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1. ABSTRACT 

There is an increasing need to use real-time 

crowd simulation in creating virtual scenes for 

visual media like films and video games, and 

in crisis training, architecture and urban 

planning, and evacuation simulation. Existing 

particle-based methods assume and aim for 

collision-free trajectories. That is an ideal -yet 

not overly realistic- expectation, as near-

collisions increase in dense and rushed 

settings compared to typically sparse 

pedestrian scenarios. This paper presents a 

method that evaluates the immediate personal 

space area surrounding each entity to inform 

its pathing decisions, and how this personal 

space is reduced by various distractions such 

as phone usage. While personal spaces have 

traditionally been modeled as having fixed 

radii, they actually often change in response to 

the surrounding context. For instance, in cases 

of congestion, entities tend to share more of 

their personal space than they normally would, 

simply out of necessity (e.g. leaving a concert 

or boarding a train). Likewise, entities 

travelling at higher speeds (e.g. strolling, 

running) tend to expect a larger area ahead of 

them to be their personal space [1]. 

 

 

2. INTRODUCTION 

Modeling and Simulation has become an 

essential stage for the development of any 

complex system in which actual 

experimentation is too dangerous or costly in 

terms of money and time. Dense crowd 

simulation is the process of simulating the 

movement of large numbers of people in order 

to analyze and predict their motion within a 

limited space. This gives the people 

responsible for the design decisions of such a 

space the ability to see the utility of their 

design, and how any design change will affect 

this utility. The applications of this simulation 

range from urban planning and congestion 

control to creating realistic virtual crowd 

scenes in movies and video games. 

Monitoring the same person’s movement 

along the same path for multiple times will 

give different results, and these differences 

increase when monitoring different people. 

These path deviations give us the impression 

that pedestrian movement is nondeterministic 

to a certain extent, so human movement 

simulation will always be an exercise of 

abstraction.[1] 

Dense crowd simulation can be very effective 

in simulation phenomena that rely on 

aggregate parameters such as pedestrian 



congestions and gatherings for specific events 

where we can bring a sense of determination 

through bounded stochasticity. 

The crowd simulation model illustrated in this 

paper is modeled using centroidal particles 

engine, which is a java based program that 

uses Processing IDE to visualize the 

simulation. The features that were added to the 

crowd’s model include the ability to simulate 

phone usage and the ability to detect collisions 

between passing pedestrians, and it focuses on 

local dynamics in an interactive environment. 

This paper presents improvements made on 

the already existing crowd’s model using 

centroidal particles.  

A study that was done by researchers at the 

University of Washington's Injury Prevention 

Center and secretly watched 1102 people 

crossing the street at "20 high-risk 

intersections during ... randomly assigned time 

windows," found that 29.8 percent (nearly one 

third) of all pedestrians "performed a 

distracting activity while crossing"[2]. There's 

a big need to simulate pedestrian distractions 

for their high occurrence rate and their effect 

on the personal safety of the distracted 

pedestrian and the safety of the public around 

them. 

3. BACKGROUND 

In centroidal particle crowd simulation, each 

entity has a global vector that leads to the final 

desired destination. This means that in the 

absence of any interference from any other 

dynamic entity, following the global vector 

will lead the entity to its final destination in an 

ideal time. Centroidal particle dynamics 

(CPD) have rules for each entity to navigate 

and avoid other dynamic entities in its 

surrounding, with the least deviation possible 

from the global path with the least time cost.  

3.1 Personal Space 

Each entity in the crowd engine is represented 

as a particle in a 2D plane. The circular area 

(0.8m radius) surrounding the particle is 

considered its personal space. The CPD rules 

are enacted when an entity’s personal space is 

violated. The personal space of an entity 

changes according to the activity if it’s not 

idle. When a person is distracted on his phone, 

his awareness area is reduced to right below 

and in front of him. So to simulate this 

behaviour, the entity’s personal space is 

reduced. 

 

Figure 1: Proposed PS shape: light area 

affects the entity and its neighbours; dark area 

only affects neighbours [1] 

3.2  Particle Interaction 

Each entity’s movement is governed by a net 

force which is a combination of two forces, 

the global pathing force and the reactive 

penalty force. The global pathing force is the 

force leading to the final destination, while the 

penalty force is applied when another entity or 

object violates its personal space to avoid any 

collision. 

When the personal space is violated, its shape 

is reduced and a new centroid is calculated. 

The net force (f) experienced by an entity is a 

linear combination of the global pathing force 



(g), and the penalty force (p) which falls along 

the direction of the new centroid. 

 

Figure 2: Forces that govern an entity’s 

motion [1] 

3.3 Velocity and Comfort Speed 

The comfort speed of each entity changes 

inversely to their local density. The personal 

space is used to calculate the local crowd 

density around each entity. This density is 

used to modify the comfort speed of each 

entity dynamically. The velocity is used as an 

upper limit for speed regardless of density. 

Experimental data has shown that comfort 

speed and its relation to local density differ 

according to cultural differences and the 

context of the crowd (indoor, outdoor...). 

 

 

4. SYSTEM MODEL 

Crowd simulation importance can’t be 

overstated and it’s been already explained in 

previous sections of this paper. This project 

implements some additional features and 

optimizations on the existent centroidal crowd 

simulation engine. 

The effects of phone usage distraction on 

pedestrians described above are being 

modeled. The main aspects being 

implemented are: Personal space truncation, 

speed reduction, and a collision detection 

system. 

Personal space truncation happens because the 

pedestrians are looking down at their phones, 

so they will have less forward and peripheral 

range of visibility. Different percentages of 

personal space reductions were tried, but we 

found that a 40 percent reduction had the most 

realistic effects on movement. Since a 

distracted pedestrian’s personal space is 

reduced, they tend to reduce their movement 

speed to give themself more time to react to 

obstacles. The comfort speed of pedestrians 

was reduced by about 50 percent to mimic 

their behaviour in real life. This reduction is 

overall and dynamic since an entity’s speed 

also depends on the crowd density and on the 

max velocity allowed.  

As for the collision detection system, different 

ways of implementation were tried. At first, 

we implemented a rudimentary method by 

checking the distance between the centroids of 

all entities at every frame and seeing if the 

distance between any two entities is less than 

two times the radius of the entity’s personal 

space, which means an intrusion of personal 

space has occurred. But this method was too 

costly performance wise and it caused a huge 

dip in the running and display speed of the 

simulation. The better and more sophisticated 

way that was later implemented was searching 

the immediate neighbourhood of each entity, 

similar to CELL-DEVS, instead of searching 

the whole canvas.  This method required fewer 

resources in terms of time and processing 

power. 

 

 

 

 

 



4.1 Main Engine Code 

The centroidal crowd engine base code is 

organized and divided in to many sections 

according to functionality. There was no need 

to modify many sections in the main code 

except for minor alterations. The bulk of the 

code modifications went into the Mods and 

Canvas sections. 

Below is an overview of the relevant code 

sections: 

Global variables: contains the declaration and 

initialization of all the variables that will be 

visible and accessible across all different 

functions. 

int[] specialIDs;     // A list of IDs of the modified 

entities 

PVector[] initialPositions;      // A list of their 

initial positions  

PVector groupAvgPosition;        // Keeps track of 

 the average of special entity positions

PVector mousePosition;           // Keeps track of 

mouse position 

boolean meetingOccured;          // Becomes true if 

the special entities have met/gathered 

PImage obstacleMap;              // Holds an image of 

the obstacle map 

int obstacleChoice;              // Choice of multiple 

available obstacles 

boolean recordTimeToMeeting=false;     // Enable 

printing of Time-To-Meeting (in seconds) 

boolean recordCollisions= true;     // Enable 

printing of collision count 

int WIDTH = 500, HEIGHT = 600;   // Canvas 

dimensions (1 pixel = 10cm in real life) 

// Non-special entities initial distribution  

String NONSPECIAL_INIT_DISTRIBUTION = 

"bidirectional"; 

// Are they in bidirectional flow, or standing still 

boolean NONSPECIAL_BIDIRECTIONAL = 

true;       

// Simulation starts paused? 

boolean START_PAUSED = false; boolean 

PRINT_FRAMERATE; 

boolean DISPLAY_OBJECTIVE = false; 

boolean PAUSE_SIGNAL; 

int MOUSE_DETRACT; 

String INITIAL_DISTRIBUTION; 

 

State Initialization: This section contains all 

the special entity ID and size, initial positions 

for all special entities, and any initialization 

for any other state variable. This section runs 

only once at start-up. 

void modification_Initialization(){ 

  // Specify the IDs of the special entities   

   int size=90; 

   specialIDs = new int[size]; 

   for(int i=0;i<size;i++) { specialIDs[i] = i; } 

   initialPositions = new 

PVector[specialIDs.length]; // allocate empty 

array 

   for(int i=0; i<specialIDs.length/2; i++){ 

     initialPositions[i] = new 

PVector(random(0.05*width, 0.95*width), 

random(0.05*height, height/2)); 

     // Rejection Sampling 

     

while(canvas.drawingSurface.get((int)initialPo

sitions[i].x, (int)initialPositions[i].y) == 

COLOR_TO_ID(-5)){ 

       initialPositions[i] = new 

PVector(random(0.05*width, 0.95*width), 

random(0.05*height, height/2)); 

     } 

   } 

 

Forces: In this section we modify and add all 

applicable forces to the special entities. The 

main applicable forces are: 

Bidirectional force: This is the global pathing 

force in a bidirectional setting (hallway, 

crosswalk). It splits the crowd into two groups 

each heading to the opposite side of the 

modeled space. 



VoroForce: This is the collision avoidance 

force that works according to the personal 

space. When any PS intrusion happens, this 

force tries to retract and restore the PS to its 

initial position. 

Friction Force: This force helps humanize the 

entities in a way that they don’t appear to be 

gliding across the field. 

 

void modification_Forces(){ 

  PGraphics ds = canvas.drawingSurface;    // 

get drawing surface 

  // For each special entity: 

  for(int i=0; i<specialIDs.length; i++){ 

    Entity entity = 

crowd.getEntities()[specialIDs[i]];    // get the 

special entity 

    PVector pos   = entity.getPosition();                 

 // get its current position

    PVector modForce = new PVector(0, 0, 0);    

 // modification net force (starts empty)

    // Collision avoidance force towards voro 

centroid = centroidPosition - currentPosition 

    PVector voroForce = PVector.sub 

(entity.getCentroidPosition(), pos).limit(1);  

    PVector frictionForce = 

PVector.mult(entity.getVelocity(),-0.7); 

    PVector bipolarForce = new PVector(0, 

ds.height*(i>floor(specialIDs.length*0.5)?0.1

5:0.85)-y, 0).limit(3).mult(0.1); 

    modForce.add(voroForce.mult(0.7));   

    modForce.add(frictionForce.mult(1)); 

    modForce.add(bipolarForce.mult(1)); 

entity.setForce(modForce.mult(0.1)).updatePo

sitionMod();  

  }} 

 

 

 

 

Visualization: In this section we alter how 

each state of the special entities is displayed 

on the screen. 

void modification_Visualization(){ 

  // Create some colors we might use (Red, 

Green, Blue, Alpha) 0-255 each 

  color specialHighlight    = 

color(250,170,20,240);  // special entity 

highlight color  

  color specialHighlightMet = 

color(20,250,30,240);   // highlight color if 

they've met 

  color mouseHighlight      = 

color(100,240,10,255);  // mouse position 

highlight 

  color collisionDetected   = color(250, 

50,50,200);  // red for collision detection 

  // Heighlight the special entities 

  for(int i=0; i<specialIDs.length; i++){ 

    Entity entity = 

crowd.getEntities()[specialIDs[i]]; 

    PVector pos = entity.getPosition(); // get 

entity position 

    if (entity.getCollided()) 

      fill(collisionDetected); // Set the fill color 

    else 

      fill(specialHighlight); // Set the fill color 

    ellipse(pos.x, pos.y, CONE_RADIUS, 

CONE_RADIUS);  // draw a highlighting 

circle 

  }} 

Each pixel of the displayed canvas equals 

0.1m in real distance. And each frame of the 

simulation equals 50ms in real time. 

State Regular 

Pedestrian 

Distracted 

Pedestrian 

Collided 

Pedestrian 

Color    

Table 1: Special states colors 

 

 

 



4.2 Phone Distraction Code 

These are the code modifications done by me 

to mode the change in Personal Space and 

speed of pedestrians distracted on their 

cellphones and the resulting increase in 

collision potential for all pedestrians. These 

can be found by searching for 

[ModDistracted] throughout the project code 

comments. 

First we start by reducing the comfort speed of 

the entity. The comfort speed is not constant; 

it is a dynamic speed that’s inversely 

proportional to the local density and limited by 

the maximum allowed velocity. The 50 

percent reduction in comfort speed is achieved 

by decreasing the limiting velocity. The 

velocity reduction factor was deduced by 

experimenting and trying multiple reduction 

factors. The optimal reduction factor was 

found to be 20 percent. When the reduction 

factor is applied, the comfort speed fluctuates 

between 45 and 60 percent of the original 

comfort speed. 

// velocity Change 

    PVector v1 = entity.getVelocity(); // get the 

 original velocity

    PVector v2 = v1.mult(0.8); // reduce it by 

 20%

    entity.setVelocity(v2); // apply it to the 

 distracted entity

 

The second factor in the distraction modeling 

process is the reduction in the personal space. 

The personal space in the code is the search 

area around the entity’s centroid where it 

checks the pixels color and sees if there is a 

different color among there which means there 

is an intrusion. If an intrusion is detected, the 

collision avoidance force is activated to repel 

the entity in a direction opposite to the 

occurring intrusion. To reduce the personal 

space, we reduce the search area for intrusions 

by 40 percent. After the reduction in personal 

space, the centroid of the entity will have to be 

recalculated and shifted to account for the 

reduction in personal space. Consequently the 

collision avoidance will be delayed until a 

bigger intrusion has happened, which gives the 

entity less time to react to that intrusion. 

// Find Centroid when on phone (with reduced 

awareness of PS) 

    entity.setCentroidPosition(new PVector(0, 

0));     // Reset centroid calc

    int hits = 0, w = ds.width, h = ds.height; 

    float s = CONE_RADIUS+1;  // search 

 radius box

    float x = entity.getPosition().x, y= 

entity.getPosition().y; 

    int x1 = (int)clamp(x-s, 0, w), y1 = 

(int)clamp(y-0.8*s, 0, h);  //top-left corner

    int x2 = (int)clamp(x+s, 0, w), y2 = 

(int)clamp(y+0.8*s, 0, h);  //bot-right corner

    for (int xx=x1; xx<=x2; xx++) { // Iterate 

 over local neighbourhood (Personal Space) 

      for (int yy=y1; yy<=y2; yy++) { 

        if (ds.get(xx, 

yy)==entity.getColorCode()) {//check for 

 color match 

          entity.getCentroidPosition().add(xx, yy, 

0); 

          hits++;  // total number of color matches

        } 

      } 

    } 

    entity.getCentroidPosition().div(hits); 

 

 

 

 

 



The collision avoidance force applied to 

distracted entities was reduced to 50 percent, 

compared with 70 percent for non-distracted 

entities. 

   //Collision avoidance force 

    PVector voroForce = 

PVector.sub(entity.getCentroidPosition(), 

pos).limit(1);  

     //Reduce the force to a realsistic factor

    modForce.add(voroForce.mult(0.5));   

    // Apply the net mod force to the entity, and 

 update its position

entity.setForce(modForce.mult(0.1)).updatePo

sitionMod(); 

 

4.3 Collision Detection: 

A collided state is applied to an entity if a 

certain degree of intrusion has been recorded 

in its personal space. The amount of intrusion 

required to go into a collided state is chosen in 

a way that disregards minor collisions like 

shoulder rubs, and only accounts for serious 

collisions that have an impact. This intrusion 

factor was chosen by experimenting with 

multiple factors and monitoring the crowd 

simulation to see what accounted for a 

collision. The collisions count increases 

whenever any entity changes its state from 

non-collided to collided. The displayed 

collision count is the total collision count 

divided by two since each collision involves 

two entities. The collision tracking starts after 

20 frames (1 second) from the start of the 

simulation to allow for the initial orientation 

of the entities to occur since they’re positioned 

with a certain degree of randomness. 

 

 

    // Detect Collisions 

    int[] hitC = new int[CROWDCOUNT]; // 

visible portion of the softicle 

    for (int i = CROWDCOUNT; i-->0; ) {  

      hitC[i] = 0; 

      float s = CONE_RADIUS/2+1;  // search 

radius box 

      float x = entities[i].getPosition().x, 

y=entities[i].getPosition().y; 

      int x1 = (int)clamp(x-s, 0, w), y1 = 

(int)clamp(y-s, 0, h); //top-left corner 

      int x2 = (int)clamp(x+s, 0, w), y2 = 

(int)clamp(y+s, 0, h); //bot-right corner 

      for (int xx=x1; xx<=x2; xx++) { // 

        for (int yy=y1; yy<=y2; yy++) { 

          if (ds.get(xx, 

yy)==entities[i].getColorCode()) {   

            hitC[i]++; 

          } 

        } 

      } 

      if(frameCount>20){ // allow 1s for intial 

orientation of entities 

      if (hitC[i] <= s*s*3.9 && 

!entities[i].getCollided()){ 

        entities[i].setCollided(true); 

        COLLISIONCOUNT++; 

      }else if (hitC[i] > s*s*3.9 && 

entities[i].getCollided()){ 

        entities[i].setCollided(false);} 

    } 

    } 

 

 

 

 

 

 

 

 



4.4 Crowd Orientation: 

The simulation was carried on two crowd flow 

orientations, Unidirectional and Bidirectional. 

Unidirectional flow represents a crowd of 

people heading in the same direction, so all the 

crowd entities have a global pathing vector 

with the same direction. Bidirectional flow is 

the most interesting orientation to study since 

it’s the most common and it applies to most 

pedestrian traffic scenarios (hallway traffic, 

street crossing, bridges …). Bidirectional flow 

is simulated by dividing the crowd into two 

halves; the first half has a global pathing 

vector with opposite direction to second half. 

 
Figure 3.1: Bidirectional crowd flow 

 
Figure 3.2: Unidirectional crowd flow 

 

 

 

5. Simulation Result 

To see the full effects of phone usage among 

pedestrians, simulations were designed around 

three factors to see their effects on total 

collision count. The factors are total crowd 

size, distraction ratio (percentage of people 

in the crowd using their phones), and map 

width (simulation canvas width). Simulations 

were done by increasing each factor while 

maintain the other two factors constant. 

5.1 Bidirectional Flow 

The first set of simulations will be 

performed in a crowd with a bidirectional 

flow. 



Crowd Size: 

Crowd size affects the crowd density and 

the amount of space available for each 

pedestrian. Multiple simulations were done 

by varying the total crowd count while 

maintaining the distraction ratio at 30% 

and the canvas width at 600px. The total 

collision count was measured for all 

simulations. 

 
Figure 4: 1200 people crowd count 

 

 

 

Table 2 shows the results from running 

multiple simulations on a crowd of 400 to get 

the average collision count for this crowd size. 

Simulation number Collision count 

1 14 

2 12 

3 13 

4 25 

5 13 

6 37 

7 25 

8 45 

9 24 

10 18 

Average 22.6 

Table 2: Results from 10 simulations for 

crowd of 400 

Table 3 and figure 5 show the results from 

simulations of different crowd sizes. Each 

crowd size was simulated 10 times to get an 

average collision count. 

Crowd size Average collision 

count 

10 0 

50 0.2 

100 1.6 

200 4.4 

300 18.5 

400 39.5 

600 182.4 

Table 3: Average collisions count vs. crowd 

size 

 
Figure 5: Collisions count v. crowd size graph 



We can see in figure 5 that as we increase the 

crowd size, the collisions count increases 

exponentially. That’s because as we increase 

the crowd size and keep the field width 

constant, the crowd density increases and 

there’s less space for the non-distracted 

entities to manoeuvre the distracted ones. 

Distraction Ratio: 

To see the real effect of phone usage on 

collisions between pedestrians, we ran 

simulations on crowds with varying distraction 

ratios. For all the distraction ratios tested, we 

kept the crowd size at 350 and canvas width at 

500px. 

 
Figure 6: 60% phone usage 

Table 4 and figure 7 below show the average 

collision count for all tested distraction ratios. 

Each distraction ratio was tested 10 times to 

give some statistically significant result. 

Distraction ratio 

(%) 

Average collisions 

count 

0 1.5 

10 4.9 

20 8.6 

30 11.1 

40 17.2 

60 32.8 

80 62.2 

100 89.6 

Table 4: Average collisions count vs. 

distraction ratio 

 

 
Figure 7: Collisions count vs. crowd 

distraction percentage 

Figure 7 shows that as the percentage of 

pedestrians using their phones increases, the 

average collisions count increases linearly. 

This means that the number of collisions is 

inversely proportional to the cumulative level 

of awareness among a crowd. 

 

 



 

 

Passage Width: 

Another way to manipulate the crowd density 

is by varying the map space available, and 

especially the width of the available passage.  

Multiple simulations were done by varying the 

canvas width while maintaining the distraction 

ratio at 30% and the crowd size at 320 

pedestrians. 

Each pixel on the canvas equals 0.1m. 

 
Figure 8: 300px canvas width 

Table 5 and Figure 9 below show the average 

collision count for all tested passage widths. 

Each width was tested 10 times to give some 

statistically significant result. 

 

 

 

 

Passage width (m) Average collisions 

count 

10 378 

20 323 

30 184 

40 77 

60 7 

80 3 

100 1.6 

Table 5: Collisions count change as a function 

of passage width 

 

 
Figure 9: Collisions count vs. passage width 

Figure 9 above shows that pedestrian 

collisions decrease exponentially as the 

available passage width increases. This means 

that given enough passage space, non-

distracted pedestrians can manoeuvre 

distracted ones and avoid collisions. 

 

 

 

 

 



5.2 Unidirectional Flow: 

Testing unidirectional flow of crowds where 

all pedestrians are heading in the same 

direction we found the following results. 

Table 6 shows the collisions results from 

varying the distraction ratio, and table 7 shows 

the results from varying the total crowd size. 

Crowd size = 350  

Distraction ratio 

(%) 

Average collisions 

count 

0 0 

10 0 

30 0 

60 1 

100 2 

Table 6: Average collisions count vs. 

distraction ratio in a unidirectional flow 

Table 6 shows that increasing the distraction 

ratio increases the collisions count. The 

observed increase was to a much lesser extent 

than in bidirectional flow. This is because all 

pedestrians are heading in the same direction, 

so the relative speed between them is 

extremely small which gives a large amount of 

time to react and manoeuvre the crowd when 

needed. 

Distraction ratio = 30% 

Crowd size Average collision 

count 

10 0 

100 0 

400 1 

800 189 

Table 7: Average collisions count vs. crowd 

size in a unidirectional flow 

Table 7 shows that increasing the crowd 

increases the collisions count but only in very 

large crowds. This shows that the space 

needed for each pedestrian to manoeuvre the 

crowd is drastically less than in bidirectional 

crowds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6. Conclusion 

We have shown how centroidal crowd 

simulation is a powerful tool that can give 

serious insights on the different factors that 

affects local crowd dynamics. Simulating 

distracted pedestrian adds an important feature 

to the centroidal particle engine. 

There were many results that were concluded 

from this study. The first deduction was that 

decreasing the number of distracted people in 

a given crowd will lead to a decrease in 

accidents. So any effective measure to 

decrease the use of phone among pedestrians 

(city ban, fines…) will be effective in 

decreasing pedestrian accidents. 

The second deduction was that increasing the 

available space for each pedestrian movement 

either by reducing crowd numbers or by 

giving more movement space is effective in 

reducing accidents and reducing the effects of 

distracted behaviour among pedestrians. So 

increasing the number of crosswalks and 

providing wider sidewalks is an effective 

measure in combating the effects of distracted 

behaviour. 
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