
  

Building Cell-DEVS Model using Triangular 

and Hexagonal Meshes 
                             Ritvik Rajnikant Pandey                                                   

Department of Systems and Computer Engineering 

 Carleton University  

1125 Colonel By Drive 

Ottawa, ON, Canada 

ritvikrajnikantpande@cmail.carleton.ca

ABSTRACT 

 

The DEVS formalism has been utilized for displaying and 

recreating strategy for various normal and simulated 

frameworks. Cell-DEVS is an expansion of DEVS that takes 

into consideration executing cellular automata models with 

the favourable position of assessing the cells asynchronously 

with different timing delays. Cell-DEVS is a worldview of 

determination to depict cell models in view of a rectangular 

geometry. In this paper, we present a variation of it, utilizing 

a hexagonal geometry which provides higher isotropy and 

triangular geometry which uses limited neighbors to represent 

diverse topology, and demonstrate their conceivable 

applications using the CD++ toolkit.  

 

1. INTRODUCTION 

Various research endeavours have exhibited answers for 

demonstrating and recreation of environmental frameworks 

utilizing cell models. A cell space composes the structure of 

the model of a given physical framework by partitioning the 

area of impact into geometrically distributed cells [1]. This 

approach is helpful, as most environmental systems are 

heterogeneous, and they should think about various factors, 

while determining the behaviour of the system in space and 

time. Most popular approach to deal with such systems is 

cellular automata which has delivered behaviours of many 

complex physical systems [2]. This is where Cell-DEVS 

comes into picture, it was defined as an extension to cellular 

automata.  

 

Cell-DEVS is a worldview of detail to portray cell models in 

light of a rectangular geometry. The Cell-DEVS formalism 

permits characterizing a cell space as a grid of cells holding a 

figuring assembly accountable for refreshing the cell state 

using a set of local rules [4]. The cell states are updated by use 

of the present cell state and the neighborhood details using the 

different timing delays. There are numerous physical issues, 

which by their inclination, have attributes of expansion or 

diffusion. For these issues its portrayal in a rectangular space, 

does not prove to be efficient. For example, if we consider a 

neighborhood with 4 neighbors we cannot get the precise 

results corresponding to the actual phenomenon as it would 

only consider four directions up, down, right and left for the 

implementation [3]. Something similar is experienced 

considering a neighborhood with 8 neighbors where all the 8 

squares are geometrically different. Issues like this motivated 

an extension to the formalism in order to represent hexagonal 

and triangular topologies. The hexagonal topology provides 

equal distances from all its neighbors hence portraying 

isotropic nature while triangular topologies are reserved for 

cases wherein limited number of neighbors are required to 

observe a certain phenomenon. Here, we show how the CD++ 

toolkit [5] helps translate hexagonal/triangular rules into 

compatible square rules and how we can apply these rules to 

certain physical systems.   

 

2. BACKGROUND 
The Discrete Events Systems specifications formalism [3] 

permits reuse of models by various leveled development of the 

models. In DEVS the essential models are called atomic 

models which are consolidated to form coupled models. 

DEVS atomic model is described as: 

 
M = < X, S, Y, dint, dext, l, D >  

 

Here, X is the input events set, S is the state set, and Y is the 

output events set, dint is internal transitions function, dext 

external transitions function, l shows the outputs, and D shows 

the elapsed time [1]. The atomic model is most essential model 

in DEVS which can be outlined as shown below [3]: 

 
Figure 1. DEVS atomic model [3] 

 

A DEVS atomic model [3] comprises of input port(x) and 

output ports(y) to associate with various models. Each model 



 

has a state (s) which is related with a time advance (ta) 

function. Time advance (ta) work allocates the length of a 

phase. After (ta) is expended an internal transition is activated. 

An output function is actuated which gives the output from the 

output ports. After this and internal transition function (dint) is 

terminated, which does a nearby state change. The inputs that 

are gotten from different models i.e. the outside events are 

taken care of by the external transition function(dext). Several 

atomic models consolidate to build a coupled model in DEVS 

as shown in Figure 2. 

 

 
Figure 2. DEVS Coupled Model [3] 

 
Coupled models are characterized as an arrangement of 

essential parts (atomic or coupled), which are interconnected 

through the model interfaces. The model's coupling plan 

characterizes the interconnectivity amongst models and the 

interface with the outside world.  

 

Cell-DEVS [4] has expanded DEVS, permitting the execution 

of cell models with timing delays. Every cell is characterized 

as a DEVS atomic model, and it can be later coordinated to a 

coupled model speaking to the cell space. Cell-DEVS atomic 

model can be portrayed as follows in Figure 3.

 
Figure 3. Cell-DEVS Atomic Model [4] 

 

Every Cell of a Cell-DEVS model consists of a state variable 

and a transition function which is helpful in recognizing the 

cell state using the current state and its neighborhood. Every 

cell is described as: 

 

TDC = < X,Y,?,N,delay,d,dint,dext, t , ?,D> 

 

X and Y denotes the external inputs and outputs in the model. 

? expresses the cell state, delay represents the kind of delay: 

transport or inertial and d is the duration of that delay, dint and 

dext are the internal and external transitions. Every cell uses 

t(N) to compute future states. ? and D show the outputs and 

state’s duration.  

 

In Cell-DEVS [4] every cell utilizes N inputs from its 

neighborhood to compute the future state. The inputs N are 

received form the model interface, and are responsible for 

activating the local computing function (t). Two types of delay 

can be provided to each cell: transport delay and inertial delay. 

The state changes can be transferred to other models after the 

delay time is consumed [4]. A Cell-DEVS coupled model is 

shown in figure 4. 

 

 
Figure 4. Cell-DEVS Coupled Model [4] 

 

A Cell-DEVS coupled model is defined by:  

 

GCC= < Xlist, Ylist, X,Y,n,{t1,…, tn},N,C,B,Z > 

 

Here Xlist and Ylist denotes are input/output coupling lists, 

used to define model interface. The input/output events are 

portrayed by X and Y. The value n shows the dimension of the 

cell space, {t1,…, tn} are the number of cells per dimension. 

N is neighbourhood set while C defines the cell space along 

with B which shows the border cells and Z which shows the 

translation function [4]. 
 

CD++ [5] is a modeling and simulation environment 

developed in C++ following the specifications of DEVS and 

Cell-DEVS models. It is used to construct DEVS and Cell-

DEVS models. When constructing a Cell-DEVS model the 

model specification considers the size and dimension of a cell 

space, type of neighborhood and the borders. The local 



 

  

computing function is computed by defining certain set of 

rules with a certain format which is shown below. 

 

POSTCONDITION DELAY { PRECONDITION } 

 

The implementation of the above format is as follows: When 

the precondition is true the state of the cell will be changed to 

the postcondition after certain amount of delay has elapsed. 

On the other hand, if the precondition is false then the next 

rule is evaluated until the last rule provided. If there is a case 

where no rule is evaluated or more than one rule are evaluated 

as true, the CD++ modeler generates an error. Operators such 

as arithmetic, comparison, time, neighborhood values, 

conditionals, rounding and constants are provided by CD++.  

 

Cell-DEVS by default define the cell space in square 

topologies, however in certain cases square topologies are no 

proven to be efficient in representing the advanced cell space 

models. Apart from square meshes CD++ provides triangular 

and hexagonal meshes for representing the cell spaces. 

Triangular meshes permit covering zones with additional 

fluctuated topology, while allowing each cell to have a set 

number of nearby neighbors. Hexagonal meshes on the other 

hand have higher isotropy which proclaims the ability to 

represent identical conduct in each possible direction [5]. 

While limiting the neighbors gives us data abstraction wherein 

the number of messages communicated from the neighbors are 

lowered, but the representation and visualization of such 

models become difficult. There is a tool in CD++ which 

defines the cells behaviour based on triangular and hexagonal 

topologies and translates them into square compatible rules 

using shift mapping. LTRANS (Lattice Translator) [5] is the 

tool responsible for translating triangular and hexagonal rules 

into square rules. This tool only implements 2D models using 

the closest neighbors. CD++ provides a specification language 

[5] to describe cells behaviour based on such rules. The set of 

rules based on either triangular or hexagonal structure are 

given as input to the LTRANS tool and the square compatible 

rules are given as a output by LTRANS, which are then 

applied to the model to be simulate. The language used to 

model the cells behaviour in hexagonal/triangular geometry is 

the same except the neighbors are referenced in a different 

way. In CD++ a cell in a 2D space is referenced as a tuple (x,y) 

where x denotes the row and y denotes the columns. LTRANS 

only supports closest neighbors hence for hexagonal and 

triangular geometry nearest neighbors were defined using [n] 

which displays the number assigned to every neighbor. Figure 

5 shows the hexagonal neighbor referencing, it is seen that a 

hexagonal geometry can only have 6 neighbors in total. While 

a triangular geometry shown in Figure 6 shows that only 3 

neighbors are referenced in this topology.  

 
Figure 5. Hexagonal Neighbors [5] 

 
Figure 6. Triangular Neighbors [5] 

 

Hexagonal mapping is shown in figure 7, It uses a function 

that shifts the alternate rows in opposite directions, at the same 

time preserving the boundary conditions. Triangular mapping 

shown in the figure 8 is done in a similar way every other cell 

has different orientation and each row of the triangle is 

mapped to a row of square reliant on the parity x+y. 

 

 
Figure 7. Hexagonal Mapping [5] 

 

 
Figure 8. Triangular Mapping [5] 

 

The neighborhood relation are transformed diversely relying 

on the row index x which can be oven or odd as shown in 

figure 9 for hexagonal geometry. While for triangular 

geometry figure 10 displays the even and odd combinations 

for neighbor relations.  

 

 
Figure 9. Hexagonal Neighborhood Relation [5] 

 

 
Figure 10. Triangular Neighborhood Relation [5] 



 

Well know mathematician Martin Gardner presented the Life 

Game in scientific American. In this game living cells stay 

alive or they die. The rules of this game can be defined as 

follows: 

1. Active cell will stay active if it two or three active 

neighbors. 

2. An inactive cell will transit to active state if it has 

two or three active neighbors. 

3. In any other situation the cell will die.  

 

The rules that define cell behaviour are mentioned below in 

figure 11.  

 
Figure 11. Life Game Rules 

 

 
Figure 12. Hexagonal Neighbor Referencing in Life Game 

Rules 

 
Figure 12 represents the hexagonal neighbor referencing in 

CD++. To explain the translation of rules the life game rules 

are written in such a way that the neighbors represent the 

hexagonal cells (0 to 6). After this the LTRANS tool is used 

to translate these rules into square compatible rules for CD++ 

which can be shown below in Figure 13. These rules are added 

to the model file while keeping the rest of the 

structure/specifications the same.  

 

 

 
 

Figure 13. Translated Rules for Life Game 

 

3. DEFINING DIFFERENT PHYSICAL SYSTEMS 

IN HEXAGONAL/TRIANGULAR TOPOLOGY 
 

EXCITABLE MEDIA: 

 

An excitable medium is a nonlinear dynamical framework 

which has the ability to engender a wave of some specification 

and which cannot allow passage to another wave until the 

point that a specific measure of time has passed [6]. Heart 

tissue, magnetic field and forest fire can be considered as an 

excitable medium. For every excitable medium a cell can take 

up one of the three states: resting, excited or recovering. For a 

forest fire the states can be unburnt, burnt or burning. We 

initialize with the Cell-DEVS coupled model and its 

parameters which can be seen below. The excitable-rules 

section corresponds to the local computing function.  

 

 

 

 



 

  

 
 

Figure 14. Excitable Media Coupled Model 

 

The first rule in the excitable rule section portrays that the cell 

value should be 0 when there are cell neighbors with value 0, 

in other words if there are no excited cells nearby then the cell 

will remain in the resting state [6] . The second rule says that 

if the cell has value 0 and there are neighbors with value 2 

(excited) then the cell will become excited (take value 2). The 

third and the fourth rule shows that the cell will remain in a 

particular state [6]. The default rule will be every cell will stay 

in its present state. 

 

We now define the Excitable Media Coupled model using 

hexagonal neighbor referencing. In order to implement the 

hexagonal mesh rules in CD++ we have to first translate the 

hexagonal rules into square compatible rules which can be 

seen below in Figure 15 and Figure 16. 

 

 
 

Figure 15. Excitable Media Rules using Hexagonal Neighbor 

Referencing 

 

Figure 16 represents the translated rules into square meshes 

which can now be added to the coupled model. The translation 

of rules for the triangular geometry is the same only the 

number of neighbors are restricted to three which doesn’t 

change anything in the rules mentioned above. Figure 17. 

Shows the translated rules for the triangular geometry. The 

difference between the triangular and hexagonal geometry is 

only the neighbor referencing i.e. hexagonal grid takes into 

account 6 neighbors while triangular grid considers nearby 3 

neighbors. The odd and even cellpos refers to Figure 9 and 

Figure 10.  

 

 

 

 
 

Figure 16. Translated Rules from Hexagonal to Square 

 

Figure 18 shows the simulation result for the excitable 

medium on a hexagonal mesh. The excitable media is set at 

the centre of the mesh and it can be seen that how it evolves 

over time. Figure 20 shows the simulation results when we 

change the position of the excitable media. Figure 22 shows 

what happens when two excitable media are put up on a grid 

at a few cells apart. 

 

 
Figure 17. Coupled Model of Excitablehex.ma 



 

 

 
Figure 18. Simulation for Excitablehex.ma 

 

 
 

Figure 19. Couple Model for Excitablehex1.ma 

 

 
Figure 20. Simulation Result for Excitablehex1.ma 

 

 

 
 

Figure 21. Coupled Model for Excitablehex2.ma 

 

 

 
 

Figure 22. Simulation Result for Excitablehex2.ma 

 

Figure 15 represents the triangular rules as well, and hence we 

will use the same rules for triangular geometry. Using the 

LTRANS tool we will translate the triangular rules into square 

compatible rules for CD++. The translated rules can be seen 

in Figure 23.  

 



 

  

 
 

Figure 23. Translated Rules from Triangular to Square 

 

Figure 25 shows the simulation result of excitable media on a 

triangular geometry considering the nearest 3 neighbors. 

Figure 27 and Figure 29 displays the evolution of the excitable 

media changing the position of the excitable cell and taking 

two excitable cells at the same time.  

 

 
Figure 24. Couple Model for Excitabletri.ma 

 

 
 

Figure 25. Simulation Result for Excitabletri.ma 

 
Figure 26. Couple Model for Excitabletri1.ma 

 

 



 

 
Figure 27. Simulation Result for Excitabletri1.ma 

 

 
Figure 28. Couple Model for Excitabletri2.ma 

 

 
 

Figure 29. Simulation Result for Excitabletri2.ma 

 

SURFACE TENSION: 

 

Surface tension can be defined as an elastic tendency of a fluid 

which influences it to obtain the slightest surface area 

possible. The model representing surface tension is considered 

as a majority voting system [6] i.e. in each step the new state 

of the cell will depend on most of its neighbors. Two types of 

states are defined to represent the cells presence and absence 

of particles corresponding to values 1 and 0 [6]. According to 

the majority voting system if at least 5 neighbors are occupied 

then the cell state remains the same else it changes. 

 

We now define the coupled model for surface tension as 

shown in the figure 23.  

 

 
 

Figure 30. Surface Tension Coupled Model 

 

The surface tension rules are now defined in hexagonal 

geometry using the hexagonal neighbor referencing which can 

be seen in Figure 24. It uses the majority voting system to 

calculate the tension but as it considers hexagonal geometry 



 

  

only 6 neighbors are considered hence, minimum 4 neighbors 

are taken which can be occupied to make the majority. Using 

the LTRANS tool the rules will be translated into square 

compatible rules for CD++ which can be shown in the Figure 

25. 

 

 
 

Figure 31. Hexagonal Rules 

 

 
Figure 32. Translated Rules from Hexagonal to Square 

 

Now the translated rules are implemented into the coupled 

model. The presence of particles is randomly distributed and 

the coupled model surfacetensionhex.ma is build using 

hexagonal topology. Figure 33 displays the coupled model 

while Figure 34 shows the simulation of the model.  

 

 
Figure 33. Coupled Model for surfacetensionhex.ma 

 

 

 
 

Figure 34. Simulation Result for surfacetensionhex.ma 

 

A second case is considered with a smaller dimension of cell 

space and observe the results closely. Figure 35 corresponds 

to the coupled model for this case and Figure 36 shows the 

simulation result. 

 
Figure 35. Coupled Model for surfacetensionhex1.ma 

 

 
Figure 36. Simulation Result for surfacetensionhex1.ma 

 

The triangular rules are now translated for surface tension. 

Triangular geometry considers nearest 3 neighbors hence, 

threshold of 2 neighbors are considered for calculating 

majority.  

 



 

 
Figure 37. Triangular Rules for Surface Tension 

 

 
Figure 38. Translated Rules from Triangular to Square 

 

The translated rules are now included into the coupled model. 

The presence of particles is randomly distributed and the 

coupled model surfacetensionhex.ma is build using triangular 

topology. Figure 39 displays the coupled model while Figure 

40 shows the simulation of the model.  

 

 
Figure 39. Coupled Model for surfactensiontri.ma 

 
 

Figure 40. Simulation Result for surfactensiontri.ma 

 

A second case with a smaller dimension of cell space is 

considered and observation is made closely. Figure 41 

corresponds to the coupled model for this case and Figure 42 

shows the simulation result. 

 

 
Figure 41. Coupled Model for surfacetensiontri1.ma 

 



 

  

 
Figure 42. Simulation Result for surfacetensiontri1.ma 

 

 
HEAT DIFFUSION: 

 
Heat diffusion refers to the transfer of heat on a plane. We will 

discuss a 2D heat diffusion model which will show the heat 

diffusion on a surface [7]. The 2D heat diffusion coupled 

model is now defined as shown in Figure 43. 

 

 
 

Figure 43. Heat Diffusion Coupled Model [7] 

 
The cell space considered is a 10x10 cell grid. Each cell 

represents a temperature value [7]. There are two input entities 

heat and cold and we set the heat and cold temperature 

according to a uniform distribution with the range 25 to 50 for 

heat temperature and -20 to 15 for cold temperature. The 

diffusion rule works as follows: Each cell takes average of all 

the neighbors including itself updates the cell’s temperature 

value [7]. The hexagonal rules are now defined for heat 

diffusion in the below mentioned figure 44.  

 

 
Figure 44. Heat Diffusion Hexagonal Rules 

  
As the hexagonal geometry only supports 6 neighbors we have 

modified the actual rules considering hexagonal neighbor 

referencing and 7 total neighbors. The translated rules into the 

square geometry can be shown below in Figure 45.  

 

 
Figure 45. Translated rules from hexagonal to square 

 

A coupled model is now defined wherein we heat is generated 

at coordinates (6,6) and (2,2) and cold at (6,5) and (2,8) so that 

we can observe how the temperature changes in the cell space 

when the heat is diffused. Figure 46 shows the coupled model 

for this specification whereas Figure 47 shows the simulation 

result on a hexagonal grid. 

 
Figure 46. Couple Model for heatdiffuionhex.ma 



 

 
 

Figure 47. Simulation Result for heatdiffusionhex.ma 

 

Considering another case where we generate heat on the top 

and the bottom of the cell space and observe how the heat 

diffusion takes place on a hexagonal grid we build the coupled 

model as shown in figure 48. Figure 49 shows the simulation 

results for the same. Note: The simulation results consist of 

many frames out of which only four are displayed. Better 

results can be seen in the simulation video.  
 

 

 
Figure 48. Coupled Model for heatdiffusionhex1.ma 

 
Figure 49. Simulation Results for heatdiffusionhex1.ma 

 
Triangular rules are now defined for heat diffusion where we 

can only consider nearest 3 neighbors. Figure 50 shows the 

triangular rules for heat diffusion and Figure 51 shows the 

translated rules from triangular to square compatible rules.  

 
Figure 50. Heat Diffusion triangular rules 

 

 
Figure 51. Translated rules from triangular to square 

 
The model is now implemented using these rules on two 

similar cases as done for the for hexagonal grid i.e. firstly the 

function set heat and set cold uniformly generates cold and 

heat at four cells which will vary the temperature in the cell 

space and secondly, the heat diffusion is observed when the 

heat is constantly generated at the top and bottom of the cell 

space. Figure 52 shows the coupled model specification for 

the first case and Figure 53 shows the simulation results for 

the same. Whereas the second case can be modeled as shown 

in Figure 54 and the simulation results can be observed in 

Figure 55. Note: The simulation results consist of many 

frames out of which only four are displayed. Better results can 

be seen in the simulation video.  

 



 

  

 
Figure 52. Coupled model for heatdiffusiontri.ma 

 

 

 
 

Figure 53. Simulation Result for heatdiffusiontri.ma 

 

 

 
Figure 54. Coupled model for heatdiffusiontri1.ma 



 

 
Figure 55. Simulation Result for heatdiffusiontri1.ma 

 
GAS DIFFUSION: 

 

The model of gas diffusion has been referenced from the 

sample model’s webpage of sce.carleton.ca. The gas 

diffusion model works as follows: As the particles move 

freely in the lattice until they are collided by another 

particle and change their direction. 

 

 
Figure 56. Gas Diffusion Coupled Model [8] 

 

The above figure 56 shows the coupled model of gas 

diffusion. A 15x15 cell grid is considered for observing 

the flow of gas in the lattice. Here, 0 indicates no 

particles whereas 1-15 indicates the presence of a 

particle travelling in all four directions (north = 1, south 

= 4, east = 2 and west = 8) [8] 

 

 

 
Figure 57. Hexagonal Rules for Gas Diffusion 

 

 
Figure 58. Translate rules from Hexagonal to Square 

 

The figure 57 shows the hexagonal rules for gas 

diffusion in a 2D cellular automata. Upon translation the 

square compatible rules are generated for the hexagonal 

topology in Figure 58. These rules are used to observe 

the behavior of gas diffusion on a hexagonal grid. A 

coupled model is built with the same specifications but 

only with the new translated rules which can be seen in 

the figure 59. On performing simulation on this model, 

we get the results as shown in the figure 60. 



 

  

 
Figure 59. Coupled Model for gasdiffusionhex.ma 

 

 
Figure 60. Simulation Result for gasdiffusionhex.ma 

 

 
Figure 61. Triangular Rules for gas diffusion 

 
Figure 62. Translated rules from Triangular to Square 

 

 
Figure 63. Coupled Model for gasdiffusiontri.ma 

 



 

 
 

Figure 64. Simulation Result for gasdiffusiontri.ma 

 

The model is now observed to understand the behavior of gas 

diffusion using a triangular topology, the coupled model 

referencing to this can be seen in figure 63. The translated 

rules are shown  in figure 62 to build a square topology. Figure 

64 shows the simulation results of gasdiffusiontri.ma. 

 

4. CONCLUSION 
 

The tool CD++ can be used to model multi-dimensional Cell-

DEVS. Using the specification language for defining the rules 

for triangular and hexagonal topologies we can visualize the 

behavior of physical systems on a hexagonal and triangular 

grid provided in the CD++ modeler. As hexagonal and 

triangular topologies consider few neighbors the number of 

messages passed between the neighbors are low as compared 

to the regular square geometry, hence we lose a lot of 

information. On the other hand, the isotropic behavior of a 

hexagonal mesh and the fact that triangular mesh considers the 

limited number of neighbors are taken as a n advantage when 

implementing physical systems like diffusion and excitable 

media, as it gives us a better visualization. 
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