when the field is dry, seeds request when the field is empty and harvest requests when the field is fully grown. The field receives a done signal that will allow it to proceed to the next step in its seed-water-harvest cycle. Since the field automatically generates requests forever, we have added a stop input to end the generation of jobs when required.
To make our model more interesting, we have decided to implement a crop rotation pattern. Crop rotation is a method that allows fields to maintain their productivity and soil quality over subsequent growth cycles. It involves cyclically cultivating a variety of crops that are carefully selected to avoid draining the soil of any of its nutrients. Modern crop rotation systems are usually based on the number of crops involved. In our case, we have decided to limit the complexity of our model by including only three types of crops.
Our field model has a surface parameter (acres) that will impact the amount of crops that can be harvested. They also have a growth period (days) that depends on the type of crops that are seeded. And finally, they have an evaporation rate (days) that will determine at which frequency it will output a water request.

	The field is the model that was most difficult for us to model. When deciding how to model the field, we quickly realized that we could spend an unreasonable amount of time trying to represent a “real” cultivatable field. There are likely an infinite number of factors to consider, evaporation rate, the rain, the temperature, the type of crops, the soil quality, humidity in the air, etc. It was obvious that our model for the field would be lacking in several ways. Considering the time constraints, we settled on a very limited number of parameters to model the growth of our fields, evaporation rate and growth time.
Also note that we added a stop signal input to control when the model stop generating new inputs. The reason we did it this way is because we wanted to simulate a period spanning up to a year and the simulator did not seem to support this when creating a .bat file.

Lesson Learned #2

2. Job Managers
A job manager is a coupled model that contains a queue and a processor. Our model has one job manager for each type of request that can be sent by the fields (i.e water, seeds, harvest). When the Job Manager’s queue receives a request, it holds it until the processor is available to execute it, then it sends the request to the processor. The queue can also receive a done signal, at which point the top request is dequeued and output back to the field so it can continue its growing process. Admittedly, the processors could have sent the done signals back to the 3 fields. We decided to let the queue signal the field to keep our processor models field agnostic.
Note: The queue in the job manager operates like a standard queue and will not be detailed further. The processors (irrigator, sower, harvester) are detailed below.

	While discussing our model, we had difficulty deciding what our coupled model would contain. We could have assembled the 3 fields into a Generator coupled model, our 3 queues into a job manager model or we could have assembled a queue with a processor to create an enhanced processor. We settled on assembling each queue with its processor for two reasons. First is that conceptually, it is what made the most sense for us. Second is that it allowed us to reuse our coupled models multiple time and consequently, experiment with another feature of CD++.
In the end we realized that the choice was somewhat inconsequential because of the closure property of coupled models. Any coupled model can be substituted by its sub-models, and vice-versa, without having an impact on the global model.

Lesson Learned #3

3. Irrigator
The Irrigator provides water to the fields. This component receives a request from the Water Job Queue and outputs a done signal back to the queue once finished. The irrigator has a speed parameter (acres/h) that will impact its operation time. Its operation time is determined by its speed and the area to be covered (acres).

	We understood the complexity of modeling a system when we realized that all our models had to provide feedback to the previous models to queue and launch the next steps (i.e, Irrigator feedbacks into the Water Job Queue, Water Job Queue feedbacks into the field). Multiplying the generators, the queues and the processors increased the complexity in a non-linear manner. For this reason, we decided to remove the rain, a natural phenomenon that is difficult to model. We also removed the storage and delivery models because we deemed them trivial and less interesting than the rest of the model.

Lesson Learned #4

4. Sower
The Sower provides seeds to the fields. This component receives a request from the Sowing Job Queue and outputs a done signal back to the queue once finished. The sower has a speed parameter (acres/h) that will impact its operation time. Its operation time is determined by its speed and the area to be covered (acres).
5. Harvester
The crop harvester is responsible of harvesting a fully-grown field. This component receives a request from the Harvest Job Queue. Once done harvesting, it outputs a done signal back to the queue and an amount of crops to be sold. The harvester has a speed parameter (Acres/h) that will impact its operation time. Its operation time is determined by its speed and the area to be covered (acres). The crops it generates is determined by the surface harvested and the yield of the type of crop being harvested (bushels/acre).
6. Market
The market component is responsible for selling the bushels of crops generated by the harvester. This component receives bushels of produce from the harvester. The market model has a value parameter that determines the value of each bushel of produce according to its type. For simplicity, this model does not require any duration to transduce the crops into sales. Its only output is sales.

[bookmark: _Toc497504665]Formal Specification of the Agricultural Farming Model
[bookmark: _Toc497504666]Types
	Queue Request
field_id Є {1, 2, 3}
surface Є R+
type Є {1, 2, 3}
	Task Request
task id Є N+
surface Є R+
type Є {1, 2, 3}

	In CD++, it seems that it is impossible for a model to output an object. To work around this issue, we made it so our models output multiple values, representing the properties of the object we would have output otherwise. The receiving model then waits for all the outputs to have arrived before actually proceeding with the external transition function. Obviously, this has multiplied the number of ports required by most of our models by a factor of 3 (type, surface, field id).

Lesson Learned #5

[bookmark: _Toc497504667]Atomic Models
Field
S =	phase Є {passive, active}, state Є {empty, dry, watered, ready},
growth_times IS {type: Time}, evaporation_times IS {type:Time},
time_left IS {type:Time}, seed_type Є {1, 2, 3}

X = {in_stop, in_done}

Y = {	out_water_request IS {type: Queue Request},
	out_seed_request IS {type: Queue Request},
	out_harvest_request IS {type: Queue Request}}

δext (s, e, x)
{ 
if (x.port == in_stop)
{
state = “stopped”
	phase = passive
}

else if (state == “empty”) 			// Received seeds
{
state = “dry”

seed_type = nextSeedType()
time_left = getGrowthTime(seed_type)
	
s.phase = active
}

else if (state == “dry”) state = “watered”		// Received water

else if (x.port == “ready”) state = “empty”	// Received harvest
} 

δint (s)
 {
If (state != “watered”) phase = passive	

	if (time_left == 0) state = “ready”		// Field becomes ready for harvest

	Else
{
	time_left = time_left – evaporation
	
	state = “dry”			// Field needs water
}
}
λ(s)
{		
	If (state == “dry”) Output WaterRequest Into out_water_request

	If (state == “ready”) Output HarvestRequest Into out_harvest_request

	If (state == “empty”) Output SeedRequest Into out_seed_request
}

	ta(state == “watered”)
{
evaporation = getEvaporationTime()

return (evaporation < time_left) ? evaporation : time_left
}

	ta(state == “ready” || state == “empty” || state == “dry”) return 0

	ta(phase == passive) return INFINITY

	As said before, we find our field model to be lacking in several aspects. Notably, it completely stops growing when it becomes dry. We would have liked to consider a buffer period where it continues growing for a while if it doesn’t receive water immediately. Furthermore, we have implemented a mechanism that emulates time elapsed (time left -= evaporation time), ideally, we would have used the elapsed time. Both these options would have made the code much more complex and we wouldn’t have been able to complete the assignment in the allowed time.
Additionally, it would have been safer to distinguish the input type (water done, seed done or harvest done) by using dedicated input ports instead of the previous state. In our case we assume that we receive each input sequentially (i.e Seed -> Water -> Harvest). This could lead to some inconsistencies in cases where the inputs are not received in the correct order. (ex: field is dry -> seeds received -> field is watered). We did not implement this because of the amount of ports we would’ve had to add to the model. It already has 9 output ports (3 X 3 request types) and two input ports. We would’ve needed 3 more input ports.
In this case, being able to output objects would’ve reduced the number of ports required significantly.

Notes about the field model
Irrigator
S = phase Є {active, passive}, speed Є R+
X = {in_water_request IS {type: Task Request}}
Y = {out_done}

δint (s, e)
{ 	
If (s.phase == active) s.phase = passive
}

δext (s, e, x {type: water request})
{
If (s.phase == passive) s.phase = active
}

λ(s)
{
Output 1 Into out_done 	// 1 is done signal value
}

ta(phase == active)
{
	return in_water_request.surface / speed
}

ta(s Є {passive}) = INFINITY

Sower
S = phase Є {active, passive}, speed Є R+
X = {in_seed_request IS {type: Task Request}}
Y = {out_done}

δint (s, e)
{ 	
If (s.phase == active) s.phase = passive
}

δext (s, e, x)
{
If (s.phase == passive) s.phase = active
}

λ(s)
{
Output 1 Into out_done 	// 1 is done signal value
}

ta(s Є {active})
{
	return in_seed_request.surface / speed
}

ta(s Є {passive}) = INFINITY

	
In retrospective, we can see that the sower and irrigator models are identical. They should have both used the same model, for example, a generic processor. The harvester model is a little different because it outputs bushels externally. Ideally, we would’ve inherited from the generic processor model and made a subclassed model for the harvester. Because of time constraints, this was impossible.

Lesson Learned #6

Harvester
S = phase Є {active, passive}, speed Є R+, growth_yields IS {type : Time}
X = {in_harvest_request IS {type: Task Request}}
Y = {out_done, out_bushels Є R+, out_type Є {1,2,3}}

δint (s, e)
{ 	
If (s.phase == active) s.phase = passive
}

δext (s, e, x)
{
If (s.phase == passive) s.phase = active
}

λ(s)
{
	bushels = in_harvest_request.surface * growth_yields[in_harvest_request.type]

Output bushels Into out_bushels
Output type Into out_type
Output 1 Into out_done 	// 1 is done signal value
}

ta(s Є {active})
{
	return in_harvest_request.surface / speed
}

ta(s Є {passive}) = INFINITY

Queue
S = phase Є {active, passive}, state Є {done, default},
	 Requests IS {type: List OF Request IS {type: Queue Request}}

X = {in _request IS {type: Queue Request}, in_done}

Y = 	{out_task_request IS {type: Task Request}, out_done_field_1, out_done _field_2, out_done _field_3}

δint (s, e)
{ 	
If (s.phase == active) s.phase = passive
}

δext (s, e, x)
{
If (x.Port == in_done && Requests.length > 0)
{
state = done
s.phase = active
}

If (x.Port == in_request)
{
	Requests.AddToBack(in_request)

if (Requests.length == 1) s.phase = active
}
}

λ(s)
{
	If (state == done)
{
	If (requests.first().field == 1) Output 1 Into out_done_field_1

	If (requests.first().field == 2) Output 1 Into out_done_field_2

	If (requests.first().field == 3) Output 1 Into out_done_field_3

	Requests.RemoveFirst();

State = default
}

If (Requests.length > 0)
{
	TaskRequest task = ConvertToTask(Requests.First())

	Output task Into out_task_request
}
}

ta(s Є {active}) return 0

ta(s Є {passive}) = INFINITY

Market
S = phase Є {active, passive}, Values IS {type: List OF R+}, current_type Є {1,2,3}, current_bushels Є R+
X = {in_type Є {1,2,3}, in_bushels Є R+ }
Y = {out_type Є {1,2,3}, out_bushels Є R+, out_sales Є R+}

δint (s, e)
{ 	
s.phase = passive
}

δext (s, e, x)
{
	s.current_type = in_type
s.current_bushels = in_bushels

s.phase = active
}

λ(s)
{
	bushel_value = GetValueByType(current_type)

	sales = current_bushels * bushel_value

Output current_type Into out_type
Output current_bushels Into out_bushels 	
Output sales Into out_sales
}

ta(s Є {active}) return 0

ta(s Є {passive}) = INFINITY

[bookmark: _Toc497504668]Coupled Models
Job Manager (Harvester Manager)
X = {in_request IS {type: Queue Request}}
Y = {out_field_1, out_field_2, out_field_3, out_bushels*, out_type*}
D = {Queue, Harvester};
Md = { Mqueue, MHarvester}; 
EIC = {(self, in_request), (Queue, in_request)};
EOC = 	{(Harvester, out_bushels), (self, out_bushels); (Harvester, out_type), (self, out_type) ;(Queue, out_done_field_1), (self, out_field_1) ;(Queue, out_ done_field_2),(self, out_field_2) ;(Queue, out_ done_field_3),(self, out_field_3) }
IC = 	{(Queue, out_task_request), (Harvester, in_harvest_request);(Harvester, out_done),(Queue, in_done) }. 
* The three processor managers (Water Manager, Sower Manager, Harvester Manager) are identical except for the output parameters out_bushels and out_type. These are only present in the Harvester Manager.
Agricultural Farm
X = {in_stop_f1, in_stop_f2, in_stop_f3}
Y = {out_bushels, out_type, out_sales}
D = 	{F1 IS {Type: Field}, F2 IS {Type: Field}, F3 IS {Type: Field}, SM IS {Type: Job_Manager}, WM IS {Type: Job Manager}, HM IS {Type: Job Manager}, Market};
Md = { Mfield, MJob Manager, MMarket}; 
EIC =	{(self, in_stop_f1), (F1, in_stop); {(self, in_stop_f2), (F2, in_stop); {(self, in_stop_f3), (F3, in_stop)};
EOC = 	{(Market, out_bushels), (self, out_bushels) ; (Market, out_type), (self, out_type) ; (Market, out_sales), (self, out_sales)}
IC = 	{(F1, out_water_request), (WM, in _request); (F1, out_seed_request), (SM, in _request); (F1, out_harvest_request), (HM, in _request); (F2, out_water_request), (WM, in _request); (F2, out_seed_request), (SM, in _request); (F2, out_harvest_request), (HM, in _request); (F3, out_water_request), (WM, in _request); (F3, out_seed_request), (SM, in _request); (F3, out_harvest_request), (HM, in _request); (WM, out_field_1), (F1, in_done); (SM, out_field_1), (F1, in_done); (HM, out_field_1), (F1, in_done); (WM, out_field_2), (F2, in_done); (SM, out_field_2), (F2, in_done); (HM, out_field_2), (F2, in_done); (WM, out_field_3), (F3, in_done); (SM, out_field_3), (F3, in_done); (HM, out_field_3), (F3, in_done); (HM, out_bushels),(Market, in_bushels); (HM, out_type),(Market, in_type)}

	
As mentioned in the behavioral description of the job manager model, we opted to output the done signal through the queue so that our processor could remain field agnostic. Ideally, we would have made it so the queues were field agnostic as well. To achieve this, we could’ve integrated a splitter/sorter model that would’ve taken in all requests, separated them by type and sent them to the appropriate job manager. Then, the job managers could have output the done requests back to the splitter/sorter so that it could send the done signal back to the appropriate field.
The advantage of this is that the fields wouldn’t have to know how many queues there are and the queues wouldn’t have to know how many fields there are. This information would be encapsulated in the splitter/sorter model. It would have allowed us to add or remove fields or job managers without reconfiguring the coupled models. Because of time constraints, we were unable to do this. In addition, the fact that it is difficult (impossible?) to output objects made this more time consuming.

Lesson Learned #7

[bookmark: _Toc497504669]Experimentation strategy
To experiment and test our agricultural farm model, we will adopt in a bottom down, incremental strategy. We will first start by testing the processor models (irrigation, sower and harvester) and the transducer model (market). Once the processors tested, we will test the queue and their integration with the processors as coupled models (water manager, sower manager, harvest manager). The next step will be testing the field model. Once all the sub-models have been tested, we will proceed with testing the complete, integrated, agricultural farm model.
For each of our experimentation steps, we will vary the inputs and confirm that the model behaves accordingly. We will test possible edge cases such as multiple inputs coming simultaneously or inputs arriving in the wrong order.
Sample Tests for processors (irrigation)
	12:00:00:00
	in_water_request (surface == 100)

	24:00:00:00
	in_water_request (surface == 200)

	24:00:00:00
	in_water_request (surface == 200)

	30:00:00:00
	in_water_request (surface == 5000)

	50:00:00:00
	in_water_request (surface == 200)

	70:00:00:00
	in_water_request (surface == 400)

Sample Tests for transducer (market)
	10:00:00:00
	in_bushels 16000

	10:00:00:00
	in_type 1

	15:00:00:00
	in_bushels 30000

	15:00:00:00
	in_type 2

	15:00:00:00
	in_bushels 20000

	15:00:00:00
	in_type 1

	20:00:00:00
	in_type 3

	20:00:00:00
	in_bushels 35000

	25:00:00:00
	in_type 3

	25:00:00:00
	in_type 3

	25:00:00:00
	in_bushels 45000

Sample Tests for queue
	00:00:00:00
	in_water_request (surface == 100)

	02:00:00:00
	in_done

	10:00:00:00
	in_water_request (surface == 200)

	12:00:00:00
	in_done

	13:00:00:00
	in_done

	20:00:00:00
	in_water_request (surface == 200)

	30:00:00:00
	in_water_request (surface == 5000)

	30:00:00:00
	in_water_request (surface == 200)

	30:00:00:00
	in_done

	30:00:00:00
	in_done

	30:00:00:00
	in_done

	50:00:00:00
	in_water_request (surface == 400)

Sample Tests for Job Managers (Water Manager)
	12:00:00:00
	in_water_request (surface == 100)

	24:00:00:00
	in_water_request (surface == 200)

	28:00:00:00
	in_water_request (surface == 1000)

	40:00:00:00
	in_water_request (surface == 100)

	50:00:00:00
	in_water_request (surface == 500)

	50:00:00:00
	in_water_request (surface == 400)

	70:00:00:00
	in_water_request (surface == 100)

	80:00:00:00
	in_water_request (surface == 200)

Sample Tests for Fields
	5:00:00:00
	in_done

	10:00:00:00
	in_done

	15:00:00:00
	in_done

	15:00:00:00
	in_done

	20:00:00:00
	in_done

	25:00:00:00
	in_stop

	30:00:00:00
	in_done

Sample Tests for Agricultural Farm
	12760:00:00:00
	in_stop_f2

	18760:00:00:00
	in_stop_f1

	14760:00:00:00
	in_stop_f2

	37520:00:00:00
	in_stop_f3

Note : The times are high because we wanted to simulate yearly operation. 18760 hours is equal to one year.

[bookmark: _Toc497504670]Implementation of the Agricultural Farming Model
[bookmark: _Toc497504671]Implementation code
The full code for the agricultural farm model and simulation can be found in the compressed (.zip) archive included with this document delivery. Note that the results presented in this section correspond to an experimental framework that varies from the one proposed in the previous section. While developing our model, our experimentation framework kept evolving according to aspects we wanted to test. The experimental framework in the following section is the one we used to verify our model.
[bookmark: _Toc497504672]Sample results and analysis
Sample Results for processors (harvester)

	Events
	Results

	00:00:00:00 in_id 1
00:00:00:00 in_type 1
00:00:00:00 in_surface 111
35:02:00:00 in_id 3
35:02:00:00 in_type 2
35:02:00:00 in_surface 111
35:02:00:00 in_id 3
35:02:00:00 in_type 2
35:02:00:00 in_surface 111
70:00:00:00 in_id 5
70:00:00:00 in_type 2
70:00:00:00 in_surface 222
100:00:00:00 in_id 6
100:00:00:00 in_type 3
100:00:00:00 in_surface 333
150:00:00:00 in_id 7
150:00:00:00 in_type 2
150:00:00:00 in_surface 111
170:00:00:00 in_id 8
170:00:00:00 in_type 3
170:00:00:00 in_surface 11111
300:00:00:00 in_id 8
300:00:00:00 in_type 3
300:00:00:00 in_surface 111
1300:00:00:00 in_id 9
1300:00:00:00 in_type 1
1300:00:00:00 in_surface 333
1350:00:00:00 in_id 10
1350:00:00:00 in_type 3
1350:00:00:00 in_surface 111
	11:06:00:001 out_id 1
11:06:00:001 out_bushels 16650
11:06:00:001 out_type 1
46:08:00:001 out_id 3
46:08:00:001 out_bushels 13320
46:08:00:001 out_type 2
92:12:00:002 out_id 5
92:12:00:002 out_bushels 26640
92:12:00:002 out_type 2
133:17:59:997 out_id 6
133:17:59:997 out_bushels 56610
133:17:59:997 out_type 3
161:06:00:001 out_id 7
161:06:00:001 out_bushels 13320
161:06:00:001 out_type 2
1281:05:59:912 out_id 8
1281:05:59:912 out_bushels 1.88887e+06
1281:05:59:912 out_type 3
1333:17:59:997 out_id 9
1333:17:59:997 out_bushels 49950
1333:17:59:997 out_type 1
1361:06:00:001 out_id 10
1361:06:00:001 out_bushels 18870
1361:06:00:001 out_type 3

From the harvester results, we can see it works as intended. It receives requests, executes them and, when a duration that is determined by the surface expires, it outputs bushels. When it receives multiple requests simultaneously (35:02:00:00) it executes only one the first one. The results also confirm that when it receives a request while busy, it ignores the request. This occurs at 300:00:00:00, the harvester receives a request but is busy executing a previous request with a very large surface (170:00:00:00). Finally, by comparing specific requests (00:00:00:00 with 1300:00:00, 00:00:00:00 with 1350:00:00:00) we can confirm that the amount of bushels output depends on the surface and the culture type associated to the request.
Sample Results for transducer (market)

	Events
	Results

	10:00:00:00	in_bushels 16000
10:00:00:00	in_bushels 16000
10:00:00:00	in_type 1
15:00:00:00	in_bushels 30000
15:00:00:00	in_type 2
15:00:00:00	in_bushels 20000
15:00:00:00	in_type 1
20:00:00:00	in_type 3
20:00:00:00	in_bushels 35000
25:00:00:00	in_type 3
25:00:00:00	in_type 3
27:00:00:00	in_bushels 45000
	10:00:00:000 out_type 1
10:00:00:000 out_bushels 16000
10:00:00:000 out_sales 40000
15:00:00:000 out_type 1
15:00:00:000 out_bushels 20000
15:00:00:000 out_sales 50000
20:00:00:000 out_type 3
20:00:00:000 out_bushels 35000
20:00:00:000 out_sales 143500
27:00:00:000 out_type 3
27:00:00:000 out_bushels 45000
27:00:00:000 out_sales 184500

From the results, we can immediately observe one issue. If the market receives two inputs at the same time, it will only process the last one received (Time 15:00:00:00). In the case of our global agricultural farm, this is a situation that shouldn’t happen. Indeed, the harvester requires time before outputting bushels to the market, it will never be able to execute multiple bushels output simultaneously. However, the issue could be fixed by integrating a queue to the market.
We can also see that the model only outputs when it has received both a type and an amount of bushels (Time 25:00:00:00 & 27:00:00:00). Furthermore, receiving the same type twice before receiving the second part of the output has no effect (Time 10:00:00:00 & Time 25:00:00:00).
Sample Results for queue

	Events
	Results

	00:00:00:00 in_surface 111
00:00:00:00 in_field 1
00:00:00:00 in_type 1
12:00:00:00 in_surface 222
12:00:00:00 in_field 2
12:00:00:00 in_type 3
35:00:00:00 in_surface 111
35:00:00:00 in_field 3
35:00:00:00 in_type 2
50:00:00:00 in_surface 111
50:00:00:00 in_field 3
50:00:00:00 in_type 3
55:00:00:00 in_done 1
55:00:01:00 in_done 1
55:00:02:00 in_done 1
60:00:00:00 in_done 1
60:00:01:00 in_done 1
70:00:00:00 in_surface 333
70:00:00:00 in_field 1
70:00:00:00 in_type 3
75:00:00:00 in_surface 111
75:00:00:00 in_field 2
75:00:00:00 in_type 2
100:00:00:00 in_done 1
	00:00:00:000 out_id 1
00:00:00:000 out_surface 111
00:00:00:000 out_type 1
55:00:00:000 out_field_1 1
55:00:00:000 out_id 2
55:00:00:000 out_surface 222
55:00:00:000 out_type 3
55:00:01:000 out_field_2 2
55:00:01:000 out_id 3
55:00:01:000 out_surface 111
55:00:01:000 out_type 2
55:00:02:000 out_field_3 3
55:00:02:000 out_id 4
55:00:02:000 out_surface 111
55:00:02:000 out_type 3
60:00:00:000 out_field_3 4
70:00:00:000 out_id 5
70:00:00:000 out_surface 333
70:00:00:000 out_type 3
100:00:00:000 out_field_1 5
100:00:00:000 out_id 6
100:00:00:000 out_surface 111
100:00:00:000 out_type 2

From these results, we can see that the queue works properly. It receives a first request, immediately outputs it then holds further requests in a list until it receives its first done signal (Time 55:00:00:00). At this point, it outputs a done signal back to a field and outputs the next request to the processor. At Time 60:00:00:01, the queue receives an extra done signal but appropriately ignores it. It then restarts the queuing process with new requests.
Sample Results for Job Managers (Harvest Manager)

	Events
	Results

	00:00:00:00 in_surface 111
00:00:00:00 in_field 1
00:00:00:00 in_type 1
12:00:00:00 in_surface 222
12:00:00:00 in_field 2
12:00:00:00 in_type 3
12:00:00:00 in_surface 333
12:00:00:00 in_field 1
12:00:00:00 in_type 1
35:00:00:00 in_surface 111
35:00:00:00 in_field 3
35:00:00:00 in_type 2
50:00:00:00 in_surface 111
50:00:00:00 in_field 3
50:00:00:00 in_type 3
70:00:00:00 in_surface 333
70:00:00:00 in_field 1
70:00:00:00 in_type 3
75:00:00:00 in_surface 111
75:00:00:00 in_field 2
75:00:00:00 in_type 2
150:00:00:00 in_surface 222
150:00:00:00 in_field 2
150:00:00:00 in_type 2
	11:06:00:001 out_field_1 1
34:12:00:002 out_field_2 2
67:29:59:999 out_field_1 3
78:36:00:000 out_field_3 4
89:42:00:001 out_field_3 5
122:59:59:998 out_field_1 6
134:05:59:999 out_field_2 7
172:12:00:002 out_field_2 8

These results are straightforward. The sower manager receives 8 requests and eventually outputs 8 requests. We can see that the outputs are deferred by the time the sower requires to process them. Indeed, the sower’s speed is 10 acres per hour so a field with a surface of 111 acres requires 11.1 hours to process (Time 11:06:00:00). We can also see that concurrent requests are all held in the queue and eventually processed. Finally, we can observe what happens when a request is delayed because the processor is busy. For example, the request received at 70:00:00:00 requires 33.3 hours to complete, it should be done at around 103 hours. However, the results show that it is complete only at 122:59:59:99 hours. Time is wasted by the model.

Sample Results for Fields

	Events
	Results

	6:00:00:00 in_done 1
30:00:00:00 in_done 1
90:00:00:00 in_done 1
90:00:00:00 in_done 1
150:00:00:00 in_done 1
180:00:00:00 in_done 1
210:00:00:00 in_done 1
240:00:00:00 in_done 1
270:00:00:00 in_done 1
300:00:00:00 in_done 1
330:00:00:00 in_done 1
360:00:00:00 in_done 1
390:00:00:00 in_done 1
420:00:00:00 in_done 1
450:00:00:00 in_done 1
480:00:00:00 in_done 1
510:00:00:00 in_done 1
520:00:00:00 in_stop 1

	00:00:00:000 out_sower_field 1
00:00:00:000 out_sower_surface 100
00:00:00:000 out_sower_type 1
06:00:00:000 out_water_field 1
06:00:00:000 out_water_surface 100
06:00:00:000 out_water_type 2
78:00:00:000 out_water_field 1
78:00:00:000 out_water_surface 100
78:00:00:000 out_water_type 2
138:00:00:000 out_water_field 1
138:00:00:000 out_water_surface 100
138:00:00:000 out_water_type 2
198:00:00:000 out_harvest_field 1
198:00:00:000 out_harvest_surface 100
198:00:00:000 out_harvest_type 2
210:00:00:000 out_sower_field 1
210:00:00:000 out_sower_surface 100
210:00:00:000 out_sower_type 2
240:00:00:000 out_water_field 1
240:00:00:000 out_water_surface 100
240:00:00:000 out_water_type 3
342:00:00:000 out_water_field 1
342:00:00:000 out_water_surface 100
342:00:00:000 out_water_type 3
432:00:00:000 out_water_field 1
432:00:00:000 out_water_surface 100
432:00:00:000 out_water_type 3

As we can see from the results that the field behaves in the intended way. The first request it outputs, at 00:00:00:00 is a request for seeds, it receives a done signal at 06:00:00:00 which triggers a request for water. When there is a long delay between inputs, we notice that the evaporation process works well. For example, between 30:00:00:00 and 90:00:00:00 a water request is fired at 78:00:00:00. This corresponds to the 48 hours evaporation period for culture type 2. At 198:00:00:00, the growth cycle is complete (The time is wrong in these results, see note below.) so the field requests harvest and once harvest is done, it requests seeds. The cycle then begins again.
Additionally, at 90:00:00:00, we can also see that simultaneous requests do not cause any problems for the fields.

	
From the field model results above, we can see that the time for the first harvest (198:00:00:00) is nowhere near the expected growth time of the model (6 days or 144 hours). This is due to the way we calculated the time left to achieve full growth. In our model, every time a field receives water and is in a dry state, it means that it has evaporated. Therefore, we subtract the evaporation time from the time left for full growth. The consequence of this is that when the model receives water at arbitrary times such as when we use an event file, the growth process is not respected. For example, if the growth period is 4 days, the evaporation is 2 days, and the event file sends two in_done inputs within 4 hours, the field, will be considered grown. This does not happen in the full Farm because the field waits for the evaporation time to be elapsed before asking for water. The in_done input from the water manager will not arrive unless evaporation time has elapsed.
The ideal way to evaluate growth and evaporation would have been to integrate the simulator’s elapsed time in the model. However, due to time constraints and our unfamiliarity with the CD++ Toolkit, we chose to implement our simplified method of calculating growth and evaporation times.

Lesson Learned #8

Sample Results for Agricultural Farm

	Events
	Results

	5000:00:00:00 in_stop_f2 1
10000:00:00:00 in_stop_f1 1
10000:00:00:00 in_stop_f2 1
15000:00:00:00 in_stop_f3 1
	1838:00:00:000 out_type 2
1838:00:00:000 out_bushels 12000
1838:00:00:000 out_sales 38400
1948:00:00:000 out_type 3
1948:00:00:000 out_bushels 34000
1948:00:00:000 out_sales 139400
2380:00:00:000 out_type 1
2380:00:00:000 out_bushels 45000
2380:00:00:000 out_sales 112500
3684:00:00:000 out_type 3
3684:00:00:000 out_bushels 17000
3684:00:00:000 out_sales 69700
3768:00:00:000 out_type 1
3768:00:00:000 out_bushels 30000
3768:00:00:000 out_sales 75000
5042:00:00:000 out_type 2
5042:00:00:000 out_bushels 36000
5042:00:00:000 out_sales 115200
5230:00:00:000 out_type 1
5230:00:00:000 out_bushels 15000
5230:00:00:000 out_sales 37500
6722:00:00:000 out_type 2
6722:00:00:000 out_bushels 12000
6722:00:00:000 out_sales 38400
7276:00:00:000 out_type 3
7276:00:00:000 out_bushels 51000
7276:00:00:000 out_sales 209100
8476:00:00:000 out_type 3
8476:00:00:000 out_bushels 17000
8476:00:00:000 out_sales 69700
9380:00:00:000 out_type 1
9380:00:00:000 out_bushels 45000
9380:00:00:000 out_sales 112500
11682:00:00:000 out_type 2
11682:00:00:000 out_bushels 36000
11682:00:00:000 out_sales 115200
13842:00:00:000 out_type 3
13842:00:00:000 out_bushels 51000
13842:00:00:000 out_sales 209100

We can see that the farm behaves as expected. It outputs bushels, sales and types at intervals that roughly follow the expected times based on the various factors that impact it. For example, the first output can be easily traced. According to the model parameters, the field’s surface is 100, the growth rate is 40 days and it evaporates every day. At this state, it requires 960 hours to grow, during which time it will output 40 water requests. Each water request requires 10 hours to execute (100 acres divided by the speed of the irrigator, 10 acres/hour). The sowing and harvest times are each 20 hours. This brings the total time required to 1400 hours, the missing 438 hours can likely be explained by time wasted waiting for processors to be ready. The conclusion is that there is a lot of room for optimization.
In this case, it is obvious to us, having developed the model, that the irrigator is the bottleneck. This can easily be confirmed by running another simulation after doubling the irrigator’s speed in the model parameters (see farm.ma).

	Events
	Results

	5000:00:00:00 in_stop_f2 1
10000:00:00:00 in_stop_f1 1
10000:00:00:00 in_stop_f2 1
15000:00:00:00 in_stop_f3 1
	1296:00:00:000 out_type 2
1296:00:00:000 out_bushels 12000
1296:00:00:000 out_sales 38400
1772:00:00:000 out_type 1
1772:00:00:000 out_bushels 45000
1772:00:00:000 out_sales 112500
1812:00:00:000 out_type 3
1812:00:00:000 out_bushels 34000
1812:00:00:000 out_sales 139400
2970:00:00:000 out_type 3
2970:00:00:000 out_bushels 17000
2970:00:00:000 out_sales 69700
...

[bookmark: _Toc497504673]Model corrections following experimentation
Many small changes were brought to the models while we were developing and testing. We did not document each of them while we were developing. However, we can still discuss some of the bigger, more memorable changes.
Field would run past the stop time
The stopped state was not being set when the field model received a stop signal, the model was only passivating. This resulted in the model answering to inputs arriving after the stop signal. It also caused the field model to run indefinitely. Fortunately, the “kill simulation” button allowed us to stop simulating.
Problem with days to hours conversion
Testing allowed us to identify a problem with our conversion from days to hours. Our field model is configured in days (i.e growth time and evaporation time are in days). These values had to be converted to hours for the simulator. There was an issue with our conversion and we could easily see the incorrect time values in the results files.
Problem with queue
While testing with the queue, we discovered that the queue crashed if it received more done signal than it had requests. This was not apparent when testing with carefully crafted test events but, by testing edge cases, we could see that we were missing a validation on the queue size before processing a done signal.
image1.png

