

Building Cell-DEVS Model using Triangular

and Hexagonal Meshes
 Ritvik Rajnikant Pandey

Department of Systems and Computer Engineering

 Carleton University

1125 Colonel By Drive

Ottawa, ON, Canada

ritvikrajnikantpande@cmail.carleton.ca

ABSTRACT

The DEVS formalism has been utilized for displaying and

recreating strategy for various normal and simulated

frameworks. Cell-DEVS is an expansion of DEVS that takes

into consideration executing cellular automata models with

the favourable position of assessing the cells asynchronously

with different timing delays. Cell-DEVS is a worldview of

determination to depict cell models in view of a rectangular

geometry. In this paper, we present a variation of it, utilizing

a hexagonal geometry which provides higher isotropy and

triangular geometry which uses limited neighbors to represent

diverse topology, and demonstrate their conceivable

applications using the CD++ toolkit.

1. INTRODUCTION

Various research endeavours have exhibited answers for

demonstrating and recreation of environmental frameworks

utilizing cell models. A cell space composes the structure of

the model of a given physical framework by partitioning the

area of impact into geometrically distributed cells [1]. This

approach is helpful, as most environmental systems are

heterogeneous, and they should think about various factors,

while determining the behaviour of the system in space and

time. Most popular approach to deal with such systems is

cellular automata which has delivered behaviours of many

complex physical systems [2]. This is where Cell-DEVS

comes into picture, it was defined as an extension to cellular

automata.

Cell-DEVS is a worldview of detail to portray cell models in

light of a rectangular geometry. The Cell-DEVS formalism

permits characterizing a cell space as a grid of cells holding a

figuring assembly accountable for refreshing the cell state

using a set of local rules [4]. The cell states are updated by use

of the present cell state and the neighborhood details using the

different timing delays. There are numerous physical issues,

which by their inclination, have attributes of expansion or

diffusion. For these issues its portrayal in a rectangular space,

does not prove to be efficient. For example, if we consider a

neighborhood with 4 neighbors we cannot get the precise

results corresponding to the actual phenomenon as it would

only consider four directions up, down, right and left for the

implementation [3]. Something similar is experienced

considering a neighborhood with 8 neighbors where all the 8

squares are geometrically different. Issues like this motivated

an extension to the formalism in order to represent hexagonal

and triangular topologies. The hexagonal topology provides

equal distances from all its neighbors hence portraying

isotropic nature while triangular topologies are reserved for

cases wherein limited number of neighbors are required to

observe a certain phenomenon. Here, we show how the CD++

toolkit [5] helps translate hexagonal/triangular rules into

compatible square rules and how we can apply these rules to

certain physical systems.

2. BACKGROUND
The Discrete Events Systems specifications formalism [3]

permits reuse of models by various leveled development of the

models. In DEVS the essential models are called atomic

models which are consolidated to form coupled models.

DEVS atomic model is described as:

M = < X, S, Y, dint, dext, l, D >

Here, X is the input events set, S is the state set, and Y is the

output events set, dint is internal transitions function, dext

external transitions function, l shows the outputs, and D shows

the elapsed time [1]. The atomic model is most essential model

in DEVS which can be outlined as shown below [3]:

Figure 1. DEVS atomic model [3]

A DEVS atomic model [3] comprises of input port(x) and

output ports(y) to associate with various models. Each model

has a state (s) which is related with a time advance (ta)

function. Time advance (ta) work allocates the length of a

phase. After (ta) is expended an internal transition is activated.

An output function is actuated which gives the output from the

output ports. After this and internal transition function (dint) is

terminated, which does a nearby state change. The inputs that

are gotten from different models i.e. the outside events are

taken care of by the external transition function(dext). Several

atomic models consolidate to build a coupled model in DEVS

as shown in Figure 2.

Figure 2. DEVS Coupled Model [3]

Coupled models are characterized as an arrangement of

essential parts (atomic or coupled), which are interconnected

through the model interfaces. The model's coupling plan

characterizes the interconnectivity amongst models and the

interface with the outside world.

Cell-DEVS [4] has expanded DEVS, permitting the execution

of cell models with timing delays. Every cell is characterized

as a DEVS atomic model, and it can be later coordinated to a

coupled model speaking to the cell space. Cell-DEVS atomic

model can be portrayed as follows in Figure 3.

Figure 3. Cell-DEVS Atomic Model [4]

Every Cell of a Cell-DEVS model consists of a state variable

and a transition function which is helpful in recognizing the

cell state using the current state and its neighborhood. Every

cell is described as:

TDC = < X,Y,?,N,delay,d,dint,dext, t , ?,D>

X and Y denotes the external inputs and outputs in the model.

? expresses the cell state, delay represents the kind of delay:

transport or inertial and d is the duration of that delay, dint and

dext are the internal and external transitions. Every cell uses

t(N) to compute future states. ? and D show the outputs and

state’s duration.

In Cell-DEVS [4] every cell utilizes N inputs from its

neighborhood to compute the future state. The inputs N are

received form the model interface, and are responsible for

activating the local computing function (t). Two types of delay

can be provided to each cell: transport delay and inertial delay.

The state changes can be transferred to other models after the

delay time is consumed [4]. A Cell-DEVS coupled model is

shown in figure 4.

Figure 4. Cell-DEVS Coupled Model [4]

A Cell-DEVS coupled model is defined by:

GCC= < Xlist, Ylist, X,Y,n,{t1,…, tn},N,C,B,Z >

Here Xlist and Ylist denotes are input/output coupling lists,

used to define model interface. The input/output events are

portrayed by X and Y. The value n shows the dimension of the

cell space, {t1,…, tn} are the number of cells per dimension.

N is neighbourhood set while C defines the cell space along

with B which shows the border cells and Z which shows the

translation function [4].

CD++ [5] is a modeling and simulation environment

developed in C++ following the specifications of DEVS and

Cell-DEVS models. It is used to construct DEVS and Cell-

DEVS models. When constructing a Cell-DEVS model the

model specification considers the size and dimension of a cell

space, type of neighborhood and the borders. The local

computing function is computed by defining certain set of

rules with a certain format which is shown below.

POSTCONDITION DELAY { PRECONDITION }

The implementation of the above format is as follows: When

the precondition is true the state of the cell will be changed to

the postcondition after certain amount of delay has elapsed.

On the other hand, if the precondition is false then the next

rule is evaluated until the last rule provided. If there is a case

where no rule is evaluated or more than one rule are evaluated

as true, the CD++ modeler generates an error. Operators such

as arithmetic, comparison, time, neighborhood values,

conditionals, rounding and constants are provided by CD++.

Cell-DEVS by default define the cell space in square

topologies, however in certain cases square topologies are no

proven to be efficient in representing the advanced cell space

models. Apart from square meshes CD++ provides triangular

and hexagonal meshes for representing the cell spaces.

Triangular meshes permit covering zones with additional

fluctuated topology, while allowing each cell to have a set

number of nearby neighbors. Hexagonal meshes on the other

hand have higher isotropy which proclaims the ability to

represent identical conduct in each possible direction [5].

While limiting the neighbors gives us data abstraction wherein

the number of messages communicated from the neighbors are

lowered, but the representation and visualization of such

models become difficult. There is a tool in CD++ which

defines the cells behaviour based on triangular and hexagonal

topologies and translates them into square compatible rules

using shift mapping. LTRANS (Lattice Translator) [5] is the

tool responsible for translating triangular and hexagonal rules

into square rules. This tool only implements 2D models using

the closest neighbors. CD++ provides a specification language

[5] to describe cells behaviour based on such rules. The set of

rules based on either triangular or hexagonal structure are

given as input to the LTRANS tool and the square compatible

rules are given as a output by LTRANS, which are then

applied to the model to be simulate. The language used to

model the cells behaviour in hexagonal/triangular geometry is

the same except the neighbors are referenced in a different

way. In CD++ a cell in a 2D space is referenced as a tuple (x,y)

where x denotes the row and y denotes the columns. LTRANS

only supports closest neighbors hence for hexagonal and

triangular geometry nearest neighbors were defined using [n]

which displays the number assigned to every neighbor. Figure

5 shows the hexagonal neighbor referencing, it is seen that a

hexagonal geometry can only have 6 neighbors in total. While

a triangular geometry shown in Figure 6 shows that only 3

neighbors are referenced in this topology.

Figure 5. Hexagonal Neighbors [5]

Figure 6. Triangular Neighbors [5]

Hexagonal mapping is shown in figure 7, It uses a function

that shifts the alternate rows in opposite directions, at the same

time preserving the boundary conditions. Triangular mapping

shown in the figure 8 is done in a similar way every other cell

has different orientation and each row of the triangle is

mapped to a row of square reliant on the parity x+y.

Figure 7. Hexagonal Mapping [5]

Figure 8. Triangular Mapping [5]

The neighborhood relation are transformed diversely relying

on the row index x which can be oven or odd as shown in

figure 9 for hexagonal geometry. While for triangular

geometry figure 10 displays the even and odd combinations

for neighbor relations.

Figure 9. Hexagonal Neighborhood Relation [5]

Figure 10. Triangular Neighborhood Relation [5]

Well know mathematician Martin Gardner presented the Life

Game in scientific American. In this game living cells stay

alive or they die. The rules of this game can be defined as

follows:

1. Active cell will stay active if it two or three active

neighbors.

2. An inactive cell will transit to active state if it has

two or three active neighbors.

3. In any other situation the cell will die.

The rules that define cell behaviour are mentioned below in

figure 11.

Figure 11. Life Game Rules

Figure 12. Hexagonal Neighbor Referencing in Life Game

Rules

Figure 12 represents the hexagonal neighbor referencing in

CD++. To explain the translation of rules the life game rules

are written in such a way that the neighbors represent the

hexagonal cells (0 to 6). After this the LTRANS tool is used

to translate these rules into square compatible rules for CD++

which can be shown below in Figure 13. These rules are added

to the model file while keeping the rest of the

structure/specifications the same.

Figure 13. Translated Rules for Life Game

3. DEFINING DIFFERENT PHYSICAL SYSTEMS

IN HEXAGONAL/TRIANGULAR TOPOLOGY

EXCITABLE MEDIA:

An excitable medium is a nonlinear dynamical framework

which has the ability to engender a wave of some specification

and which cannot allow passage to another wave until the

point that a specific measure of time has passed [6]. Heart

tissue, magnetic field and forest fire can be considered as an

excitable medium. For every excitable medium a cell can take

up one of the three states: resting, excited or recovering. For a

forest fire the states can be unburnt, burnt or burning. We

initialize with the Cell-DEVS coupled model and its

parameters which can be seen below. The excitable-rules

section corresponds to the local computing function.

Figure 14. Excitable Media Coupled Model

The first rule in the excitable rule section portrays that the cell

value should be 0 when there are cell neighbors with value 0,

in other words if there are no excited cells nearby then the cell

will remain in the resting state [6] . The second rule says that

if the cell has value 0 and there are neighbors with value 2

(excited) then the cell will become excited (take value 2). The

third and the fourth rule shows that the cell will remain in a

particular state [6]. The default rule will be every cell will stay

in its present state.

We now define the Excitable Media Coupled model using

hexagonal neighbor referencing. In order to implement the

hexagonal mesh rules in CD++ we have to first translate the

hexagonal rules into square compatible rules which can be

seen below in Figure 15 and Figure 16.

Figure 15. Excitable Media Rules using Hexagonal Neighbor

Referencing

Figure 16 represents the translated rules into square meshes

which can now be added to the coupled model. The translation

of rules for the triangular geometry is the same only the

number of neighbors are restricted to three which doesn’t

change anything in the rules mentioned above. Figure 17.

Shows the translated rules for the triangular geometry. The

difference between the triangular and hexagonal geometry is

only the neighbor referencing i.e. hexagonal grid takes into

account 6 neighbors while triangular grid considers nearby 3

neighbors. The odd and even cellpos refers to Figure 9 and

Figure 10.

Figure 16. Translated Rules from Hexagonal to Square

Figure 18 shows the simulation result for the excitable

medium on a hexagonal mesh. The excitable media is set at

the centre of the mesh and it can be seen that how it evolves

over time. Figure 20 shows the simulation results when we

change the position of the excitable media. Figure 22 shows

what happens when two excitable media are put up on a grid

at a few cells apart.

Figure 17. Coupled Model of Excitablehex.ma

Figure 18. Simulation for Excitablehex.ma

Figure 19. Couple Model for Excitablehex1.ma

Figure 20. Simulation Result for Excitablehex1.ma

Figure 21. Coupled Model for Excitablehex2.ma

Figure 22. Simulation Result for Excitablehex2.ma

Figure 15 represents the triangular rules as well, and hence we

will use the same rules for triangular geometry. Using the

LTRANS tool we will translate the triangular rules into square

compatible rules for CD++. The translated rules can be seen

in Figure 23.

Figure 23. Translated Rules from Triangular to Square

Figure 25 shows the simulation result of excitable media on a

triangular geometry considering the nearest 3 neighbors.

Figure 27 and Figure 29 displays the evolution of the excitable

media changing the position of the excitable cell and taking

two excitable cells at the same time.

Figure 24. Couple Model for Excitabletri.ma

Figure 25. Simulation Result for Excitabletri.ma

Figure 26. Couple Model for Excitabletri1.ma

Figure 27. Simulation Result for Excitabletri1.ma

Figure 28. Couple Model for Excitabletri2.ma

Figure 29. Simulation Result for Excitabletri2.ma

SURFACE TENSION:

Surface tension can be defined as an elastic tendency of a fluid

which influences it to obtain the slightest surface area

possible. The model representing surface tension is considered

as a majority voting system [6] i.e. in each step the new state

of the cell will depend on most of its neighbors. Two types of

states are defined to represent the cells presence and absence

of particles corresponding to values 1 and 0 [6]. According to

the majority voting system if at least 5 neighbors are occupied

then the cell state remains the same else it changes.

We now define the coupled model for surface tension as

shown in the figure 23.

Figure 30. Surface Tension Coupled Model

The surface tension rules are now defined in hexagonal

geometry using the hexagonal neighbor referencing which can

be seen in Figure 24. It uses the majority voting system to

calculate the tension but as it considers hexagonal geometry

only 6 neighbors are considered hence, minimum 4 neighbors

are taken which can be occupied to make the majority. Using

the LTRANS tool the rules will be translated into square

compatible rules for CD++ which can be shown in the Figure

25.

Figure 31. Hexagonal Rules

Figure 32. Translated Rules from Hexagonal to Square

Now the translated rules are implemented into the coupled

model. The presence of particles is randomly distributed and

the coupled model surfacetensionhex.ma is build using

hexagonal topology. Figure 33 displays the coupled model

while Figure 34 shows the simulation of the model.

Figure 33. Coupled Model for surfacetensionhex.ma

Figure 34. Simulation Result for surfacetensionhex.ma

A second case is considered with a smaller dimension of cell

space and observe the results closely. Figure 35 corresponds

to the coupled model for this case and Figure 36 shows the

simulation result.

Figure 35. Coupled Model for surfacetensionhex1.ma

Figure 36. Simulation Result for surfacetensionhex1.ma

The triangular rules are now translated for surface tension.

Triangular geometry considers nearest 3 neighbors hence,

threshold of 2 neighbors are considered for calculating

majority.

Figure 37. Triangular Rules for Surface Tension

Figure 38. Translated Rules from Triangular to Square

The translated rules are now included into the coupled model.

The presence of particles is randomly distributed and the

coupled model surfacetensionhex.ma is build using triangular

topology. Figure 39 displays the coupled model while Figure

40 shows the simulation of the model.

Figure 39. Coupled Model for surfactensiontri.ma

Figure 40. Simulation Result for surfactensiontri.ma

A second case with a smaller dimension of cell space is

considered and observation is made closely. Figure 41

corresponds to the coupled model for this case and Figure 42

shows the simulation result.

Figure 41. Coupled Model for surfacetensiontri1.ma

Figure 42. Simulation Result for surfacetensiontri1.ma

HEAT DIFFUSION:

Heat diffusion refers to the transfer of heat on a plane. We will

discuss a 2D heat diffusion model which will show the heat

diffusion on a surface [7]. The 2D heat diffusion coupled

model is now defined as shown in Figure 43.

Figure 43. Heat Diffusion Coupled Model [7]

The cell space considered is a 10x10 cell grid. Each cell

represents a temperature value [7]. There are two input entities

heat and cold and we set the heat and cold temperature

according to a uniform distribution with the range 25 to 50 for

heat temperature and -20 to 15 for cold temperature. The

diffusion rule works as follows: Each cell takes average of all

the neighbors including itself updates the cell’s temperature

value [7]. The hexagonal rules are now defined for heat

diffusion in the below mentioned figure 44.

Figure 44. Heat Diffusion Hexagonal Rules

As the hexagonal geometry only supports 6 neighbors we have

modified the actual rules considering hexagonal neighbor

referencing and 7 total neighbors. The translated rules into the

square geometry can be shown below in Figure 45.

Figure 45. Translated rules from hexagonal to square

A coupled model is now defined wherein we heat is generated

at coordinates (6,6) and (2,2) and cold at (6,5) and (2,8) so that

we can observe how the temperature changes in the cell space

when the heat is diffused. Figure 46 shows the coupled model

for this specification whereas Figure 47 shows the simulation

result on a hexagonal grid.

Figure 46. Couple Model for heatdiffuionhex.ma

Figure 47. Simulation Result for heatdiffusionhex.ma

Considering another case where we generate heat on the top

and the bottom of the cell space and observe how the heat

diffusion takes place on a hexagonal grid we build the coupled

model as shown in figure 48. Figure 49 shows the simulation

results for the same. Note: The simulation results consist of

many frames out of which only four are displayed. Better

results can be seen in the simulation video.

Figure 48. Coupled Model for heatdiffusionhex1.ma

Figure 49. Simulation Results for heatdiffusionhex1.ma

Triangular rules are now defined for heat diffusion where we

can only consider nearest 3 neighbors. Figure 50 shows the

triangular rules for heat diffusion and Figure 51 shows the

translated rules from triangular to square compatible rules.

Figure 50. Heat Diffusion triangular rules

Figure 51. Translated rules from triangular to square

The model is now implemented using these rules on two

similar cases as done for the for hexagonal grid i.e. firstly the

function set heat and set cold uniformly generates cold and

heat at four cells which will vary the temperature in the cell

space and secondly, the heat diffusion is observed when the

heat is constantly generated at the top and bottom of the cell

space. Figure 52 shows the coupled model specification for

the first case and Figure 53 shows the simulation results for

the same. Whereas the second case can be modeled as shown

in Figure 54 and the simulation results can be observed in

Figure 55. Note: The simulation results consist of many

frames out of which only four are displayed. Better results can

be seen in the simulation video.

Figure 52. Coupled model for heatdiffusiontri.ma

Figure 53. Simulation Result for heatdiffusiontri.ma

Figure 54. Coupled model for heatdiffusiontri1.ma

Figure 55. Simulation Result for heatdiffusiontri1.ma

GAS DIFFUSION:

The model of gas diffusion has been referenced from the

sample model’s webpage of sce.carleton.ca. The gas

diffusion model works as follows: As the particles move

freely in the lattice until they are collided by another

particle and change their direction.

Figure 56. Gas Diffusion Coupled Model [8]

The above figure 56 shows the coupled model of gas

diffusion. A 15x15 cell grid is considered for observing

the flow of gas in the lattice. Here, 0 indicates no

particles whereas 1-15 indicates the presence of a

particle travelling in all four directions (north = 1, south

= 4, east = 2 and west = 8) [8]

Figure 57. Hexagonal Rules for Gas Diffusion

Figure 58. Translate rules from Hexagonal to Square

The figure 57 shows the hexagonal rules for gas

diffusion in a 2D cellular automata. Upon translation the

square compatible rules are generated for the hexagonal

topology in Figure 58. These rules are used to observe

the behavior of gas diffusion on a hexagonal grid. A

coupled model is built with the same specifications but

only with the new translated rules which can be seen in

the figure 59. On performing simulation on this model,

we get the results as shown in the figure 60.

Figure 59. Coupled Model for gasdiffusionhex.ma

Figure 60. Simulation Result for gasdiffusionhex.ma

Figure 61. Triangular Rules for gas diffusion

Figure 62. Translated rules from Triangular to Square

Figure 63. Coupled Model for gasdiffusiontri.ma

Figure 64. Simulation Result for gasdiffusiontri.ma

The model is now observed to understand the behavior of gas

diffusion using a triangular topology, the coupled model

referencing to this can be seen in figure 63. The translated

rules are shown in figure 62 to build a square topology. Figure

64 shows the simulation results of gasdiffusiontri.ma.

4. CONCLUSION

The tool CD++ can be used to model multi-dimensional Cell-

DEVS. Using the specification language for defining the rules

for triangular and hexagonal topologies we can visualize the

behavior of physical systems on a hexagonal and triangular

grid provided in the CD++ modeler. As hexagonal and

triangular topologies consider few neighbors the number of

messages passed between the neighbors are low as compared

to the regular square geometry, hence we lose a lot of

information. On the other hand, the isotropic behavior of a

hexagonal mesh and the fact that triangular mesh considers the

limited number of neighbors are taken as a n advantage when

implementing physical systems like diffusion and excitable

media, as it gives us a better visualization.

5. REFERENCES

[1] G.Wainer: Application of Cell-DEVS Methodology for

Modeling the Environment.

[2] Wolfram, S. 2002. A New Kind of Science. Champaign,

IL: Wolfram Media

[3] B. Zeigler; T. Kim; H. Praehofer: Theory of Modeling and

Simulation: Integrating Discrete Event and Continuous

Complex Dynamic Systems, Academic Press, 2000

[4] G. Wainer; N. Giambiasi: "Application of the CellDEVS

Paradigm for Cell Spaces Modeling and Simulation",

Simulation, Vol. 71, No. 1, pp. 22-39, January 2001.

[5] G. Wainer: "CD++: A Toolkit to Define DiscreteEvent

Models", Software, Practice and Experience, Wiley, Vol. 32,

No 3. pp. 1261-1306. November 2002.

[6] G. Wainer, Javier Ameghino: APPLICATION OF THE

CELL-DEVS PARADIGM USING N-CD++.

[7] G. Wainer, Alejandro Troccoli: Implementing Parallel

Cell-DEVS

[8] G.Wainer: Sample Models Webpage

