
PEDESTRIAN DISTRACTIONS AND PHONE USAGE

IN DENSE CROWDS

Ziyad Rabeh

Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada

ziyad.rabeh@carleton.ca

1. ABSTRACT

There is an increasing need to use real-time

crowd simulation in creating virtual scenes for

visual media like films and video games, and

in crisis training, architecture and urban

planning, and evacuation simulation. Existing

particle-based methods assume and aim for

collision-free trajectories. That is an ideal -yet

not overly realistic- expectation, as near-

collisions increase in dense and rushed

settings compared to typically sparse

pedestrian scenarios. This paper presents a

method that evaluates the immediate personal

space area surrounding each entity to inform

its pathing decisions, and how this personal

space is reduced by various distractions such

as phone usage. While personal spaces have

traditionally been modeled as having fixed

radii, they actually often change in response to

the surrounding context. For instance, in cases

of congestion, entities tend to share more of

their personal space than they normally would,

simply out of necessity (e.g. leaving a concert

or boarding a train). Likewise, entities

travelling at higher speeds (e.g. strolling,

running) tend to expect a larger area ahead of

them to be their personal space [1].

2. INTRODUCTION

Modeling and Simulation has become an

essential stage for the development of any

complex system in which actual

experimentation is too dangerous or costly in

terms of money and time. Dense crowd

simulation is the process of simulating the

movement of large numbers of people in order

to analyze and predict their motion within a

limited space. This gives the people

responsible for the design decisions of such a

space the ability to see the utility of their

design, and how any design change will affect

this utility. The applications of this simulation

range from urban planning and congestion

control to creating realistic virtual crowd

scenes in movies and video games.

Monitoring the same person’s movement

along the same path for multiple times will

give different results, and these differences

increase when monitoring different people.

These path deviations give us the impression

that pedestrian movement is nondeterministic

to a certain extent, so human movement

simulation will always be an exercise of

abstraction.[1]

Dense crowd simulation can be very effective

in simulation phenomena that rely on

aggregate parameters such as pedestrian

congestions and gatherings for specific events

where we can bring a sense of determination

through bounded stochasticity.

The crowd simulation model illustrated in this

paper is modeled using centroidal particles

engine, which is a java based program that

uses Processing IDE to visualize the

simulation. The features that were added to the

crowd’s model include the ability to simulate

phone usage and the ability to detect collisions

between passing pedestrians, and it focuses on

local dynamics in an interactive environment.

This paper presents improvements made on

the already existing crowd’s model using

centroidal particles.

A study that was done by researchers at the

University of Washington's Injury Prevention

Center and secretly watched 1102 people

crossing the street at "20 high-risk

intersections during ... randomly assigned time

windows," found that 29.8 percent (nearly one

third) of all pedestrians "performed a

distracting activity while crossing"[2]. There's

a big need to simulate pedestrian distractions

for their high occurrence rate and their effect

on the personal safety of the distracted

pedestrian and the safety of the public around

them.

3. BACKGROUND

In centroidal particle crowd simulation, each

entity has a global vector that leads to the final

desired destination. This means that in the

absence of any interference from any other

dynamic entity, following the global vector

will lead the entity to its final destination in an

ideal time. Centroidal particle dynamics

(CPD) have rules for each entity to navigate

and avoid other dynamic entities in its

surrounding, with the least deviation possible

from the global path with the least time cost.

3.1 Personal Space

Each entity in the crowd engine is represented

as a particle in a 2D plane. The circular area

(0.8m radius) surrounding the particle is

considered its personal space. The CPD rules

are enacted when an entity’s personal space is

violated. The personal space of an entity

changes according to the activity if it’s not

idle. When a person is distracted on his phone,

his awareness area is reduced to right below

and in front of him. So to simulate this

behaviour, the entity’s personal space is

reduced.

Figure 1: Proposed PS shape: light area

affects the entity and its neighbours; dark area

only affects neighbours [1]

3.2 Particle Interaction

Each entity’s movement is governed by a net

force which is a combination of two forces,

the global pathing force and the reactive

penalty force. The global pathing force is the

force leading to the final destination, while the

penalty force is applied when another entity or

object violates its personal space to avoid any

collision.

When the personal space is violated, its shape

is reduced and a new centroid is calculated.

The net force (f) experienced by an entity is a

linear combination of the global pathing force

(g), and the penalty force (p) which falls along

the direction of the new centroid.

Figure 2: Forces that govern an entity’s

motion [1]

3.3 Velocity and Comfort Speed

The comfort speed of each entity changes

inversely to their local density. The personal

space is used to calculate the local crowd

density around each entity. This density is

used to modify the comfort speed of each

entity dynamically. The velocity is used as an

upper limit for speed regardless of density.

Experimental data has shown that comfort

speed and its relation to local density differ

according to cultural differences and the

context of the crowd (indoor, outdoor...).

4. SYSTEM MODEL

Crowd simulation importance can’t be

overstated and it’s been already explained in

previous sections of this paper. This project

implements some additional features and

optimizations on the existent centroidal crowd

simulation engine.

The effects of phone usage distraction on

pedestrians described above are being

modeled. The main aspects being

implemented are: Personal space truncation,

speed reduction, and a collision detection

system.

Personal space truncation happens because the

pedestrians are looking down at their phones,

so they will have less forward and peripheral

range of visibility. Different percentages of

personal space reductions were tried, but we

found that a 40 percent reduction had the most

realistic effects on movement. Since a

distracted pedestrian’s personal space is

reduced, they tend to reduce their movement

speed to give themself more time to react to

obstacles. The comfort speed of pedestrians

was reduced by about 50 percent to mimic

their behaviour in real life. This reduction is

overall and dynamic since an entity’s speed

also depends on the crowd density and on the

max velocity allowed.

As for the collision detection system, different

ways of implementation were tried. At first,

we implemented a rudimentary method by

checking the distance between the centroids of

all entities at every frame and seeing if the

distance between any two entities is less than

two times the radius of the entity’s personal

space, which means an intrusion of personal

space has occurred. But this method was too

costly performance wise and it caused a huge

dip in the running and display speed of the

simulation. The better and more sophisticated

way that was later implemented was searching

the immediate neighbourhood of each entity,

similar to CELL-DEVS, instead of searching

the whole canvas. This method required fewer

resources in terms of time and processing

power.

4.1 Main Engine Code

The centroidal crowd engine base code is

organized and divided in to many sections

according to functionality. There was no need

to modify many sections in the main code

except for minor alterations. The bulk of the

code modifications went into the Mods and

Canvas sections.

Below is an overview of the relevant code

sections:

Global variables: contains the declaration and

initialization of all the variables that will be

visible and accessible across all different

functions.

int[] specialIDs; // A list of IDs of the modified

entities

PVector[] initialPositions; // A list of their

initial positions

PVector groupAvgPosition; // Keeps track of

 the average of special entity positions

PVector mousePosition; // Keeps track of

mouse position

boolean meetingOccured; // Becomes true if

the special entities have met/gathered

PImage obstacleMap; // Holds an image of

the obstacle map

int obstacleChoice; // Choice of multiple

available obstacles

boolean recordTimeToMeeting=false; // Enable

printing of Time-To-Meeting (in seconds)

boolean recordCollisions= true; // Enable

printing of collision count

int WIDTH = 500, HEIGHT = 600; // Canvas

dimensions (1 pixel = 10cm in real life)

// Non-special entities initial distribution

String NONSPECIAL_INIT_DISTRIBUTION =

"bidirectional";

// Are they in bidirectional flow, or standing still

boolean NONSPECIAL_BIDIRECTIONAL =

true;

// Simulation starts paused?

boolean START_PAUSED = false; boolean

PRINT_FRAMERATE;

boolean DISPLAY_OBJECTIVE = false;

boolean PAUSE_SIGNAL;

int MOUSE_DETRACT;

String INITIAL_DISTRIBUTION;

State Initialization: This section contains all

the special entity ID and size, initial positions

for all special entities, and any initialization

for any other state variable. This section runs

only once at start-up.

void modification_Initialization(){

 // Specify the IDs of the special entities

 int size=90;

 specialIDs = new int[size];

 for(int i=0;i<size;i++) { specialIDs[i] = i; }

 initialPositions = new

PVector[specialIDs.length]; // allocate empty

array

 for(int i=0; i<specialIDs.length/2; i++){

 initialPositions[i] = new

PVector(random(0.05*width, 0.95*width),

random(0.05*height, height/2));

 // Rejection Sampling

while(canvas.drawingSurface.get((int)initialPo

sitions[i].x, (int)initialPositions[i].y) ==

COLOR_TO_ID(-5)){

 initialPositions[i] = new

PVector(random(0.05*width, 0.95*width),

random(0.05*height, height/2));

 }

 }

Forces: In this section we modify and add all

applicable forces to the special entities. The

main applicable forces are:

Bidirectional force: This is the global pathing

force in a bidirectional setting (hallway,

crosswalk). It splits the crowd into two groups

each heading to the opposite side of the

modeled space.

VoroForce: This is the collision avoidance

force that works according to the personal

space. When any PS intrusion happens, this

force tries to retract and restore the PS to its

initial position.

Friction Force: This force helps humanize the

entities in a way that they don’t appear to be

gliding across the field.

void modification_Forces(){

 PGraphics ds = canvas.drawingSurface; //

get drawing surface

 // For each special entity:

 for(int i=0; i<specialIDs.length; i++){

 Entity entity =

crowd.getEntities()[specialIDs[i]]; // get the

special entity

 PVector pos = entity.getPosition();

 // get its current position

 PVector modForce = new PVector(0, 0, 0);

 // modification net force (starts empty)

 // Collision avoidance force towards voro

centroid = centroidPosition - currentPosition

 PVector voroForce = PVector.sub

(entity.getCentroidPosition(), pos).limit(1);

 PVector frictionForce =

PVector.mult(entity.getVelocity(),-0.7);

 PVector bipolarForce = new PVector(0,

ds.height*(i>floor(specialIDs.length*0.5)?0.1

5:0.85)-y, 0).limit(3).mult(0.1);

 modForce.add(voroForce.mult(0.7));

 modForce.add(frictionForce.mult(1));

 modForce.add(bipolarForce.mult(1));

entity.setForce(modForce.mult(0.1)).updatePo

sitionMod();

 }}

Visualization: In this section we alter how

each state of the special entities is displayed

on the screen.

void modification_Visualization(){

 // Create some colors we might use (Red,

Green, Blue, Alpha) 0-255 each

 color specialHighlight =

color(250,170,20,240); // special entity

highlight color

 color specialHighlightMet =

color(20,250,30,240); // highlight color if

they've met

 color mouseHighlight =

color(100,240,10,255); // mouse position

highlight

 color collisionDetected = color(250,

50,50,200); // red for collision detection

 // Heighlight the special entities

 for(int i=0; i<specialIDs.length; i++){

 Entity entity =

crowd.getEntities()[specialIDs[i]];

 PVector pos = entity.getPosition(); // get

entity position

 if (entity.getCollided())

 fill(collisionDetected); // Set the fill color

 else

 fill(specialHighlight); // Set the fill color

 ellipse(pos.x, pos.y, CONE_RADIUS,

CONE_RADIUS); // draw a highlighting

circle

 }}

Each pixel of the displayed canvas equals

0.1m in real distance. And each frame of the

simulation equals 50ms in real time.

State Regular

Pedestrian

Distracted

Pedestrian

Collided

Pedestrian

Color

Table 1: Special states colors

4.2 Phone Distraction Code

These are the code modifications done by me

to mode the change in Personal Space and

speed of pedestrians distracted on their

cellphones and the resulting increase in

collision potential for all pedestrians. These

can be found by searching for

[ModDistracted] throughout the project code

comments.

First we start by reducing the comfort speed of

the entity. The comfort speed is not constant;

it is a dynamic speed that’s inversely

proportional to the local density and limited by

the maximum allowed velocity. The 50

percent reduction in comfort speed is achieved

by decreasing the limiting velocity. The

velocity reduction factor was deduced by

experimenting and trying multiple reduction

factors. The optimal reduction factor was

found to be 20 percent. When the reduction

factor is applied, the comfort speed fluctuates

between 45 and 60 percent of the original

comfort speed.

// velocity Change

 PVector v1 = entity.getVelocity(); // get the

 original velocity

 PVector v2 = v1.mult(0.8); // reduce it by

 20%

 entity.setVelocity(v2); // apply it to the

 distracted entity

The second factor in the distraction modeling

process is the reduction in the personal space.

The personal space in the code is the search

area around the entity’s centroid where it

checks the pixels color and sees if there is a

different color among there which means there

is an intrusion. If an intrusion is detected, the

collision avoidance force is activated to repel

the entity in a direction opposite to the

occurring intrusion. To reduce the personal

space, we reduce the search area for intrusions

by 40 percent. After the reduction in personal

space, the centroid of the entity will have to be

recalculated and shifted to account for the

reduction in personal space. Consequently the

collision avoidance will be delayed until a

bigger intrusion has happened, which gives the

entity less time to react to that intrusion.

// Find Centroid when on phone (with reduced

awareness of PS)

 entity.setCentroidPosition(new PVector(0,

0)); // Reset centroid calc

 int hits = 0, w = ds.width, h = ds.height;

 float s = CONE_RADIUS+1; // search

 radius box

 float x = entity.getPosition().x, y=

entity.getPosition().y;

 int x1 = (int)clamp(x-s, 0, w), y1 =

(int)clamp(y-0.8*s, 0, h); //top-left corner

 int x2 = (int)clamp(x+s, 0, w), y2 =

(int)clamp(y+0.8*s, 0, h); //bot-right corner

 for (int xx=x1; xx<=x2; xx++) { // Iterate

 over local neighbourhood (Personal Space)

 for (int yy=y1; yy<=y2; yy++) {

 if (ds.get(xx,

yy)==entity.getColorCode()) {//check for

 color match

 entity.getCentroidPosition().add(xx, yy,

0);

 hits++; // total number of color matches

 }

 }

 }

 entity.getCentroidPosition().div(hits);

The collision avoidance force applied to

distracted entities was reduced to 50 percent,

compared with 70 percent for non-distracted

entities.

 //Collision avoidance force

 PVector voroForce =

PVector.sub(entity.getCentroidPosition(),

pos).limit(1);

 //Reduce the force to a realsistic factor

 modForce.add(voroForce.mult(0.5));

 // Apply the net mod force to the entity, and

 update its position

entity.setForce(modForce.mult(0.1)).updatePo

sitionMod();

4.3 Collision Detection:

A collided state is applied to an entity if a

certain degree of intrusion has been recorded

in its personal space. The amount of intrusion

required to go into a collided state is chosen in

a way that disregards minor collisions like

shoulder rubs, and only accounts for serious

collisions that have an impact. This intrusion

factor was chosen by experimenting with

multiple factors and monitoring the crowd

simulation to see what accounted for a

collision. The collisions count increases

whenever any entity changes its state from

non-collided to collided. The displayed

collision count is the total collision count

divided by two since each collision involves

two entities. The collision tracking starts after

20 frames (1 second) from the start of the

simulation to allow for the initial orientation

of the entities to occur since they’re positioned

with a certain degree of randomness.

 // Detect Collisions

 int[] hitC = new int[CROWDCOUNT]; //

visible portion of the softicle

 for (int i = CROWDCOUNT; i-->0;) {

 hitC[i] = 0;

 float s = CONE_RADIUS/2+1; // search

radius box

 float x = entities[i].getPosition().x,

y=entities[i].getPosition().y;

 int x1 = (int)clamp(x-s, 0, w), y1 =

(int)clamp(y-s, 0, h); //top-left corner

 int x2 = (int)clamp(x+s, 0, w), y2 =

(int)clamp(y+s, 0, h); //bot-right corner

 for (int xx=x1; xx<=x2; xx++) { //

 for (int yy=y1; yy<=y2; yy++) {

 if (ds.get(xx,

yy)==entities[i].getColorCode()) {

 hitC[i]++;

 }

 }

 }

 if(frameCount>20){ // allow 1s for intial

orientation of entities

 if (hitC[i] <= s*s*3.9 &&

!entities[i].getCollided()){

 entities[i].setCollided(true);

 COLLISIONCOUNT++;

 }else if (hitC[i] > s*s*3.9 &&

entities[i].getCollided()){

 entities[i].setCollided(false);}

 }

 }

4.4 Crowd Orientation:

The simulation was carried on two crowd flow

orientations, Unidirectional and Bidirectional.

Unidirectional flow represents a crowd of

people heading in the same direction, so all the

crowd entities have a global pathing vector

with the same direction. Bidirectional flow is

the most interesting orientation to study since

it’s the most common and it applies to most

pedestrian traffic scenarios (hallway traffic,

street crossing, bridges …). Bidirectional flow

is simulated by dividing the crowd into two

halves; the first half has a global pathing

vector with opposite direction to second half.

Figure 3.1: Bidirectional crowd flow

Figure 3.2: Unidirectional crowd flow

5. Simulation Result

To see the full effects of phone usage among

pedestrians, simulations were designed around

three factors to see their effects on total

collision count. The factors are total crowd

size, distraction ratio (percentage of people

in the crowd using their phones), and map

width (simulation canvas width). Simulations

were done by increasing each factor while

maintain the other two factors constant.

5.1 Bidirectional Flow

The first set of simulations will be

performed in a crowd with a bidirectional

flow.

Crowd Size:

Crowd size affects the crowd density and

the amount of space available for each

pedestrian. Multiple simulations were done

by varying the total crowd count while

maintaining the distraction ratio at 30%

and the canvas width at 600px. The total

collision count was measured for all

simulations.

Figure 4: 1200 people crowd count

Table 2 shows the results from running

multiple simulations on a crowd of 400 to get

the average collision count for this crowd size.

Simulation number Collision count

1 14

2 12

3 13

4 25

5 13

6 37

7 25

8 45

9 24

10 18

Average 22.6

Table 2: Results from 10 simulations for

crowd of 400

Table 3 and figure 5 show the results from

simulations of different crowd sizes. Each

crowd size was simulated 10 times to get an

average collision count.

Crowd size Average collision

count

10 0

50 0.2

100 1.6

200 4.4

300 18.5

400 39.5

600 182.4

Table 3: Average collisions count vs. crowd

size

Figure 5: Collisions count v. crowd size graph

We can see in figure 5 that as we increase the

crowd size, the collisions count increases

exponentially. That’s because as we increase

the crowd size and keep the field width

constant, the crowd density increases and

there’s less space for the non-distracted

entities to manoeuvre the distracted ones.

Distraction Ratio:

To see the real effect of phone usage on

collisions between pedestrians, we ran

simulations on crowds with varying distraction

ratios. For all the distraction ratios tested, we

kept the crowd size at 350 and canvas width at

500px.

Figure 6: 60% phone usage

Table 4 and figure 7 below show the average

collision count for all tested distraction ratios.

Each distraction ratio was tested 10 times to

give some statistically significant result.

Distraction ratio

(%)

Average collisions

count

0 1.5

10 4.9

20 8.6

30 11.1

40 17.2

60 32.8

80 62.2

100 89.6

Table 4: Average collisions count vs.

distraction ratio

Figure 7: Collisions count vs. crowd

distraction percentage

Figure 7 shows that as the percentage of

pedestrians using their phones increases, the

average collisions count increases linearly.

This means that the number of collisions is

inversely proportional to the cumulative level

of awareness among a crowd.

Passage Width:

Another way to manipulate the crowd density

is by varying the map space available, and

especially the width of the available passage.

Multiple simulations were done by varying the

canvas width while maintaining the distraction

ratio at 30% and the crowd size at 320

pedestrians.

Each pixel on the canvas equals 0.1m.

Figure 8: 300px canvas width

Table 5 and Figure 9 below show the average

collision count for all tested passage widths.

Each width was tested 10 times to give some

statistically significant result.

Passage width (m) Average collisions

count

10 378

20 323

30 184

40 77

60 7

80 3

100 1.6

Table 5: Collisions count change as a function

of passage width

Figure 9: Collisions count vs. passage width

Figure 9 above shows that pedestrian

collisions decrease exponentially as the

available passage width increases. This means

that given enough passage space, non-

distracted pedestrians can manoeuvre

distracted ones and avoid collisions.

5.2 Unidirectional Flow:

Testing unidirectional flow of crowds where

all pedestrians are heading in the same

direction we found the following results.

Table 6 shows the collisions results from

varying the distraction ratio, and table 7 shows

the results from varying the total crowd size.

Crowd size = 350

Distraction ratio

(%)

Average collisions

count

0 0

10 0

30 0

60 1

100 2

Table 6: Average collisions count vs.

distraction ratio in a unidirectional flow

Table 6 shows that increasing the distraction

ratio increases the collisions count. The

observed increase was to a much lesser extent

than in bidirectional flow. This is because all

pedestrians are heading in the same direction,

so the relative speed between them is

extremely small which gives a large amount of

time to react and manoeuvre the crowd when

needed.

Distraction ratio = 30%

Crowd size Average collision

count

10 0

100 0

400 1

800 189

Table 7: Average collisions count vs. crowd

size in a unidirectional flow

Table 7 shows that increasing the crowd

increases the collisions count but only in very

large crowds. This shows that the space

needed for each pedestrian to manoeuvre the

crowd is drastically less than in bidirectional

crowds.

6. Conclusion

We have shown how centroidal crowd

simulation is a powerful tool that can give

serious insights on the different factors that

affects local crowd dynamics. Simulating

distracted pedestrian adds an important feature

to the centroidal particle engine.

There were many results that were concluded

from this study. The first deduction was that

decreasing the number of distracted people in

a given crowd will lead to a decrease in

accidents. So any effective measure to

decrease the use of phone among pedestrians

(city ban, fines…) will be effective in

decreasing pedestrian accidents.

The second deduction was that increasing the

available space for each pedestrian movement

either by reducing crowd numbers or by

giving more movement space is effective in

reducing accidents and reducing the effects of

distracted behaviour among pedestrians. So

increasing the number of crosswalks and

providing wider sidewalks is an effective

measure in combating the effects of distracted

behaviour.

7. References

[1] Hesham, Omar, and Gabriel Wainer.

"Centroidal particles for interactive crowd

simulation" Proceedings of the Summer

Computer Simulation Conference. Society

for Computer Simulation International,

2016.

[2] Thompson LL, Rivara FP, Ayyagari

RC. "Impact of social and technological

distraction on pedestrian crossing

behaviour: an observational study" Injury

Prevention Published Online First: 13

December 2012

