Application of Cellular Automata for
Generation of Chess Variants

Mikael Fridenfalk
Uppsala University Campus Gotland
Department of Game Design
621 55 Visby, Sweden
mikael.fridenfalk @speldesign.uu.se

Abstract—A system was developed for the automatic genera-
tion of chess variants in a computer game. The system is able
to generate 5000 relatively unique board configurations using
a modular cellular automaton based on a new variation of
Conway’s Game of Life in combination with modular constraints.

Keywords-artificial intelligence; cellular automata; chess vari-
ants; game design; Game of Life; modular

I. INTRODUCTION

Ever since Conway’s Game of Life was introduced in
1970 [3], the interest for cellular automata has constantly
increased, yielding interesting results [4,11] and applications
within many areas, ranging from pattern generation in arts such
as music composition [2,6,8] to less obvious applications such
as language recognition [9]. Today, there exist a large variety
of cellular automata, of which many consist of special cases
of Conway’s Game of Life [1,5,7,10]. The rule of Conway’s
cellular automaton Game of Life can be expressed as: a cell
is set to 1 if it has 3 neighbors and to O if it has O-1 or
4-8 neighbors. Game of Life can be classified as a binary
automaton in a Moore neighborhood, where each cell has eight
surrounding neighbors in a 2D integer lattice.

In the software system described in this paper a number of
artificial intelligence (AI) systems were integrated to generate
a computer chess variant Al. A chess variant is known as a
game that is a variation of regular chess with respect to mainly
the set of rules, piece-sets or board-configurations. The aim of
this paper is the presentation of one of these subsystems, using
modular binary 2D cellular automata based on a new set of
rules, or more specifically a new variation of the Game of Life
to generate patterns that could be used as design elements in
applications such as computer games or user interfaces.

The literature study performed by the author suggests that
the game generation system presented in this paper is novel
on two counts. To begin with, there exist today a very large
number of chess variants based on other board configurations
than the standard 8 x 8, but none seem to contain void
squares within the board. Secondly, the generation of the
board configurations are here based on a new type of cellular
automaton, defined as one with a high reproduction rate
constrained by relatively small modular grids. In other words,
although modular constraints are occasionally used in context
with 2D cellular automata, they are in practice never used in
combination with high reproduction rate, neither applied to

relatively small-sized grids. The work that was identified as
the closest to the one presented in this paper is [1], which is
based on 2D cellular automata with high reproduction rate,
but without modular constraints.

The result of the implementation of the cellular automaton
in this work led to the development of a commercial computer
game by the author that was released in 2011. The game con-
tains 5000 chess variants of which five are displayed in Figs. 1-
5. The index number in each of these figures corresponds to
the chess variant number in the game.

Figure 2: Index 950

Figure 4: Index 137

Figure 5: Index 4478

Here, the rules governing the pieces are essentially the same
as in chess. In addition, a new piece is introduced called the
“pioneer”, with the ability to add new squares to the board and
thereby bridge “void squares” or gaps. The pioneer is able to
move only one step at a time in the directions forward, back,
right and left and may be captured like any other chess piece.

The goal of the game is for the player to checkmate the
opponent and since the gaps in the board prevents any piece

to make a move that includes passing or entering a gap, thus
only the pioneers and the knights are able to pass gaps. A
knight is able to make any regular jump over gaps, as long
as the destination square is either solid or not occupied by a
piece of the same color.

II. SOFTWARE SYSTEM

The game generation system was developed in C++ using
Apple Xcode [12]. By setting a preprocessor flag to true,
the source code of the application itself can be modified by
the generation of the chess variant boards. To generate the
end product the flag is set to false before compilation. This
proved to be a well working solution for the development,
modification and the final selection of the chess variants,
since automatic play by the Al itself could give a preliminary
assessment on the basic playability of each chess variant.

To optimize the execution speed and simplify program struc-
ture a straightforward class hierarchy was adopted consisting
of five classes: Common, Logic, GFX, NetX and GUI. The
Common class is a static class that only contains constants
and static member variables and methods that can be accessed
by all classes. The class Logic is where the essential logic
operations are performed, such as alpha-beta pruning and
evolutionary generation of chess variant boards.

An object each of Logic, GFX and NetX are created within
the GUI object by allocation. The classes Logic, GFX, NetX
and GUI are subclasses of Common. Thus any call to the
classes Logic, GFX or NetX from GUI has to begin with the
corresponding object name plus a pointer denotation, which
in practice results in a straightforward code syntax. The GFX
class is an OpenGL-based graphics class that produces most
of the drawings in the application. The network class NetX is
used for peer-to-peer online gaming, and also to hook up with
a central web server to find friends by username instead of an
IP address.

While the Common class is the communication hub of the
system, the GUI class functions as the execution agent and
integrates all the functionalities of the classes and thus most
high-level methods were located in GUIL

The game generation system consists of three principal Al
subsystems. The first subsystem consists of a mathematical
pattern generator that creates 2D matrices of integer numbers
combined with a subsequent mapping and piece placement
function that converts these integers to an actual chess variant
board. The second Al system tests the produced boards to
make sure that basic standards are met, such as the originality
of a board compared to previously approved boards, the
placement of pieces and finally playability, using the third Al
system as a subsystem. The third Al system is a computer
chess core that is the only Al component that is included in
the final product. This component enables the player to play
against the computer or watch a game between two computer
players.

IIT. CELLULAR AUTOMATA

In this work, five cellular automata, each consisting of a
new version of Conway’s Game of Life were implemented

and tested. Only rule 1 (see below) was implemented in the
game, which showed to be sufficient for the generation of the
chess variants. The rules are formulated according to below:

1) A cell is set to 1 if it has 2-3 neighbors, else to 0

2) A cell is set to 1 if it has 2-4 neighbors, else to 0

3) A cell is set to 1 if it has 2-5 neighbors, else to 0

4) A cell is set to 1 if it has 2-6 neighbors, else to 0

5) A cell is set to 1 if it has 2-3 or 5 neighbors, else to 0
In a second step, the evolution space for these automata is
constrained by small modular integer lattices. Figs. 7-8 display
the evolution of two cellular automata based on rule 1 using
identical kernels (start configurations, also called start posi-
tions), but of different grid size. Since the same pattern must
sooner or later emerge in any finite binary grid, such system
will eventually either converge into a static configuration
(where all cells are for instance equal to zero) or a cyclic
loop where a number of patterns, by definition equal or larger
than two, are endlessly repeated (as from a point of view a
static configuration could be interpreted as a cyclic loop with
a period of a single generation).

In a third step, a variety of kernels can be used to initiate
the cellular automata. Only a single cross-shaped kernel was
used for the generation of Figs. 7-14 except for Figs. 9 and 13,
which were based on an asymmetric kernel. In the game, over
50 kernels were designed of which 24 were finally selected
for the generation of the chess variant boards.

In a fourth step, to be able to map the generated patterns
more or less directly into chess variant boards, an accumula-
tion grid is evaluated for each generation as the sum of all
20 past generations, resulting in a grid of cells with integer
numbers within the interval of 0-20. The present generation
is then used as a stencil layer with respect to the location of
its void squares to create the void square configuration of the
final board. By mapping these numbers, see Table I, a basic
template of a chess variant is proposed. A procedural algorithm
is then applied to place kings, queens and pioneers.

In a fifth and final step, the game opening is tested by the
strategic chess variant Al system, making sure that the game
is playable. According to the produced logs, about 12% of the
proposed chess variants failed the final verification tests and
were excluded from the final product.

As previously mentioned, depending on grid size and kernel,
a cellular automaton produces as a rule a number of unique
patterns before it reaches an end point, in practice defined
by generation of either zero matrices or repetition of spe-
cific patterns in an infinite loop. From this perspective it is
important to monitor the pattern generation process to stop
the generation at an end point. This process can progressively
decrease generation speed. In one experiment (generating large
sized grids, compared to average sized) a kernel produced
more than 100,000 unique patterns before the generation was
stopped due to incrementally longer execution time for each
generation.

The generation of a few thousand patterns of moderate
size showed however to be of no issue. According to a few
experiments, it took typically 0.8 seconds on a 2.66 GHz

Intel Core i7 processor to generate the game boards in the
final product, including the application of the strategic Al
component.

IV. CONCLUSION

A new type of cellular automaton is presented in this paper,
characterized by (1) a 2D cellular automaton using a relatively
high reproduction rate compared with the Game of Life, in
combination with (2) a relatively small-sized modular lattice
for the continuous transformation of the patterns. The kernel
seems in addition to be as important in this context for the
pattern generation process as the system itself.

ACKNOWLEDGMENT

This work was supported by Almi Gotland. A great thanks
to Ellinor Dahl at Almi for the encouragement along the way
from idea to the final product.

REFERENCES

[1] R. Alonso-Sanz, “Cellular Automata with Memory”, Computational
Complexity, Springer, pp. 382-406, 2012.

[2] C. Ariza, “Automata Bending: Applications of Dynamic Mutation and
Dynamic Rules in Modular One-Dimensional Cellular Automata”,
Computer Music Journal, vol. 31, no. 1, pp. 29-49, Spring 2007.

[3] M. Gardner, “Mathematical Games: The Fantastic Combinations of John
Conway’s New Solitaire Game ’Life’”, Scientific American, vol. 223,
no. 4, pp. 120-123, October 1970.

[4] J. Kari, “Reversibility of 2D Cellular Automata is Undecidable”, Physica
D 45, pp. 379-385, 1990.

[5] G.J. Martinez, A. Adamatzky, K. Morita, and M. Margenstern, “Com-
putation with Competing Patterns in Life-Like Automaton”, Game of
Life Cellular Automata, Springer, pp. 547-572, 2010.

[6] E. Miranda, “Cellular Automata Music: From Sound Synthesis to
Musical Forms”, Evolutionary Computer Music, pp. 170-193, 2007.

[7]1 F. Peper, S. Adachi, and J. Lee, “Variations on the Game of Life”, Game
of Life Cellular Automata, Springer, pp. 235-255, 2010.

[8] S. Phon-Amnuaisuk, “Investigating Music Pattern Formations from
Heterogeneous Cellular Automata”, Journal of New Music Research,
vol. 39, no. 3, pp. 253-267, 2010.

[9]1 A. R. Smith, “Real-Time Language Recognition by One-Dimensional

Cellular Automata”, J. ACM, vol. 6, pp. 233-253, 1972.

G. Tempesti, D. Mange, A. Stauffer, “Self-Replication and Cellular

Automata”, Computational Complexity, Springer, pp. 2792-2809, 2012.

S. Wolfram, A New Kind of Science, Wolfram Media, Inc., May 14,

2002.

Xcode, Apple Inc., May 14, 2013 <https://developer.apple.com/xcode/>.

[10]
(1]

[12]

#define For(i,N) for (int (i) = 0; (i) < (N); (i)++)
void Logic::CA_Rulel (int idx) {

const int NX[][2] = {
{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1}};
For (x,mX) For (y,mY) {
int neighbors = 0;
For (i,8){

int x1 = x + NX[i][0], vyl y + NX[1i][1];
Y

xl = (mX + x1) % mX; yl = (mY + yl) % mY;
if (mCA[idx-1]1[x1][yl] != 0) neighbors++;
}
mCA[idx] [x] [y] = int (neighbors == || neighbors == 3);

Figure 6: An example of the implementation of rule 1 in C++ for idx (grid index number) with respect to previous generation,
idx — 1, using a rectangular modular grid of size mX x mY.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20
X | x | A | x x| & B | & | x X X X X X X X X X
X X X X 1) X x| & | B | & X X X X X X X X X X X
X | X | X X X | x X X x | E| & | & X X X X X X X X X

Table I: Example of three heuristic mapping schemes for the initial placement of chess pieces in the computer game generation
system. By summation of the last 20 generations, where a void square is equal to an integer value of zero and a solid a value
of one, it is possible to map numbers directly to chess pieces such as pawns, bishops, knights and rooks. In this mapping
scheme the token x denotes an empty square (or a void square if current generation contains a void in this specific location
of the board).

Figure 7: Example of a 7 x 5 grid that ends after 6 generations.

Figure 8: Example of a 7 x 7 grid that falls into a cycle after 4 generations.

Figure 9: Example of a 9 x 5 grid that becomes symmetric after 12 generations and falls into a cycle after 38 generations.

Figure 10: A 13 x 9 grid evolved from generation 0 to 255.

Figure 11: The 13 x 9 grid from previous figure, evolved from generation 800 to 843, where it falls into a cycle.

Figure 12: A 15 x 9 grid (above), 15 x 11 grid (middle), and 15 x 13 grid (below), evolved from generation 100 to 111.

Figure 13: A 13 x 9 grid using an asymmetric kernel evolved from generation O to 136, where it falls into a cycle.

Figure 14: The figures in this paper are exclusively based on rule 1, except for this figure which represents an 11 x 9 grid
based on rules 1-5 (from above to below), evolved from generation 48 to 63.

